Symmetry-based Task Reduction for Relaxed Reachability Analysis

Gabriele Röger, University of Basel, Switzerland Silvan Sievers, University of Basel, Switzerland Michael Katz, IBM Research, USA

ICAPS 2018

Motivation 0●0000			
	1.11		

Reachability

Question: Which atoms can become true in the reachable part of the state space?

Motivation 0●0000		

Reachability

Question: Which atoms can become true in the reachable part of the state space?

- Relevant for grounding, mutexes (pairs of atoms), ...
- As hard as the planning problem
- Usually: relaxation-based over-approximation

Motivation 00●000		

Example Task

Motivation 000000		

Idea

Idea

Perform analysis for fewer trucks and packages.

Motivation		
000000		

Motivation		
000000		

analysis: Blue truck can reach B, C, and D

analysis: Blue truck can reach B, C, and D expansion: Also orange and red truck can reach B, C, and D

Motivation			
More	General Idea		

	Symmetries, Reduction & Expansion ●0000		
Symm	letries		

- We consider a lifted task representation.
- As we only consider reachability we can ignore the goal.

Motivation 000000	Symmetries, Reduction & Expansion ●0000		
-			

Symmetries

- We consider a lifted task representation.
- As we only consider reachability we can ignore the goal.
- Two objects are symmetric if swapping them in the task description does not change it (up do ordering of elements).

Motivation 000000	Symmetries, Reduction & Expansion •0000		

Symmetries

- We consider a lifted task representation.
- As we only consider reachability we can ignore the goal.
- Two objects are symmetric if swapping them in the task description does not change it (up do ordering of elements).
- Symmetric constant set: set of pairwise symmetric objects

Symmetries, Reduction & Expansion 00000		

Truck Example

	Symmetries, Reduction & Expansion		
Reduc	tion		

- - C, C' set of objects, $C' \subseteq C$.
 - Reduction $R_{C\downarrow C'}(\Pi)$ removes from task Π all occurrences of objects from $C \setminus C'$.

Symmetries, Reduction & Expansion		

Reduction

- C, C' set of objects, $C' \subseteq C$.
- Reduction $R_{C\downarrow C'}(\Pi)$ removes from task Π all occurrences of objects from $C \setminus C'$.

Symmetries, Reduction & Expansion		

Reduction

- C, C' set of objects, $C' \subseteq C$.
- Reduction $R_{C\downarrow C'}(\Pi)$ removes from task Π all occurrences of objects from $C \setminus C'$.

	Symmetries, Reduction & Expansion 000●0		
Expan	sion		

Expansion $E_C(L)$ extends a set of atoms L with all atoms that can be generated by permuting elements of C in a literal from L.

Example (Expansion)

$$E_{\{o_1,o_2,o_3\}}(\{P(o_1,o_2,o_2),Q(o_1,o_4)\}) = \{P(o_1,o_2,o_2),P(o_1,o_3,o_3), P(o_2,o_1,o_1),P(o_2,o_3,o_3), P(o_3,o_1,o_1),P(o_3,o_2,o_2), Q(o_1,o_4),Q(o_2,o_4),Q(o_3,o_4)\}$$

Motivation 000000	Symmetries, Reduction & Expansion		

Reduction and Expansion

For symmetric constant set C and C-symmetric set of atoms

 $\blacksquare E_C(R_{C\downarrow C'}(L)) \subseteq L$

Motivation	Symmetries, Reduction & Expansion		
	00000		

Reduction and Expansion

For symmetric constant set ${\it C}$ and ${\it C}\mbox{-symmetric set of atoms}$

- $\bullet E_C(R_{C\downarrow C'}(L)) \subseteq L$
- $L = E_C(R_{C\downarrow C'}(L))$ for sufficiently large C'

Motivation	Symmetries, Reduction & Expansion		
	00000		

Reduction and Expansion

For symmetric constant set C and C-symmetric set of atoms

- $\bullet E_C(R_{C\downarrow C'}(L)) \subseteq L$
- $L = E_C(R_{C\downarrow C'}(L))$ for sufficiently large C'

 $\rightarrow\,$ maximal number of different constants from C in one literal

 Bounds on number of elements that must be preserved from a symmetric constant set

- Bounds on number of elements that must be preserved from a symmetric constant set
- Overall bounds depend on reachability system.

- Bounds on number of elements that must be preserved from a symmetric constant set
- Overall bounds depend on reachability system.
- b^{lit}_C: upper bound on the number of objects from C that can occur together in a reachable ground literal

- Bounds on number of elements that must be preserved from a symmetric constant set
- Overall bounds depend on reachability system.
- b^{lit}_C: upper bound on the number of objects from C that can occur together in a reachable ground literal
- **b** $_{C}^{op}$, b_{C}^{ax} : analogously for ground operators and axioms

Example: Relaxed Reachability of Literals

Definition (Relaxed Reachability of Literals)

The set of *k*-reachable ground literals ℓ ($k \in \mathbb{N}_0$) is the smallest set that contains literal ℓ if

- ℓ is true in the initial state, or
- ℓ is the default value of an axiom, or
- k > 0 and there is a ground operator o such that
 - o has an effect $\varphi \triangleright \ell$, and
 - \blacksquare each literal in φ and in pre(o) is k-1-reachable, or
- there is a ground axiom $\ell \leftarrow \psi$ such that each literal in ψ is k-reachable.

Preserve $\max\{b_C^{\mathsf{lit}}, b_C^{\mathsf{op}}, b_C^{\mathsf{ax}}\}$ objects from C

	Symmetry-based Task Reduction 00●0	
_		

Example: h^2 Mutexes

Definition (Relaxed Reachability of Pairs of Literals)

For $k \in \mathbb{N}_0$, the set M_k of *k*-reachable pairs of ground literals is the smallest set that contains pair $\{\ell, \ell'\}$ if one of the following holds:

- $\ell \wedge \ell'$ is true in the initial state.
- k > 0 and there is a ground operator o such that

•
$$o$$
 has effects $\varphi \triangleright \ell$ and $\varphi' \triangleright \ell'$, and

• • • •

...

Preserve $\max\{b_C^{\mathsf{lit}}, b_C^{\mathsf{op}}, b_C^{\mathsf{ax}}\} + b_C^{\mathsf{lit}}$ objects from C

	Symmetry-based Task Reduction	

Other Contributions

finding symmetric constant sets

simple union-find algorithm

	Symmetry-based Task Reduction	

Other Contributions

- finding symmetric constant sets
 - simple union-find algorithm
- tightening the bounds
 - use logic program to compute over-approximation of relaxation

	Symmetry-based Task Reduction	
	0000	

Other Contributions

- finding symmetric constant sets
 - simple union-find algorithm
- tightening the bounds
 - use logic program to compute over-approximation of relaxation
- combination of several symmetric constant sets
 - unproblematic if they are disjoint

Motivation 000000		Experiments ●00	

Implementation

- translator component of Fast Downward
- grounding: use existing implementation
- h^2 mutexes: add logic program

		Experiments 0●0	
Result	S		

77 domains with 2518 tasks from IPC benchmarks (sequential tracks, including axioms, no duplicates)

51 domains with symmetric objects

		Experiments 0●0	
Result	S		

77 domains with 2518 tasks from IPC benchmarks (sequential tracks, including axioms, no duplicates)

51 domains with symmetric objects

Grounding:

- symmetry reduction applicable to 1004 tasks from 49 domains
- however: regular grounding is so fast that reduction and expansion is not faster

		Experiments 0●0	
Result	S		

77 domains with 2518 tasks from IPC benchmarks (sequential tracks, including axioms, no duplicates)

51 domains with symmetric objects

Grounding:

- symmetry reduction applicable to 1004 tasks from 49 domains
- however: regular grounding is so fast that reduction and expansion is not faster
- $h^2 \ {\rm mutexes:} \ {\rm reduction} \ {\rm applicable} \ {\rm to} \ {\rm 610} \ {\rm tasks} \ {\rm from} \ {\rm 38} \ {\rm domains}$

	Experiments 000	

Results – h^2 mutexes

Motivation 000000		Future Work ●0

Summary

- With symmetric constant sets. . .
- ... we can reduce the size of a task ...
- ... perform a reachability analysis on the smaller task...
- ... and reconstruct the original result with an expansion.

		Future Work ⊙●
-		

Future Work

Formulation for general rule-based systems

		Future Work ○●

Future Work

- Formulation for general rule-based systems
- Rintanen (AAAI 2017):

Schematic Invariants by Reduction to Ground Invariants

Definition 14 (Limited Instantiation) For a given action set A, predicate set P, domain function D, type t, and integer $N \ge 1$, define

 $L_t^N(A, P) = \max(\max_{a \in A} prms_t(a), \max_{p \in P} prms_t(p)) + (N-1) \cdot (\max_{p \in P} prms_t(p))$

 \rightarrow Clarify relationship and applicability to a wider range of invariant synthesis algorithms