
Fast Downward Stone Soup 2014

Gabriele Röger and Florian Pommerening and Jendrik Seipp
University of Basel, Switzerland

{gabriele.roeger,florian.pommerening,jendrik.seipp}@unibas.ch

Abstract

Fast Downward Stone Soup is a sequential portfolio planner
that uses various heuristics and search algorithms that have
been implemented in the Fast Downward planning system.
We present the variant participating in the sequential satisfic-
ing track of IPC 2014.

Introduction
Fast Downward Stone Soup (Helmert, Röger, and Karpas
2011) is a portfolio planner, based on the Fast Downward
planning system (Helmert 2006; 2009), and has first partici-
pated in the International Planning Competition in 2011.

In this paper we present the variant for the sequential sat-
isficing track of IPC 2014. It is built on slightly different
components than the 2011 variant but uses the same selec-
tion method for building the portfolio. Therefore we only
briefly recapitulate this procedure and present the resulting
portfolio. For a discussion of the algorithm we refer the
reader to the planner description paper of Fast Downward
Stone Soup 2011 (Helmert, Röger, and Karpas 2011).

Building the Portfolio
We used the same hill-climbing algorithm for building the
portfolio as Fast Downward Stone Soup 2011. It requires
the following information as input:

• A set of planning algorithms A. We used a set of 65 Fast
Downward configurations, which we will describe in the
next section.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We used a set of 3533 instances, de-
scribed in the next section.

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds (we did not consider anytime planners), and

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms }
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := argmaxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Algorithm for building a portfolio.

– the plan cost c(A, I) of the plan that was found.

We used a timeout of 30 minutes and memory limit of
2 GB to generate this data. In cases where an instance
could not be solved within these bounds, we set t(A, I) =
c(A, I) =∞.

The procedure computes a portfolio as a mapping P :
A → N0 which assigns a time limit (possibly 0 if the al-
gorithm is not used) to each component algorithm. It is a
simple hill-climbing search in the space of portfolios, shown
in Figure 1.

In addition to the algorithms and the evaluation results,
it takes two parameters, granularity and timeout, both mea-
sured in seconds. The timeout is an upper bound on the
total time for the generated portfolio, which is the sum of
all component time limits. The granularity specifies the step
size with which we add time slices to the current portfolio.

The search starts from a portfolio that assigns a time of
0 to all algorithms. In each hill-climbing step, it generates
all possible successors of the current portfolio. There is one
successor per algorithm, where the only difference between
the current portfolio and the successor is that the time limit
of this algorithm is increased by the given granularity value.

To evaluate the quality of a portfolio, we compute a score
in the range 0–1 for each training instance and sum this
quantity over all training instances to form a portfolio score.

For each instance, we apply a similar scoring function as
used for the International Planning Competitions since 2008,
with the only difference that we use the best solution qual-



ity among our algorithms as reference quality: if no algo-
rithm in a portfolio P solves an instance I within its allotted
runtime, the instance score is 0. Otherwise, the portfolio is
assigned the instance score c∗I/c

P
I , where c∗I is the best solu-

tion cost for I of any input algorithm A ∈ A and cPI denotes
the best solution cost among all algorithms A ∈ A that solve
the instance within their allotted runtime P (A).

In each hill-climbing step the search chooses the succes-
sor with the highest portfolio score. Ties are broken in favor
of successors that increase the timeout of the component al-
gorithm that occurs earliest in some arbitrary total order.

The hill-climbing phase ends when all successors would
exceed the given time bound. A post-processing step re-
duces the time assigned to each algorithm by the portfolio. It
considers the algorithms in the same arbitrary order used for
breaking ties in the hill-climbing phase and sets their time
limit to the lowest number that would still lead to the same
portfolio score.

Resulting Portfolio
Our set of training instances consists of almost all tasks
from the deterministic track of IPC 1998 – IPC 2011
plus tasks from various other sources: compilations of
conformant planning tasks (Palacios and Geffner 2009),
finite-state controller synthesis problems (Bonet, Pala-
cios, and Geffner 2009), genome edit distance problems
(Haslum 2011), alarm processing tasks for power net-
works (Haslum and Grastien 2011), and briefcaseworld
tasks from the FF/IPP domain collection (http://fai.cs.uni-
saarland.de/hoffmann/ff-domains.html). In total, we used
3533 training instances.

For the input planning algorithms, we used the following
components:

• search algorithm: As in the 2011 variant, we only exper-
imented with greedy best-first search and with weighted
A∗ with a weight of 3.

• eager vs. lazy: We again considered both “eager”
(textbook) and “lazy” (deferred evaluation) variants of
both search algorithms. The work by Richter and
Helmert (2009) indicates that both evaluation strategies
can be helpful in a portfolio because they have somewhat
different strengths and weaknesses.

• preferred operators: We used preferred operator informa-
tion from the heuristics with the default settings of the
search algorithms in Fast Downward. For eager search,
this is the “dual-queue” method of exploiting preferred
operators, for lazy search it is the “boosted dual-queue”
method, using a boost value of 1000. This is backed by
the results of Richter and Helmert (2009).

• heuristics: We used all heuristics used in 2011, which
are the additive heuristic hadd (Bonet and Geffner 2001),
the FF/additive heuristic hFF (Hoffmann and Nebel 2001;
Keyder and Geffner 2008), the causal graph heuristic
hCG (Helmert 2004), and the context-enhanced additive
heuristic hcea (Helmert and Geffner 2008). In addition,
we this year included the landmark heuristic hLM (Richter

and Westphal 2010) which is known for very good per-
formance when used in combination with hFF as in the
LAMA planner (Richter and Westphal 2010) .
Röger and Helmert (2010) have shown that combinations
of multiple heuristics with the “alternation” method can
often be very beneficial. Therefore, we considered plan-
ner configurations for each of the 10 possible combina-
tions of two of the five heuristics. We did not use larger
subsets because computation time for the evaluation re-
sults was limited. We also included all single-heuristic
configurations except hLM (due to technical problems).

In total, we used 56 planner configurations as input of the
hill-climbing procedure. We tried different values for the
granularity parameter and achieved the best results (com-
puted from the training set) with a granularity of 40. The
resulting portfolio is shown in Tables 1 and 2. It uses 27
of the 56 possible configurations, running them between 17
and 187 seconds. On the training set, the portfolio achieves
an overall score of 3234.53, which is much better than the
best component algorithm with a score of 2722.17. If we
had an oracle to select the perfect algorithm (getting allotted
the full 1800 seconds) for each instance, we could reach a
total score of 3417.

Sequential Portfolio
In the previous sections, a portfolio simply assigns a runtime
to each algorithm, leaving their sequential order open. With
the simplifying assumption that all planner runs use the full
assigned time and do not communicate information, the or-
der is indeed irrelevant.

In reality, the situation is more complex. First, the Fast
Downward planner uses a preprocessing phase that we need
to run once before we start the portfolio, so we do not have
the full 1800 seconds available. Second, we would like to
use the quality of a plan found by one algorithm to prune the
search of subsequent planner runs. Third, planner runs often
terminate early, e. g. because they run out of memory or find
a plan. We would like to use the remaining time to further
search for a plan or improve the solution quality. To handle
these issues, we employ the same strategy as Fast Downward
Stone Soup 2011 in version 1:

We sorted the algorithms by decreasing order of coverage,
hence beginning with algorithms likely to succeed quickly.

Per-algorithm time limits defined by the portfolio are
treated as relative, rather than absolute numbers: whenever
we start a configuration, we compute the total allotted time
of this and all following runs and scale it to the actually re-
maining computation time. We then assign the respective
scaled time to the run. As a result, the last run gets assigned
all the remaining time.

The best solution found so far is always used for prun-
ing based on g values: only paths in the state space that are
cheaper than the best solution found so far are pursued.

A search algorithm often solves an instance more quickly
if it ignores action costs (Richter and Westphal 2010).
Therefore we do not take action costs into account until we
find the first solution. Afterwards, we re-run the success-
ful configuration using action costs the same way as in the



Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF,hLM 2722.17 / 3110 35 2.75 / 1
Weighted A∗ Eager hFF,hLM 2663.04 / 2911 40 1.84 / 0
Greedy best-first Eager hCG,hFF 2626.41 / 3044 40 2.46 / 0
Weighted A∗ Lazy hFF,hLM 2615.15 / 2962 159 11.71 / 1
Weighted A∗ Eager hCG,hFF 2609.36 / 2927 0 —
Greedy best-first Eager hadd,hLM 2591.42 / 3116 33 1.45 / 0
Greedy best-first Lazy hFF,hLM 2587.26 / 3195 187 19.11 / 19
Greedy best-first Eager hadd,hFF 2575.28 / 3047 120 12.80 / 12
Greedy best-first Eager hFF 2544.79 / 2934 0 —
Weighted A∗ Eager hcea,hFF 2539.53 / 2880 40 2.22 / 1
Weighted A∗ Eager hadd,hLM 2539.35 / 2950 0 —
Greedy best-first Eager hcea,hFF 2537.93 / 2957 0 —
Weighted A∗ Eager hFF 2535.22 / 2818 72 9.09 / 2
Weighted A∗ Eager hadd,hFF 2533.38 / 2904 0 —
Weighted A∗ Lazy hadd,hLM 2525.66 / 2998 79 5.13 / 1
Weighted A∗ Lazy hcea,hFF 2522.98 / 2942 39 1.87 / 0
Weighted A∗ Eager hcea,hLM 2518.46 / 2921 37 0.85 / 0
Greedy best-first Eager hcea,hLM 2512.55 / 2982 0 —
Weighted A∗ Lazy hcea,hLM 2511.75 / 2957 39 2.19 / 0
Greedy best-first Eager hadd,hCG 2510.72 / 3016 0 —
Weighted A∗ Lazy hCG,hFF 2507.10 / 2918 40 2.48 / 0
Weighted A∗ Eager hCG,hLM 2505.67 / 2857 78 3.50 / 0
Greedy best-first Eager hCG,hLM 2505.49 / 2955 78 8.20 / 3
Greedy best-first Lazy hadd,hLM 2492.53 / 3199 114 5.77 / 3
Greedy best-first Lazy hcea,hFF 2487.23 / 3035 0 —
Weighted A∗ Eager hadd,hCG 2478.44 / 2909 0 —
Greedy best-first Lazy hCG,hFF 2470.78 / 3042 0 —
Greedy best-first Eager hadd 2464.16 / 2994 0 —
Weighted A∗ Eager hadd 2446.85 / 2909 77 5.52 / 3
Greedy best-first Lazy hcea,hLM 2434.88 / 3070 39 9.00 / 8
Weighted A∗ Lazy hadd,hFF 2428.48 / 2940 0 —
Weighted A∗ Lazy hCG,hLM 2415.80 / 2839 39 4.59 / 0
Greedy best-first Eager hcea,hCG 2407.77 / 2899 0 —
Weighted A∗ Eager hcea,hCG 2406.41 / 2825 0 —
Weighted A∗ Eager hcea,hadd 2403.75 / 2837 0 —
Greedy best-first Lazy hCG,hLM 2380.44 / 2980 0 —
Weighted A∗ Lazy hFF 2372.10 / 2801 38 2.86 / 1
Weighted A∗ Eager hcea 2366.58 / 2803 0 —
Greedy best-first Lazy hadd,hFF 2365.67 / 3031 17 2.17 / 2
Greedy best-first Lazy hFF 2350.87 / 2941 0 —
Weighted A∗ Lazy hcea,hCG 2336.09 / 2852 0 —
Greedy best-first Eager hcea 2330.01 / 2845 40 2.75 / 2
Greedy best-first Eager hcea,hadd 2324.89 / 2794 0 —
Weighted A∗ Lazy hadd,hCG 2320.28 / 2875 0 —
Greedy best-first Lazy hadd,hCG 2307.49 / 2999 40 3.47 / 0
Greedy best-first Eager hCG 2290.74 / 2713 0 —
Weighted A∗ Lazy hcea,hadd 2285.72 / 2830 0 —

Table 1: Fast Downward Stone Soup 2014 (continued in Table 2). The performance column shows the score/coverage of the
configuration over all training instances. The last column shows the decrease of score and number of solved instances when
removing only this configuration from the portfolio.



Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Lazy hcea,hCG 2281.19 / 2941 0 —
Weighted A∗ Eager hCG 2271.04 / 2612 38 3.10 / 0
Weighted A∗ Lazy hcea 2269.16 / 2820 40 2.50 / 0
Weighted A∗ Lazy hadd 2238.18 / 2852 0 —
Weighted A∗ Lazy hCG 2205.40 / 2631 0 —
Greedy best-first Lazy hCG 2200.30 / 2762 116 12.77 / 10
Greedy best-first Lazy hcea,hadd 2189.99 / 2844 0 —
Greedy best-first Lazy hcea 2187.15 / 2900 0 —
Greedy best-first Lazy hadd 2181.16 / 2958 0 —

Portfolio 3234.53 / 3286 1714
“Holy Grail” 3417.00 / 3417

Table 2: Fast Downward Stone Soup 2014 (continuation of Table 1).

LAMA planner, by treating all actions of cost c with cost
c + 1 in the heuristic and using the true action costs in the
search component. We maintain this strategy for all remain-
ing planner runs.

Conclusion
Fast Downward Stone Soup 2014 is a very simple portfolio
planner. We are aware that our approach is in almost every
respect not state of the art in portfolio computation, machine
learning, or parameter tuning. Even though, since the 2011
variant was the runner-up at IPC 2011, we decided to submit
it nevertheless as a baseline for other portfolio planners in
the competition.

Acknowledgments
It is a matter of fact that for a portfolio planner not those
who combined the components deserve the main credit but
those who contributed these components.

We therefore wish to thank Blai Bonet, Héctor Geffner,
Malte Helmert, Jörg Hoffmann, Emil Keyder, and Silvia
Richter, who devised the heuristics used in the portfolio. We
could also build on extensive studies by Silvia Richter and
Malte Helmert on the influence of different evaluation meth-
ods and preferred operators.

Special credit also goes to the core developers of Fast
Downward who steadily maintain the code basis with a sig-
nificant amount of work that often goes unnoticed: Malte
Helmert, Erez Karpas, and Silvan Sievers (and – less impor-
tant – the authors of this paper).

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS 2009, 34–41.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning:
Two case studies. In ICAPS 2011 Scheduling and Planning
Applications woRKshop, 37–44.

Haslum, P. 2011. Computing genome edit distances using
domain-independent planning. In ICAPS 2011 Scheduling
and Planning Applications woRKshop, 45–51.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS 2008, 140–
147.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning, 28–35.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008, 588–592.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proc. ICAPS
2009, 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Proc. ICAPS 2010, 246–249.


