
Towards Certified Unsolvability in Classical Planning

Gabriele Röger
University of Basel, Switzerland

gabriele.roeger@unibas.ch

Abstract
While it is easy to verify that an action sequence
is a solution for a classical planning task, there is
no such verification capability if a task is reported
unsolvable. We are therefore interested in certifi-
cates that allow an independent verification of the
absence of solutions. We identify promising con-
cepts for certificates that can be generated by a wide
range of planning approaches. We present a first
proposal of unsolvability certificates and sketch
ideas how the underlying concepts can be used as
part of a more flexible unsolvability proof system.

1 Introduction
The aim of classical planning is to find a sequence of actions
(a plan) that transforms the current world situation into a de-
sirable state or to prove that no such plan exists.

As with all software systems, the output of a planning sys-
tem can be wrong, due to software bugs, hardware faults or
even malicious reasons. This is no problem in academia but
as intelligent problem-solving techniques are more and more
commonly applied in the real world, it gets increasingly im-
portant that we are able to verify the correctness of the output.

Traditionally, the planning community placed most empha-
sis on actually finding plans and there are several tools avail-
able that can efficiently check whether an action sequence is a
valid plan (e. g. VAL [Howey and Long, 2003], INVAL1). Re-
cently, the problem of identifying unsolvable planning tasks
has attracted increasing interest, not least due to the first In-
ternational Planning Competition on proving unsolvability
(UIPC). As there have been no analogous validation capa-
bilities for unsolvability, participating planning systems were
discouraged from “guessing” by disqualifying them from a
domain when they falsely reported a task unsolvable. While
this might be acceptable in a competition, applying such sys-
tems reliably in real-world scenarios requires the capability
to verify the output also for unsolvable tasks.

We are therefore interested in the development of certifying
planning systems. Besides its usual output, a certifying al-
gorithm [McConnell et al., 2011] generates a certificate that
justifies the result and is sufficient for verifying its correct-
ness independently of the algorithm. To be practically useful,
certificates should satisfy four criteria [Eriksson et al., 2017]:

• completeness: There should be a certificate for every un-
solvable planning task.

• efficient generation: Transforming a non-certifying al-
gorithm into a certifying one should be possible with
reasonable (polynomial, ideally linear) overhead.

• efficient verification: Verifying the correctness of a cer-
tificate should be possible with reasonable effort (e.g.,
polynomial in the size of the certificate).

• generality: A single class of certificates (and hence ver-
ifier) should be useful for a wide range of algorithms.

In this paper we describe first steps towards such certified
unsolvability. After a high-level introduction of the planning
problem, we give an overview of recent approaches for prov-
ing unsolvability and identify some key concepts that might
be suitable to cover a broad spectrum of algorithms. We
briefly describe a recent proposal for general unsolvability
certificates and sketch ideas how the underlying concepts can
be used as part of a more flexible unsolvability proof system.

2 Background
A planning task is typically defined over a set of state vari-
ables that can take on values from a finite domain. A state
is given by a total assignment to the state variables, and we
denote the set of all states by S. An action is specified by
a precondition, which defines in which states it is applica-
ble, and an effect that specifies how the action application
changes the world. In classical planning actions are deter-
ministic, i. e. there is always a single, fully determined suc-
cessor state. The successor relation described by the actions
induces a state space, which is a directed graph where the
vertices correspond to all possible states and the edges to the
action applications. The size of the state space is generally
exponential in the size of the task specification. In addition
to the action specification, the definition of a planning task
identifies an initial state and specifies a goal condition. We
say that a state s is solvable if there is a path in the state space
from s to a state that satisfies the goal condition. An s-plan
is a sequence of actions that induces such a path, and it is a
plan for the task if s is the initial state. A task is unsolvable
if there exists no plan.

1http://users.cecs.anu.edu.au/~patrik/



3 Related Work in Planning
The predominant approach to classical planning is informed
state-space search, where the search is guided by a heuristic
function that estimates the cost to reach the goal from a given
state. An estimate ∞ for a state s from a safe heuristic in-
dicates that s is a dead end, i. e. it is impossible to reach the
goal from s. During the search, infinite heuristic estimates
are used to prune the search space. If a complete search al-
gorithm such as A∗ or greedy best-first search exhausts the
search space with a safe heuristic, then the task is unsolv-
able. This is also true for the extreme case, where the heuris-
tic identifies the initial state of the task as a dead end.

Heuristic estimates are typically computed from a simplifi-
cation of the planning task and most of the heuristics that are
relevant for this work fall into one of the following classes:

Abstraction heuristics define an equivalence relation over
the states and do not distinguish equivalent states. The in-
duced abstract state space contains a state for each equiv-
alence class and has the property that every solution in the
original state space is also a solution in the abstract space, so
that abstract goal distances are admissible heuristic estimates.
In particular, if an abstract state is unsolvable then the corre-
sponding original states are unsolvable. Typical representa-
tives of abstraction heuristics are PDB heuristics [Edelkamp,
2001] or merge-and-shrink heuristics [Helmert et al., 2014].

Delete-relaxation heuristics [Bonet and Geffner, 2001;
Hoffmann and Nebel, 2001] ignore “negative” effects of ac-
tions. For example, moving a truck from A to B has the dis-
advantage that it is no longer at A. Delete relaxation ignores
this, intuitively accumulating the values of state variables in-
stead of switching between them. As a result, the truck in
the example would not only be at B but also still at A, so
we could transport a package from B to A by loading it at
B and unloading it at A without another movement of the
truck. Partial delete-relaxation approaches [Katz et al., 2013;
Domshlak et al., 2015; Keyder et al., 2014] allow a more fine-
grained selection of what deletes may be ignored.

Critical-path heuristics [Haslum and Geffner, 2000; Hoff-
mann and Fickert, 2015] are defined in terms of a set C of
partial variable assignments. The heuristic computation ap-
proximates the cost of achieving action preconditions and the
goal condition by the cost of achieving the most expensive
element of C that is implied by the condition.

Potential heuristics [Pommerening et al., 2015] assign a
potential to each value of a state variable and simply sum up
these potentials for the values in a state. The potentials are
typically determined with linear programming.

These heuristics focus on computing good heuristic esti-
mates, and the detection of dead ends is rather a side product
of the computation. However, for proving unsolvability, the
goal distances of solvable states are irrelevant. Hoffmann et
al. [2014] thus introduced the concept of unsolvability heuris-
tics as functions u : S → {0,∞} where u(s) = ∞ implies
that s is a dead end and u(s) = 0 means that we do not know.

Most approaches for detecting unsolvable planning tasks
use an unsolvability heuristic that is based on an existing
heuristic but optimized towards a specifically good dead-
end detection or faster computation. There are unsolv-

ability heuristics based on PDBs [Bäckström et al., 2013;
Pommerening and Seipp, 2016; Seipp et al., 2016; Torralba,
2016], merge-and-shrink abstractions [Hoffmann et al., 2014;
Torralba et al., 2016], partial delete-relaxation [Gnad et
al., 2016a], critical paths [Steinmetz and Hoffmann, 2017b;
Haslum, 2016] and potential heuristics [Seipp et al., 2016].
While most of them are used for pruning within a search,
some of the unsolvability approaches try to strengthen the
heuristic computation until the initial state is detected as a
dead end [Bäckström et al., 2013; Hoffmann et al., 2014;
Torralba et al., 2016; Haslum, 2016].

To avoid expensive heuristic computations, some ap-
proaches derive logical formulas with the property that if the
formula is true under the variable assignment of a state then
the state is a dead end. As this can be evaluated very quickly,
such dead-end detectors can always be consulted before the
more expensive heuristic evaluation. Such formulas can be
computed in a preprocessing step [Lipovetzky et al., 2016;
Steinmetz and Hoffmann, 2017a] or be derived online during
the search [Steinmetz and Hoffmann, 2017b; 2017a].

Many systems use irrelevance pruning, most notably the
preprocessing technique by Alcázar and Torralba [2015] that
alternates between a forward and backward analysis to derive
formulas that recognize states that can never be part of a plan.

Besides heuristic-based methods, there are also search-
based approaches that explore a very different search space
[Gnad et al., 2016b] and satisfiability-based approaches us-
ing model checking [Korovin and Suda, 2016] or property
directed reachability [Balyo and Suda, 2016].

Despite the large number of systems for detecting unsolv-
able planning tasks, there is only one that can certify its out-
put [Steinmetz and Hoffmann, 2017b], and its certificate gen-
eration is limited to this specific approach.

4 Key Concepts
One challenge in defining general unsolvability certificates is
to identify concepts that cover a wide range of the previously
mentioned techniques. As the question whether a planning
task is solvable is inherently a reachability question in a di-
rected graph, reachability-based concepts look most promis-
ing for this endeavor. In the following we introduce two such
concepts and briefly discuss representational issues.

Inductive Sets and Dead States
An inductive set S is a set of states that is closed under action
application, i. e. all action applications in a state in S lead to
a state in S. Once entered, such a set cannot be left again,
and if an inductive set does not contain a goal state of the task
then all states in the inductive set are unsolvable.

Definition 1 (Eriksson et al., 2017). An inductive certificate
for state s consists of a set S of states such that (1) S contains
s (2) S contains no goal state and (3) S is inductive.

Clearly, if there is an inductive certificate for a state then
the state is unsolvable. Moreover, there is an inductive certifi-
cate for every unsolvable state (e. g. the set consisting of all
states reachable from this state).

The definition of inductive sets stems from a forward-
search perspective and there is a natural translation to re-



gression search (backwards from the goal): A backwards-
inductive set is a set of states S that cannot be entered from
the outside, i. e. no action application in a state that is not in S
leads to a state in S. If a backwards-inductive set contains all
goal states but not state s then state s is unsolvable. This con-
cept would also be sufficient to define a certificate for every
unsolvable task (e. g. using the set of all solvable states).

While inductive sets consider reachability from a set,
backwards-inductive sets capture reachability of a set. The
notion of dead states allows combining both concepts rela-
tive to the initial state and the goal: a state is dead if it is
not reachable from the initial state or if it is unsolvable. This
simple generalizing property can be very helpful if we need to
integrate information from different sources of information.

Sets of States as Logical Formulas
If we want to use sets of states as basis for unsolvability
certificates, we cannot represent them explicitly because this
would in most cases prohibit an efficient certificate genera-
tion. Instead, we represent sets of states by logical formulas
over the state variables: a state is included in the set iff its
variable assignment satisfies the formula. This is a common
concept also underlying the specification of action precondi-
tions, or for representing sets of states in a regression search.
In the context of unsolvability, inductive sets described by a
formula are also called traps [Lipovetzky et al., 2016].

There are many formalism for representing formulas such
as reduced ordered binary decision diagrams (BDDs) or 2-
CNF formulas. As different formalisms support different op-
erations efficiently, the choice of the formalisms is crucial for
an efficient certificate generation and verification.

5 Unsolvability Certificates
Eriksson et al. [2017] proposed unsolvability certificates
based on inductive sets. In the simplest case, such a certifi-
cate consists of a single set, given as a formula in some rep-
resentation formalism. The proposal does not require a spe-
cific formalism but instead identifies sufficient conditions for
an efficient certificate verification. The conditions are speci-
fied as sets of operations that must be possible in polynomial
time, for example constructing the conjunction of two given
formulas or deciding whether a formula logically implies a
given clause. The results establish for three particularly inter-
esting formalisms, namely BDDs, Horn formulas and 2-CNF
formulas, that they all are suitable for this kind of certificate.

The core of the verification step is a formulation of the suc-
cessor relation induced by the actions in propositional logic.
Encoding action applications as logical formulas over two
sets of state variables – one for the source and one for the
successor state – is not new but is the core of planning as sat-
isfiability [Kautz and Selman, 1992] or with symbolic search
[Edelkamp and Helmert, 2001].

Even if an efficient verification is possible, constructing a
certificate as a single monolithic set can be computationally
challenging. Consider for example a set of BDDs, where each
BDD represents an inductive set. The union of all these sets is
again an inductive set but representing this set as a BDD can
require exponential space in the size of the ingredient BDDs.

Conjunctive and disjunctive certificates mitigate these
problems by “factorizing” the certificate into several compo-
nent sets with the property that their intersection and union,
respectively, form an inductive certificate. The criteria for
an efficient verification of such certificates are slightly more
complicated. The certificates can be parameterized with some
number r that determines how many component sets must be
considered at the same time. Then r-conjunctive certificates
can be verified efficiently if the components are represented
as BDDs, Horn formulas or 2-CNF formulas, where the lat-
ter two formalisms do not require the restriction on a fixed r.
General r-disjunctive certificates can be verified efficiently
when given as BDDs. In the special case r = 1 also a repre-
sentation as Horn formulas or 2-CNF formulas is suitable.

With these certificates, we can already transform a wide
range of planning techniques into certifying algorithms.

The simplest case is blind explicit-state forward search,
which must explore all states that are reachable from the ini-
tial state. If the task is unsolvable, this set is an inductive
certificate that can be efficiently converted into a BDD.

Complete heuristic search algorithms such as A∗, IDA∗,
or greedy best-first search exploit (unsolvability) heuristics to
prune the search space. Consider the set Sexp of states ex-
panded by the algorithm. Each successor state of a state in
Sexp is either included in Sexp or it has been detected unsolv-
able by a heuristic. If the heuristics provide an inductive cer-
tificate for each such state, then the union of {{s} | s ∈ Sexp}
and all heuristic certificates is an inductive certificate, which
can be efficiently expressed as a (1-)disjunctive certificate.

These certificates require heuristics that efficiently certify
infinite heuristic estimates, which is possible for a large spec-
trum of common heuristics [Eriksson et al., 2017].

For example, for the most common class of merge-and-
shrink abstractions (using linear merge strategies), the inter-
nal representation of the abstraction can be transformed into
a BDD that serves as certificate for all states detected unsolv-
able by the heuristic. However, since the construction adopts
the variable order used by the merge strategy, the variable or-
der of the certificate BDD cannot be chosen arbitrarily.

For the hm family of critical-path heuristics, it is possible
to efficiently compute inductive Horn-formula certificates,
which in the common case of m ≤ 2 are also inductive 2-SAT
certificates. A compact representation as a single BDD is not
possible but the individual clauses of the Horn certificate can
be efficiently converted into BDD representation. The collec-
tion of all these BDDs forms a 1-conjunctive certificate.

While the proposed certificates already cover a wide range
of planning algorithms, they do not allow an arbitrary com-
bination of techniques. One reason is that all component sets
of a conjunctive or disjunctive certificate must be given in the
same representation formalism. For example, heuristic search
with several merge-and-shrink heuristics that use different
variable orderings is not expressible with the existing results.
Moreover, some of the results require a specific form of the
components. Consider for example heuristic search with a
merge-and-shrink heuristic and h2 from the hm heuristic fam-
ily. The result for the merge-and-shrink heuristic implies
a BDD representation but h2 can only provide conjunctive
BDD certificates. These are not suitable for the disjunctive
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Figure 1: Explored part of the state space (Example 2)

certificate created by the search algorithm, which requires
(non-conjunctive) inductive certificates from the heuristics.

6 Proof System
We suggest to use a more flexible proof system to overcome
the limitations of the previously proposed unsolvability cer-
tificates. Such a system would not only allow to bridge
the gap between different representation formalisms, but also
would easily integrate the forward and backward reachabil-
ity perspectives. This section presents a few ideas on work
that is still very much in progress. We would like to give an
impression how a proof system for unsolvable planning tasks
could look like, but do not want to go into the formal details.

The core of the proof system will be a set of rules that we
prove correct so that they can be applied without further jus-
tification in the proofs. For illustration, the following state-
ments could occur as rules in a proof system:

(a) If the initial state is dead then the task is unsolvable.
(b) Every state in a dead set is dead.
(c) An inductive set that contains no goal state is dead.
(d) If every action application in a state s leads to a dead

state then state s is dead.

The basis of each proof would be formed by a collection of
statements that require verification. These can then be used
as premises for rule applications. The basic statements must
be separately verifiable. In the following we present two case
studies to illustrate the overall concept.

Example 1
The first example shows how inductive certificates could be
covered, demonstrated for a merge-and-shrink BDD certifi-
cate B.
Statements:

1. BDD set B is inductive.
2. no goal state is included in BDD B.
3. the initial state is included in BDD B.

Derivation:

4. rule (c), (1), (2)⇒ B is dead.
5. rule (b), (3), (4)⇒ the initial state is dead.
6. rule (a), (5)⇒ the task is unsolvable.

Example 2
The second example illustrates what a proof for heuristic
search with a merge-and-shrink heuristic and the h2 heuris-
tic could look like. Figure ?? depicts the explored part of

the search space. The search expands states sI , s1 and s2.
Heuristic h2 detects s3 as a dead end and the merge-and-
shrink heuristic detects states s4 and s5 as a dead end.

The creation of the proof would be distributed among
the different components. In the following proof, heuris-
tic h2 would add line (1)–(3) and (11)–(12), the merge-and-
shrink heuristic would add lines (5)–(7), (9), (13)–(15) and
the search the remaining lines. Note that in the example the
merge-and-shrink heuristic “knows” that the BDD B suffices
for all its detected dead ends, so it reuses it for state s5 with-
out establishing again that B is dead.
Statements:

1. Horn formula set Hs3 is inductive.
2. no goal state is included in Horn formula set Hs3 .
3. s3 is included in Hs3 .
4. all action applications in state sI lead to s1, s2 or s3.
5. BDD set B is inductive.
6. no goal state is included in BDD B.
7. s4 is included in B.
8. all action applications in state s1 lead to s2, s3 or s4.
9. s5 is included in B.

10. all action applications in state s2 lead to s5.
Derivation:
11. rule (c), (1), (2)⇒ Hs3 is dead.
12. rule (b), (3), (11)⇒ s3 is dead.
13. rule (c), (1), (2)⇒ B is dead.
14. rule (b), (7), (13)⇒ s4 is dead.
15. rule (b), (9), (13)⇒ s5 is dead.
16. rule (d), (10), (15)⇒ s2 is dead.
17. rule (d), (8), (16), (12), (14)⇒ s1 is dead.
18. rule (d), (4), (17), (16), (12)⇒ sI is dead.
19. rule (a), (18)⇒ the task is unsolvable.

Every line specifies not only the rule, but also states where
its premises have been established. Alternatively, we could
require that the premises are spelled out but no references are
necessary. This would move some overhead from the certify-
ing algorithm to the verifier.

The challenge in the definition of a proof system will be the
identification of a suitable set of rules and possible statements
(including the representation formalisms) that allows for an
efficient generation and verification but also conforms to the
requirement of a complete and general approach.

7 Conclusion
Unsolvability is a very active research topic in classical plan-
ning, and the special focus of the recent planning competi-
tion has stimulated the development of a number of systems
for detecting unsolvable tasks. However, if these systems re-
port an input task to be unsolvable, we cannot easily verify
this result but have to believe that it has for example not been
compromised by a bug. We are therefore interested in cer-
tifying planning systems that provide additional information,
allowing an independent validation of the claim. Unsatisfia-
bility certificates that are based on inductive sets can serve for
this purpose for a wide range of planning approaches. Still,
they have some limitations when it comes to arbitrary com-
binations of techniques. We therefore suggest to generalize
them to a more flexible rule-based proof system.
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