
On the Relative Expressiveness of ADL and Golog: The Last Piece in the Puzzle
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Abstract
Integrating agent programming languages and efficient action
planning is a promising approach because it combines the ex-
pressive power of languages such as Golog with the possibil-
ity of searching for plans efficiently. In order to integrate a
Golog interpreter with a planner, one has to understand, how-
ever, which part of the expressiveness of Golog can be cap-
tured by the planning language. Using Nebel’s compilation
framework, we identify a maximal fragment of basic action
theories, the formalism Golog is based on, that is expressively
equivalent to the ADL subset of PDDL. As we will show, al-
most all features that permit to specify incomplete informa-
tion in basic action theories cannot be compiled to ADL.

Introduction
The integration of agent programming languages with effi-
cient planning algorithms is a tantalizing idea. With such an
integration, it becomes possible to specify the behavior of
a system using a very rich specification language and still
benefit from algorithmic advances in automated action plan-
ning.

Indeed, there are several recent papers that deal with the
integration of Golog-style (Levesque et al. 1997) agent pro-
gramming languages and PDDL planning (Fox and Long
2003) in various forms. Most, but not all, of these papers
only deal with the most commonly considered ADL frag-
ment of PDDL, also called PDDL level 1. As is customary
in the planning literature, we will simply refer to this PDDL
fragment as “ADL” throughout this paper, despite some dif-
ferences to Pednault’s (1989) original ADL formalism.

Claßen et al. (2007) discuss a compilation from PDDL
planning domains to basic action theories, which form the
semantic base of Golog. They show how the semantics of
ADL can be understood as progression in the situation cal-
culus. They also present a proof-of-concept integration of
an efficient automated ADL planner (the FF system by Hoff-
mann and Nebel, 2001) into a Golog interpreter. However,
their integration requires an ADL specification of the plan-
ning domain, and thus cannot be used for a wider class of
basic action theories.

To make automated planning technology more generally
useful in the Golog context, it is thus necessary to de-
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velop a compilation from basic action theories to ADL.
In this direction, Baier, Fritz and McIlraith (2007) present
a method for incorporating Golog-style procedural domain
control knowledge into ADL planning instances. The con-
trol knowledge is compiled into the original ADL domain
description to form a new ADL specification, which has the
same transition semantics as the original, but only accepts
action sequences that comply with the given control rules.
However, their approach still requires that the domain de-
scription is specified in the (compared to basic action theo-
ries, less expressive) ADL formalism. Golog-style rules are
only used for restricting the given transition semantics, not
for defining them.

To overcome this limitation, one needs a general compi-
lation from basic action theories to ADL. However, such
a compilation is not generally possible, at least not in an
efficient way, because basic action theories exhibit several
features that cannot be compactly represented in ADL; for
example, all ADL representations equivalent to a given ba-
sic action theory might be exponentially larger, or require
exponentially longer plans, which renders a compilation in-
feasible in practice.

This difference in expressivity naturally gives rise to the
question which basic action theories can (or cannot) be com-
piled to ADL. A first answer to this question has been pro-
vided by Eyerich et al. (2006), who identify a fragment of
basic action theories that is expressively equivalent to ADL.

However, it is not clear whether this fragment is maximal.
Eyerich et al. propose six restrictions to basic action theo-
ries, and it is not clear whether all of them are actually nec-
essary to allow compilability to ADL. As a first step in ana-
lyzing the maximality of the identified fragment, our earlier
paper (Röger and Nebel 2007) examines the role of func-
tions (one of the six restrictions). We show that functions
add expressive power as soon as they can denote objects be-
sides a finite set of constants. In this paper, we examine
the remaining five restrictions and, thus, identify a maximal
subset of basic action theories with the same expressivity as
ADL.

The rest of the paper is structured as follows: First, we
introduce the framework used to compare the expressivity
of planning formalisms before we briefly sketch the two for-
malisms, ADL and basic action theories. The next four sec-
tions contain our results about the questions that were still



unclear: the restrictions on successor state axioms, the speci-
fication of the predicates in the initial database, the necessity
of unique names axioms for constants and the existence of a
domain closure axiom. We close with a brief conclusion.

For most results we only present proof sketches. Detailed
proofs can be found in a technical report (Röger and Nebel
2008).

Compilation Schemes
In order to compare the expressive power of different plan-
ning formalisms we use compilation schemes, a technique
introduced by Nebel (2000).

In the formalisms we consider, a planning instance Π =
〈Ξ,C, I,G〉 consists of the domain structure Ξ (which con-
tains schematic descriptions of the possible actions), a finite
set of constant symbols C, the initial state specification I,
and the goal specification G. A plan is a sequence of ac-
tions that leads from the initial states to a goal state.

Compilation schemes compare how concisely planning
domains and plans can be expressed in different formalisms,
not how concisely an individual planning instance can be ex-
pressed. The intuition behind compilation schemes is that it
is justifiable to perform significant work on translating a do-
main description from one formalism to another, as long as
this remains a one-off effort, and individual instances of the
domain can subsequently be transformed efficiently.

Indeed, as we are measuring the expressivity of a for-
malism, the mapping may use arbitrary computational re-
sources; it does not even need to be computable. However,
we do require that the result is at most polynomially sized,
and that the transformation of the domain description must
not depend on the initial state and the goal. The translation
of the initial state and the goal is done by so-called state
translation functions which are very limited: they should be
efficiently computable and not depend on the whole specifi-
cation.

To compare the expressive power of two planning for-
malisms we moreover have to measure the size of the gener-
ated plans. Before we can state concretely which demands
we make on the plan length, we first need to define the no-
tion of compilation schemes formally.

A compilation scheme maps each planning instance Π of
the source formalism X to an instance F (Π) of the target
formalism Y .

Definition 1. Let f be a tuple 〈fξ, fc, fi, fg, tc, ti, tg〉 of
functions that induces a function F from X -instances Π =
〈Ξ,C, I,G〉 to Y-instances F (Π):

F (Π) = 〈fξ(Ξ), fc(Ξ) ∪ tc(C),
fi(Ξ) ∪ ti(C, I), fg(Ξ) ∪ tg(G)〉.

We call f a compilation scheme from X to Y iff

1. there exists a plan for Π iff there exists a plan for F (Π),
2. the state translation functions tc, ti and tg are polynomial-

time computable,
3. and the size of the results of fξ, fc, fi and fg is polynomial

in the size of the arguments.

If a compilation scheme f has the property that for each
plan P of instance Π there is a plan P ′ solving F (Π) such
that ‖P ′‖ ≤ c‖P‖ + k for some positive integers c and
k, we say that f is a compilation scheme preserving plan
size linearly, and conclude that the target formalism is at
least as expressive as the source formalism. If plans are
required to grow polynomially and there is no other com-
pilation scheme preserving plan size linearly, this indicates
that the source formalism is more expressive than the target
formalism. If there is even a super-polynomial blow-up re-
quired, there must be a huge difference in expressive power.

The ADL Fragment of PDDL
In 1998, McDermott et al. introduced the Planning Domain
Definition Language (PDDL), which, with some revisions
(Fox and Long 2003; Gerevini and Long 2005), has since be-
come a standard for the representation of planning domains.
Two aspects that distinguish PDDL from basic action theo-
ries (see below) are that all constants denote distinct objects
and that there are no objects in addition to the constants. In
this article we are interested in the ADL fragment of PDDL,
i. e., the language we get if exactly the :adl requirement
is set. Beyond the definition of standard STRIPS operators,
preconditions and goals may contain negation, disjunction
and quantification and there are quantified and conditional
effects. The main difference to full PDDL 2.1 is that nu-
meric state variables and durative actions are not allowed.
The PDDL syntax is quite self-explanatory and it is not cru-
cial for the understanding of this paper to know all the de-
tails. Thus, we do not explain it here but only refer to Fox
and Long (2003) where a detailed description of the syntax
and semantics of PDDL can be found.

Basic Action Theories
Basic action theories are a logical approach to modeling dy-
namically changing worlds, based on the situation calculus.
They were introduced by Reiter (2001) who also formed the
version of the situation calculus which is in use today and
which we briefly introduce before the presentation of basic
action theories.

The situation calculus is a second-order language de-
signed for representing dynamic systems. All changes to the
world are the result of actions and each action leads to a new
situation, which, hence, can be identified with a sequence of
actions. The empty sequence corresponds to the initial situ-
ation, denoted by s0. Besides actions and situations there is
a third sort object that is used for everything else. In the fol-
lowing, we use variables a for actions, s for situations and
x, y, . . . for objects (each with subscripts and superscripts).
There is a special predicate Poss(a, s) meaning that it is pos-
sible to perform action a in situation s. All situations except
s0 are formed with a function do(a, s) meaning that action a
is performed in situation s. Functions and predicates whose
values vary from one situation to the next are called fluents
and take a situation term as their last argument. There are
also some foundational axioms for situations, which ensure
that dynamic worlds in the situation calculus behave like one
assumes intuitively.



In the following we omit leading universal quantifiers in
sentences. The convention is that any free variables in such
expressions are implicitly universally quantified.

For the definition of the notion of basic action theories we
need to introduce some further concepts (Reiter 2001).

Unique names axioms for actions state whether two ac-
tions are equal. Distinct action names A and B define dis-
tinct actions and identical actions have identical arguments:

A(x̄) 6= B(ȳ)

A(x1, . . . , xn) = A(y1, . . . , yn) ⊃ x1 = y1∧· · ·∧xn = yn

A formula is called uniform in situation s if it does not
mention the predicate Poss and the only permitted occur-
rence of a situation term is the occurrence of situation s in
the situation argument position of a fluent.

Whether it is possible to perform an action is stated by
so-called action precondition axioms, which are of the form

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s),

where A is an action function symbol with arity n and
ΠA(x1, . . . , xn, s) is a formula that is uniform in s and
whose free variables are among x1, . . . , xn, s.

The value of a relational fluent after performing an action
a is given by a successor state axiom of the form

F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s), (1)

where ΦF (x1, . . . , xn, a, s) is a formula uniform in s whose
free variables are among x1, . . . , xn, a, s. Similarly, a suc-
cessor state axiom for a functional fluent is of the form

f(x1, . . . , xn, do(a, s)) = y ≡ Φf (x1, . . . , xn, y, a, s)

with conditions analogous to those of the relational fluents.
After the introduction of these concepts we now can state

the definition of basic action theories from Reiter (2001):
Definition 2. A basic action theory T is a theory of the form

T = Σ ∪ TSSA ∪ TAPA ∪ TUNA ∪ Ts0 ,

where
• Σ are the foundational axioms for situations,
• TSSA is a set of successor state axioms for functional and

relational fluents,
• TAPA is a set of action precondition axioms,
• TUNA is the set of unique names axioms for actions, and
• Ts0 is the initial database, a set of first-order sentences

that are uniform in s0.
The state successor axiom for a functional fluent f must ac-
tually define a value for f in the next situation, and this value
must be unique (functional fluent consistency property).

Such a basic action theory T together with a goal formula
G(s) whose only free variable is s form a planning task. A
situation s is a plan for G (relative to T ) iff

T |= executable(s) ∧G(s),

where executable(s) means that the action sequence s can
be executed with respect to Poss.

Starting from this definition, Eyerich et al. added several
restrictions to achieve the same expressivity as ADL.

Restricted Basic Action Theories
A restricted basic action theory (RBAT) is a basic action the-
ory that satisfies the following restrictions:
R1 Usage of functions is restricted to two sorts: constants

(functions of sort ε → object), and action functions with
object arguments (functions of sort objectn → action).

R2 Successor state axioms are of a certain form. The suc-
cessor state axiom of a relational fluent F fits the schema

F (x1, . . . , xn, do(a, s)) ≡
p∨

l=1

ψl (2)

for some p > 0, where exactly one ψl is of the form

F (x1, . . . , xn, s)
[
∧

¬
(
[∃ . . . ] (a = A1 (y11, . . . , y1m1) [ ∧ φ1]) ∨ · · · ∨

[∃ . . . ]
(
a = Aq

(
yq1, . . . , yqmq

)
[ ∧ φq]

) )]
. (3)

All the other ψl are of the form

[∃ . . . ] (a = A (y1, . . . , ym) [ ∧ φl]) . (4)

The existential quantification ranges over all yi for which
there is no xj with xj = yi, and thus over all variables that
are parameters of the action but not of the fluent. The parts
between square brackets are optional. Each action may
appear in at most one subformula a = Ai (yi1, . . . , yimi

)
in (3) and in at most one subformula a = Ai (y1, . . . , ym)
in the expressions of form (4).

R3 The initial database must consist of exactly the follow-
ing sentences:
1. For each relational fluent F there is either an expression

¬F (x1, . . . , xn, s0) (5)

or an expression

F (x1, . . . , xn, s0) ≡ (x1 = d11 ∧ · · · ∧ xn = d1n)
∨ · · · ∨ (x1 = dm1 ∧ · · · ∧ xn = dmn) . (6)

2. There are analogous expressions for all situation-inde-
pendent predicates.

3. There is a domain closure axiom (x = d1) ∨ · · · ∨
(x = dn) for constants.

4. There are unique names axioms ci 6= cj for each pair
ci, cj of different constants.

Eyerich et al. show that these restrictions lead to the same
expressive power as ADL by giving compilation schemes in
both directions. For this paper, only the compilation scheme
from RBAT to ADL is relevant. Most interesting is the com-
pilation of the successor state axioms and action precondi-
tion axioms to the actions. The parameters and the precon-
dition of the action are taken from the action precondition
axioms whereas the effect of each action on the fluents is
collected from the successor state axioms.

For the compilation Eyerich et al. use the fact that uni-
form first-order formulae can easily be expressed in PDDL
syntax. We use the notation ΘPDDL(φ) for the PDDL for-
mula resulting from a uniform first-order formula φ.



Restrictions on Successor State Axioms
Of the six restrictions (R1, R2, R3.1–3.4), one has been stud-
ied before: in our earlier work, we show that the restric-
tions on functions (R1) are stronger than necessary (Röger
and Nebel 2007). In particular, in the presence of the
domain closure axiom (R3.3), arbitrary functions of sort
objectm × situation → object may be allowed. However,
this is not possible if R3.3 is weakened.

We now consider the remaining restrictions, beginning
with the restrictions on successor state axioms (R2). The
required schema in R2 is based on the idea that a fluent is
true in a situation iff it has been made true by the last ac-
tion or if it has been true in the previous situation and has
not been made false. In the following we will show how
the compilation scheme of Eyerich et al. can be altered to
transform the general form of successor state axioms, too.

Theorem 1 (R2 is not necessary). Restriction R2 is not nec-
essary for the compilability of RBAT to ADL.

Proof sketch. We give a compilation of the general form of
successor state axioms to PDDL action effects. Recall this
general form (1):

F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s)

To compile an action A(y1, . . . , ym) we substitute a with
A(y1, . . . , ym) and receive an expression

F (x1, . . . , xn, do(A(y1, . . . , ym), s)) ≡
ΦA

F (x1, . . . , xn, y1, . . . , ym, s),

where all free variables in ΦA
F are among x1, . . . , xn,,

y1, . . . , ym, s. The effect of action A on fluent F can then
be translated to PDDL as
(forall (?x1 . . .?xn)

(and (when
ΘPDDL(ΦA

F (x1 . . . , xn, y1, . . . , ym, s))
(F ?x1 . . .?xn))

(when
(not ΘPDDL(ΦA

F (x1 . . . , xn, y1, . . . , ym, s)))
(not (F ?x1 . . .?xn)))))

The complete effect of each action is a conjunction of
such expressions for each predicate. The precondition of
the action is the same as in the compilation of Eyerich et al.

It is easy to see that the effect of an action on a predicate
is the same in both formalisms. Note that the given compi-
lation unnecessarily solves the frame problem for the rela-
tional fluents twice: the PDDL semantics leaves the value of
each atom that is not explicitly set by an action unaltered.
In addition, in each action effect each fluent explicitly gets
assigned a value. In practice one would therefore further
simplify the action effects.

We have thus shown that we can easily get rid of the re-
striction on the successor state axioms. In the next sections
we will examine whether this also holds for the restrictions
on the initial database.

Predicate Specifications in the Initial Database
Restrictions R3.1 and R3.2 require that the initial database
enumerates all true ground atoms for the initial situation and
situation-independent predicates. There are two ways of
loosening these restrictions: firstly, there could be no such
expression for some of the predicates (leaving their inter-
pretation unspecified) and secondly, less restricted formulae
which still guarantee a unique model could be allowed in the
predicate specifications.

Less Restricted Formulae
We begin with the latter case. One possibility is to al-
low arbitrary first-order formulae that are uniform in s0 on
the right-hand side of equivalence (6). This would also
permit “recursive” definitions which are known to be non-
compilable (Thiébaux, Hoffmann, and Nebel 2005). How-
ever, we can actually prove a stronger result which holds for
acyclic specifications, i. e., for the case where there is a strict
order < on the set of predicates such that each specification
of a predicate P depends only on atoms of predicates P ′

with P ′ < P .

Theorem 2 (R3.2 is necessary). If arbitrary acyclic predi-
cate specifications are permitted in the initial database of a
RBAT then there is no compilation scheme to ADL preserv-
ing plan size exponentially unless PSPACE = P.

Proof. Consider a family of planning tasks with one unary
situation-independent predicate isTrue and a 0-ary predicate
goal, but no fluent and no action. We use two constants T
and F where isTrue is true exactly for T. Further, the initial
database contains the domain closure axiom and a unique
names axiom. The goal formula requires predicate goal() to
be true. Thus, the only aspect that differs from task to task
is the specification of predicate goal in the initial database.

Let f = 〈fξ, fc, fi, fg, tc, ti, tg〉 be a compilation scheme
to ADL that preserves plan size exponentially. As the do-
main and the goal description are fixed, the results of fg , tg
and fξ are fixed and provide us a fixed ADL domain and a
fixed goal. As there are no actions in the original instance,
plans of the original instance have a length bound of 0. Since
f preserves plan size exponentially, this implies a constant
bound k on shortest plan lengths for tasks of the ADL do-
main. Note that in this setting (fixed domain, fixed goal,
constant length bound), ADL planning can be decided in P
by testing all action sequences of length at most k.

With this compilation scheme f we can decide the quanti-
fied Boolean formula problem in polynomial time: Assume
a quantified Boolean formula φ. We convert φ to a first-
order formula φ′ by substituting each occurrence of a vari-
able x by IsTrue(x). Predicate goal is then initialized as
goal() ≡ φ′. We can now use the compilation scheme f to
translate the initial database to an initial state for the ADL
task and test (k-bounded) plan existence of that task in poly-
nomial time. With the quantified Boolean formula problem
being PSPACE-complete, this implies PSPACE = P.

There are surely other possibilities of weakening the re-
strictions on the right-hand side of equivalence (6). Ev-
ery specification which defines a unique model whose true



ground atoms can be enumerated in polynomial time can
clearly be compiled. Even in cases with more than polyno-
mially many true ground atoms, it is often possible to com-
pile a space-saving representation by means of initializing
actions. However, examining this in more detail does not
seem worthwhile to us.

Incomplete Information
A second possibility of weakening restriction R3.2 is to al-
low omitting a specification for a given predicate P alto-
gether, so that a plan must work for all interpretations of P .
This is both interesting in its own right and useful for the
discussion of unique names axioms in the following section.

Here, we can show that we lose compilability to ADL
even if there may only be a single unary situation-indepen-
dent predicate whose truth values are not specified in the
initial database. In the following, we denote the resulting
formalism by RBATincomp.

We begin with a lemma on the complexity of plan exis-
tence for this formalism. The proof is a variation of Rinta-
nen’s (2004) proof on the complexity of propositional plan-
ning without observability.
Lemma 1. The plan existence problem for RBATincomp is
EXPSPACE-hard.

Proof sketch. LetM be a deterministic Turing machine with
space bound 2nk

for input strings of length n. It is possi-
ble to formulate (and generate in polynomial time) a family
(Tw) of basic action theories, one for each possible input w
to M , so that there is a plan for Tw iff M halts on w. Dif-
ferent basic action theories of the family only differ in the
initial database and in the set of constants. The key idea
is to keep track of only one randomly chosen tape cell (the
watched tape cell) and to ensure that the Turing machine is
reliably simulated relative to this tape cell. The cell is picked
by means of the unspecified unary predicate. As a plan must
hold for all models, the Turing machine must consequently
be reliably simulated for the entire tape.

We use nk constants p0, . . . ,pnk−1 and an (unspecified)
unary predicate watched and interpret the truth value of
watched(pi) as the value of the i-th bit of the number of
the watched tape cell. Otherwise, we use the common way
to formulate a Turing machine as a basic action theory. The
only difference is that we follow the idea of Rintanen to en-
sure the correct simulation only relative to the watched tape
cell. The actions in a plan exactly define the transitions of
the Turing machine. Consequently, as a plan must work for
all models (regardless of the choice of watched tape cell), the
Turing machine is reliably simulated for the entire tape.

Lemma 1 leads us directly to the theorem we actually
want to show:
Theorem 3 (R3.2 is necessary). There is no compilation
scheme from RBATincomp to ADL.

Proof. Let M be a Turing Machine with space bound 2nk

that accepts an EXPSPACE-hard language. Let Ξ = Σ ∪
TSSA ∪ TAPA ∪ TUNA be the domain description of the basic
action theory for M according to the proof of Lemma 1.

Assume there is a compilation scheme f to ADL. Then
there exists an ADL domain description fξ(Ξ) correspond-
ing toM . We could, in polynomial time, translate each input
of the Turing machine to a set of constants and an initial state
such that there exists a plan iff M halts. As the plan exis-
tence problem for ADL with a fixed domain is PSPACE-
complete this implies that EXPSPACE ⊆ PSPACE, which
is known to be false.

The results in this section apply to the specification of
situation-independent predicates. Obviously they directly
carry over to the specification of relational fluents:
Corollary 1 (R3.1 is necessary). Omitting restriction R3.1
adds expressive power to RBAT.

There are two remaining restrictions concerning the initial
database: the domain closure axiom and the unique names
axioms for constants. As the latter is closely related to the
previous theorem, we examine it first.

Unique Names Axioms for Constants
Restriction R3.4 states that the initial database contains a
unique names axiom ci 6= cj for each pair of different con-
stants ci and cj . We will see that omitting this restriction
leads to at least the same expressive power as permitting a
single unary unspecified predicate. In the previous section
we have seen that the resulting formalism cannot be com-
piled to ADL.

In the following we denote the formalism resulting from
RBAT by omitting restriction R3.4 by RBATnoUNA.
Lemma 2. There is a compilation scheme from RBATincomp
to RBATnoUNA preserving plan size linearly.

Proof. Let P be the unspecified unary predicate. For each
constant c in the set of constants C, we introduce two new
auxiliary constants c′ and c′′. The key idea is to replace
atoms P (x) where x denotes the same object as constant
c by an equality test for c′ and c′′. For this purpose, we
introduce a predicate partners which is initialized as

partners(x, x′, x′′) ≡
∨
c∈C

(x = c ∧ x′ = c′ ∧ x′′ = c′′) .

We introduce unique names axioms in such a way that for
all c ∈ C, the equality of c′ and c′′ remains unspecified. All
other pairs of constants are different from each other.

We then substitute each occurrence of P (x) by

∃x′, x′′ (partners(x, x′, x′′) ∧ x′ = x′′) .

In addition, we have to prevent the usage of the newly in-
troduced objects everywhere else. We do this by means of
a new predicate orig identifying the original objects. All
quantifications in the original theory are modified to only
range over objects that satisfy orig.

Clearly, each plan of the original task is a plan for the
resulting task and vice versa. Moreover, the modified ba-
sic action theory can be computed in polynomial time, and
the independence requirements for compilation schemes are
satisfied. Hence, we have presented a compilation scheme
from RBATincomp to RBATnoUNA preserving plan size linearly
(in fact, exactly).



The lemma shows that RBATnoUNA is at least as expres-
sive as RBATincomp, which according to Theorem 3 is more
expressive than ADL. This directly leads to the following
theorem.
Theorem 4 (R3.4 is necessary). There is no compilation
scheme from RBATnoUNA to ADL.

The only restriction not examined so far is the domain
closure axiom for constants.

Domain Closure Axiom
The domain closure axiom states that there are no objects
except for the named constants. At first glance, one would
assume that this restriction is necessary to stay within the
same expressive power as ADL because in this formalism
there only can be a finite number of objects which all must
be declared. If we abandon the domain closure axiom, there
are infinitely many models of the initial database. Further-
more, actions can behave qualitatively differently for differ-
ent models; for example, a conditional effect might only
trigger if there is at least one object that is different from
all named constants. However, a closer look reveals that the
other restrictions on the initial database are so restrictive that
we can omit the domain closure axiom nevertheless.
Theorem 5 (R3.3 is not necessary). Omitting the domain
closure axiom does not increase the expressive power of
RBAT.

Proof sketch. We refer to objects of the model which are dif-
ferent from all named constants as “unnamed objects”. We
begin our proof with two observations:

• In all situations that occur in a plan, all unnamed objects
are interchangeable. For example, if P (o1, o2, o3, s) is
true, o1 and o3 are different unnamed objects, and o2 is
a named object, then P (o′1, o2, o

′
3, s), where again o′1 and

o′3 are different unnamed objects, is also true.
• For determining whether there is a plan, it is sufficient to

consider only the models with up to k unnamed objects,
where k is the maximum number of nested quantifiers in
the theory (including implicit universal quantifiers).

The first observation can easily be shown by induction over
the situations: In the initial situation (and for situation-
independent predicates) all atoms containing unnamed ob-
jects are false due to R3.1 and R3.2.

For the inductive case, consider situation s′ = do(A, s).
For each relational fluent P , the truth value of P (x̄, s′) is de-
termined by a formula Q(x̄, s) which is uniform in s (by the
definition of successor state axioms). If we evaluate this for-
mula for different tuples x̄ which only differ by permuting
unnamed objects, the same truth values are obtained: by the
induction hypothesis, unnamed objects are interchangeable
in situation s.

If all unnamed objects are interchangeable, then only the
number of unnamed objects can affect the validity of a plan.
For statements like “There are m distinct unnamed objects”
it is necessary to bind at least m variables. With quantifier
depth bounded by k, it is not possible to make statements
about more than k objects, and hence all models with more

than k unnamed objects behave the same as the model with
exactly k such objects.

These observations lead quite directly to a compilation
scheme from RBAT without a domain closure axiom to
RBAT. We explicitly represent the discriminable models and
modify the basic action theory in such a way that each action
is executed in all models in parallel. The goal formulation is
then modified such that the original goal must be true in all
models.

Omitting More than One Restriction
We have shown that some of the restrictions of Eyerich et al.
are necessary to stay within the expressivity of ADL while
others can be removed or weakened:

• Functions of more general sorts are permissible if their
initial values are completely specified for the initial situ-
ation, i. e., R3.1 and R3.2 are extended to functions (R1;
Röger and Nebel 2007).

• General successor state axioms can be permitted (R2).

• The domain closure axiom may be omitted (R3.3).

Each of these results has been achieved under the assump-
tion that all other restrictions are retained. What happens if
we omit more than one restriction at once?

If more general functions are allowed (R1 is weakened),
the necessary modification to restriction R3.1 states that all
initial function values must be enumerated explicitly (Röger
and Nebel 2007, Eq. 23):

f(x1, . . . , xn, s0) = y ≡
(x1 = d11 ∧ · · · ∧ xn = d1n ∧ y = d1) ∨ · · · ∨

(x1 = dm1 ∧ · · · ∧ xn = dmn ∧ y = dm),

where the di are the named constants. Note that this spec-
ification necessarily implies that there are no objects be-
sides the named constants. If there existed an unnamed ob-
ject o in a given model, then the above equation implies
f(o, . . . , o, s0) 6= y for all objects y. However, functions
must have a defined value. Hence, no such model exists.

Therefore, we can weaken R1 and remove R3.3 at the
same time. Either the basic action theory contains no func-
tions of the form forbidden by R1 (in which case it does not
matter that R1 was weakened), or the removal of R3.3 does
not matter because the domain closure axiom is implied.

Finally, the compilation of general successor state axioms
(R2) clearly does not depend on or interfere with the domain
closure axiom or the usage of functions. Thus, we can com-
bine all three changes without adding expressive power.

Conclusion
We have seen that of the six restrictions of Eyerich et al.,
three can be omitted. (In the case of R1, this requires adjust-
ments to R3.1 and R3.2 as discussed by Röger and Nebel,
2007.) The remaining restrictions define a certain schema
for the initial database but do not affect the other parts of
basic action theories. In summary, the initial database must
consist of exactly the following sentences:



1. For each relational fluent F there is either an expression
¬F (x1, . . . , xn, s0) or an expression

F (x1, . . . , xn, s0) ≡ (x1 = d11 ∧ · · · ∧ xn = d1n)
∨ · · · ∨ (x1 = dm1 ∧ · · · ∧ xn = dmn) .

2. There are analogous expressions for all situation-inde-
pendent predicates.

3. There are analogous expressions for all functions except
constants and action functions with object arguments.

4. There are unique names axioms ci 6= cj for each pair ci,
cj of different constants.

5. Optionally, there may be a domain closure axiom of the
form (x = d1) ∨ · · · ∨ (x = dn).

If a basic action theory complies with these restrictions,
it can be compiled to ADL. Furthermore, all the required
statements are necessary in the sense that removing them
extends the expressiveness of the formalism beyond ADL.

As a final remark, we note that there may be other com-
pilable classes of basic action theories, based on restric-
tions that are orthogonal to the ones introduced by Eyerich
et al. In this work, we started from these restrictions be-
cause they are the only ones that are discussed in the cur-
rent literature (Eyerich et al. 2006; Claßen et al. 2007;
Röger and Nebel 2007), and the question which of these
restrictions are necessary for compilability has been open.
This open question is now resolved, bringing the theoretical
analysis in this line of work to conclusion.

Nevertheless, there are still some interesting questions left
open for future work. On the theoretical front, we saw that
the most obvious reason for the mismatch between basic
action theories and ADL (and PDDL) is the possibility of
specifying incomplete information, which PDDL does not
permit. However, there exist extensions of PDDL to nonde-
terministic planning, such as the non-probabilistic fragment
of the PPDDL language, used for the nondeterministic track
of the Fifth International Planning Competition (Gerevini,
Bonet, and Givan 2006). It may be worth investigating in
how far PPDDL can capture the aspects of basic action the-
ories that ADL cannot.

On the practical side, although there is a proof of concept
for the integration of a planning system into Golog (Claßen
et al. 2007), a comprehensive empirical evaluation of a fully
automated integration is still missing.
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