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Abstract

The action language Golog allows specifying the behavior of autonomous sys-
tems with very flexible programs that leave certain aspects open to be resolved
by the system. Such open aspects are often planning tasks, where the system
needs to find a suitable course of actions to reach a given goal. The first part
of this thesis aims to make highly efficient planning systems available to the
Golog system as sub-solvers for such tasks. The main barrier is that both sys-
tems use different formalisms to represent their knowledge about the world and
that the basic action theories underlying Golog are much more expressive than
the PDDL fragment most commonly used by planning systems. We therefore
identify a maximal fragment of basic action theories that can be translated
to PDDL. An empirical evaluation shows that Golog systems can impressively
benefit from the integration of a planning system.

The second part of the thesis concentrates on the internals of the planning
systems. The dominant approach in automated planning is heuristic search.

For optimal planning, this usually means using the A∗ algorithm with some
admissible heuristic. Well-known theoretical analyses suggest that such heuris-
tic search algorithms can obtain better than exponential scaling behavior, pro-
vided that the heuristics are accurate enough. We show that for a number
of common planning benchmark domains, including ones that admit optimal
solution in polynomial time, general search algorithms such as A∗ must nec-
essarily explore an exponential number of search nodes even under the opti-
mistic assumption of almost perfect heuristic estimators, whose heuristic error
is bounded by a small additive constant. We therefore argue that other en-
hancements are necessary to further improve the scaling behavior of optimal
heuristic planners.

These results do not carry over to satisficing planning, where the system
does not need to prove the optimality of the solution. One possibility to better
guide the search is to develop new, stronger estimators. Alternatively, we can
use multiple existing heuristics concurrently to exploit their complementary
strengths. We empirically examine several ways of using multiple heuristics in
a satisficing best-first search algorithm to compare their performance in terms
of coverage, plan quality and runtime.
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Zusammenfassung

Mit der Aktionssprache Golog kann man das Verhalten autonomer Systeme
sehr flexibel spezifizieren, indem man in Programmen bestimmte Aspekte offen
lässt, die dann durch das Golog-System eigenständig gelöst werden. Solche of-
fenen Aspekte sind oft Planungsaufgaben, bei denen das System eine geeignete
Aktionsfolge finden muss, um ein gegebenes Ziel zu erreichen. Der erste Teil
dieser Arbeit hat zum Ziel, dem Golog-System für solche Aufgaben hochgradig
effiziente Planungssysteme als Unterkomponenten verfügbar zu machen. Die
Herausforderung liegt dabei darin, dass beide Systeme ihr Wissen über die
Welt in unterschiedlichen Formalismen repräsentieren, wobei die Basic Action
Theories, die Golog zu Grunde liegen, deutlich ausdrucksstärker sind als das
PDDL-Fragment, das den meisten Planungssystemen als Eingabesprache di-
ent. Wir identifizieren daher ein maximales Fragment der Basic Action The-
ories, das auch in PDDL formuliert werden kann. Eine empirische Evaluation
bestätigt, dass Golog-Systeme beeindruckend stark von solch einer Integration
eines Planungssystems profitieren.

Der zweite Teil dieser Arbeit konzentriert sich auf die Planungssysteme
selbst, insbesondere auf heuristische Suche als vorherrschende Methode in die-
sem Bereich.

Im optimalen Planen findet üblicherweise der A∗-Algorithmus mit einer
zulässigen Heuristik Verwendung. Bekannte theoretische Analysen legen nahe,
dass solche heuristischen Suchverfahren mit ausreichend präzisen Heuristiken
ein besser als exponentielles Skalierungsverhalten erreichen können. Wir zeigen
für eine Reihe üblicher Planungsbenchmarkdomänen – unter anderem solche,
die in polynomieller Zeit optimal lösbar sind –, dass allgemeine Suchverfahren
wie A∗ zwingend eine exponentielle Zahl von Suchknoten betrachten müssen,
selbst unter der optimistischen Annahme fast optimaler Heuristiken, deren
Heuristikfehler durch eine kleine additive Konstante begrenzt ist. Wir schließen
daraus, dass für eine weitere Verbesserung des Skalierungsverhaltens optimaler
heuristischer Planungssysteme zusätzliche, orthogonale Verfahren notwendig
sind.

Dieses Ergebnis lässt sich nicht auf Planen ohne Optimalitätsgarantie über-
tragen, da solche Systeme nicht den aufwändigen Beweis der Optimalität er-
bringen müssen. In diesem Bereich stellt also die Entwicklung neuer, besserer
Schätzfunktionen eine sinnvolle Möglichkeit dar, die Suche besser zu leiten.
Alternativ kann man auch mehrere Heuristiken gleichzeitig verwenden, um
ihre komplementären Stärken zu nutzen. Wir untersuchen daher empirisch
verschiedene Möglichkeiten, mehrere Heuristikfunktionen in einer Bestensuche
zu verwenden, um sie bezüglich der Anzahl der gelösten Instanzen, der Plan-
qualität und der Laufzeit zu vergleichen.
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1
Introduction

We live in a dynamic world that can be altered and affected by actions. Con-
sequently, it is a natural question which actions we need to perform to reach
our aims. This is the central subject of this thesis:

Given a description of the current world situation, a set of ac-
tions and a desired world situation, what course of actions do we
need to execute to reach a desired situation?

Such a course of actions is called a plan and the general question is the
planning problem. For a concrete input, i.e., a combination of an initial world
situation, a set of actions and a goal situation, we call it a planning task. We
are mostly interested in the classical planning setting, where

• the plan is made by a single central instance, the planning system,

• the world is only altered by actions under the control of the central plan-
ning system,

• the outcome of the actions is deterministic,

• plans are sequential, i.e., actions cannot be executed concurrently, and

• the initial world situation is fully observable, i.e., there is no uncertainty
about the current state.

Figure 1.1: Rubik’s cube

The agents performing the actions do not need
to be human or artificial embodied agents (robots),
but they can also be abstract systems (e. g., a com-
puter program booking flights and hotels for a jour-
ney), or the plan can be executed by several such
agents together.

A simple example for a (toy) planning task is the
Rubik’s cube: The initial world situation describes
the current configuration of the cube, each action
corresponds to turning a face, and the goal is that
every face contains only one color.

1
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However, we are not interested in domain-specific planners such as one
solving only the Rubik’s cube. We rather consider general problem solvers
that allow to formalize the dynamics of the domain as part of the input and
use only domain-independent techniques for generating a plan.

The hardness of the planning problem depends on the expressivity of the
planning formalism, e. g., what input tasks can be expressed at all, how compact
their representation is, how concisely the plan can be represented, etc.

The Planning Domain Definition Language (PDDL) is the predominant
language for specifying planning tasks in the research area of Automated Plan-
ning, which focuses on the actual development of planning systems. For this
reason, PDDL strives for a compromise between the expressive power required
for practical applications and limitations that keep a solution of the planning
problem still achievable. It defines several levels and fragments that represent
different degrees in this field of conflicting priorities. To give an idea of the
hardness of the classical planning problem: in the most-widely used PDDL
fragment it is EXPSPACE-complete.

In contrast, researchers in the area of Knowledge Representation and Rea-
soning consider a much wider range of action languages that are used to de-
scribe dynamic worlds. The central question is not to find a plan but research
rather concentrates on problems like answering questions about the future evo-
lution of the world (projection problem) or updating the representation of a
world situation after an action application (progression problem). If it comes
to actual planning, the predominant approach in this research area is to rely
on general solvers for even more powerful formalisms (usually based on logic
programming). Since these cannot easily exploit the characteristics that are
specific to the planning problem, they usually do not scale very well.

Golog is one specific attempt to make such a highly expressive formalism
still usable in practice: it augments the description of a dynamic world (spec-
ified in the situation calculus) with a rough sketch of a plan rather than de-
scribing only the goal situations. This way, it can significantly prune the search
space which must be explored to find a plan. However, Golog systems do not
incorporate sophisticated techniques (such as planning-specific heuristics) as
they are standard in PDDL planning systems.

In the first part of this thesis we would like to make these advanced tech-
niques available to the Golog systems. Instead of re-implementing the ap-
proaches there, we pursue the more sustainable approach that allows the Golog
system to translate certain subproblems to PDDL. This way it can “outsource”
classical planning problems and always make use of state-of-the-art planning
approaches without additional work. The emphasis will lie on the theoretical
study of the boundaries of this approach, i.e., what fragment of the situation
calculus can maximally be compiled to PDDL.

The second part of this thesis concentrates on the actual planning problem
and its predominant approach – heuristic search. We will first examine the
limitations of pure heuristic search in optimal planning where a solution must
be guaranteed to be a shortest possible plan. Then we study the potential of
using multiple heuristics in the satisficing setting, where we are still interested
in cheap – but not necessarily optimal – plans.



Part I
Integrating Golog and

Planning

3





2
Motivation

Intelligent agents act in dynamic environments with the aim of reaching or
maintaining a certain world situation. For planning their actions they crucially
require information about the current situation and the dynamics of the world,
e. g., how the actions of the agent alter the world state.

This information is typically represented within logic-based formalisms be-
cause they provide an unambiguous semantics and one can build on a broad
theoretical foundation and on powerful reasoning mechanisms.

In most practically realistic scenarios, the agent does not have full informa-
tion about the world state but can successively gather more information with
its sensors. It is also common that other agents – collaborative, adversarial or
neither – act in the same world and change it exogenously from the perspec-
tive of the planning agent. In addition, the agent often faces uncertainty about
the outcome of the actions, e. g., the movements of a robot can be affected
unpredictably by a deep-pile carpet.

All these aspects make the planning problem significantly harder and so far
there exist no general problem solvers that address all these challenges and are
still sufficiently efficient for practical applications.

This general problem also can be observed for logic-based action formal-
ism as a conflict of expressivity and practical feasibility of reasoning. Such
action languages are an important topic in the research areas of planning and
knowledge representation. While action languages in both fields share the same
origin, they developed in different directions: the planning community focused
on an efficient plan generation and therefore was very careful with extending
the expressive power of the formalism in which the planning tasks are given.
Research in knowledge representation concentrated on expressive languages
that can describe a wide range of scenarios but are hard to handle practically.

The situation calculus (McCarthy, 1963; Reiter, 2001) is one of the best-
established action formalisms in knowledge representation, where basic action
theories describe the initial situation and dynamics of the world. Since planning
for general basic action theories is prohibitively expensive, the Golog (Levesque
et al., 1997; de Giacomo et al., 2000; de Giacomo and Levesque, 1999) family of
action languages allows to define a skeleton for a plan in a procedural manner.
This way, Golog stands in the middle ground of general planning, where the
system autonomously decides about the entire course of actions via some kind of

5
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automated reasoning, and deterministically programmed agents that follow an
entirely predefined program. The advantage of Golog over fully deterministic
programs is that not all possible situations of the world must be covered in
detail, so that the system is more adaptive and easier to deploy in altering
environments. Such Golog-based systems have successfully been applied for
the interactive museum tour-guide robot RHINO (Burgard et al., 1998, 1999)
and for the domestic service robot Caesar (Schiffer et al., 2012), but also for
travel planning in the area of web service composition (Sohrabi et al., 2009).

However, also in such general scenarios many subproblems arise that satisfy
the restrictions of the languages used by classical planning systems, which
exploit them for an efficient plan generation. Therefore Golog systems could
benefit significantly from the possibility to hand over such subproblems to
state-of-the-art planning systems. This is exactly the aim of the first part of
this thesis, which can build on first attempts in this direction: Claßen and
Lakemeyer (2006) already showed that the semantics of PDDL corresponds to
progression in the situation calculus. Eyerich et al. (2006) defined restrictions
on basic action theories that mimic the requirements of planning systems on
the task specification and showed how such restricted basic action theories can
be transformed into the planning language PDDL. A prototype by Claßen et al.
(2007) demonstrates how a planner can be invoked by the Golog system, but
this is merely a proof of concept where the PDDL domain was hand-crafted.

Our work will focus on the theoretical part of the integration, examining
which restrictions defined by Eyerich et al. are really necessary to stay within
the expressive power supported by most planning systems. This is not only
interesting for the integration of Golog and planning but also improves the
understanding which features contribute to the expressivity of a language and
which are only syntactic sugar.

We also hope that our results will form a first step towards a deeper un-
derstanding of the similarities and differences of the action languages used in
planning and in knowledge representation and reasoning. In the last decade
we could observe a significant improvement of planning systems that came
along with many extensions of PDDL, so that the expressivity of the agent
formalisms from both fields appears to slowly converge. Instead of maintaining
these almost parallel worlds, a stronger integration could be beneficial for both
sides. The planning community could profit from the theoretical foundations
on reasoning in expressive formalisms and the knowledge representation and
reasoning community would benefit from the experience in practically exploit-
ing specific characteristics of formalisms.

The rest of this first part of the thesis is structured as follows: We will begin
with the presentation of related work on action formalisms and frameworks for
the comparison of the expressivity of different formalisms. Then we introduce
the formalisms under consideration, namely PDDL and the situation calcu-
lus with basic action theories and Golog. Afterwards we adapt compilation
schemes (Nebel, 2000a), the framework that we use for the comparison of the
formalisms, to the demands of these formalisms. An in-depth examination of
the requirements of Eyerich et al. (2006) will form the core of this part of the
thesis. To demonstrate the benefit of the overall integration, we will conclude
with experimental results for a fully automated, integrated system.
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Related Work

3.1 Action Languages in the Field of Knowledge
Representation and Reasoning

The idea of designing intelligent agents whose model of the world and goal
specification are given as logic formulas goes back to McCarthy’s advice taker
(McCarthy, 1959). Earlier systems were programmed imperatively and fol-
lowed a predetermined program instead of inferring good actions on their own.
Since the underlying formalism of the advice taker was not very elaborated,
four years later McCarthy (1963, reprinted in 1968) introduced the Situation
Calculus to address the specific needs of logical formalisms representing dy-
namically changing worlds.

However, his version did not establish itself as a major formalism, possibly
because it was lacking a solution to the frame problem (succinctly expressing
that everything not changed by an operator1 application persists), which was
only observed some years later (McCarthy and Hayes, 1969). In this thesis we
use the version of the situation calculus by Reiter (2001), which he developed in
cooperation with Fiora Pirri and Hector Levesque (Levesque et al., 1998; Pirri
and Reiter, 1999) and which is predominant nowadays. Reiter’s solution of the
frame problem for deterministic actions (1991; 2001) is based on two different
earlier proposals, one by Pednault (1989), the other proposed independently by
Haas (1987) and by Davis (1990). It solves the frame problem by formalizing
the dynamics of the domain as a set of successor state axioms, which express
that a proposition is true if the last action application made it true or if it has
been true before this action application and has not been made false.

Another important aspect is the projection problem, which asks whether
a given formula holds after applying a given sequence of actions: Reiter de-
scribes a regression method that allows to convert a formula about a future
situation (after applying a certain sequence of actions) into a logically equiv-
alent formula about the current situation. Another solution to the projection
problem is progression, which updates the underlying model over the course of
actions, therefore “forgetting” irrelevant aspects from the past and keeping the
internal representation of the agent small. Lin and Reiter (1997) showed that

1We use the terms action and operator synonymously in this work.

7
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not all situation calculus theories can be progressed within the formalism and
identified subclasses for which such a progression always exists.

Since its introduction, the situation calculus has been extended with numer-
ous features such as continuous processes (Pinto, 1994; Reiter, 1996), indirect
effects (Lin, 1995), probabilistic uncertainty (Bacchus et al., 1995), or epistemic
features (Moore, 1979; Scherl and Levesque, 1993).

Based on Reiter’s version of the situation calculus, Levesque et al. (1997)
introduced the language Golog as a possibility to annotate situation calculus
theories with a procedural sketch of a program that leaves certain aspects open.
The idea is that a Golog interpreter follows the program and makes suitable
choices for the open aspects via some kind of reasoning. The semantics of
Golog programs is defined via macro expansion to situation calculus formulas.

There are also many different Golog versions that extend the basic lan-
guage with different practically relevant features: One step towards a practical
applicability was ConGolog (de Giacomo et al., 2000), which added (inter-
leaved) concurrency, interrupts, and exogenous events. However, as with all
earlier variants, a ConGolog interpreter must compute an entire concrete action
sequence for the program offline before it starts to perform any action. In a
dynamic environment, this is impractical if the precomputation takes very long
or if the agent must collect additional information about the state of the world
during runtime. These issues gave rise to IndiGolog (de Giacomo and Levesque,
1999) which allows an incremental program execution and sensing. IndiGolog
is particularly interesting for this thesis because it integrates a special search
operator, where a planner can easily be integrated to solve a particular sub-
problem. Other Golog variants support additional features that are beyond the
scope of this thesis, such as sGolog (Lakemeyer, 1999) with sensing, CCGolog
(Grosskreutz, 2002) with continuous change, and other variants that integrate
time (Reiter, 1998), or concurrency (Finzi and Pirri, 2004).

While the situation calculus is well-established, it is by far not the only
action language in the field of knowledge representation and reasoning. The
most similar ones are probably the fluent calculus (Thielscher, 1999) and the
ES formalism (Lakemeyer, 2010).

The fluent calculus uses a different solution for the frame problem than the
situation calculus, where there is a state update axiom for each action that
describes how the action application changes the state. FLUX (Thielscher,
2005) is a programming language for the fluent calculus, similar to Golog for
the situation calculus. A study of the relationships between the fluent calculus
with FLUX on the one side and the situation calculus with Golog on the other
side can be found in the work by Schiffel and Thielscher (2006).

The logic ES is a modal variant of the situation calculus, motivated by
disadvantages of its extensions with knowledge and time.

The action languages A (Gelfond and Lifschitz, 1993), B and C (Gelfond
and Lifschitz, 1998) describe how actions change the world by means of causal
laws. A is closely related (Gelfond and Lifschitz, 1998) to the propositional
fragment of Pednault’s ADL (Pednault, 1989), described in the next section on
action languages in the field of planning.

The event calculus (Kowalski and Sergot, 1986; Shanahan, 1995; Miller and
Shanahan, 1999) was originally designed for database updates and narrative
understanding. Therefore it is not based on global states like the situation
calculus but rather on local events that are associated with time points or time
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periods. Another narrative-based language, which also has been used in the
field of planning (Doherty and Kvarnström, 2001), is the family of temporal ac-
tion logics TAL (Doherty et al., 1998), inspired by the formalisms of Sandewall
(1994).

3.2 Action Languages in Classical Planning

Planning and knowledge representation for dynamic worlds share the same
origin. Both fields started to diverge with the robotic project Shakey at the
Stanford Research institute. While the original proposal used a situation cal-
culus formalization and theorem-proving to plan the actions (Green, 1969),
the inefficiency of this approach led to the introduction of the STRIPS system
(Stanford Research Institute Problem Solver) by Fikes and Nilsson (1971).
This system uses a rather different language, where the frame problem is not
solved within the logical formalism but by an external assumption that ev-
erything not affected by an operator stays unchanged. It also makes a shift
to an action-centric specification of the dynamics, where an action is given
by three components: The precondition of an action is a formula that defines
when it is applicable, the add effect is a list of formulas that must be true
after the action application, and the delete effect is an analogous list of formu-
las that must be false after the action application. Fikes and Nilsson (1971)
used only a fragment of their entire language specification, which resulted in
a much less expressive language but allowed for more efficient planning, based
on means-ends analysis. However, the semantics of the full language was given
only informally and it was easily possible to specify unsound operators. Only
in 1987, Lifschitz (1987) defined a formal semantics and specified when an op-
erator specification is sound. His notion of soundness is always relative to a
given set of sentences that are considered to be essential. In the simplest case,
where the essential sentences are exactly the ground atoms, the definition boils
down to a very restrictive formalism, where action effects are restricted to con-
junctions of literals. While the planning algorithm of the STRIPS system is
now obsolete, this simple action formalism still persists (with the additional
requirement that action preconditions are conjunctions of atoms) and is nowa-
days simply referred to as STRIPS. To allow a more compact representation
of planning tasks without going back to the full expressive power of the situa-
tion calculus, Pednault (1989) introduced the action description language ADL
with conditional effects, quantification, nonlinear functions and open worlds.

However, neither STRIPS nor ADL established themselves as a standard in-
put language, so that almost every planning systems from that time developed
their own fragment or variant as task description language (Wilkins, 1988; Car-
bonell et al., 1992; Erol et al., 1994; McDermott, 1996; Penberthy and Weld,
1992). As a result, these systems were hardly comparable to each other and
there were no common benchmark suites. This lack of comparison motivated
the introduction of the International Planning Competition (McDermott, 2000)
in 1998, for which McDermott et al. (1998) defined PDDL as a new common
input language. This first PDDL version subsumed many of the features of
the specialized languages, such as conditional and quantified effects, axioms,
safety constraints, or hierarchical actions. These were grouped with so-called
requirements so that the planners could indicate which fragment they support.
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PDDL is nowadays the predominant language for formalizing planning in-
stances. Since its introduction for the first International Planning Competition
in 1998 it has undergone many revisions (Fox and Long, 2003; Edelkamp and
Hoffmann, 2004; Gerevini and Long, 2005; Helmert et al., 2008) and the lan-
guage can now be divided into different levels (Fox and Long, 2003; Gerevini
and Long, 2005): The classical fragment is referred to as level 1, higher levels
add numeric extensions, discretised and continuous durative actions, sponta-
neous events, physical processes, preferences and plan trajectory constraints.
Since we consider classical planning, we use level 1 which can be subdivided
further into different fragments. These allow a fine-grained support of cer-
tain language features, starting from simple STRIPS up to the ADL fragment,
possibly including action costs and derived predicates.

The SAS+ formalism (Bäckström and Nebel, 1995; Jonsson and Bäckström,
1998) is a generalization of grounded STRIPS that uses finite-domain variables
instead of only binary variables. It is not commonly used as an input language
in planning and an attempt to integrate its flavor in PDDL for the IPC 2008,
based on the more general functional STRIPS formalism (Geffner, 2000), pe-
tered out due to insufficient interest from the community. However, it is highly
relevant for the internal representation of planning systems. For example, the
Fast Downward planning system (Helmert, 2006) first translates the PDDL
input to a finite-domain representation (Helmert, 2009), which is an extension
of SAS+ with conditional effects and axioms.

While PDDL is the standard input language for planning systems, it did not
establish itself in the related field of heuristic state-space search. In this area
most systems are highly domain-specific so that the dynamics of the domain
are hard-coded in the solvers. However, a first attempt for a generic input
language has been made with the PSVN formalism (Hernádvölgyi and Holte,
1999), which is conceptually similar to functional STRIPS.

3.3 Comparison of Planning Formalisms

In the literature, we can find several transformations that aim to compare the
complexity or expressivity of formalism.

Presumably the best-known transformation for decision problems is Karp
reduction (Karp, 1972). For two problems X and Y, problem X is polynomial
time reducible to Y if every instance x of X can be transformed to an instance y
of Y in polynomial time (in the size of x), so that x ∈ X iff y ∈ Y. Transferred
to planning formalisms and the problem whether a plan exists for a given task,
this would mean that formalism X is reducible to Y if we could translate each
planning task ΠX of X to a task ΠY in formalism Y such that ΠX has a plan
iff ΠY has a plan.

In contrast to Karp-reduction, exact structure-preserving reduction (or ESP
reduction, Bäckström, 1995) aims to also capture the structure of the plan
space. As before, one has to compute a task of the target formalism in poly-
nomial time but in addition it must hold that the number of plans of length at
most k must be equal for the original instance and the resulting instance for
all k ≥ 0. Bäckström (1995) applied ESP reductions to show that two variants
of STRIPS, propositional TWEAK (Chapman, 1987) and the SAS+ formalism
all have equivalent expressivity.
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The compilation scheme approach by Nebel (2000a) does not postulate a
strict structural similarity of the plan space but still requires that shortest plans
of the transformed tasks do not grow unreasonably. It distinguishes different
levels of compilability, relative to the necessary blow-up of the plan size. In
addition, compilation schemes measure how concise planning domains can be
represented in each formalism, independent of the computational effort required
to translate the domain specification. Originally, Nebel (2000a) introduced
compilation schemes to compare only the expressive power of propositional
formalisms. However, to examine the influence of axioms on the expressivity
of PDDL, Thiébaux et al. (2005) presented a variant that also can be applied
to non-propositional (schematic) PDDL.

3.4 Integrating Golog and Planning

There are three lines of research in the literature that aim to integrate planning
and Golog-style procedural programming.

The first line of research tries to transfer the general idea of Golog programs
to planning: Baier et al. (2007, 2008) propose to annotate PDDL planning tasks
with procedural domain control knowledge that restricts the search space by
specifying a skeleton of the desired plan. The PDDL task together with the
domain control knowledge program is then translated to a new PDDL tasks
where all plans are also plans for the original task but in addition follow the
given program.

A second line of research (Blom and Pearce, 2010; Blom, 2011) directly
transfers planning techniques to Golog by re-implementing and extending them
for the required wider class of problems. The main disadvantage of this ap-
proach is that this implementation incorporates a significant engineering effort
and that it needs to be repeated every time a new planning technique should
be integrated into the Golog system.

Our work contributes to the third line of research that tries to make plan-
ning systems available for Golog interpreters. The IndiGolog implementation
already provides a mechanism to call an iterative deepening search for de-
termining a sequence of actions that achieves a given subgoal. Claßen and
Lakemeyer (2006) suggested to call an efficient PDDL planner instead. For
this purpose, it is necessary to relate the situation calculus with PDDL and to
automate the translation from situation calculus theories to PDDL tasks and
the re-translation of the resulting plans. To provide a theoretical basis for the
translation, Claßen et al. (2006; 2007) showed that the semantics of the ADL
fragment of PDDL corresponds to progression in the situation calculus (resp.
ES). Claßen et al. (2007) also presented a situation-calculus semantics for the
more expressive temporal level of PDDL. The work on the semantics led by
Claßen was complemented by the work by Eyerich et al. (2006), who defined
restrictions on basic action theories that lead to the same expressivity as the
ADL fragment of PDDL. The compilation schemes they used for the compari-
son define an efficient translation from the defined subset to PDDL. However,
there was no implementation of this translation but only a very small proof of
concept with a manually translated domain (Claßen et al., 2007).





4
Two Formalisms

for Dynamically Changing Worlds

In this work we use the notion planning formalism in a rather general meaning,
covering many different logic-based formalism for dynamically changing worlds,
which all share certain characteristics:

An instance of a planning task always comprises a domain definition, an ini-
tial world specification, and a goal specification. The domain definition fixes the
vocabulary and the dynamics of the domain. These dynamics specify what ac-
tions are applicable in a certain world state and how they affect the world. The
initial world specification gives (not necessarily complete) information about
the initial situation of the world. It can also introduce additional constants
describing objects in the world and specify certain restrictions on the objects,
e. g., restrain the objects in the world to the given constants (domain closure).
The goal specification describes the desired situations of the world. The aim is
to find a course of actions (a plan) that transforms the initial situation to the
desired world situation.

While our notion of planning formalisms is quite general it is by far not the
most general possible definition:

• We only consider non-adversarial settings with a single agent choosing
the actions.

• Our setting is static, i.e., there are no exogenous events and all changes
of the world are the result of action applications1.

• We assume that actions are deterministic, i.e., their is no uncertainty
about how their application affects the world.

• We will only consider sequential action applications, i.e., actions cannot
be executed in parallel as for example in partial-order (graphplan-style)
planning (Sacerdoti, 1975; Blum and Furst, 1997) or temporal planning
(Fox and Long, 2003).

1In our experimental evaluation we will show that the approach is also useful for non-
static scenarios with sensing.

13
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• We do not consider sensing, so the agent cannot gain additional informa-
tion about the current world state1.

• Due to the previous points we do not need to consider conditional plans
where the actually executed actions depend on information that is ob-
tained during the plan execution. Therefore we can restrict ourselves to
sequential plans, which consist of a sequence of actions.

• We do not consider action costs or advanced plan metrics. If we want to
compare the quality of plans we will always do this based on their length
(= number of actions). The main reason for this decision is that action
costs are not present in Golog and when this research was done in 2007
and 2008, action costs also were not widely supported by PDDL planning
systems. Back then, they were a special case of a more expressive PDDL
level, requiring general support of numeric fluents. This changed only
with the International Planning Competition in 2011 when action costs
were re-introduced as a restricted fragment of numeric fluents and were
used in the competition benchmark tasks.

In the following we will introduce the two formalisms that we need to con-
sider for integrating Golog and planning. The first is a standard formalism
used in the planning community, the second the situation calculus, which is
the basis of Golog.

4.1 Classical Planning and PDDL

Classical sequential planning fits our setting for general planning formalisms
as described above. In addition, we have full information about all objects
in the world and the initial situation, which therefore defines a single initial
state. Since action application is deterministic, this implies that the classical
planning setting provides full observability.

Before we go into the details of the corresponding PDDL planning formal-
ism, we first give some intuition for classical planning with the help of an
illustrative example: In the elevator domain (inspired by the Miconic-10 do-
main of the 2nd International Planning Competition in 2000 and not to be
confused with the elevators domain of the International Planning Competition
2008) there are persons on several floors of a building who want to use the
elevator to go to other floors.

Figure 4.1 shows the initial state and the goal of a simple elevators task with
four floors and four passengers initially located at three different floors. At the
beginning, the elevator is at the lowermost floor. The aim is to transport the
passengers using the elevator, which may move between adjacent floors and
stop to board all waiting passengers and unboard all passengers that have the
current floor as destination. Hence, the dynamics of the domain are described
by the move and the stop actions.

A plan for this task is a sequence of such actions so that at the end the
passengers are at their goal destinations. The example illustrates that there is
not necessarily a single goal state that perfectly describes the goal but that the
goal is rather specified by a goal condition that can capture several states: all
situations with the passengers being at their destinations are goal situations,
no matter where the elevator is located.
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initial state goal

Figure 4.1: An elevators task

We roughly consider PDDL level 1 for our integration of planning and
Golog. However, we do not consider action costs, which were introduced with
the International Planning Competition in 2008, because they only provide a
metric for the plan quality different from minimizing the number of actions in
a plan and there is no analogous concept in Golog. We also do not consider
derived predicates, because this feature is not widely supported by planning
systems.2

Before we go into the details of the PDDL fragment under consideration
we first want to give a first impression of PDDL by means of the example
elevators task from Figure 4.1. PDDL separates the domain, describing the
dynamics of the world, from the actual problem definition, which defines the
concrete initial state and goal. Figures 4.2 and 4.3 show these two parts for
our example, which together form the complete specification of the task.

The domain description mainly defines the language and the operators. In
the example, the language consists only of predicates but in general it could
also introduce constants that exist in all tasks of the domain. The operators are
specified in a schematic manner with parameters that need to be replaced with
constants to get the actual actions that alter the world state. Each operator
has a precondition defining when the operator can be applied and an effect
describing how the operator changes the world state. The problem description
can extend the domain language by (additional) constants and specifies the
initial state and the goal. In PDDL there is always a single initial state, given
as the list of ground atoms, which are initially true. By the semantics of PDDL
all other ground atoms are initially false. The goal is given by a logical formula,
which can be true in several world states.

In this thesis, we will not work with the LISP-style syntax of PDDL (which
has been designed to be easily parsable) but use an (equivalent) mathematical
notation. Our definition is based on the one by Helmert (2008) but separates
the domain from the rest of the task definition and does not include derived
predicates.

Definition 1 (PDDL domain). A PDDL domain is given by a pair D = 〈L,O〉

2Of the 16 heuristics currently implemented in the Fast Downward planning system
(Helmert, 2006), none properly considers derived predicates in the heuristic computation
and seven cannot be used at all in the presence of such predicates.
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(define (domain elevators)

(:requirements :adl)

(:predicates

(origin ?person ?floor)

(destination ?person ?floor)

(adjacent ?floor1 ?floor2)

(boarded ?person)

(served ?person)

(lift-at ?floor)

(floor ?floor)

)

(:action stop

:parameters (?floor)

:precondition (lift-at ?floor)

:effect (and

(forall (?person)

(when (and (boarded ?person)

(destination ?person ?floor))

(and (not (boarded ?person))

(served ?person))))

(forall (?person)

(when (and (origin ?person ?floor)

(not (served ?person)))

(boarded ?person)))))

(:action move

:parameters (?f1 ?f2)

:precondition (and (lift-at ?f1) (adjacent ?f1 ?f2))

:effect (and (lift-at ?f2) (not (lift-at ?f1))))

)

Figure 4.2: PDDL domain specification of the elevators task from Figure 4.1.
The definition of the action stop is the same as in the simple-ADL version of
the IPC 2000 Miconic domain, but we restricted the movements of the elevator
to adjacent floors to keep the problem specification in Figure 4.3 short.

with the following components:

• L is a first-order language, whose alphabet consists of

– finitely many constant symbols and relation symbols,

– infinitely many variable symbols,

– logical symbols ∃,∧,¬,→ and parentheses, brackets, and punctuation
symbols, and

– the equality symbol =.

• O is a set of schematic operators over L. A schematic operator 〈n, χ, e〉
consists of an operator name n, a first-order formula χ over L called
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(define (problem elevator-example)

(:domain elevators)

(:objects p0 p1 p2 p3 f0 f1 f2 f3)

(:init

(lift-at f0)

(floor f0) (floor f1) (floor f2) (floor f3)

(origin p0 f0) (destination p0 f2)

(origin p1 f1) (destination p1 f0)

(origin p2 f2) (destination p2 f0)

(origin p3 f2) (destination p3 f3)

(adjacent f0 f1) (adjacent f1 f0)

(adjacent f1 f2) (adjacent f2 f1)

(adjacent f2 f3) (adjacent f3 f2)

)

(:goal

(forall (?x) (or (floor ?x) (served ?x)))

)

)

Figure 4.3: PDDL problem specification of the elevators task from Figure 4.1

its precondition and its effect e. Effects are recursively defined by finite
application of the following rules:

– A literal over L not mentioning the equality symbol = is an effect
called simple effect.

– If e1, . . . , en are effects, then e1 ∧ · · · ∧ en is an effect, called con-
junctive effect.

– If ϕ is a first-order formula over L and e is an effect, then ϕ . e is
an effect, called a conditional effect.

– If v1, . . . , vk are different variable symbols in L and e is an effect,
then ∀v1 . . . vke is an effect called universal effect.

Free variables of an effect are defined recursively as in first-order logic,
where the set of free variables of a conditional effect is defined as free(ϕ.
e) = free(ϕ) ∪ free(e).

Also analogous to first-order logic, we define e[x1/t1, . . . , xn/tn] as the
result of substituting term ti for each free occurrence of variable xi in e.

The free variables of a schematic operator are defined as free(〈n, χ, e〉) =
free(χ) ∪ free(e). Free variables are also referred to as the parameters of
the schematic operator.

Such a PDDL domain describes the general setting of a world but leaves
the concrete task open. For the actual task definition we need in addition the
initial state and goal specification and possibly a set of additional task-specific
constants:

Definition 2 (PDDL task). A PDDL task is given by a tuple Π = 〈D, C, I, γ〉
where
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• D = 〈L,O〉 is a PDDL domain.

• C is a finite set of constants. We define the language LΠ of task Π as
the language we receive by extending the set of constants in the alphabet
of the domain language L with the constants in C.

• I is a set of ground atoms of LΠ (not mentioning the equality symbol =)
called the initial state.

• γ is a first-order sentence over LΠ called the goal description.

Apart from the mathematical notation (instead of the LISP style), our
definition (almost) conforms to the ADL fragment of PDDL as defined in the
specification of PDDL 3.1. The only two differences are that we omitted types
from our specification and that we removed certain restrictions on the form of
conditional effects.

Types are syntactic sugar and allow to restrict action and predicate param-
eters and quantified variables to certain objects of the universe. The semantics
of types is defined in terms of unary predicates and they can easily be trans-
formed to such. Since this is also true within the compilation framework which
we will use to compare the expressive power of planning formalisms, there is
no need to treat them specially in this work.

The original definition of PDDL 3.1 does not allow for nested conditional
effects and for universal effects in conditional effects. This is not a fundamental
restriction because more complicated conditional effects can easily be replaced
with PDDL 3.2 effects in polynomial time3.

The semantics of PDDL planning can be defined based on the semantics of
predicate logic. We begin with the formal notion of a state of a PDDL task,
which is a Herbrand interpretation for the language of the task:

Definition 3 (state and induced structure). Let Π = 〈〈L,O〉 , C, I, γ〉 be a
PDDL task and let A be the set of all ground atoms of LΠ.

• A state s of Π is a valuation s : A→ {0, 1}.

• A state s induces a structure As = (U , I) for Π as follows:

– U = {c | c is a constant symbol of LΠ} (the universe)

– For each constant symbol c of LΠ, I(c) = c.

– For each predicate symbol P of LΠ,
I(P ) = {(c1, . . . , cn) | s(P (c1, . . . , cn)) = 1}.

• We say that a state s satisfies a closed formula χ (and write s |= χ) if
As |= χ according to the semantics of first-order logic.

Before we introduce the semantics of the application of operators, we first
need to define the analog of closed formulas for operators:

3This can be seen from the equivalences ϕ . (e1 ∧ · · · ∧ en) ≡ (ϕ . e1) ∧ · · · ∧ (ϕ . en),
ϕ . (ψ . e) ≡ (ϕ∧ψ) . e by Rintanen (2005, Table 2.1) and the equivalence ϕ . ∀x1 . . . xne ≡
∀x1 . . . xn(ϕ . e) holding if no variable x1, . . . , xn occurs in ϕ, which can be ensured by a
suitable renaming.
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Definition 4 (ground operator). Let Π be a PDDL task and let C denote the
set of all constant symbols of LΠ. Let further o = 〈n, χ, e〉 be a schematic
operator of Π.

Each possible parameter mapping p : free(o)→ C defines a ground operator
inst(o, p) = 〈n, χ′, e′〉 of o, where χ′ and e′ are the result of substituting p(x)
for each free occurrence of a variable x in χ and e respectively.

We now can define what it means to apply a ground operator in a state:

Definition 5 (operator applicability, change set, successor state). Let Π be a
PDDL task. Let C denote the set of all constant symbols and A be the set of
all ground atoms of LΠ.

• A ground operator 〈n, χ, e〉 is applicable in state s if s |= χ.

• We define the change set4 [e]s of an effect e without free variables in state
s inductively as follows:

– For a simple effect e, [e]s = {e}

– [e1 ∧ · · · ∧ en]s =
⋃
i∈{1,...,n}[ei]s \ {¬a | a ∈ A and ∃i : a ∈ [ei]s}

– [χ . e]s =

{
[e]s if s |= χ

{} otherwise

– [∀v1 . . . vne]s = [
∧

(c1,...,cn)∈Cn e[v1/c1, . . . , vn/cn]]s

By construction, the change set can only contain ground literals of LΠ.

• For a state s and a ground operator o = 〈n, χ, e〉 with s |= χ, the successor
state appo(s) of s with respect to o is the state s′ with s′ |= [e]s and
s′(v) = s(v) for all ground atoms v that do not occur as literal in [e]s.

A plan in classical planning is a sequence of applicable operators that leads
from the initial state to a goal state.

Definition 6 (Plan of a PDDL task). Let Π = 〈〈L,O〉 , C, I, γ〉 be a PDDL
task. A sequence 〈o0, . . . , on−1〉 of ground operators is a plan for Π if there are
states s0, . . . , sn such that

• for all ground atoms a of Π, s0(a) =

{
1 if a ∈ I
0 otherwise

• oi is applicable in si

• si+1 = appoi(si) for i ∈ {0, . . . , n− 1}

• sn |= γ

4The general character of the definition is taken from Rintanen (2005) but we extended it
to non-propositional operators and adapted it to fit the add-after-delete semantics of PDDL.
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For a sequence of operators 〈o0, . . . , on〉 applicable in a state s we also use
the short notation app〈o0,...,on〉(s) to denote the state resulting from the sequen-
tial application of these operators: app〈o0,...,on〉(s) = appon(app〈o0,...,on−1〉(s)),
where app〈〉(s) = s.

Given a PDDL task, we are primarily interested in the planning problem of
finding a plan or proving that no plan exists. In satisficing planning, any plan
is a solution but we prefer shorter plans over longer ones, whereas in optimal
planning a solution must be a shortest possible plan.

Since we will need several complexity results on classical planning in this
thesis, we will in the following introduce some related decision problems and
discuss their complexity.

Computational Complexity of Classical Planning

The following decision problem relates to satisficing planning, where we are
only interested in finding some plan.

Definition 7 (Plan existence problem). The plan existence problem for PDDL
is the following decision problem:

Input: A PDDL task Π

Question: Is there a plan for Π?

Theorem 1. The plan existence problem for PDDL is EXPSPACE-complete.

Proof. Erol et al. (1995) have shown that the plan existence problem for a
more restricted formalism (without universal effects and quantified conditions)
is EXPSPACE-complete, so the hardness result directly translates to PDDL.

For the membership in EXPSPACE, consider the non-deterministic proce-
dure shown in Algorithm 1.

In line 1, initialState(L, C, I) creates the initial state by assigning each
ground atom its value according to I. As long as the current state does not
satisfy the goal, the algorithm guesses the next action to apply. If it is ap-
plicable, it updates the current state with the respective successor state. The
procedure accepts if the current state is a goal state.

The algorithm is correct: If the input is a solvable PDDL task, the procedure
can obviously guess actions corresponding to a plan and accept the input.
Otherwise, it will not terminate, because in an accepting run the applied action
sequence would correspond to a plan.

It remains to show that the algorithm needs only exponential space:
Let c be the number of constant symbols in L and C, let p be the number

of predicate symbols in L and a be the maximal arity of these predicates.
Then there are at most pca ground atoms and any state can be represented in
exponential space.

The successor state after applying an action (line 5) can obviously be com-
puted in exponential time (Definition 5) and therefore also in exponential space
(if there are no universal effects the update can be done in polynomial time).

In lines 2 and 4, we need to check whether the current state satisfies a
first-order sentence. For a variable-free formula this is possible in polynomial
time. For an arbitrary sentence we can iterate over the instantiations with all
possible variable assignments for the bound variables. Although the number
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Algorithm 1 Nondeterministic decision procedure for PDDL plan existence

Input: PDDL task Π = 〈〈L,O〉, C, I, γ〉
1 s← initialState(L, C, I)
2 while s 6|= γ do
3 a← guess next action
4 if a is applicable in s then
5 s← appo(s)

6 accept

of instantiations can be exponential, each single one requires only linear space
(in the size of the formula).

Since the non-deterministic procedure shown in Algorithm 1 decides plan
existence in exponential space and EXPSPACE = NEXPSPACE by Savitch’s
theorem (Savitch, 1970), we conclude that the plan existence problem for PDDL
is in EXPSPACE.

If the domain is fixed in advance, the plan existence problem is easier:

Theorem 2. The plan existence problem for PDDL with a fixed domain is in
PSPACE.

Proof. Since PSPACE = NPSPACE, it is sufficient to show that the problem
is in NPSPACE. For this purpose consider a variation of the non-deterministic
procedure shown in Algorithm 1, where the domain D = 〈L,O〉 is fixed in
advance and the input consists only of a set of task-specific constants C, an
initial state specification I and a goal specification γ for this domain.

The arguments in the proof of Theorem 1 for the correctness of the proce-
dure still apply. We will in the following explain how the argumentation for the
space requirement must be altered to show that the procedure only requires
polynomial space in the input.

In the setting with a fixed domain, the number of predicate symbols p and
the maximal predicate arity a are fixed. So the number pca of ground atoms is
polynomial in the input. The computation of the successor state is possible in
polynomial time because the maximal quantifier rank in any universal effect is
fixed. The test whether a state satisfies a first-order sentence is already possible
in polynomial space if the domain is part of the input.

Since the non-deterministic procedure decides plan existence in polynomial
space and PSPACE = NPSPACE by Savitch’s theorem, we conclude that the
plan existence problem for PDDL with a fixed domain is in PSPACE.

In optimal planning we are interested in finding a plan of minimal length.
This corresponds to the following decision problem:

Definition 8 (Bounded plan existence problem). The bounded plan existence
problem for PDDL is the following decision problem:

Input: A PDDL task Π and a bound k ∈ N0

Question: Is there a plan for Π of length at most k?
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For this thesis, we only require a very specific result on the bounded plan
existence problem with a fixed domain and goal, i.e., the input consists only of
the set of constants C and the initial state specification I.

Theorem 3. The bounded plan existence problem for PDDL with a fixed do-
main and a fixed goal is solvable in polynomial time.

Proof. Let l be the given bound on the plan length. Let o denote the number
of schematic operators in the domain, and a denote the maximal number of
parameters of the operators. Then a task with c constants has at most oca

ground operators and there are at most
∑

0≤i≤l(oc
a)i operator sequences of

length at most l. Since l, o and a are constant in this setting, this is a polynomial
number, so we can enumerate all plan candidate sequences in polynomial time
(in the number of constants).

It remains to show that we can also verify a plan candidate in P: The succes-
sor state after applying an operator can obviously be computed in polynomial
time (Definition 5) because the maximal quantifier rank of the universal effects
is fixed. We can evaluate operator preconditions and the goal formula for a
given state by trying all possible bindings of the quantified variables. Testing a
binding is linear in the length f of the formula and for a formula with quantifier
rank r there are cr bindings. So we can test the applicability of an operator
or the truth of the goal in a state in time O(fcr). Since the operator precon-
ditions and goal are fixed in this setting, this provides us with a polynomial
bound (again in the number of constants) for a single test. As the length of
the candidate sequences is bound by l, we can therefore decide in polynomial
time whether a candidate actually is a plan.

So we can decide the bounded plan existence problem in polynomial time by
enumerating all action sequences of length at most l and testing each sequence
whether it is a plan.

We have seen that though the semantics of PDDL are based on predicate
logic, changes in the world are not described within the logic itself. We had
to define their semantics separately, using individual interpretations for each
state.

This is different for the situation calculus, where everything is captured
within a logic formalism and each model covers all changes to the world and
all situations.

4.2 Situation Calculus and Golog

The situation calculus is a logic formalism which is specially designed for rep-
resenting dynamically changing worlds. In this thesis we use the version of the
situation calculus by Reiter (2001). It solves the frame problem by formalizing
the dynamics of the domain as a set of successor state axioms, action precon-
dition axioms, and unique names axioms. A theory consisting of such axioms
and a description of the initial situation is called a basic action theory. The
compilability from such basic action theories to PDDL will be the main subject
of the theoretical results in this part of the thesis.

While basic action theories describe the dynamics and the initial situation
of the task, they do not indicate at all how a plan would possibly look like.
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This can be done by annotating the basic action theory with a Golog program
that procedurally describes a plan but leaves some aspects open. Such open
aspects can for example be a choice of actions arguments like to which floor the
elevator should move next or a choice between two different courses of actions.

In the following, we will first introduce the situation calculus in general,
before we formally define the notion of basic action theories. Based on this, we
then introduce the action language Golog.

Situation Calculus

The situation calculus is designed for representing dynamic systems with a
three-sorted second-order language. All changes to the world are the result
of actions and each action leads to a new situation, which can be identified
with a sequence of actions. Besides actions and situations there is a third
sort object that is used for everything else. Following Reiter’s style, we will
use variables a for actions, s for situations and x, y, . . . for objects (each with
subscripts and superscripts). There is a special predicate poss(a, s) meaning
that it is possible to perform action a in situation s. All situations except
the initial situation are formed with a function do(a, s) meaning that action
a is applied in situation s. Functions and predicates whose values vary from
one situation to the next are called fluents and take a situation term as their
last argument. There are also some foundational axioms for situations, which
ensure that dynamic worlds in the situation calculus behave like one assumes
intuitively. To make all this precise, we briefly state formal definitions (Reiter
2001, pp. 47–48; slightly reformulated):

Definition 9 (Language Lsitcalc of the situation calculus). The language Lsitcalc

of the situation calculus is the three-sorted second-order language with disjoint
sorts situation, action, and object and the following alphabet:

• Countably infinitely many individual variable symbols of each of the three
sorts.

• Countably infinitely many predicate variables of all arities.

• Logical symbols ∃,∧,¬ and parentheses, brackets, and punctuation sym-
bols (we use the usual definitions of a full set of connectives and quanti-
fiers).

• The equality symbol =.

• Two function symbols of sort situation:

– A constant symbol s0, denoting the initial situation.

– A binary function symbol do : action× situation→ situation.

• A binary predicate symbol @: situation × situation, that will be used to
define an ordering relation on situations.

• A binary predicate symbol poss : action× situation.

• A finite or countable set Rc of predicate symbols. These are used for
situation-independent relations. Each r ∈ Rc has an associated arity
ar(r) ∈ N0 and is of sort (action ∪ object)ar(r).
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• A finite or countable set Fc of function symbols. These are used for
situation-independent object functions. Each f ∈ Fc has an associated
arity ar(f) ∈ N0 and is of sort (action ∪ object)ar(r) → object.

• A finite or countable set Fa of function symbols. Each f ∈ Fa has an
associated arity ar(f) ∈ N0 and is of sort (action∪ object)ar(r) → action.
These are called action functions.

• A finite or countable set Rf of predicate symbols. Each r ∈ Rf has
an associated arity ar(r) ∈ N1 and is of sort (action ∪ object)ar(r)−1 ×
situation. These are called relational fluents.

• A finite or countable set Ff of function symbols. These are the functional
fluents. Each f ∈ Ff has an associated arity ar(f) ∈ N0 and is of sort
(action ∪ object)ar(f)−1 × situation→ (action ∪ object).

Following Reiter’s convention, we will in the following often omit leading
universal quantifiers in expressions of the situation calculus. If not stated
otherwise, these expressions are sentences where any free variable is implicitly
universally quantified.

Foundational axioms for situations

We already have adumbrated that a situation should correspond to a history
or finite sequence of actions and that we want to use the relation @ to define
an ordering on the situations. In the situation calculus one achieves this by
the following four foundational axioms for situations (Reiter, 2001, p. 50):

Definition 10 (Foundational axioms Σ for situations).

∀P (P (s0) ∧ ∀a, s(P (s)→ P (do(a, s)))→ ∀sP (s)) (4.1)

do(a1, s1) = do(a2, s2)→ a1 = a2 ∧ s1 = s2 (4.2)

¬s @ s0 (4.3)

s @ do(a, s′)↔ s @ s′ ∨ s = s′ (4.4)

The first axiom limits the sort situation to the smallest set that contains s0
and is closed under the application of the function do to an action and a situ-
ation. The second axiom together with axiom 4.1 implies that two situations
are equal iff they comply to the same sequence of actions applied to the initial
situation s0.

The other two axioms capture the intended meaning of the predicate @:
expression s @ s′ denotes that s is a prefix of s′.

Basic action theories

The description of a dynamical world in the situation calculus is principally
encoded in a particular syntactic form, the so-called basic action theories, pro-
viding a solution to the frame problem. Before we properly can define the
notion of basic action theories, we need to introduce some further concepts
(Reiter, 2001, pp. 31, 58–60).
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Unique names axioms for actions state whether two actions are equal. Dis-
tinct action names A and B define distinct actions and identical actions have
identical arguments:

Definition 11 (Unique names axioms for actions). The set of unique names
axioms for a situation calculus signature S with action functions Fa consists
of the following axioms:

• For each pair A,B ∈ Fa of distinct action function symbols there is an
axiom

A(x̄) 6= B(ȳ).

• For each action function symbol A ∈ Fa there is an axiom

A(x1, . . . , xn) = A(y1, . . . , yn)→ x1 = y1 ∧ · · · ∧ xn = yn

A formula is called uniform in situation s if it does not mention the pred-
icates poss or @ and the only permitted occurrence of a situation term is the
occurrence of situation s in the situation argument position of a fluent.

Definition 12 (Uniform formula). Let s be a term of sort situation. A term
that is uniform in s is inductively constructed according to the following rules:

1. Any term that does not mention a term of sort situation is uniform in s.

2. If g is an n-ary non-fluent function symbol, and t1, . . . , tn are terms that
are uniform in s and whose sorts are appropriate for g, then g(t1, . . . , tn)
is uniform in s.

3. If f is an (n + 1)-ary functional fluent symbol, and t1, . . . , tn are terms
that are uniform in s and whose sorts are appropriate for f , then the
term f(t1, . . . , tn, s) is uniform in s.

The formulas that are uniform in s are inductively defined by:

1. Any formula that does not mention a term of sort situation is uniform
in s.

2. When F is an (n+ 1)-ary relational fluent and t1, . . . , tn are terms uni-
form in s whose sorts are appropriate for F , then F (t1, . . . , tn, s) is a
formula uniform in s.

3. If ϕ1 and ϕ2 are formulas uniform in s, so are ¬ϕ1, ϕ1 ∧ϕ2 and ∃v(ϕ1)
provided v is a variable not of sort situation.

Whether it is possible to perform an action is stated by so-called action
precondition axioms:

Definition 13 (Action precondition axiom). Action precondition axioms are
of the form

poss(A(x1, . . . , xn), s)↔ ΠA(x1, . . . , xn, s),

where A is an action function symbol with arity n and ΠA(x1, . . . , xn, s) is a
formula that is uniform in s and whose free variables are among x1, . . . , xn, s.
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The value of a fluent after performing an action is specified by a successor
state axiom:

Definition 14 (Successor state axiom). A successor state axiom for a rela-
tional fluent F is of the form

F (x1, . . . , xn, do(a, s))↔ ΦF (x1, . . . , xn, a, s), (4.5)

where ΦF (x1, . . . , xn, a, s) is a formula uniform in s whose free variables are
among x1, . . . , xn, a, s. Similarly, a successor state axiom for a functional flu-
ent f is of the form

f(x1, . . . , xn, do(a, s)) = y ↔ Φf (x1, . . . , xn, y, a, s)

with analogous restrictions on Φf (x1, . . . , xn, y, a, s).

After the introduction of these concepts we now can state the definition of
basic action theories from Reiter (2001, p. 60):

Definition 15 (Basic action theory). A basic action theory (BAT) T is a
situation calculus theory of the form

T = Σ ∪ TSSA ∪ TAPA ∪ TUNA ∪ Ts0 ,

where

• Σ are the foundational axioms for situations,

• TSSA is a set of successor state axioms for functional and relational flu-
ents, one for each fluent occurring in T .5

• TAPA is a set of action precondition axioms, one for each action function
symbol occurring in T .5

• TUNA is the set of unique names axioms for all action function symbols
occurring in T .5

• Ts0 is the initial database, a set of first-order sentences that are uniform
in s0.

The successor state axiom for a functional fluent f must actually define a value
for f in the next situation, and this value must be unique ( functional fluent
consistency property).

In order to distinguish the components of a basic action theory, we some-
times write it as a tuple 〈Σ, TSSA, TAPA, TUNA, Ts0〉.

An example for such a basic action theory for the elevator domain is shown
in Figure 4.4.

Reiter (2001, p. 38) also already defined a notion of a plan for the situation
calculus:

5Reiter (2001) does not explicitly require that there is one axiom for each fluent (resp.
a full set of unique names axioms for actions). We nevertheless postulate this, because it is
the more common definition (Levesque et al., 1998; Pirri and Reiter, 1999).
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T = Σ∪ TSSA ∪ TAPA ∪ TUNA ∪ Ts0 is a BAT with the following components:

• Σ consists of the foundational axioms for situations as specified in
Definition 10.

• TSSA consists of the successor state axioms

boarded(p, do(a, s))↔ ∃f(a = stop(f) ∧ origin(p, f) ∧ ¬served(p, s))

∨ boarded(p, s) ∧
¬∃f(a = stop(f) ∧ destination(p, f))

served(p, do(a, s))↔ ∃f(a = stop(f) ∧ destination(p, f) ∧ boarded(p, s))

∨ served(p, s)

lift-at(f, do(a, s))↔ ∃f ′(a = move(f ′, f))

∨ lift-at(f, s) ∧ ¬∃f ′(a = move(f, f ′) ∧ f 6= f ′)

• TAPA consists of the action precondition axioms

poss(stop(f), s)↔ lift-at(f, s)

poss(move(f, f ′), s)↔ lift-at(f, s) ∧ adjacent(f, f ′)

• TUNA consists of the unique names axioms for actions

stop(f) 6= move(f ′, f ′′)

stop(f) = stop(f ′)→ f = f ′

move(f1, f2) = move(f ′1, f
′
2)→ f1 = f ′1 ∧ f2 = f ′2

• Ts0 is the initial database

¬boarded(p, s0)

¬served(p, s0)

lift-at(f, s0)↔f = f0

floor(f)↔f = f0 ∨ f = f1 ∨ f = f2 ∨ f = f3

origin(p, f)↔(p = p0 ∧ f = f0) ∨ (p = p1 ∧ f = f1) ∨
(p = p2 ∧ f = f2) ∨ (p = p3 ∧ f = f2)

destination(p, f)↔(p = p0 ∧ f = f2) ∨ (p = p1 ∧ f = f0) ∨
(p = p2 ∧ f = f0) ∨ (p = p3 ∧ f = f3)

adjacent(f, f ′)↔(f = f0 ∧ f ′ = f1) ∨ (f = f1 ∧ f ′ = f0) ∨
(f = f1 ∧ f ′ = f2) ∨ (f = f2 ∧ f ′ = f1) ∨
(f = f2 ∧ f ′ = f3) ∨ (f = f3 ∧ f ′ = f2)

Figure 4.4: Basic action theory for the example elevator domain with the initial
state as depicted in Figure 4.1
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Definition 16 (Plan relative to a theory). For a theory T and a goal formula
γ with a single free variable of sort situation, a plan for γ relative to T is a
variable-free situation term s that satisfies

T |= executable(s) ∧ γ(s),

where executable(s) means that the action sequence s can be executed with re-
spect to poss:

executable(s)
def
= ∀a, s′((do(a, s′) @ s ∨ do(a, s′) = s)→ poss(a, s′)). (4.6)

In this notion of planning for the situation calculus the full world description
including the initial situation is fixed in the theory and the tasks only differ
in the goal description. For practical applications, we need a wider notion of
domain, which leaves the freedom to also change the the initial situation from
task to task. For this purpose, we will define BAT tasks as a new concept
analogously to PDDL planning tasks and show, how they relate to Reiter’s
definition of planning.

Definition 17 (BAT domain). A BAT domain is given by a tuple D =
〈S, P, E〉 with the following components:

• S is a signature for Lsitcalc.

• P is a set of action precondition axioms (appropriate for S), one for each
action function symbol in S.

• E is a set of successor state axioms (appropriate for S), one for each
fluent symbol in S.

A task specification adds a description of the initial situation and the goal,
and can also contain a set of task-specific constants:

Definition 18 (BAT task). A BAT task is given by a tuple Π = 〈D, C, I, γ〉
where

• D = 〈S, P, E〉 is a BAT domain.

• C is a finit set of task-specific constant symbols. We define the signature
SΠ of task Π as the signature we receive by extending the set of constants
in S by the constants in C.

• I is the initial state specification, a set of first-order sentences over SΠ

that are uniform in s0.

• γ is the goal description, a first-order formula over SΠ with a single free
variable of sort situation.

Such a BAT task induces a basic action theory and a planning task in
Reiter’s notion as follows:

Definition 19 (Theory of a BAT task). A BAT task Π = 〈D, C, I, γ〉 with
D = 〈S, P, E〉 induces a basic action theory T (Π) = 〈Σ, TSSA, TAPA, TUNA, Ts0〉
as follows:
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• Σ are the foundational axioms of the situation calculus.

• TSSA = E

• TAPA = P

• TUNA are the unique names axioms for all action function symbols in Σ.

• Ts0 = I

Note that we did not include the unique names axioms for actions and the
foundational axioms in our definition of a BAT task, but these are implicitly
added by the semantics specified in the definition of the induced basic action
theory. However, this is not critical to the expressive power: the foundational
axioms are constant and can therefore be added in constant time (and space).
The unique names axioms for actions are completely determined by the signa-
ture of the domain and could be added to the domain in polynomial time in the
size of the domain description (because there must be an action precondition
for every action function symbol in the domain).

Definition 20 (Plan for a BAT task). A plan for a BAT task Π = 〈D, Ct, I, γ〉
is a plan for γ relative to T (Π). The length of the plan is the number of ac-
tion applications in the situation γ, i.e., the number of occurrences of function
symbol do.

Definition 19 specifies a unique theory for a BAT task. It is obvious that
we can vice versa map each basic action theory to a corresponding BAT task.

Golog

Golog extends a basic action theory with a procedural sketch of the desired
action sequence. In the following we refer to the actions of the basic action
theory as primitive actions in contrast to complex actions or programs of the
Golog program.

Before we formally introduce the language, we will first have a look at a
brief example program for the elevators basic action theory from Figure 4.4. It
is shown in Figure 4.5. Informally, the program runs as long as there is still a
passenger that has not been served. If there is already someone in the cabin,
the program will first transport her to her destination (possibly with the side
effect that other boarded passengers get served or new passengers enter the
elevator). Otherwise, it collects at least one waiting passenger.

Note that in Golog all situation arguments are suppressed and are only
reinserted by the semantics definition. Golog comprises structures that are
well-known from other programming languages like the while loop or the if
statement used in lines 1 and 2. However, it also provides the possibility
to include nondeterminism in the program. In this example, we use the π
operator that nondeterministically chooses an argument (consider for example
the argument f ′ in line 5). While in general all objects could be assigned to
the parameter, the interpreter must choose one with which it can execute the
rest of the program. So in line 5, it must choose an object f ′ such that the
primitive action move(f, f ′) can be applied in this situation. In the special
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1 while ∃p(¬served(p) ∧ ∃f(destination(p, f))) do
2 if ∃p(boarded(p)) then
3 (πf.
4 ∃p(boarded(p) ∧ destination(p, f))?;
5 (πf ′.move(f ′, f));
6 stop(f))
7 else
8 (πf.
9 ∃p(¬served(p) ∧ origin(p, f))?;

10 (πf ′.move(f ′, f));
11 stop(f))
12 endIf
13 endWhile

Figure 4.5: Example Golog program for the elevators basic action theory from
Figure 4.4.

case of this example, f ′ must always be chosen to be the current location of
the elevator cabin. However, we can additionally constraint the applicability
of a (sub-)program with so-called test actions. We use such a test action in
line 4 (recognizable by the question mark) to ensure that the nondeterministic
choice in line 3 selects a floor that is the destination of a boarded passenger.

The choice of a parameter is not the only possibility to include nondeter-
minism in a Golog program. In addition, it also provides a nondeterministic
choice (δ|δ′) of two subprograms δ and δ′ and a nondeterministic iteration (δ)∗

that executes δ zero ore more times.
Golog also allows to define named procedures that can be called as subrou-

tines in the program. Overall, Golog programs can be constructed from the
following components:

α primitive action
ϕ? test
δ1; δ2 sequence
(δ1 | δ2) nondeterministic choice
(πx.δ(x)) nondeterministic choice of argument
(δ)∗ nondeterministic iteration
if ϕ then δ1 else δ2 endIf conditional
while ϕ do δ endWhile loop
proc P (x̄) δ endProc procedure definition
P (x̄) procedure call

The if statement and the while loop are actually only syntactic sugar and
can be expressed in terms of the other constructs:

if ϕ then δ1 else δ2 endIf ≡ ((ϕ?; δ1)|(¬ϕ?; δ2)), and

while ϕ do δ endWhile ≡ (ϕ?; δ)∗;¬ϕ?
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The semantics of the constructs is defined in terms of macro expansion to
situation calculus formulas. For most statements it is very simple and only the
expansion for the procedures is somewhat involved because they can be called
recursively. Since for this thesis it is sufficient to understand the meaning of
the statements intuitively, we refer the interested reader to the definition by
Levesque et al. (1997).

ConGolog (de Giacomo et al., 2000) extends the basic version with exoge-
nous actions that are not under the control of the agent and the following
program constructs:

δ1||δ2 concurrent execution
δ1〉〉δ2 prioritized concurrency
δ|| concurrent iteration
〈ϕ −→ δ〉 interrupt

The concurrent execution δ1||δ2 executes the programs δ1 and δ2 in parallel,
interleaving the primitive actions of both programs. The prioritized concur-
rency δ1〉〉δ2 similarly executes the programs in parallel but δ1 has a higher
priority, so that primitive actions from δ2 are only executed if δ1 cannot pro-
ceed or has terminated. The concurrent iteration δ|| is the concurrent version
of the nondeterministic iteration where δ is executed zero or more times con-
currently. Interrupts 〈ϕ −→ δ〉 executes δ if the trigger condition ϕ becomes
true but are considered to be stuck if ϕ is false. In combination with priori-
tized concurrency this allows to describe systems that are reactive to certain
situations like for example changes caused by exogenous actions.

One major practical disadvantage of the basic version as well as ConGolog
is that the entire sequence of primitive actions must be precomputed by look
ahead search to ensure that the nondeterministic choices allow a successful
program execution. It also does not integrate sensing actions that allow to
gather additional information about the current state of the environment.

IndiGolog (de Giacomo and Levesque, 1999) is an extension of ConGolog
that addresses these limitations by allowing such sensing actions and execut-
ing the program online. If not specified otherwise, the interpreter resolves all
nondeterministic choices with an arbitrary6 decision, not ensuring that the pro-
gram can be continued successfully. Since this way programs would regularly
get stuck, IndiGolog allows to switch on the original look ahead search behav-
ior for parts of the program. This is done by means of the search operator Σ.
A statement Σ(δ) causes the interpreter to search for a executable sequence of
primitive operators for δ under the assumption that all required information
is available and the environment does not change. If the latter happens as
a result of an exogenous action, the interpreter replans the non-executed rest
of δ. The current IndiGolog implementation does not allow sensing within a
search statement.

For our experiments in Section 7 we want to simulate dynamic environ-
ments that cannot be handled by classical planning alone due to exogenous
events like newly arriving passengers in the elevators domain. In addition, the
search operator of IndiGolog makes it very simple to integrate a planning sys-
tem. Therefore, we chose this Golog version as basis for this thesis. Since our

6This choice is deterministic but intransparent to the user.



32 Chapter 4. Formalisms

theoretical study only considers the basic action theory, this choice only affects
the experimental evaluation.



5
Compilation Schemes

In Chapter 3 on related work we already briefly introduced several approaches
for comparing the complexity of problems or expressivity of planning formalism.

One obvious problem with Karp reductions (Karp, 1972) is that the domain
and the task specification are translated together, so all planning formalisms
for which plan existence is complete for a given complexity class would have
the same expressiveness under this transformation. Another problem is that
Karp reduction is only defined for decision problems, which are in our context
the plan existence and the bounded plan existence problem. For the plan
generation problem we also would like to consider the resulting plans.

ESP reduction (Bäckström, 1995) considers the structure of the plan space,
but it still does not translate the domain separately, therefore not measuring
how concise planning domains can be represented in each formalism.

To examine such a notion of expressivity for propositional planning for-
malisms, Nebel (2000a) introduced so-called compilation schemes, which do
not only separate the components of the planning task but also distinguish
different levels of compilability, relative to the required blow-up of the plan
size.

Compilation schemes were originally introduced for comparing different
propositional planning formalisms. Since we do not only consider proposi-
tional formalisms but would like to build on the general approach, we need to
extend the original definition to first-order formalisms. To provide a better un-
derstanding of our definition, we first briefly present Nebel’s original definition.

5.1 Compilation Schemes for Propositional Planning
Formalisms

There is no singular definition of compilation schemes for propositional plan-
ning but the framework has undergone several revisions and adaptions to spe-
cific comparisons (Nebel et al., 1997; Nebel, 1999, 2000a). We will introduce
the most recent (and most involved version) from 2000.

In the planning formalisms considered by Nebel (2000a) a planning instance
is defined as follows.

33
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Definition 21 (Propositional planning instance, Nebel (2000a)). A [proposi-
tional] planning instance is a tuple

Π = 〈Ξ, I,G〉 , (5.1)

where

• Ξ = 〈Σ,O〉 is the domain structure consisting of a finite set of proposi-
tional atoms Σ and a finite set of operators O,

• I ⊆ Σ̂ is the initial state specification,

• G ⊆ Σ̂ is the goal specification.

In Nebel’s definition the set Σ̂ is defined as the set of literals over Σ plus the
constants> and⊥ denoting truth and falsity, respectively. For us, it is sufficient
to define Σ̂ as the set of literals over Σ and to represent sets including ⊥ as sets
that contain at least one atom positively and negatively. Nebel’s definition of
operators is in the most restrictive case equivalent to STRIPS operators, i.e.,
preconditions are conjunctions of atoms and effects conjunctions of literals.
In the less restrictive formalisms he considers conditional effects, literals in
preconditions and effect conditions, and arbitrary Boolean formulas in these
conditions. A plan is a sequence of operators whose application leads from
every state satisfying all elements of I to a state satisfying all elements of G.

Compilation schemes compare how concisely planning domains and plans
can be expressed in different formalisms, not how concisely an individual plan-
ning instance can be expressed. The intuition behind compilation schemes
is that it is justifiable to perform significant work on translating a domain
description from one formalism to another, as long as this remains a one-time
effort, and individual instances of the domain can subsequently be transformed
efficiently.

As compilation schemes should measure the expressivity of a formalism, the
mapping may use arbitrary computational resources; it does not even need to
be computable. However, the result must be of polynomial size (in the size of
the input), and the transformation of the domain description must not depend
on the initial state and the goal. The translation of the initial state and the
goal is done by so-called state translation functions which are very limited: they
should be efficiently computable and not depend on the whole specification.

To compare the expressive power of two planning formalisms, compilation
schemes moreover have to consider the size of the generated plans. Before we
can state concretely which demands they make on the plan length, we first
need to define the notion of compilation schemes formally.

A compilation scheme maps each planning instance Π of the source formal-
ism X to an instance F (Π) of the target formalism Y.

Definition 22 (Compilation scheme for propositional planning formalisms1,
Nebel (2000a)). Assume a tuple of functions f = 〈fξ, fi, fg, ti, tg〉 that induce
a function F from [propositional] X -instances Π = 〈Ξ, I,G〉 to [propositional]
Y-instances F (Π) as follows:

F (Π) = 〈fξ(Ξ), fi(Ξ) ∪ ti(Σ, I), fg(Ξ) ∪ tg(Σ,G)〉.
1 Earlier versions (Nebel et al., 1997; Nebel, 1999) of this definition required ti and tg to

be the identity function and therefore omitted condition 2.
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If the following three conditions are satisfied, we call f a compilation scheme
from X to Y:

1. there exists a plan for Π iff there exists a plan for F (Π),

2. the state translation functions ti and tg are modular, i.e., for Σ = Σ1 ∪
Σ2, and S ⊆ Σ̂, the functions tx (for x = i, g) satisfy

tx(Σ, S) = tx(Σ1, S ∩ Σ̂1) ∪ tx(Σ2, S ∩ Σ̂2),

and they are polynomial-time computable,

3. and the size of the results of fξ, fi and fg is polynomial in the size of the
arguments.

If with a compilation scheme f there is a guarantee that for each plan π of
instance Π there is a plan π′ solving F (Π) such that |π′| ≤ |π| + k for some
positive integer k, f is called a compilation scheme that preserves plan size
exactly (accepting a constant additive increase). Nebel (2000a) also considers
weaker restrictions on the required growth of the plan length, where plans are
allowed to grow linearly, or even polynomially in the size of π and Π.

If there exists a compilation scheme from a propositional planning formalism
X to a propositional planning formalism Y, X is compilable to Y, written
X �x Y, where the superscript x is u, e, l, or p, indicating that the compilation
scheme is unrestricted or preserves plan size exactly, linearly or polynomially,
respectively.

If X �e Y or X �l Y , the target formalism Y is considered at least as
expressive as the source formalism X . If plans are required to grow polynomi-
ally and there is no other compilation scheme preserving plan size linearly, this
indicates that the source formalism is more expressive than the target formal-
ism, but the compilation might still be of practical interest (Nebel, 2000b). If
there is even a super-polynomial blow-up required, there must be a considerable
difference in expressive power.

For the practical application of a positive result (X �x Y), we also are
interested in an efficient transformation of the domain. If for a compilation
scheme f = 〈fξ, fi, fg, ti, tg〉 the function fξ is polynomial-time computable
then f is called a polynomial-time compilation scheme. If such a compilation
scheme exists from X to Y, this polynomial-time compilability is denoted by
X �xp Y, where x is used as before.

One property that is especially relevant for the practical application of
compilation schemes (but also theoretically interesting) is whether the relations
�x are transitive and reflexive. Reflexivity is obvious, setting fξ, ti and tg to
the identity function and defining the result of fi and fg as the empty set.
Nebel also claims transitivity to be obvious (Nebel, 2000a, Proposition 4) but
agreed in personal communication that for the proof he had in mind, we require
additional conditions for transitivity.

The main issue is that the compilation of the domain can contribute to the
initial state and the goal specification. Therefore, a simple concatenation of
two compilation schemes would break the condition that the individual parts of
a task must be translated independently. So, for transitivity, we have to resolve
this dependency. It is still an open question whether this is always possible
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for general compilation schemes, so we accomplish transitivity by introducing
additional restrictions on the compilation. There are several possibilities to de-
fine such restrictions and a suitable definition also depends on the expressivity
of the formalisms under consideration (e. g., if the formalisms allow conditional
effects, we can combine two almost arbitrary compilation schemes by handling
the interactions in the compiled domain description).

Here we present a set of requirements that covers all compilation schemes
in Nebel’s original work: Most important, the contributions of the state trans-
lation functions and the domain translation functions to the compiled initial
state and the compiled goal description, respectively, may not interfere with
each other by adding literals for the same atoms.

Definition 23 (Modularity-preserving propositional compilation schemes).
Let f = 〈fξ, fi, fg, ti, tg〉 be a compilation scheme from a propositional for-
malism X to a propositional formalism Y.

We call f modularity-preserving iff there are polynomial-time computable
functions li and lg from sets of propositional atoms to sets of propositional
atoms such that (for x = i, g)

1. tx(Σ, S) ⊆ l̂x(Σ) for S ⊆ Σ̂,

2. fx(〈Σ,O〉) ∩ l̂x(Σ) = ∅,

3. lx(Σ) = lx(Σ1) ∪ lx(Σ2) for Σ = Σ1 ∪ Σ2,

4. lx(Σ1) ∩ lx(Σ2) = lx({}) if Σ1 ∩ Σ2 = ∅, and

5. tx(Σ′, S ∩ Σ̂′) = tx(Σ, S) ∩ l̂x(Σ′) for Σ′ ⊆ Σ.

We call li and lg the modularity-preserving functions of f .

With this additional requirement, the relation �x is transitive.

Theorem 4. If X �x Y with a modularity-preserving compilation and Y �x Z
with a modularity-preserving compilation then X �x Z with a modularity-
preserving compilation.

The proof for this theorem can be found in Appendix A.1. Since we want to
compare non-propositional planning formalisms, we need to carry over Nebel’s
concepts to more general planning formalisms.

5.2 Compilation Schemes for Non-Propositional
Planning Formalisms

Compilation schemes have been applied to non-propositional planning for-
malisms before, however, these extensions are not perfectly suitable for our
scenario.

Thiébaux et al. (2005) use compilation schemes to show that the extension
of PDDL with axioms (derived predicates) increases the expressive power. In
an earlier version (Thiébaux et al., 2003), they define compilation schemes
based on an early version of the propositional compilation schemes (Nebel,
2000b). However, this definition does not allow task-specific constants and is
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therefore not applicable to our scenario. In the journal article (Thiébaux et al.,
2005) they revised the definition accordingly but still do not allow to modify
the original initial state and goal specification (only extending them depending
on the domain description and the constants). Since we want to compare
formalisms that use a very different syntax for the initial state specification,
this is too inflexible for our setting.

We build in our thesis on the previous work by Eyerich et al. (2006) (and
Eyerich, 2006) who also used compilation schemes to compare the expressive
power of basic action theories and PDDL. However, they did not attempt to
specify a unifying definition but instead gave two different compilation scheme
definitions, one for each direction. Due to this and because their specified
compilation schemes do not perfectly match their formal definition, we want
to use a new general definition that covers all compilations in this work.

In our more general formalisms, a planning instance Π = 〈D,C, I,G〉 also
comprises a domain structure D, an initial state specification I, and a goal
specification G, but in addition a constant specification C because the com-
ponents of the planning instance are no longer propositional but can contain
first-order elements. A plan is again some sequence of actions that leads from
the initial states to a goal state.

It certainly makes sense to retain the first and third requirement of Nebel’s
compilation schemes, which stipulate that the compilation must preserve plan
existence and that the results of all individual transformation functions must
be polynomial in the input size.

The remaining, second requirement is twofold, postulating that the state
translation functions are modular and polynomial-time computable. There is
no obvious way to carry over modularity from sets of atoms to general formula
and we also do not see a reason to do so: first, it has only been required for
one of Nebel’s compilability results; second, it is unclear whether modularity
is already sufficient for the transitivity of the compilability relation; and third,
there is no large practical advantage if we anyway require that the initial state
and goal specification should be compilable in polynomial time, which is the
second aspect of this requirement and which is indeed relevant for practical
applications.

Since the initial state should be able to initialize predicates for the con-
stants, the respective compilation function needs to access them. The same is
true for the signature defined as part of the domain. The latter is also relevant
for the translation of the domain-specific constants to allow the addition of
new constants relative to the entire set of constants in the task.

We go even further: instead of limiting the access of the state-translation
functions for the constants and the initial state to only the signature of the
domain, we also give it access to the dynamics of the domain. In the positive
case, i.e., when we really want to apply the compilation, it appears natural to
also consider the domain of the application when translating the initial state;
but also in the negative case there is no compelling reason to be as restrictive
as the original definition when adapting the framework to non-propositional
formalisms. However, we retain the requirement that the initial state and the
goal specification are translated separately.

Definition 24 (Compilation scheme). Let f be a tuple 〈fd, tc, ti, tg〉 of functions
that induces a function F from X -instances Π = 〈D,C, I,G〉 to Y-instances
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D C I G

D′ C′ I′ G′

D′′ C′′ I′′ G′′

fd tc ti tg

f ′d t′c t′i t′g

Figure 5.1: Dependencies of consecutive compilation schemes.

F (Π):

F (Π) = 〈fd(D), tc(D,C), ti(D,C, I), tg(G)〉.

We call f a compilation scheme from X to Y iff

1. there exists a plan for Π iff there exists a plan for F (Π),

2. the translation functions tc, ti and tg are polynomial-time computable,

3. and the size of the result of the domain translation function fd is poly-
nomial in the size of the argument D.

f is a polynomial-time compilation scheme if fd is also polynomial-time
computable.

We use the notations X 4x Y and X 4xp Y analogously to Nebel’s �x and
�xp . For the plan length restriction x, we distinguish u for a unrestricted plan
length, r for a plan length restricted by any function only depending on |π|,
and e for compilability where plan length is preserved exactly (up to a constant
additive increase). Note that X 4e Y implies X 4r Y which implies X 4u Y.

Theorem 5. Let X 4ap Y.

If Y 4b Z then X 4c Z, where c = e if a = b = e and c = u otherwise2.
If Y 4bp Z then X 4cp Z with c as before.

Proof. Let X ,Y, and Z be planning formalisms and let f = 〈fd, tc, ti, tg〉 be a
polynomial-time compilation scheme from X to Y and f ′ = 〈f ′d, t′c, t′i, t′g〉 be a
compilation scheme from Y to Z.

Consider an X -instance Π = 〈D,C, I,G〉. We can depict the dependencies
of the compilation schemes as shown in Figure 5.1.

2 A more fine-grained specification of the the bound c on the increase in plan size would
be possible but is not necessary for the results in this thesis.
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From the picture it becomes obvious that we can define a compilation
scheme f ′′ =

〈
f ′′d , t

′′
c , t
′′
i , t
′′
g

〉
from X to Z that compiles an X -instance Π =

〈D,C, I,G〉 as follows:

f ′′d (D) = f ′d(fd(D))

t′′c (D,C) = t′c(fd(D), tc(D,C))

t′′i (D,C, I) = t′i(fd(D), tc(D,C), ti(D,C, I))

t′′g (G) = t′g(tg(G))

By definition, the result is equivalent to the task Π′′ = 〈D′′,C′′, I′′,G′′〉
which we receive when concatenating the compilations f and f ′. Therefore, f ′′

preserves plan existence.
Since f is a polynomial-time compilation scheme, the translation func-

tion fd can be efficiently computed. Moreover, all state-translation functions
tc, ti, tg, t

′
c, t
′
i, t
′
g are polynomial-time computable by the requirements of com-

pilation schemes. Therefore the functions t′′c , t
′′
i , and t′′g can be efficiently com-

puted.
The size of the result of f ′′d (D) is polynomial in the size of the input because

both subfunction fd and f ′d maintain this property.
Therefore, f ′′ is a compilation scheme from X to Z. If f ′ is a polynomial-

time compilation scheme then the function f ′′d can be computed in polynomial
time and also f ′′ is a polynomial-time compilation scheme.

It remains to show that if both f and f ′ preserve plan size exactly then also
f ′′ preserves plan size exactly. Let k and k′ be the additive constants allowed
for a plan length increase from f and f ′, respectively. Then for every plan π of
Π there is a plan π′ for Π′ = 〈D′,C′, I′,G′〉 with |π′| ≤ |π| + k and for every
plan π′ of Π′ there is a plan π′′ of Π′′ with |π′′| ≤ |π′|+ k′. Overall, for every
plan π of Π there is a plan π′′ of Π′′ with |π′′| ≤ |π|+ k+ k′. Therefore we can
fix the maximal additive plan increase incurred by f ′′ as k + k′.

This theorem is not only useful as a transitivity argument to show that a
formalism is compilable to another one but also for showing that a formalism
is not compilable to another formalism.

Corollary 1. Let X ,Y and Z be planning formalism such that X 4u
p Y and

X 64u Z. Then Y 64u Z.

We conclude the introduction of compilation schemes with a formal def-
inition under which circumstances we consider two formalisms to be equally
expressive.

Definition 25 (Formalisms with same expressive power). We say that two
planning formalisms X and Y have the same expressive power if X 4e Y and
Y 4e X . We write this as X ≈e Y.





6
Relative Expressiveness of PDDL and

Basic Action Theories

6.1 Restricted Basic Action Theories

Starting from a similar definition of BAT tasks, Eyerich et al. (2006) added
several restrictions to achieve the same expressivity as PDDL. We formulate
their restrictions more precisely and adapt them to our notion of BAT tasks.1

In addition, we list another restriction (R4) that makes an implicit assumption
of Eyerich et al. explicit.

Definition 26 (Restricted BAT task). A restricted BAT task (RBAT task)
Π = 〈〈S, P, E〉 , C, I, γ〉 is a BAT task that satisfies the following restrictions:

R1 The usage of functions is restricted as follows:

1. All situation-independent object functions in S must be constants,
i.e., functions of sort ε→ object.

2. There are no functional fluents in S.

R2 The successor state axioms in E are of a certain form. The successor state
axiom of a relational fluent F fits the schema

F (x1, . . . , xn, do(a, s))↔
( p∨
l=1

αl
)
∨

(
F (x1, . . . , xn, s) ∧ ¬

q∨
l=1

δl
) (6.1)

for some p, q ≥ 0, where the αl and δl are of the form

∃y1, . . . , ym (a = A (y1, . . . , ym) ∧ ϕ) . (6.2)

Each action function may appear as a = A (y1, . . . , ym) in at most one
subformula αl and in at most one subformula δl.

1The main difference is that we make the signature explicit.

41
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R3 The initial state specification I consists of exactly the following sentences:

1. For each relational fluent symbol F in S there is either an expression

¬F (x1, . . . , xn, s0) (6.3)

or an expression

F (x1, . . . , xn, s0)↔ (x1 = c11 ∧ · · · ∧ xn = c1n)

∨ · · · ∨ (x1 = cm1 ∧ · · · ∧ xn = cmn) , (6.4)

where the cij are constants.

2. There are analogous expressions for all situation-independent predi-
cates in S.

3. There are unique names axioms ci 6= cj for each pair ci, cj of dif-
ferent constant symbols of SΠ (the extension of S with the constant
symbols C).

4. There is a domain closure axiom∨
c∈CΠ

x = c

for constants, where CΠ is the set of all constant symbols in SΠ.

R4 The usage of sort action is further restricted as follows:

1. Arguments of situation-independent relations or relational fluents must
not be of sort action, i.e., each such relation R is of sort object ar(r)

or object ar(r)−1 × situation, respectively.

2. The right-hand side of the action precondition axioms, the goal for-
mula γ and the sub-expressions ϕ in restriction R2 must not contain
any action symbols.

3. Arguments of action functions in S cannot be of sort action.

Eyerich et al. have shown that their restrictions lead to the same expressive
power as PDDL by giving compilation schemes that preserve plan size exactly
in both directions (Eyerich et al., 2006; Eyerich, 2006). However, they did not
show that these restrictions define a maximal fragment of the situation calculus
with this expressive power.

The aim of this chapter is to identify such a maximal fragment in order to
make planning systems maximally available to the Golog interpreter. Since we
will only soften the given restrictions, the compilation from PDDL to RBAT
by Eyerich et al. will still be a valid proof that this new fragment is at least as
expressive as PDDL. However, for showing that it is not more expressive, we
will need to extend the compilation from RBAT to PDDL.
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Compiling RBAT to PDDL

To build a stable basis for this work, first we will introduce the compilation
scheme by Eyerich et al. and formally prove its correctness.

This is particularly important since the full description of the compilation
scheme from RBAT to PDDL is only available in German (Eyerich, 2006) and
the original proof is very sketchy and a bit imprecise.

We will use that a uniform formula of the situation calculus that does not
contain any function symbols except constants of sort object and (maybe) one
situation, can be transformed to a first-order formula that fits the restrictions of
PDDL by suppressing all situation terms. We write this transformation as θ(ϕ),
e. g., θ(package(x)∧location(y)∧at(x, y, s)) = package(x)∧location(y)∧at(x, y).

Definition 27 (Compilation scheme from RBAT to PDDL).
Let Π = 〈D, C, I, γ〉 be a RBAT task with D = 〈S, P, E〉.

The compilation scheme fRBAT→PDDL = 〈fd, tc, ti, tg〉 from RBAT to PDDL
is defined as follows:

• The function fd maps D = 〈S, P, E〉 to the domain 〈L,O〉 of the PDDL
task.

The language L contains for each predicate symbol R of sort objectar(R) in
S (for situation-independent relations) a predicate symbol R of the same

arity. For each predicate symbol F of sort objectar(R)−1 × situation in S
(a relational fluent), L contains a predicate symbol F of arity ar(R)− 1.
The constant symbols of L are exactly the constant symbols of sort object
in S. In addition, L contains the standard logical connectives and the
equation symbol =.

For the compilation of the successor state axioms and action precondition
axioms to the actions O, the precondition of the actions are taken from
the action precondition axioms whereas the effect of each action on the
fluents is collected from the successor state axioms.

More precisely, the set of schematic operators O contains exactly one
operator 〈A, θ(ΠA(z̄, s)), e〉 for each action precondition axiom

poss(A(z̄), s)↔ ΠA(z̄, s)

in P , where e is a conjunctive effect whose subeffects are extracted from
the successor state axioms in E. For each successor state axiom

F (x̄, do(a, s))↔
( p∨
l=1

αl
)
∨
(
F (x̄, s) ∧ ¬

q∨
l=1

δl
)

there are at most two subeffects:

– if there is a subformula αl of the form ∃ȳ (a = A (ȳ) ∧ ϕ) we assume
w.l.o.g. that all bound variables are distinct from each other and
the free variables and that no variable symbols from z̄ occur in αl.
Otherwise we rename variables accordingly.

For αl effect e contains a subeffect

∀x̄(θ(ϕ[ȳ/z̄]) . F (x̄)),
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where [ȳ/z̄] for ȳ = y0, . . . , yn and z̄ = z0, . . . , zn means that each
occurrence of variable yi is replaced with variable zi (0 ≤ i ≤ n). If
there is no ϕ, the effect condition is not included.

– if there is an analogous subformula δl, effect e contains an analogous
subeffect

∀x̄(θ(ϕ[ȳ/z̄]) . ¬F (x̄)).

• The set of constants of the PDDL task is exactly the set of task-specific
constants C of the RBAT task: tc(D, C) = C.

• The initial state of the PDDL task is the result of function ti(D, C, I)
which maps to the smallest set that contains for each expression

R(x1, . . . , xn, s0)↔ (x1 = c11 ∧ · · · ∧ xn = c1n) ∨ · · · ∨
(x1 = cm1 ∧ · · · ∧ xn = cmn)

or

R(x1, . . . , xn)↔ (x1 = c11 ∧ · · · ∧ xn = c1n) ∨ · · · ∨
(x1 = cm1 ∧ · · · ∧ xn = cmn)

in I the atoms R(c11, . . . , c1n), . . . , R(cm1, . . . , cmn).

• The goal of the PDDL task is the goal of the BAT task with all situation
arguments suppressed: tg(γ) = θ(γ).

Before we show the correctness of this compilation scheme, we prove four
lemmas on the underlying structures:

Lemma 1. Let Π be a RBAT and let Call denote the set of all constant symbols
in LΠ. For every model of T (Π), i.e., every domain of discourse U and inter-
pretation I for S such that U , I |= T (Π), the domain of discourse U contains
exactly one element of sort object for each constant symbol in Call. (It usually
contains additional objects of sort action and situation.)

Furthermore, I restricted to the constant symbols of sort object is a bijection
to the set Uobject ⊂ U that contains exactly the elements of sort object.

Proof. From the domain closure axiom (restriction R3.4) we conclude that U
contains at most one object for each constant in Call. The unique names axioms
for constants (restriction R3.3) ensure that all constants in Call denote different
objects, so the universe of the RBAT task contains exactly one object for each
constant in Call.

The unique names axioms for constants also imply that I|Call
is injective.

Since |Call| = |Uobject|, it is also surjective to Uobject.

Based on this lemma, we can relate the domain of discourse of the RBAT
task to the domain of discourse of the PDDL task:
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Lemma 2. Let Π be a RBAT task and F (Π) be the PDDL task resulting from
the compilation defined in Definition 27.

Let U , I be a model of T and let Uobject ⊂ U be the subset of the domain of
discourse that contains exactly the elements of sort object.

All structures As = (U ′, I ′) for a state s of PDDL task F (Π) share the
same domain of discourse U ′ and we can define a bijection o : Uobject → U ′.

Proof. Let Call be the set of all constant symbols of sort object occurring in Π.
From Lemma 1 we know that I|Call

: Call → Uobject is bijective.
From the compilation functions fd and tc it is obvious that Call consists

exactly of the constant symbols in LF (Π).
Let As′ = (U ′, I ′) and As′′ = (U ′′, I ′′) be structures for states s′ and s′′

of F (Π). By definition, U ′ and U ′′ contain exactly one element c for each
constant symbol c of LF (Π) and, hence, U ′ = U ′′. Since I ′(c) = I ′′(c) = c
for all constant symbols c in LF (Π), the interpretation I ′|Call

: Call → U ′ is
bijective and I ′|Call

= I ′′|Call
.

As both I|Call
and I ′|Call

are bijective, we can define the bijection o along
the interpretation of the constant symbols in Call as o(x) = I ′(I−1(x)).

To prove the correctness of the compilation scheme, we want to base the
truth evaluation of formulas only on the truth of ground atoms of the PDDL
task and on its objects. For a PDDL task this information is obviously suffi-
cient: the latter fixes the range of quantifiers, the former is exactly the informa-
tion captured by a state. However, we can show that under certain restrictions
(which the crucial formulas of RBAT task satisfy) the analogous information
is sufficient to evaluate the truth of formulas in the RBAT task.

Lemma 3. Let Π be a RBAT task, U , I, α be a model of T (Π) with variable
assignment α, and let ϕ be a situation calculus formula for the same signature
where

• ϕ is uniform in s,

• s is the only free variable of ϕ (or ϕ is closed),

• ϕ does not mention any function symbols apart from constants of sort
object, and

• ϕ does not mention any symbols of sort action.

To decide whether U , I, α |= ϕ, it is sufficient to know the set Call of con-
stant symbols of sort object in Π and for all parameter vectors c̄ of such constant
symbols and predicate symbols R 6=@ whether

• U , I, α|{s} |= R(c̄, s) if R is a relational fluent, or

• U , I, α|{s} |= R(c̄) if R is a situation-independent predicate.

Proof. We denote the set of constant symbols of sort object in the signature of
Π with Call and the subset of U that contains all elements of sort object with
Uobject.
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The truth value of ϕ can be determined from the truth values of all atoms
R(t1, . . . , tn) and all identities (t1 = t2) occurring in ϕ, where tj are terms (for
j ∈ {1, . . . , n}).

The only terms that can occur in ϕ are constant symbols of sort object,
bound occurrences of variables x of sort object and the variable s of sort situ-
ation.

In the semantics definition, bound variables are replaced with all possible
elements of the universe of the same sort. For sort object these are exactly the
elements of Uobject. By Lemma 1, I|Call

: Call → Uobject is a bijection, so we
alternatively can determine the truth value of quantified subfomulas of ϕ with

U , I, α |= ∃x(ψ) iff exists c ∈ Call such that U , I, α |= ψ[x/c], and

U , I, α |= ∀x(ψ) iff for all c ∈ Call such that U , I, α |= ψ[x/c].

As a result, we alternatively can consider several formulas where all variable
symbols of sort object have been replaced with constant symbols. Therefore
we assume in the following that the only terms in ϕ are constant symbols of
sort object or variable s.

Since I|Call
is bijective it holds for identities (c = c′), that U , I |= (c = c′)

iff c and c′ are the same symbol.
For a situation-independent predicate R(c1, . . . , cn) it holds that U , I |=

R(c1, . . . , cn) iff (I(c1), . . . , I(cn)) ∈ I(R). For a fluent R(c1, . . . , cn, s) it holds
that U , I, α |= R(c1, . . . , cn, s) iff (I(c1), . . . , I(cn), α(s)) ∈ I(R).

Overall, the specified information is sufficient to decide whether a model
and a variable assignment satisfy a formula with the given restrictions.

Based on the previous lemmas we can show that for applicable action se-
quences these relevant truth values match for the situation of the RBAT task
and the corresponding reached state of the PDDL task.

Lemma 4. Let fRBAT→PDDL = 〈fd, tc, ti, tg〉 be the compilation scheme from
definition 27. Let Π be a RBAT task and F (Π) be the result of the compilation.

In the following, we denote the (ground) action of the PDDL task F (Π) that
has been introduced for action a of the RBAT task by a′. For an executable situ-
ation s = do(an, . . . do(a2, do(a1, s0)) . . . ), we denote the corresponding PDDL
state that is reached after applying action sequence 〈a′1, . . . , a′n〉 with s′.

For all executable situations s it holds for all situation-independent ground
predicates R(c̄) that

T (Π) |= R(c̄) iff s′(R(c̄)) = 1,

and for all relational ground fluents R(c̄, s) that

T (Π) |= R(c̄, s) iff s′(R(c̄)) = 1.

In addition, the set of possible actions (w.r.t. the action precondition axioms)
in an executable situation s corresponds to the set of applicable actions in the
corresponding state s′.

Proof. Let Π = 〈D, C, I, γ〉 be a RBAT task with D = 〈S, P, E〉 and let F (Π) =
〈D′, C ′, I ′, γ′〉 be the result of the compilation. We show the claim on the
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predicate values by induction over the executable situations. The proof of the
correspondence of the applicable actions is part of the induction step.

Base case: The initial database I contains for each relational fluent symbol
R an expression:

R(x1, . . . , xn, s0)↔ (x1 = c11 ∧ · · · ∧ xn = c1n) ∨ · · · ∨
(x1 = cm1 ∧ · · · ∧ xn = cmn) .

Hence, T (Π) |= R(c1, . . . , cn, s0) if and only if (c1, . . . , cn) ∈ {(ci1, . . . , cin) |
i ∈ {1, . . . ,m}}. By the definition of ti, these are exactly the tuples for which
R(c1, . . . , cn) ∈ I ′, so we can conclude for the initial state s′0 of F (Π) that
s′0(R(c1, . . . , cn)) = 1 iff T (Π) |= R(c1, . . . , cn, s0). We can proof the base case
for the situation-independent predicates analogously.

Induction hypothesis: For the executable situation s, it holds for all situation-
independent ground predicates R(c̄) that T (Π) |= R(c̄) iff s′(R(c̄)) = 1, and
for all relational ground fluents R(c̄, s) that T (Π) |= R(c̄, s) iff s′(R(c̄)) = 1.

Induction step: s 7→ do(a, s)
We first show that the set of actions that are applicable in s (according to

the action precondition axioms) corresponds to the set of actions applicable
in s′: We have previously (Lemma 1) shown that every element of the do-
main of discourse can be denoted by a constant symbol of sort object, so let
w.l.o.g. a = A(c1, . . . , cn) with arbitrary constants ci. Consider the action
precondition axiom poss(A(x1, . . . , xn), s)↔ ΠA(x1, . . . , xn, s) for action a. In
the following, we denote the precondition ΠA(x1, . . . , xn, s)[x1/c1, . . . , xn/cn]
by χ. From the definition of fd we know that the precondition of a′ is χ′ :=
θ(ΠA(x1, . . . , xn, s))[x1/c1, . . . , xn/cn]. Since χ does not contain any action
symbols (by restriction R4.2), is uniform in s and has s as its only free vari-
able, it follows from Lemma 3 and the induction hypothesis that T (Π) |= χ iff
s′ |= χ′. Hence, an arbitrary action a is applicable in an executable situation
s iff a′ is applicable in s′.

Since this induction ranges only over executable situations do(a, s), we can
conclude that a′ is applicable in s′. We now show that the induction hypothesis
also holds for do(a, s) and appa′(s

′).
The proof for the situation-independent predicates is trivial: Let R(c̄) be

such a predicate. Since no action of the PDDL task changes the value of R(c̄)
(by the definition of fd), we know that appa′(s

′)(R(c̄)) = 1 iff s′(R(c̄)) = 1.
So we conclude with the induction hypothesis that T (Π) |= R(c̄) if and only if
appa′(s

′)(R(c̄)) = 1.
For the proof for the relational fluents, let R(c̄, s) be such a fluent and let

a = A(c̄). Consider the successor state axiom

R(x̄, do(a, s))↔
( p∨
l=1

αl
)
∨
(
R(x̄, s) ∧ ¬

q∨
l=1

δl
)
.

According to restriction R2, there is at most one αl for action symbol A of
the form ∃ȳ (a = A (ȳ) ∧ ϕα) and at most one δl of the form ∃ȳ (a = A (ȳ) ∧ ϕδ).
We denote these with αl∗ and δl∗ , respectively. For the rest of this proof, we
assume w.l.o.g. that there actually are such αl∗ and βl∗ . (If there are not, we
could add them with a trivially false ϕα or ϕδ respectively, only increasing the
size of the domain description polynomially.)
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Since for all other αl and βl it holds that T (Π) |= ¬αl[a/A(c̄)] and T (Π) |=
¬βl[a/A(c̄)], we conclude that

T (Π) |= R(x̄, do(A(c̄), s))

iff T (Π) |= αl∗ ∨ (R(x̄, s) ∧ ¬δl∗) (6.5)

iff T (Π) |= ∃ȳ(A(c̄) = A(ȳ) ∧ ϕα) ∨
(R(x̄, s) ∧ ¬∃ȳ (A(c̄) = A (ȳ) ∧ ϕδ)).

We can conclude from the unique names axiom

A(x1, . . . , xn) = A(y1, . . . , yn)→ x1 = y1 ∧ · · · ∧ xn = yn

that T (Π) |= ∃ȳ(A(c̄) = A(ȳ)∧ϕ) iff T (Π) |= ϕ[ȳ/c̄]. With equation (6.5) this
results in

T (Π) |= R(x̄, do(A(c̄), s)) iff T (Π) |= ϕα[ȳ/c̄] ∨ (R(x̄, s) ∧ ¬ϕδ[ȳ/c̄]). (6.6)

For the predicate R(c̄, do(a, s)) this leads to

T (Π) |= R(c̄, do(A(c̄), s)) iff T (Π) |= ϕα[ȳ/c̄, x̄/c̄] ∨
(R(c̄, s) ∧ ¬ϕδ[ȳ/c̄, x̄/c̄]).

(6.7)

On the PDDL side, action a′ is an instantiation of a schematic operator
〈A,χ, e〉 with parameters z̄. By the definition of fd, e is a conjunction of
universal effects of which two subeffects can affect predicate R(x̄):

eα :=∀x̄(θ(ϕα[ȳ/z̄]) . R(x̄)) and

eδ :=∀x̄(θ(ϕδ[ȳ/z̄]) . ¬R(x̄)).

For the instantiated action A(c̄), we use for the effect conditions of the
subeffects affecting R(c̄) the notation

α′ := θ(ϕα[ȳ/z̄])[z̄/c̄, x̄/c̄] and

δ′ := θ(ϕδ[ȳ/z̄])[z̄/c̄, x̄/c̄].

So action a′ makes predicate R(c̄) true when applied in state s′ iff s′ |= α′.
It makes the predicate false iff s′ |= δ′ ∧ ¬α′ (add-after-delete semantics). In
all other cases applying action a′ leaves R(c̄) unchanged: appa′(s

′)(R(c̄)) =
s′(R(c̄)) iff s′ 6|= α′ ∨ δ′. Put differently,

appa′(s
′)(R(c̄)) = 1 iff s′ |= α′ or (s′(R(c̄)) = 1 and s′ 6|= δ′). (6.8)

Since θ(·) only suppresses the situation term s, we conclude with the bijec-
tion from Lemma 2 and the induction hypothesis that s′ |= α′ iff T (Π) |=
ϕα[ȳ/c̄, x̄/c̄] and that s′ |= ¬δ′ iff T (Π) |= ¬ϕδ[ȳ/c̄, x̄/c̄]. From the induction
hypothesis we also know that s′(R(c̄)) = 1 iff T (Π) |= R(c̄, s), so we conclude
with equation 6.8 that

appa′(s
′)(R(c̄)) = 1 iff T (Π) |= ϕα[ȳ/c̄, x̄/c̄] or

(T (Π) |= R(c̄, s) and T (Π) |= ¬ϕδ[ȳ/c̄, x̄/c̄])
iff T (Π) |= ϕα[ȳ/c̄, x̄/c̄] ∨

(R(c̄, s) ∧ ¬ϕδ[ȳ/c̄, x̄/c̄])

(6.9)
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From equations 6.7 and 6.9 follows directly that

T (Π) |= R(c̄, do(a, s)) iff appa′(s
′)(R(c̄)) = 1,

which finishes the proof for the relational fluents.

After the somewhat tedious proofs of these lemmas, we can now show that
the compilation scheme from Definition 27 is actually correct.

Theorem 6 (Correctness of fRBAT→PDDL). fRBAT→PDDL is a compilation
scheme from restricted basic action theories to PDDL preserving plan size ex-
actly.

Proof. Let Π = 〈D, C, I, γ〉 be a RBAT task with D = 〈S, P, E〉 and let F (Π) =
〈D′, C ′, I ′, γ′〉 be the result of the compilation. We show that each plan of Π
can directly be transformed in a plan of F (Π) and vice versa. We use the same
notation as in Lemma 4.

“⇒”: Let s = do(an, . . . , do(a1, do(a0, s0)) . . . ) be a plan for Π. Then, it
holds by definition that T (Π) |= executable(s)∧ γ(s). From Lemma 4 we know
that when s is executable then state s′ := app〈a′0,...,a′n〉(sI) is reachable from
I. In addition, the truth values of the predicates of the situation and the
state comply. Since γ satisfies the requirements of Lemma 3 (due to restriction
R4.2), we can conclude that s′ |= θ(γ). Since, by the compilation scheme, the
goal of F (Π) is θ(γ), the action sequence a′0, . . . , a

′
n is a plan for F (Π).

“⇐”: Let a′0, . . . , a
′
n be a plan for F (Π) that reaches a goal state s′. Let

ai denote the RBAT action for which each action a′i has been introduced by
fd. From Lemma 4 we know that s := do(an, . . . , do(a1, do(a0, s0)) . . . ) is
executable. We further know that the truth values of the predicates for s and
s′ comply in the sense of Lemma 4. By the same argumentation as in the other
direction this implies that T (Π) |= γ(s), so s is a plan for Π.

Hence, fRBAT→PDDL is solution-preserving and preserves plan size exactly.
Further, it is trivial to check that all functions of the compilation scheme are
polynomial-time computable, which also implies that the size of their result is
polynomial in the size of the input.

In the rest of the chapter, we will inspect the restrictions by Eyerich et al.
(2006) whether they are really necessary for the same expressivity as PDDL or
whether they can be softened. We begin with the restrictions on the predicate
specifications in the initial database.

6.2 Predicate Specifications in the Initial Database

Restrictions R3.1 and R3.2 require that the initial database enumerates all ini-
tially true ground atoms for the relational fluents and the situation-independent
predicates (no space-saving representation):

F (x1, . . . , xn, s0)↔ (x1 = c11 ∧ · · · ∧ xn = c1n) ∨ · · · ∨
(x1 = cm1 ∧ · · · ∧ xn = cmn) , (6.4)

There are two ways of loosening these restrictions: firstly, there could be
no such expression for some of the predicates (leaving their interpretation un-
specified) and secondly, less restricted formulas which still guarantee a unique
model could be allowed in the predicate specifications.
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Less Restricted Formulas in the Specification of the Predicates

We begin with the examination of less restricted formulas on the right-hand
side of equivalence (6.4). One possibility is to allow arbitrary first-order for-
mulas that are uniform in s0 on the right-hand side of equivalence (6.4). This
would also permit “recursive” definitions which are known to be non-compilable
(Thiébaux et al., 2005). However, we can actually prove a stronger result which
holds for acyclic specifications, i.e., for the case where there is a strict order <
on the set of predicate symbols such that each specification of a predicate P
depends only on atoms of predicates P ′ with P ′ < P .

Consider a requirement that replaces restriction R3.2 and allows acyclic
specifications:

R3.2’ For each n-ary situation-independent predicate P there is an expression

P (x1, . . . , xn)↔ ϕP (x1, . . . , xn), (6.10)

where ϕP is a formula uniform in s0 whose free variables are among
x1, . . . , xn. Further, there must exist a strict order < on the set of pred-
icates such that in each formula ϕP only occur atoms of predicates P ′

with P ′ < P .

We denote the resulting formalism by RBATcompact and show that there
is probably no compilation scheme from RBAT to PDDL restricting the plan
size.

Theorem 7 (R3.2 is necessary). Let restriction R3.2 of RBAT be replaced by
restriction R3.2’. Unless PSPACE = P there is no compilation scheme from
the resulting formalism RBATcompact to PDDL that restricts the increase of
the plan size: RBATcompact 64r PDDL.

Proof. Consider the following class of planning tasks (example shown in Figure
6.1): There is one unary situation-independent predicate isTrue and a 0-ary
predicate goal, but no fluent and no action. We use two constants T and F for
which isTrue is initialized as

isTrue(x)↔ x = T. (6.11)

Further, the initial database contains the domain closure axiom and the unique
names axioms for constants. The goal formula requires predicate goal() to be
true. Thus, the only aspect that differs from task to task is the specification
of predicate goal in the initial database.

Let f = 〈fd, tc, ti, tg〉 be a compilation scheme to PDDL that restricts plan
size. As the domain and the goal description are fixed, the results of fd and
tg are fixed and provide us a fixed PDDL domain and a fixed goal. As there
are no actions in the original instance, plans of the original instance have a
length bound of 0. Since f restricts the plan size by some function, this implies
a constant bound k on shortest plan lengths for tasks of the PDDL domain.
Note that in this setting (fixed domain, fixed goal, constant length bound),
PDDL plan existence can be decided in P (Theorem 3).

With this compilation scheme f we can decide the quantified Boolean for-
mula problem, which is PSPACE-complete (Stockmeyer and Meyer, 1973), in
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polynomial time: Consider a quantified Boolean formula ϕ. We convert ϕ
to a first-order formula ϕ′ by substituting each occurrence of a variable x by
IsTrue(x). Predicate goal is then initialized as

goal()↔ ϕ′. (6.12)

Formula ϕ is obviously satisfied iff goal() (which is also the goal of the BAT
task) is satisfied. We can now use the compilation scheme f to translate the
initial database to an initial state (and a set of constants) for the PDDL task
and test (k-bounded) plan existence in polynomial time. With the quantified
Boolean formula problem being PSPACE-complete, this implies PSPACE = P.

Π = 〈〈S, P, E〉 , C, I, γ〉 is a BAT task with the following components:

• S defines a 0-ary predicate symbol goal and
a unary predicate symbol isTrue with an argument of sort object.

• P = {}

• E = {}

• C = {T,F}

• I consists of the sentences:

isTrue(x)↔ x = T,

x = T ∨ x = F,

T 6= F,

goal()↔ ∀x∃y∀z ((isTrue(x) ∧ isTrue(y) ∧ isTrue(z)) ∨ ¬isTrue(z))

• γ = goal()

Figure 6.1: Example task from the family mentioned in the proof of Theorem 7
for the quantified Boolean formula ∀x∃y∀z ((x ∧ y ∧ z) ∨ ¬z). All tasks of the
family differ only in the last sentence of the initial database.

There are surely other possibilities of weakening the restrictions on the
right-hand side of equivalence (6.4). Every specification which defines a unique
model whose true ground atoms can be enumerated in polynomial time can
clearly be compiled. Even in cases with more than polynomially many true
ground atoms, it is often possible to compile a space-saving representation by
means of initializing actions. However, examining this in more detail does not
seem worthwhile to us.

Incomplete Information about the Truth Values of the Predicates

A second possibility of weakening restriction R3.2 is to allow to omit a speci-
fication for a given predicate P altogether, so that the plan must work for all
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interpretations of P . This is both interesting in its own right and useful for
the discussion of unique names axioms in the following section.

We can show that we lose compilability to PDDL even if there may only
be a single unary situation-independent predicate whose truth values are not
specified in the initial database. In the following, we denote the resulting
formalism by RBATincomp.

We begin our argumentation with a lemma on the complexity of the plan
existence problem for this formalism. The proof is a variation of Rintanen’s
(2004) proof on the complexity of propositional planning without observability.

Lemma 5. The plan existence problem for RBATincomp is EXPSPACE-hard.

Proof. Let M = 〈ΣM ,ΓM , Q, δ,�, q0, Qacc〉 be a deterministic Turing machine

with space bound 2n
k − 1 for input strings σ of length n. We denote the i-th

symbol of σ by σi.
We use constants c ∈ ΓM for the tape alphabet of the Turing machine,

q ∈ Q for the states, and J,H, and I for the movements of the R/W head.
The key idea is to keep track of only one randomly chosen tape cell (the

watched tape cell) and to ensure that the Turing machine is reliably simulated
relative to this tape cell. The cell is picked by means of the unspecified unary
predicate. As a plan must work for all models, the Turing machine must
consequently be reliably simulated for the entire tape.

For the selection of the watched tape cell we use nk constants p0, . . . ,pnk−1

and an (unspecified) unary predicate watched. We use the fact that we can en-

code numbers from 0 to 2n
k − 1 with nk bits and interpret the truth value

of watched(pi) as the value of the i-th bit of the number of the watched tape
cell. We will later use the constants pi analogously for the position of the
R/W head. To distinguish these constants from other ones we introduce a
situation-independent predicate index with the following expression in the ini-
tial database:

index(p)↔
∨

0≤i<nk
p = pi

During the simulation of the Turing machine a relational fluent contains(c, s)
will keep track of the content of the watched tape cell. As the watched tape cell
differs from model to model, we cannot specify the value of this predicate in the
initial database but must rather use an additional initializing action initialize.
To ensure the execution of this action we introduce an auxiliary relational flu-
ent initialized(s) which must be true before executing any other action. In the
initial situation this predicate is naturally false:

¬initialized(s0) (6.13)

After the execution of action initialize it will stay true forever:

initialized(do(a, s))↔ initialized(s) ∨ a = initialize() (6.14)

The initializing action should not be used twice which leads to the following
action precondition axiom:

Poss(initialize(), s)↔ ¬initialized(s) (6.15)
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For the actual initialization of contains we need n more constants d1, . . . ,dn
which can be understood as numbers 1 to n. A situation-independent predicate
binDec is used to encode the relationship between the decimal and binary
representation of the numbers 1, . . . , n. For this purpose we define an auxiliary
set BD, which contains exactly the pairs for which binDec will be true.

BD = {(pj ,di) | 1 ≤ i ≤ n, 0 ≤ j < dlog ne, (6.16)

the j-th symbol in the binary representation of i is 1}

This results in the following expression for binDec in the initial database:

binDec(p, d)↔
∨

(pj ,di)∈BD

(p = pj ∧ d = di) (6.17)

We record the input of the Turing machine via a situation-independent predi-
cate input:

input(d, c)↔
∨

1≤i≤n

(d = di ∧ c = σi) (6.18)

Now we can have a closer look at the fluent contains(c, s) that denotes the
content of the watched tape cell in each situation. As mentioned above, we
cannot determine the correct value in the initial situation and, thus, assume it
to be false for all objects and therefore also for all members of ΣM :

¬contains(c, s0) (6.19)

There are two actions affecting this predicate: initialize and an action step
which simulates a step of the Turing machine and on which we will comment
below. For the moment, we denote the condition under which step makes
contains true by γcontainsstep+ and the one making it false by γcontainsstep− . Below we
will explain these expressions in detail, now we concentrate on the effect of
action initialize: after the initialization, predicate contains is true for a symbol
c if one of the first n cells is watched and c corresponds to the input of this
cell, or if another cell is watched and c = . For better readability we use
an abbreviatory predicate watches(d) which is not part of the basic action
theory but must be substituted by the expression given in equation (6.21).
This predicate is true for constant di if the i-th tape cell is watched.

contains(c, do(a, s))↔ a = initialize() ∧ (6.20)(
∃d (watches(d) ∧ input(d, c)) ∨
∀d (¬watches(d) ∧ c = )

)
∨

γcontainsstep+ ∨
contains(c, s) ∧ ¬γcontainsstep−

watches(d)↔ ∀p(index(p)→ (watched(p)↔ binDec(p, d))) (6.21)

Each step of the Turing machine is simulated by an action step(c, q, c′, q′, d)
which corresponds to a transition δ(c, q) = (c′, q′, d). Before we can state the
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precondition axiom for this action we first have to introduce another relational
fluent state(q, s) denoting the state of the Turing machine in each situation.
In the initial situation the Turing machine is in state q0, which leads to the
following expression in the initial database:

state(q, s0)↔ q = q0 (6.22)

A step of the Turing machine cannot be performed if the initialization step
has not yet been done. In addition, each step must conform to the transition
function δ which implies that the Turing machine must be in the correct state.
The content of the tape cell is only verified for the single watched cell. In
the following we will repeatedly need an expression stating that the R/W head
stands on the watched cell in situation s. Thus, for better readability we use an
abbreviatory predicate readsWatched(s) which is not part of the basic action
theory but must be substituted by the expression given in equation (6.30).

Poss(step(c, q, c′, q′, d), s)↔ initialized(s) ∧ state(q, s) ∧∨
δ(c,q)=(c′,q′,d)

(c = c ∧ q = q ∧ c′ = c′ ∧ q′ = q′ ∧ d = d) ∧

(readsWatched(s)→ contains(c, s)) (6.23)

The change of the state is then sufficiently described by the penultimate pa-
rameter of step:

state(q, do(a, s))↔ ∃c, q′, c′, d(a = step(c, q′, c′, q, d)) ∨
state(q, s) ∧ ¬∃c, c′, q′, d(a = step(c, q, c′, q′, d) ∧ ¬(q′ = q)) (6.24)

Above the influence of step on contains has been abbreviated as γcontainsstep− and

γcontainsstep+ . Now we can describe them in detail. Expression γcontainsstep− covers the
case where the watched tape cell contains the symbol c in situation s but no
longer does after applying action step. This is the case if the R/W head stands
on the watched cell and the action writes a symbol different from c onto the
tape.

γcontainsstep− ↔ ∃q, c′, q′, d(a = step(c, q, c′, q′, d) ∧ readsWatched(s) ∧ ¬(c = c′))
(6.25)

Conversely, the watched cell surely contains symbol c if the R/W head is po-
sitioned there and action step writes symbol c.

γcontainsstep+ ↔ ∃c′, q, q′, d(a = step(c′, q, c, q′, d) ∧ readsWatched(s)) (6.26)

A remaining open aspect is the movement of the R/W head. As indicated
above, we use the same encoding for the watched tape cell and the position
of the R/W head but in the latter case the value can change. Thus, we use
a fluent pos(p, s) which denotes this position. The Turing machine starts on
the first tape cell, hence, in the initial situation the predicate is false for all
constants:

¬pos(p, s0) (6.27)

Before we can define the successor state axiom for pos we first require an
auxiliary predicate less(p, p′) denoting that p represents a less significant bit
than p′.

less(p, p′)↔
∨

0<i<nk,0≤j<i

(p = pj ∧ p′ = pi) (6.28)
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When incrementing a binary number, one has to flip exactly the bits for which
all less significant bits have been 1. When decrementing, the less significant
bits must have been 0. If a step moves the R/W head to the right, we have to
increment the position. If it moves it to the left, we decrement it.

pos(p, do(a, s))↔ ∃c, q, c′, q′, d(a = step(c, q, c′, q′, d) ∧ index(p) ∧
((d =I ∧∀p′(less(p′, p)→ pos(p′, s))) ∨

(d =J ∧∀p′(less(p′, p)→ ¬pos(p′, s))))) ∨
pos(p, s) ∧ ¬∃c, q, c′, q′, d(a = step(c, q, c′, q′, d) ∧

((d =I ∧∀p′(less(p′, p)→ pos(p′, s))) ∨
(d =J ∧∀p′(less(p′, p)→ ¬pos(p′, s))))) (6.29)

Having introduced predicate pos we now can define the expression substi-
tuting predicate readsWatched:

readsWatched(s)↔ ∀p(index(p)→ (pos(p, s)↔ watched(p))) (6.30)

In addition to these expressions we also add the domain closure axiom, the
unique names axioms, and the specification for the special predicates to the
initial database.

The goal description must be formulated such that there is a plan iff the
Turing machine accepts the input. Thus, we have to test whether it reaches an
accepting state: ∨

q∈Qacc

state(q, s) (6.31)

Note that we do not check initialized in the goal: if the goal is true in a situation
s but initialized(s) is not, this implies that q0 ∈ Qacc (and s must be the initial
situation). As such a Turing machine accepts every input, this is a reliable
simulation.

In every other case each plan must start with action initialize. The explana-
tions above should have made it clear that after this action predicate contains
conforms with the content of the watched tape cell. Obviously, each action
step(c, q, c′, q′, d) corresponds to a transition δ(c, q) = (c′, q′, d) and the Turing
machine is reliably simulated relative to the watched tape cell. Note that the
transitions are exactly defined by the parameters of step, thus, a plan describes
the same behavior of the Turing machine for all models. As a plan must hold
for all models (regardless of the watched tape cell), the Turing machine must
consequently be reliably simulated for the entire tape. Hence, there is a plan
iff the execution of the Turing machine leads to an accepting state.

Lemma 5 directly leads us to the theorem we actually want to show:

Theorem 8 (R3.2 is necessary).
There is no compilation scheme from RBATincomp to PDDL: RBATincomp 64u

PDDL.

Proof. Let M be a Turing machine with space bound 2n
k

that accepts an
EXPSPACE-hard language. Let D = 〈S, P, E〉 be the domain description of the
basic action theory for M according to the proof of Lemma 5. Note that in
this formulation the actual input of the Turing machine (and also its length)
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only influences the set of constants and the initial database while the domain
description is not affected.

Assume there is a compilation scheme f = 〈fd, tc, ti, tg〉 to PDDL. Then
there exists a PDDL domain description fd(D) corresponding to M . We could,
in polynomial time, translate each input of the Turing machine to a set of
constants and an initial state such that there is a plan iff M halts. As the plan
existence problem for PDDL with a fixed domain is in PSPACE (cf. Theorem
2) this implies that EXPSPACE ⊆ PSPACE, which is known to be false.

The results in this section apply to the specification of situation-independent
predicates. Obviously they directly carry over to the specification of relational
fluents: we can adapt the proofs by transforming the situation-independent
predicates to relational fluents that do not change their truth values.

Corollary 1 (R3.1 is necessary). Omitting restriction R3.1 adds expressive
power to RBAT.

There are two remaining restrictions concerning the initial database: the
domain closure axiom and the unique names axioms for constants. As the
latter restriction is closely related to the previous theorem, we will examine it
first.

6.3 Unique Names Axioms for Constants

Restriction R3.3 requires that the initial database contains a unique names
axiom ci 6= cj for each pair of different constant symbols ci, cj .

We will show that omitting this restriction leads to the same expressivity as
permitting a single unary unspecified predicate in the initial database. In the
previous section we have seen that the resulting formalism cannot be compiled
to PDDL.

We denote the formalism resulting from RBAT by omitting restriction R3.3
by RBATnoUNA. The restriction is weakened in such a way that there can be
unique names axioms for some pairs of constants.

Lemma 6 (RBATincomp 4e
p RBATnoUNA). There is a polynomial-time compi-

lation scheme from RBATincomp to RBATnoUNA preserving plan size exactly.

Proof. Let Π = 〈D, C, I, γ〉 be a RBATincomp task with D = 〈S, P, E〉 and let
R be its unspecified unary predicate. The key idea is that the compilation
scheme f = 〈fd, tc, ti, tg〉 replaces atoms R(x) where x denotes the same object
as constant c by an equality test for two new constants c′ and c′′. In addition,
we have to prevent the usage of the newly introduced objects everywhere else.
We do this by means of a new unary predicate original identifying the original
objects.

Let Cdom be the set of constant symbols of sort object occurring in S. By the
definition of the basic action tasks, Cdom

.∪ C form the set Call of all constant
symbols of the task. We will describe below how the compilation transforms
the action precondition axioms P and the successor state axioms E.

The translation function fd(D) extends the original S with two new auxil-
iary constants c′ and c′′ for each constant c ∈ Cdom. It also adds a new binary
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situation-independent predicate partners with parameters of sort object2 and a
unary situation-independent predicate original with a parameter of sort object
to the signature.

Function tc(D, C) adds analogously two new auxiliary constants c′ and c′′

for each constant c ∈ C.
The translation function ti(D, C, I) initializes predicate partners as

partners(x, x′, x′′)↔
∨

c∈Call

(x = c ∧ x′ = c′ ∧ x′′ = c′′), (6.32)

where c′ and c′′ are the constants that have been introduced for c, and marks
the original constants with

original(x)↔
∨

c∈Call

(x = c). (6.33)

It also introduces unique names axioms in such a way that for all c ∈ Call,
the equality of c′ and c′′ remains unspecified. All other pairs of constants are
different from each other: Let w.l.o.g. Call = {c1, . . . , cn} and define

X = {(ci, cj) | 1 ≤ i < j ≤ n} ∪ (6.34)

{(ci, c′j) | 1 ≤ i, j ≤ n} ∪ (6.35)

{(ci, c′′j ) | 1 ≤ i, j ≤ n} ∪ (6.36)

{(c′i, c′′j ) | 1 ≤ i, j ≤ n, i 6= j}. (6.37)

Then there is a unique names axiom ci 6= cj for each pair (ci, cj) ∈ X. Since
|X| = (n − 1)n/2 + n2 + n2 + (n2 − n) = 3.5n2 − 1.5n, these unique names
axioms can be generated in polynomial time.

The domain closure axiom for constants also ranges over the new constants:∨
c∈Call

x = c ∨ x = c′ ∨ x = c′′.

The translation function tg transforms γ as follows: to prevent the usage of
the new objects, all quantifications in the formula are modified to only range
over objects that satisfy original. This can be done by replacing subformulas
∃x(ϕ) with ∃x(original(x) ∧ ϕ) and subformulas ∀x(ϕ) with ∀x(original(x)→
ϕ). Then it removes each occurrence of the predicate R(x), whose truth values
have not been specified in I, by substituting it by

∃x′, x′′(partners(x, x′, x′′) ∧ x′ = x′′).

The function fd transforms the action precondition axioms and the succes-
sor state axioms analogously.

Clearly, each plan of the original task is a plan for the resulting task and
vice versa. Moreover, the modified basic action theory can be computed in
polynomial time, and the independence requirements for compilation schemes
are satisfied. Hence, we have presented a polynomial-time compilation scheme
from RBATincomp to RBATnoUNA preserving plan size exactly.

The lemma shows that RBATnoUNA is at least as expressive as RBATincomp,
which is more expressive than PDDL. This leads directly to the following the-
orem.
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Theorem 9 (R3.4 is necessary).
There is no compilation scheme from RBATnoUNA to PDDL.

Proof. In Lemma 6 we established that RBATincomp 4e
p RBATnoUNA and in

Theorem 8 that RBATincomp 64u PDDL. By Corollary 1 this implies that
RBATnoUNA 64u PDDL.

With this theorem it is clear that RBATnoUNA is more expressive than
PDDL. To specify its expressivity more precisely we will also show that it
is not only at least as expressive as RBATincomp but has exactly the same
expressive power.

Lemma 7 (RBATnoUNA 4e
p RBATincomp). There is a polynomial-time compi-

lation scheme from RBATnoUNA to RBATincomp preserving plan size exactly:

Proof. We will prove this theorem in two steps: first we will introduce a new
predicate equal(x, y) taking over the role of the equality =. In a second step
we will replace this new predicate equal by a unary predicate.

Let ΠnoUNA = 〈〈S, P, E〉 , C, I, γ〉 be the source task. Since we allow unique
names axioms for some constant symbols, we define the set D = {(x, y) |
x and y must be different according to the unique names axioms in I}.

Then we add the missing unique names axioms for constants to the source
task. We introduce a new predicate equal(x, y) whose values are not specified in
the initial database. This predicate should take over the role of the equivalence
= for the comparison of terms of sort object. Thus, we replace each comparison
t1 = t2 in a successor state axiom, action precondition axiom or the goal where
t1 and t2 are of sort object with the atom equal(t1, t2).

Due to the additional unique names axioms the situation described by the
initial database does no longer conform to the original one. We solve this by
an initializing action initialize(). This action will be enforced to be executed
once at the beginning of each plan by an additional predicate initialized and
modifications analogous to those in the proof of Lemma 5. Action initialize
should make all ground atoms true that were true in the original theory T
because their subterms were equal to those for which the atom was declared
to be true. Thus, on the one hand we transform the situation-independent
predicates to relational fluents and on the other hand we extend each successor
state axiom P (x1, . . . , xn, do(a, s))↔ ϕ to

P (x1, . . . , xn, do(a, s))↔ ϕ ∨ (a = initialize() ∧
∃y1, . . . , yn(equal(x1, y1) ∧ · · · ∧ equal(xn, yn) ∧ P (y1, . . . , yn, s))) (6.38)

In the following we have to substitute variables xi occurring freely in a
formula ϕ by variables yi. Instead of writing ϕ[x1/y1] . . . [xn/yn] we use the
abbreviation ϕ[xi/yi].

All atoms that change their value in the original basic action theory because
of the equality of some constants should change their value in the new theory,
too. For this, we further modify the successor state axioms by substituting
each expression corresponding to a ϕ in the schema in restriction R2 by an
expression

∃y1, . . . , yn(equal(x1, y1) ∧ · · · ∧ equal(xn, yn) ∧ ϕ[xi/yi]), (6.39)
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where the yi are new variables.
If equal describes an equivalence relation, these changes obviously lead

to a proper substitution of the built-in equality =. However, there are also
models where the unspecified predicate equal does not represent an equiva-
lence relation. We handle this by introducing an additional relational fluent
noEquivalenceRelation(s) which is false in the initial situation and is set to its
real value by action initialize. This is done by the successor state axiom

noEquivalenceRelation(do(a, s))↔ noEquivalenceRelation(s) ∨
(a = initialize() ∧ ¬(∀x(equal(x, x)) ∧
∀x, y(equal(x, y)→ equal(y, x)) ∧
∀x, y, z(equal(x, y) ∧ equal(y, z)→ equal(x, z)))). (6.40)

In addition, we have to ensure that equal conforms to the set D of pairs
of originally different constant symbols. Hence, we introduce a new situation-
independent predicate different(x, y) that is initialized as

different(x, y)↔
∨

(c,c′)∈D

(x = c ∧ y = c′).

To identify the models where equal does not conform to the set D we add
a relational fluent incorrectEqualities that is initially false. We set its intended
value by means of the initializing action:

incorrectEqualities(do(a, s))↔ incorrectEqualities(s) ∨
a = initialize() ∧ ∃x, y(equal(x, y) ∧ different(x, y)) (6.41)

The action precondition axioms and the goal are altered in such a way that
each action can be executed and the goal is true when noEquivalenceRelation
or incorrectEqualities is true.

For those models where equal describes no equivalence relation or does not
conform to D all situations starting with action initialize satisfy the goal. For
all other models, a situation is a plan iff it is a plan for the original task
ΠnoUNA (minus the initializing action). Hence, the presented transformations
define a polynomial-time compilation scheme (preserving plan size exactly)
from RBATnoUNA to RBAT plus a single unspecified predicate of arity 2.

In the second step of our proof we will present a polynomial-time compila-
tion scheme from the latter formalism to RBATincomp.

We start with a restricted basic action theory T ′ with one binary predicate
R whose values are not specified in the initial database. We will replace this
predicate by a new unspecified unary predicate R′.

For this, we introduce for each two constants ci and cj in the original set of
all constants Call a new constant ci,j and add a situation-independent predicate
pair(x, y, z) which is initialized in the initial database as

pair(x, y, z)↔
∨

ci,cj∈Call

(x = ci ∧ y = cj ∧ z = ci,j). (6.42)

We replace each occurrence of an atom R(x, y) by ∃z(pair(x, y, z) ∧ R′(z)).
Everywhere else we have to prevent the usage of the additional constants by



60 Chapter 6. Relative Expressiveness of PDDL and BATs

means of an additional unary predicate original that identifies the original
constants and by modifying all quantifications of the original theory to range
only over these constants. This can be done as shown in the proof of Lemma
6.

Obviously, these modifications define a polynomial-time compilation scheme
from the intermediate formalism to RBATincomp preserving plan size exactly.
Thus, by Theorem 5 overall there is a polynomial-time compilation scheme
from RBATnoUNA to RBATincomp preserving plan size exactly.

Lemmas 6 and 7 result in the following corollary.

Corollary 2 (RBATincomp ≈e
p RBATnoUNA).

RBATincomp and RBATnoUNA have the same expressive power.

The only restriction on the initial database that we have not examined so
far is the domain closure axiom for objects.

6.4 Domain Closure Axiom

The domain closure axiom states that there are no objects except for the named
constants. At first glance, one would assume that this restriction is necessary to
stay within the same expressive power as PDDL because this formalism has a
built-in domain closure assumption. If we abandon the domain closure axiom,
there are infinitely many models of the initial database and a plan must work
for all models.

Consider as an example the task shown in Figure 6.2: We want to have
a party to make our friends Jim and Luke happy. The problem is that our
neighbors will feel disturbed by the party and will get angry. We can avoid
this by inviting them as well. The task is formulated so that in the pres-
ence of the domain closure axiom there cannot be anybody who lives nearby
and is not a friend, so s∗ = do(have-party(), do(invite-friends(), s0)) is a plan.
If we abandon the domain closure axiom, there can be an arbitrary num-
ber of neighbors who would become angry and s∗ would no longer work for
all these models. However, there would still be a plan for this instance:
do(have-party(), do(invite-neighbors(), do(invite-friends(), s0))). If we consider
the same task but without action invite-neighbors, s∗ would still be a plan in
the presence of the domain closure axiom, but the task would be unsolvable
without it.

The example shows that leaving out the domain closure axiom can reduce
the set of possible plans, exploiting that lives-far-away is false for all additional
objects. However, actions can also behave qualitatively differently for different
models without involving predicates; for example, a conditional effect might
only trigger if there is at least one object that is different from all named
constants.

As we have seen, the domain closure axiom has significant impact on the
meaning of the rest of the task specification. Since the other restrictions on
RBAT tasks are very restrictive it is still far from obvious that this axiom is
necessary for compilability. Indeed, it is not necessary.

Since the overall compilation scheme is very involved, we develop it in sev-
eral steps, each treating different aspects.
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Πparty = 〈〈S, P, E〉 , C, I, γ〉 is a BAT task with the following components:

• S consists of predicate symbols

friend : object

lives-far-away : object

happy : object× situation

invited : object× situation

anyone-angry : object× situation

and action functions

have-party : → action

invite-friends : → action

invite-neighbors : → action

• E consists of the sentences

happy(p, do(a, s))↔ a = have-party() ∧ invited(p, s)

∨ happy(p, s)

anyone-angry(do(a, s))↔ a = have-party() ∧
∃p(¬lives-far-away(p) ∧ ¬invited(p, s)) ∨
anyone-angry(s)

invited(p, do(a, s))↔ a = invite-friends() ∧ friend(p) ∨
a = invite-neighbors() ∧ ¬lives-far-away(p)

∨ invited(p, s)

• P = {poss(have-party(), s), poss(invite-friends(), s),
poss(invite-neighbors(), s)}

• C = {Jim,Luke}
• I consists of the sentences:

friend(p)↔ p = Jim ∨ p = Luke

lives-far-away(p)↔ p = Jim

¬invited(p, s0)

¬happy(p, s0)

¬anyone-angry(s0)

Jim 6= Luke

x = Jim ∨ x = Luke

• γ = ¬anyone-angry(s) ∧ ∀p(friend(p)→ happy(p, s))

Figure 6.2: Example task for the impact of the domain closure axiom. The
rest of the task specification is shown in Figure 6.4.
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We first show the following partial result: for tasks with an upper bound
on the quantifier rank (the maximum number of nested quantifications in a
formula) of the goal formula, the requirements on the initial database are so
restrictive that we can omit the domain closure axiom. We denote the family
of these formalisms that specify a bound r on the quantifier rank of the goal
formula and have the same requirements as RBAT except that there is no
domain closure axioms in the initial database by RBAT r

nodca. The proof is
based on a compilation scheme from RBAT r

nodca to RBAT. To illustrate this
computation, Figures 6.3 and 6.4 show the result for the party example.

Theorem 10 (RBAT r
nodca 4

e
p RBAT).

In the presence of a fixed bound r on the quantifier rank of the goal description,
omitting the domain closure axiom does not increase the expressive power of
restricted basic action theories: there is a polynomial-time compilation scheme
from RBAT r

nodca to RBAT preserving plan size exactly.

Proof. We refer to objects of a model which are different from all named con-
stants as “unnamed objects”. We begin our proof with two observations:

• In all situations that occur in a plan, all unnamed objects are inter-
changeable. For example, if P (o1, o2, o3, s) is true, o1 and o3 are different
unnamed objects, and o2 is a named object, then P (o′1, o2, o

′
3, s), where

again o′1 and o′3 are different unnamed objects, is also true.

• For determining whether there is a plan, it is sufficient to consider only
the models with up to k unnamed objects, where k is the maximum
quantifier rank of all formulas of the theory (including implicit universal
quantifiers).

The first observation can easily be shown by induction over the situations:
In the initial situation (and for situation-independent predicates) all atoms
containing unnamed objects are false due to R3.1 and R3.2.

For the inductive case, consider situation s′ = do(A, s). For each relational
fluent P , the truth value of P (x̄, s′) is determined by a formula Φ(x̄, s) which
is uniform in s (by the definition of successor state axioms). If we evaluate this
formula for different tuples x̄ which only differ by permuting unnamed objects,
the same truth values are obtained: by the induction hypothesis, unnamed
objects are interchangeable in situation s.

If all unnamed objects are interchangeable, then only the number of un-
named objects can affect the validity of a plan. For statements like “There are
m distinct unnamed objects” it is necessary to bind at least m variables. With
the quantifier rank bounded by k, it is not possible to make statements about
more than k objects, and hence all models with more than k unnamed objects
behave the same as the model with exactly k such objects.

These observations lead quite directly to a compilation scheme from RBAT
without a domain closure axiom to RBAT. We explicitly represent the discrim-
inable models and modify the basic action theory in such a way that each action
is executed in all models in parallel. The goal formulation is then modified such
that the original goal must be true in all models.

Let r be the bound on the quantifier rank of the goal (which is fixed for all
tasks of the source formalism) and let d be the maximum quantifier rank of the
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D = 〈S, P, E〉 is a BAT domain with the following components:

• S consists of predicate symbols

friend : object

lives-far-away : object

world : object

in-world : object2

happy-in-world : object2 × situation

invited-in-world : object2 × situation

anyone-angry-in-world : object2 × situation

and action functions

have-party : → action

invite-friends : → action

invite-neighbors : → action

• E consists of the sentences

happy-in-world(p, w, do(a, s))↔ a = have-party() ∧
invited-in-world(p, w, s)

∨ happy-in-world(p, w, s)

anyone-angry-in-world(w, do(a, s))↔ a = have-party() ∧
∃p(in-world(p, w) ∧
¬lives-far-away(p) ∧
¬invited-in-world(p, w, s))

∨ anyone-angry-in-world(w, s)

invited-in-world(p, w, do(a, s))↔ a = invite-friends() ∧
friend(p) ∨

a = invite-neighbors() ∧
¬lives-far-away(p)

∨ invited-in-world(p, w, s)

• P = {poss(have-party(), s), poss(invite-friends(), s),
poss(invite-neighbors(), s)}

Figure 6.3: Compilation result for the domain of the task in Figure 6.2
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Πparty = 〈D, C, I, γ〉 is a BAT task with the following components:

• D is the domain specified in Figure 6.3

• C = {Jim,Luke} ∪ {w0,w1} ∪ {c11}

• I consists of unique names axioms for all constants in C
and the sentences:

friend(p)↔ p = Jim ∨ p = Luke

lives-far-away(p)↔ p = Jim

¬invited-in-world(p, w, s0)

¬happy-in-world(p, w, s0)

¬anyone-angry-in-world(w, s0)

world(w)↔ w = w0 ∨ w = w1

in-world(x,w)↔ (x = Jim ∧ w = w0) ∨
(x = Jim ∧ w = w1) ∨
(x = Luke ∧ w = w0) ∨
(x = Luke ∧ w = w1) ∨
(x = c11 ∧ w = w1)∨

c∈C
x = c

• γ = ∀w(world(w)→ (¬anyone-angry-in-world(w, s) ∧
∀p(in-world(p, w)→

(friend(p)→ happy-in-world(p, w, s)))

Figure 6.4: Constants C, initial database I and goal formula γ of the compila-
tion result for the example task in Figure 6.2

formulas in the domain description. Then k := max(r, d) is the maximum quan-
tifier rank of the theory. We add k + 1 new domain constants w0,w1, . . . ,wk

and a unary situation-independent predicate world to distinguish these con-
stants from the other constants. Further, we add (k+ 1)k/2 domain constants
c11, c

1
2, c

2
2, . . . , c

1
k, . . . , c

k
k and a predicate in-world(x,w). This fluent predicate

describes which constants exist in which world. Each world wi (except w0)
contains constants c1i , . . . , c

i
i. In addition, the constants of the original basic

action theory should exist in each world. Let for this purpose Call denote the
set of all constant symbols of sort object in the original tasks. We can specify
in-world the initial database as
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in-world(x,w)↔ (x = c11 ∧ w = w1) ∨ (6.43)

(x = c12 ∧ w = w2) ∨ (x = c22 ∧ w = w2) ∨ · · · ∨
(x = c1k ∧ w = wk) ∨ · · · ∨ (x = ckk ∧ w = wk) ∨(∨

w∈{w0,...,wk}

∨
c∈Call

(x = c ∧ w = w)
)

We replace each relational fluent F (x̄, s) with a fluent F-in-world(x̄, w, s).
These new relational fluents should be true in the initial database (for all worlds
w) iff the original ones were true. Therefore, we replace each formula

F (x1, . . . , xn, s0)↔ (x1 = c11 ∧ · · · ∧ xn = c1n)

∨ · · · ∨ (x1 = cm1 ∧ · · · ∧ xn = cmn) , (6.44)

in the initial database with

F-in-world(x1, . . . , xn, w, s0)↔ (6.45)∨
w∈{w0,...,wk}

(
(x1 = c11 ∧ · · · ∧ xn = c1n ∧ w = w) ∨ · · · ∨

(x1 = cm1 ∧ · · · ∧ xn = cmn ∧ w = w)
)
.

An action should be executable if it exists in all models and if its precondi-
tion is satisfied in all worlds. Thus, we replace each action precondition axiom
Poss(A(x1, . . . , xn), s)↔ ψ with a new expression

Poss(A(x1, . . . , xn), s)↔ in-world(x1,w0) ∧ · · · ∧ in-world(xn,w0) ∧ (6.46)

∀w(world(w)→ (ψw ∧
∧

c∈Cψ
in-world(c, w))).

Thereby, Cψ is the set of all constant symbols of sort object occurring in ψ,
and ψw is created from ψ by the following modifications:

• Each occurrence of a relational fluent F (x̄, s) is replaced with predicate
F-in-world(x̄, w, s).

• Each existentially quantified subexpression ∃y(ψ) is replaced with the
expression ∃y(in-world(y, w) ∧ ψw)

• Each universally quantified subexpression ∀y(ψ) is replaced with the ex-
pression ∀y(in-world(y, w)→ ψw)

The successor state axioms are transformed analogously: Each formula ϕ from
the schema in formula 6.2 is transformed exactly as the formula ψ above. This
is obviously possible in polynomial time and preserves the form of the successor
state axioms required in restriction R2.

With these modifications a fluent F-in-world(x̄,wi, s) is true for a exe-
cutable situation s iff F (x̄, s) is true in the model with i additional objects.
Thus, if we change the goal description ϕ to

∀w(world(w)→ ϕw) (6.47)

every plan of the new basic action theory is a plan for the new basic action
theory and vice versa. Hence, the transformations form a polynomial-time
compilation scheme from RBAT r

nodca to RBAT preserving plan size exactly.
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This theorem together with Theorems 6 and 5 gives compilability to PDDL.

Corollary 2 (RBAT r
nodca 4

e PDDL). For every bound r ∈ N on the quan-
tifier rank of the goal, there is a polynomial-time compilation scheme from
RBAT r

nodca to PDDL preserving plan size exactly.

We denote the analogous formalism without a restriction on the quantifier
rank by RBAT∞nodca. As another step to the final result, we will present a
compilation from a very restricted subset of all RBAT∞nodca tasks to RBAT. In
this subset, the goal formula may not mention any predicate symbols except
=. We denote this sub-formalism with RBAT∞,=nodca.

Lemma 8 (RBAT∞,=nodca 4
e
p RBAT).

If the goal may not mention predicate symbols apart from = then omitting
the domain closure axioms does not increase the expressive power of restricted
basic action theories: there is a polynomial-time compilation scheme from
RBAT∞,=nodca to RBAT preserving plan size exactly.

Proof. Let Π = 〈D, C, I, γ〉 be a RBAT∞,=nodca task. Given a model of U , I
of T (Π), the model satisfies the goal formula γ either in all situations or in
none: the interpretation of all predicates except = is irrelevant for the goal
and the interpretation of = and the constant symbols is situation-independent.
W.l.o.g., we assume in the following that γ is given in prenex normal form.

Let Call denote the set of all constant symbols of Π. Then k := |U| − |Call|
is the number of “unnamed” objects in the universe. We use in the following
an arbitrary but fixed numbering 1, . . . , k of these unnamed objects.

Assume for a moment that we know the number k when transforming the
goal (only for the specific universe U). We will change the representation of
objects in the goal formula: instead of referring to them by a single variable x
of sort object (or a constant symbol), we will use k + 2 variables xtype, xconst,
and x1, . . . , xk. The intended representation of an object denoted by constant
c is xtype = C, xconst = c, and xi = 0 for i ∈ {1, . . . , k}. The intended
representation of the j-th unnamed object is xtype = U, xconst = None, and
xi = 1 for i ∈ {1, . . . , j} and xi = 0 for i ∈ {j+ 1, . . . , k}. The variables xi can
be seen as a unary representation of the number j of the unnamed object.

For this representation, the compilation adds new constant symbols None,
C,U,0, and 1. In addition, the transformation of the initial situation marks
the original constants with a new situation-independent predicate constant and
sentence

constant(x, s0)↔
∨

c∈Call

x = c

and adds a domain closure axiom

x = None ∨ x = C ∨ x = U ∨ x = 0 ∨ x = 1 ∨
∨

c∈Call

x = c

and the required unique names axioms for constants.
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For the translation of the goal formula γ we use the following transformation
tk (for k > 0):

tk(∀x(ψ)) = ∀xtype, xconst, x
1, . . . , xk

((
(xtype = C ∧ constant(xconst) ∧

∧
i∈{1,...,k}

xi = 0) ∨

(xtype = U ∧ xconst = None ∧

x1 = 1 ∧
∧

i∈{2,...,k}

(xi = 1 ∨
∧

j∈{i,...,k}

xj = 0))
)

→ tk(ψ)
)

tk(∃x(ψ)) = ∃xtype, xconst, x
1, . . . , xk

((
(xtype = C ∧ constant(xconst) ∧

∧
i∈{1,...,k}

xi = 0) ∨

(xtype = U ∧ xconst = None ∧

x1 = 1 ∧
∧

i∈{2,...,k}

(xi = 1 ∨
∧

j∈{i,...,k}

xj = 0))
)

∧ tk(ψ)
)

tk(x = c) = (xtype = C ∧ xconst = c)

tk(x = y) = (xtype = xtype ∧ xconst = yconst ∧
∧

i∈{1,...,k}

xi = yi)

tk(ϕ ◦ ψ) = (tk(ϕ) ◦ tk(ψ)) for ◦ ∈ {∧,∨,→}

tk(¬ϕ) = ¬tk(ϕ)

For the special case k = 0, we define

t0(∀x(ψ)) = ∀x(constant(x)→ t0(ψ))

t0(∃x(ψ)) = ∃x(constant(x) ∧ t0(ψ))

t0(ϕ ◦ ψ) = (t0(ϕ) ◦ t0(ψ)) for ◦ ∈ {∧,∨,→}

t0(¬ϕ) = ¬t0(ϕ)

t0(ϕ) = ϕ otherwise

For a formula ϕ, this transformation is polynomial-time computable in k+ |ϕ|.
If we compiled γ to tk(γ), it would hold for the transformed task F (Π)

that interpretation U , I |= γ(s0) iff any applicable action sequence is a plan for
F (Π). However, a compilation scheme must be plan-preserving for all models
and the goal translation function knows neither |Call| nor |U|. Since there is no
domain closure axiom in Π, there can also be models with an infinite universe.
We can resolve this by a slightly more complicated transformation of γ.

Let r be the quantifier rank of γ. We define the goal transformation function
tg of the compilation scheme as

tg(γ) =
∧

j∈{0,...,r}

tj(γ).
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We need to show that task Π has a plan iff the compiled task F (Π) =
〈D′, C ′, I ′, γ′〉 has a plan. Since in both tasks, the goal formula has no free
variables (in particular, it does not depend on a situation s), it is sufficient to
consider only the initial situations s0 of Π and s0

′ of F (Π), respectively. In the
following, we denote the set of all constant symbols of sort object occurring in
Π by Call. From the compilation, it follows for the corresponding set C ′all for
F (Π) that C ′all = Call ∪ {None,C,U,0,1}.

We first show that if s0 is a plan for Π then s0
′ is a plan of F (Π):

Let U ′, I ′ be a model of T (F (Π)). We need to show that U ′, I ′ |= γ′. Due
to the unique names axioms for constants and the domain closure axiom in
I ′, I ′ maps each constant symbol to a distinct object and U ′ = {I ′(c) | c ∈
C ′all}. Due to the sentence for predicate constant in I ′, it is interpreted as
I(constants) = {I ′(c) | c ∈ Call}.

For k ∈ {0, . . . , r}, let Uk, Ik be an arbitrary model of T (Π) with Uk =
{I ′(c) | c ∈ Call} ∪ {ui | i ∈ {1, . . . , k}} and Ik|Call

= I ′|Call
. Such a model

exists because T (Π) cannot be inconsistent (due to the syntactic restrictions)
and the specification is consistent with the initial database I. Since s0 is a
plan for Π, it also works for Uk, Ik and therefore Uk, Ik |= γ. This implies that
U ′, I ′ |= tk(γ), using the new representation for the objects from Uk. Overall,
U ′, I ′ |= tk(γ) for all k ∈ {0, . . . , r} and we conclude that U ′, I ′ |= γ′.

For the other direction, we need to show that if s0
′ is a plan for F (Π) then

s0 is a plan of Π.
Let U , I be a model of T (Π). We need to show that U , I |= γ. Due to the

unique names axioms for constants in I, it holds that {I(c) | c ∈ Call} ⊆ U .
We first consider the case that |U| ≤ |Call| + r, i.e., U contains at most k

objects that cannot be denoted by constants of Π. Define k := |U| − |Call|.
Let U ′, I ′ be an arbitrary model of T (F (Π)) with U ′ = {I(c) | c ∈ Call} ∪
{oNone, oC, oU, o0, o1}. As T (Π) cannot be inconsistent and this specification
is consistent with the initial database I ′, such a model must exist. Since already
the initial situation s0

′ is a plan for F (Π), it follows that U ′, I ′ |= γ′ and
therefore U ′, I ′ |= tk(γ). Reverting the changed representation of objects in U ,
this gives U , I |= γ.

We now consider the case, where l := |U| − |Call| > r. Let w.l.o.g. Q =
{x1, . . . , xr} be the set of variables occurring in γ, and denote the all-quantified
variables in γ by A and the existentially quantified variables by E. We can show
that U , I |= γ by specifying for each variable mapping αA : A→ U an extended
variable mapping αQ : Q → U such that αQ|A = αA and αQ |= ϕ where ϕ is
the matrix of γ. Let αA be such a variable mapping. Consider a model Uα, Iα
of T (Π) with |Uα| = |Call| + r, {I(c) | c ∈ Call} ∪ {αA(x) | x ∈ A} ⊆ Uα ⊆ U
and Iα|Call

= I|Call
. By the argumentation for the previous case it holds that

Uα, Iα |= γ, so there is a variable mapping β : Q → Uα with β|A = α|A and
β |= ϕ for the matrix ϕ of γ. Therefore, this variable mapping β satisfies all
requirements of the desired mapping αQ and we conclude overall that U , I |= γ.

All transformations satisfy the requirements of a polynomial-time compi-
lation scheme. Moreover, if there is a plan for source task Π then the empty
action sequence is a plan for the translated task. Therefore, the compilation
scheme preserves plan size exactly.

To show that we can omit the domain closure axiom even with arbitrary
goal formulas, we need to combine the two previous compilation schemes and
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extend them for models with arbitrarily many unnamed objects in the presence
of predicates in the goal formula.

Theorem 11 (RBAT∞nodca 4
e
p RBAT).

Omitting the domain closure axiom does not increase the expressive power of
restricted basic action theories: there is a polynomial-time compilation scheme
from RBAT∞nodca to RBAT preserving plan size exactly.

Proof. Let Π = 〈D, C, I, γ〉 be a RBAT∞nodca task. We will build the overall
compilation scheme on those from the proofs of Theorem 10 and Lemma 8.

Let ai be the maximum arity of any situation-independent predicate and af
be the maximum arity of any fluent predicate of the signature, and let d denote
the maximum quantifier rank of the formulas in the domain description.

The domain description is compiled as in the compilation scheme of Theo-
rem 10 but simulating up to k = max(ai, af −1, d) unnamed objects (i.e., there
are worlds w0, . . . ,wk). In addition, we extend the signature with a unary
predicate constant as in the compilation scheme of Lemma 8 and a unary pred-
icate maxworld.

For the treatment of worlds with more than k unnamed objects, we in-
troduce additional constant symbols None,C,U,0, and 1, as in the proof of
Lemma 8, plus a := max(ai, af −1) constant symbols u1, . . . ,ua, which we will
motivate later.

The initial database is essentially translated as in the compilation scheme
from Theorem 10, except that we mark wk with sentence maxworld(w)↔ w =
wk and add the same sentence for predicate object as in the proof of Lemma 8.
In addition, we extend the domain closure axiom and the unique names axioms
for actions suitably for the entire set of constant symbols.

We assume w.l.o.g. that the goal formula is given in prenex normal form
and that the arguments of predicates are pairwise different variable symbols.
It is translated to a conjunction of subformulas for different scenarios.

The first scenario is that the quantifier rank r of the goal is less or equal to
k (which we do not know when transforming the goal formula). In this case,
the same goal transformation as for Theorem 10 suffices. Therefore, we define
the formula

γ0 := ∀w(world(w)→ γw),

with γw denoting the same transformation as in the compilation scheme of
Theorem 10.

The second scenario should cover all models of T (Π) that have more than
k unnamed objects but not more than the quantifier rank r of the goal.

For a given number j of unnamed object, we can test whether j > k with
the condition

χj := ¬∃w
(
world(w) ∧ ∃x1, . . . , xj

(∧
1≤i≤j

(¬constant(xi) ∧ inworld(xi, w) ∧∧
i<l≤j

xi 6= xl)
))
.

In the proof of Lemma 8 we have already seen how we can treat such
models w.r.t. the equality predicate. For all other predicates, we exploit the
observation from the proof of Theorem 10 that all worlds with more than k
unnamed objects develop essentially the same way as the world with exactly k
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unnamed objects and that unnamed objects are fully interchangeable: If for an
executable situation s and atoms P (x1, . . . , xn, s) and P (y1, . . . , yn, s) it holds
for an interpretation that

• if xi is interpreted to the same object as a constant symbol c then also
yi is interpreted to this object, and vice versa, and

• xi and xj are interpreted to the same object iff yi and yj are interpreted
to the same object

then P (x1, . . . , xn, s) is true under the interpretation iff P (y1, . . . , yn, s) is true
under the interpretation.

We will use the newly introduced constants u1, . . . ,ua as proxy objects to
test the second condition for the unnamed objects. The idea is that for models
with i unnamed objects we replace an atom P (x1, . . . , xn, s), where all xi are
variables, with a formula

∃y1, . . . , yn
(
P (y1, . . . , yn) ∧∧

1≤i≤n

(
constant(yi) ∧ yi = xi ∨

∨
1≤l<i

yi = yl ∨ yi = ui

))
.

This formula specifies that each parameter yi is equal to xi if it denotes a
constant and otherwise it is either equal to an earlier parameter or denoted by
a new proxy object ui.

However, if we apply the transformation from Lemma 8 for the predicate
=, we remove the original variables x1, . . . , xn. Let for each replaced variable
xi the variables xi,type, xi,const, and x1

i , . . . , x
j
i be the ones for the alternative

representation. To extend the definition of tj from the proof of Lemma 8 (there
called tk) to relational fluents we use in addition a variable w for the largest
fully simulated world (suitably bound later).

tj(P (x1, . . . , xn, s), w) = ∃y1, . . . , yn
(∧

1≤i<l≤n

(
yi = yl ↔ (xi,const = xl,const ∧

∧
1≤m≤j

xmi = xml )
)
∧

P-in-world(y1, . . . , yn, w, s) ∧∧
1≤i≤n

(
constant(yi) ∧ yi = xi,const ∨

∨
1≤l<i

yi = yl ∨ yi = ui

))
.

The second line ensures that the (in-) equalities of the new variables ȳ are
consistent with all (in-)equalities of the representatives of the original param-
eters x̄. The third line ensures that we evaluate P with the truth values from
the simulated world w.

If a situation-independent predicate has an unnamed object as parameter,
it is false in all models of T (Π). This simplifies the translation to

tj(P (x1, . . . , xn), w) = ∃y1, . . . , yn
(

P(y1, . . . , yn) ∧
∧

1≤i≤n

(
constant(yi) ∧ yi = xi,const

))
.

For all other formulas ϕ, transformation tj(ϕ,w) is defined analogously to
the transformation tj(ϕ) in the proof of Lemma 8 except that it passes the
additional parameter w through.
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Overall, we define for each 1 ≤ j ≤ r a formula

γj := χj → ∃w(maxworld(w) ∧ tj(γ,w))

and define the entire goal transformation function as

tg(γ) =
∧

0≤j≤r

γj .

Since T (Π) cannot distinguish universes with max(r, k) + |Call| and more ob-
jects, this goal formula works also for models with more than max(r, k) + |Call|
objects in the universe.

Overall, we presented a compilation scheme preserving plan size exactly.
From the same argumentation as in the proof of Theorem 10 it follows that
an action sequence is applicable in Π iff it is applicable in the compiled task
F (Π) and the explicitly represented worlds develop analogous to the respec-
tive models of Π. The goal formula treats all possible models that T (Π) can
distinguish: Those with at most k unnamed objects are covered by γ0, those
with k < j ≤ r unnamed objects are covered by γj and all those with at least
r unnamed objects are covered by γr. Therefore a situation s is a plan for Π
iff it is a plan for F (Π).

Since the transformation of the domain is polynomial-time computable, we
have shown that RBAT∞nodca 4

e
p RBAT.

With Theorems 6 and 5 we receive compilability to PDDL.

Corollary 3 (RBAT∞nodca 4
e PDDL). There is a polynomial-time compilation

scheme from RBAT∞nodca to PDDL preserving plan size exactly.

6.5 Situation-independent Object Functions

One requirement of restriction R1 is that all situation-independent object func-
tions must be constants, i.e., functions of sort ε → object. In this section, we
will examine whether we can allow arbitrary situation-independent object func-
tions of sort objectn → object for n ∈ N0.

The restriction to constants is intimately connected with the domain closure
axiom for constants required by R3.4, which excludes the existence of objects
that cannot be denoted by constants. Usually it should be possible that a
function denotes also new objects which cannot be accessed by the constant
symbols. If we want to permit such functions of sort objectn → object , we also
have to abandon this domain closure axiom. The following result is not due
to this, but also keeps its validity if we suitably generalize the domain closure
axiom.

Theorem 12 (Restriction R1.1 is necessary if the functions can refer to objects
that cannot be denoted by constants). There is no compilation scheme from
RBAT to PDDL if functions of sort objectn → object are permitted for n > 0,
even if they are restricted to n = 1.

Proof. Let (Σ,Γ, Q, δ, q0,�, Qacc) be a deterministic Turing machine (TM)
with Σ = ∅ and Γ = {∗,�} that starts on an empty tape.
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We will formulate a BAT in such a way that there is a plan iff the TM
halts, and all information concerning a certain TM is encoded in the initial
database, the task-specific constants, and the goal. As the state-translation
functions of a compilation scheme must be polynomial-time computable and
the plan existence problem is decidable for PDDL tasks, we could decide the
halting problem if there was a compilation scheme.

We will exploit the absence of the restriction to represent infinitely many
tape cells. Therefore, we use a single constant p0 to denote the first tape cell
and a function succ : object → object which yields the successor of a cell. For
a reliable simulation of the TM it is required that succ(x) = succ(y)→ x = y.
Due to the requirements for the initial database we cannot simply add this
sentence there. Thus, we use an additional action init : ε → action which is
necessary in each plan and makes the goal formula true for all models where
the desired condition is not satisfied and the successor function for the tape
cells is flawed. As a plan must work for all models, the existence of a plan is
finally determined only by the models where the structure interpreting succ()
contains an infinite, linear sequence starting at p0.

We require the following constants of sort object :

• ∗ and encode the alphabet of the Turing machine,

• q ∈ Q to encode the states of the Turing machine,

• J,H, and I to encode the movements of the Turing machine, and

• p0 to denote the first tape cell.

In the following we will denote the set of these constants by C. We will use the
following predicates:

• transition(c, q, c′, q′, d) to encode transition function δ,

• state(q, s) denotes the state of the TM in situation s,

• scan(p, s) denotes the tape cell the R/W-head stands on in a situation s,

• star(p, s) encodes whether cell p contains a ∗,

• initialized(s) is used to enforce action init , and

• flawed(s) means that the structure interpreting succ() does not contain
an infinite, linear sequence starting at p0.

In the initial database the values of these predicates represent the initial status
of the TM:

Predicate transition encodes the transition function δ of the Turing ma-
chine:

transition(c, q, c′, q′, d)↔
∨

δ(c,q)=(c′,q′,d)
(c = c ∧

q = q ∧ c′ = c′ ∧ q′ = q′ ∧ d = d) (6.48)
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The R/W head stands on the first tape cell, the TM is in state q0, and all cells
contain a blank.

scan(p, s0)↔ (p = p0) (6.49)

state(q, s0)↔ (q = q0) (6.50)

¬star(p, s0) (6.51)

At the beginning the task is not initialized and we assume that the tape is not
flawed. The latter will be set timely to the correct value by the action init().

¬initialized(s0) (6.52)

¬flawed(s0) (6.53)

There should be a plan iff the tape is not flawed and the TM halts or if the
tape is flawed. This leads to the goal formula

∃q
(

state(q, s) ∧
∨

q∈Qacc

(q = q)
)
∨ flawed(s). (6.54)

An action step(q, c, p, q′, c′, d, p′) simulates one step of the TM: Previously
the TM is in state q and reads character c on cell p. Then, it changes to state
q′, writes a c′ and moves in direction d to cell p′. This results directly in the
following action precondition axiom:

Poss(step(q, c, p, q′, c′, d, p′), s)↔ flawed(s) ∨(
state(q, s) ∧ scan(p, s) ∧ transition(q, c, q′, c′, d) ∧(

(c = ∗) ∧ star(p, s) ∨ (c = ) ∧ ¬star(p, s)
)
∧(

(d = J) ∧ p = succ(p′) ∨ (d = H) ∧ p = p′ ∨
(d = I) ∧ p′ = succ(p)

)
∧ initialized(s)

)
(6.55)

Action init can only be used once.

Poss(init(), s)↔ ¬initialized(s) (6.56)

initialized(do(a, s))↔ a = init() ∨ initialized(s) (6.57)

This action diagnoses whether the tape is flawed:

flawed(do(a, s))↔ flawed(s) ∨ a = init() ∧
¬
(
∀x, y(succ(x) = succ(y)→ x = y) ∧

∀x(
∧

c∈C
¬succ(x) = c)

)
(6.58)

In the cases where the tape is not flawed, the following successor state
axioms provide a reliable simulation:

state(q′, do(a, s))↔ state(q′, s) ∧ ¬∃q, c, p, c′, d, p′

(a = step(q′, c, p, q, c′, d, p′) ∧ ¬q = q′) ∨
∃q, c, p, c′, d, p′ (a = step(q, c, p, q′, c′, d, p′)) (6.59)
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scan(p′, do(a, s))↔ scan(p′, s) ∧ ¬∃q, c, p, q′, c′, d
(a = step(q, c, p′, q′, c′, d, p) ∧ ¬p = p′) ∨

∃q, c, p, q′, c′, d (a = step(q, c, p, q′, c′, d, p′)) (6.60)

star(p, do(a, s))↔ star(p, s) ∧
¬∃q, q′, d, p′

(
a = step(q,∗, p, q′, , d, p′)

)
∨

∃q, q′, d, p′
(
a = step(q, , p, q′,∗, d, p′)

)
(6.61)

As there are no axioms constraining succ() there can be arbitrary structures
interpreting succ(). If the structure is “flawed” (not containing an infinite,
linear structure starting at p0), the action init() will force flawed(s) to become
true, which will make formula (6.54) true. Since there are always non-flawed
structures, formula (6.54) can only become true in all models if s is a halting
computation on the non-flawed structures and, thus, the simulated TM halts.
Conversely, it is obvious that a halting computation translates into a sequence
of actions making formula (6.54) true.

We have presented a reduction where all information concerning a certain
TM is encoded in the initial database, the task-specific constants, and the goal.
Thus, according to the argumentation above, there cannot be any compilation
scheme at all – not even with an unrestricted blow-up of the plan size.

We have seen that situation-independent functions which can denote other
objects than the constants add additional expressive power to RBATs and,
thus, lead to a different expressiveness than PDDL. If we had not abandoned
the domain closure axiom, the functions had only been synonyms for the known
constants. As this case is only a special case of the considerations in the next
section, we do not discuss it further.

6.6 Functional Fluents

As opposed to the previous section we require for functional fluents, i.e. func-
tions of sort objectn × situation → object that they always have objects that
can also be denoted by constant symbols. We have several reasons for this:
First of all, if these functions could introduce new objects (this implies that we
use the relaxed domain closure axiom from the previous section) and we pass
on successor state axiom for these functions, we would face the same difficulties
as before. If they, in principle, can introduce new objects, but there must be a
successor state axiom for each fluent, this would lead to the following situation:
Assume a successor state axiom which in a certain situation do(a, s) assigns
an object that cannot be denoted by a constant of a function for situation s.
As in each situation the value of a functional fluent must be unique and such
objects cannot be distinguished by a uniform expression, there can be at most
one additional object. In fact, this is not a matter of functions, but rather
a matter of the initial database. If we would drop restriction R3.4, we could
easily compile these tasks by means of an additional constant. Thus, it makes
sense to restrict the values of the functional fluents to constants and situation-
independent actions. Furthermore, in the book of Reiter (2001) we have found
only examples that corroborate this assumption.
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Why do we accept such a restriction for functional fluents but not for
situation-independent functions? Situation-independent functions that are re-
stricted to such an extent are in practice only synonyms for constants or other
known actions, and, thus, add only marginal benefit. By contrast, functional
fluents, which can change their value from situation to situation, are more like
pointers in programming languages and can provide the possibility of a more
brief and elegant formulation of a planning task.

Before we consider functional fluents, we have to determine what a rea-
sonable extrapolation of the restrictions of Eyerich et al. (2006) to functional
fluents looks like. If we omit such restrictions, the basic action theories are
undecidable with similar proofs as above.

Obviously the following is a reasonable extension of restriction R2: There
is a successor state axiom for each functional fluent. The successor state axiom
of a functional fluent f has to fit the schema

f(x1, . . . , xn, do(a, s)) = y ↔
( p∨
l=1

αl
)
∨

(
f(x1, . . . , xn, s) = y ∧ ¬

q∨
l=1

δl
) (6.62)

for some p, q ≥ 0, where the αl and δl are of the form

∃y1, . . . , ym (a = A (y1, . . . , ym) ∧ ϕ) (6.63)

Each action function may appear as a = A (y1, . . . , ym) in at most one
subformula αl and in at most one subformula δl.

Restriction R3.1 leads to a unique model in the initial database, in which
the truth-values of the predicates are explicitly specified (i.e. not described by
compact formulas). Analogously we require that the value of each functional
fluent in s0 is explicitly specified:

For each (n+ 1)-ary functional fluent f there is an expression

f(x1, . . . ,xn, s0) = y ↔ (6.64)

((x1 = c11) ∧ . . . ∧ (xn = c1n) ∧ (y = c1)) ∨ . . . ∨
((x1 = cm1) ∧ . . . ∧ (xn = cmn) ∧ (y = cm)) .

We call the formalism defined by this extension of the restrictions on basic
action theories to object fluents RBATfunctions. This formalism can be compiled
to PDDL:

Theorem 13 (RBATfunctions 4e
p PDDL). There is a polynomial-time compi-

lation scheme from RBATfunctions to PDDL preserving plan size exactly.

Proof. We will specify a polynomial-time compilation scheme to show that
RBATfunctions 4e

p RBAT. The claim follows then with Theorem 6 from Theo-
rem 5.

For each function f : objectn × situation→ object we introduce a predicate

Pf : objectn × object× situation (6.65)
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and substitute the sentence f(x1, . . . , xn, s0) = y ↔ ϕf in the initial
database by an expression

P (x1, . . . , xn, y, s0)↔ ϕf . (6.66)

The successor state axiom f(x1, . . . , xn, do(a, s)) = y ↔ ψf analogously
becomes Pf (x1, . . . , xn, y, do(a, s))↔ ψf .

To eliminate all remaining occurrences of function f in a formula, we pro-
ceed as follows:

• If f occurs as f(x1, . . . , xn, s) = y, where y is a constant or a variable,
we substitute it by Pf (x1, . . . , xn, y, s).

• If f occurs as f(x1, . . . , xn, s) = g(y1, . . . , ym, s), we introduce a new vari-
able y and substitute it by ∃y(Pf (x1, . . . , xn, y, s) ∧ Pg(y1, . . . , ym, y, s)).

• If f occurs as a term (or subterm) in a predicate, we can substitute it in-
troducing a new variable. For example, P (f(y1, . . . , yn, s), x2, . . . , xm, s)
becomes ∃y(Pf (y1, . . . , yn, y, s) ∧ P (y, x2, . . . , xm, s)).

Then Pf (x1, . . . , xn, y, s) is true in the compiled task iff f(x1, . . . , xn, s) = y
is true in the original task, and the evaluation of the action precondition axioms
and the goal for a situation s always yields the same result in both tasks.
Therefore, the transformation defines a compilation scheme preserving plan
size exactly, which is obviously computable in polynomial time.

6.7 Restrictions on Successor State Axioms

In this section we examine the restriction on successor state axioms. The
required schema in R2 is based on the idea that a fluent is true in a situation
iff it has been made true by the last action or if it has been true in the previous
situation and has not been made false. Reiter (2001) allows the syntactically
more general form

F (x1, . . . , xn, do(a, s))↔ ΦF (x1, . . . , xn, a, s)

for successor state axioms, where ΦF (x1, . . . , xn, a, s) is a formula uniform
in s whose free variables are among x1, . . . , xn, a, s (cf. Definition 14.

In the following we will show how the compilation scheme of Eyerich et al.
can be altered to transform the general form of successor state axioms, too.
However, for the moment we would like to retain some of the flavor of require-
ment R4.2 that restricts the usage of sort action in successor state axioms.
We require in the following, that the formula ΦF (x̄, a, s) does not contain any
variables of sort action besides a2. We denote the resulting formalism with
RBATssa.

We will first define how we alter the compilation scheme fRBAT→PDDL from
Definition 27. Then we will show how the proof for its correctness (cf. Theorem
6) needs to be adapted for the new compilation scheme.

2Loosening this requirement will be a topic of Section 6.8 on restrictions on the usage of
sort action.
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Definition 28 (Compilation scheme from RBATssa to PDDL).
Let Π = 〈D, C, I, γ〉 be a RBATssa task with D = 〈S, P, E〉. The compilation
scheme fRBATssa→PDDL = 〈fd, tc, ti, tg〉 from RBATssa to PDDL differs from
the compilation scheme fRBAT→PDDL from Definition 27 only in the computa-
tion of the action effects, which is done by the domain transformation function
fd.

Let A(z̄) be the PDDL action introduced for the action function symbol A
in S. The PDDL effect e for A(z̄) is a conjunction over formulas ϕAF for each
relational fluent F in S.

Each ϕAF is constructed from the respective successor state axiom

F (x̄, do(a, s))↔ ΦF (x̄, a, s)

as follows.
Consider ΦAF (x̄, z̄, s) := ΦF (x̄, a, s)[a/A(z̄)]. Since ΦF (x̄, a, s) may not con-

tain any action variables besides a, sort action can only occur in ΦAF (x̄, z̄, s) as
function terms. These can only appear with predicate symbol = (by R4.1 and
R4.3).

We eliminate all action symbols from ΦAF (x̄, z̄, s) by replacing subformulas
A′(y1, . . . , ym) = A′(y′1, . . . , y

′
m) with (y1 = y′1)∧ · · · ∧ (ym = y′m) and replacing

A′(ȳ) = A′′(ȳ′) with ⊥ (logical falsity) (for all action function symbols A′

and A′′). We then simplify the resulting formula with the well-known logical
equivalences for ⊥ and > (logical truth). Let Φ′AF (x̄, z̄, s) denote the resulting
formula.

Since this formula is uniform in s (because ΦF (x̄, a, s)[a/A(z̄)]) was already
uniform in s) and does not contain any action symbols, we can transform it to
a PDDL formula ϕAF+(x̄, z̄) := θ(Φ′AF (x̄, z̄, s)). The desired equation ϕAF is3

ϕAF := ∀x̄((ϕAF+(x̄, z̄) . F (x̄)) ∧ (¬ϕAF+(x̄, z̄) . ¬F (x̄))).

This compilation scheme solves the frame problem twice because it is al-
ready solved by the PDDL semantics but the compilation always includes an
effect for each fluent, even if the action does not affect the fluent at all. There-
fore, we can obviously omit subeffects ϕAF of the form ∀x̄((F (x̄) . F (x̄)) ∧
(¬F (x̄) . ¬F (x̄))).

The specified compilation scheme is correct, which we will show by adapting
the original proof for the correctness of fRBAT→PDDL.

Theorem 14 (Correctness of fRBATssa→PDDL).
fRBATssa→PDDL is a compilation scheme from RBATssa to PDDL preserving
plan size exactly.

Proof. The proof of Theorem 6 depends on Lemmas 1–4 for fRBAT→PDDL.
Since the parts of the compilation that depend on the successor state axioms
do not affect the proofs of Lemmas 1–3, these lemmas are equivalently valid
for fRBATssa→PDDL.

3In the special cases where ϕA
F+ (x̄, z̄) is > or ⊥, ϕA

F = ∀x̄F (x̄) and ϕA
F = ∀x̄¬F (x̄),

respectively.
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To show the analogous validity of Lemma 4, we need to adapt parts of the
inductive step of its proof. More precisely, we need to show that for a RBATssa

task Π and the compiled task PDDL F (Π) it holds that

T (Π) |= R(c̄, do(A(c̄), s)) iff appA′(c̄)(s
′)(R(c̄)) = 1,

where R is a relational fluent, c̄ is a vector of constant symbols, s is an exe-
cutable situation, s′ is the respective state of the PDDL task, A(c̄) is a ground
action applicable in s, and A′(c̄) is the corresponding PDDL action.

We may use that for situation s, it holds for all situation-independent
ground predicates P (d̄) that T (Π) |= P (d̄) iff s′(P (d̄)) = 1, and for all re-
lational ground fluents P (d̄, s) that T (Π) |= P (d̄, s) iff s′(P (d̄)) = 1 (induction
hypothesis).

We will in the following use the same notation for the intermediate formulas
of the compilation as in Definition 28. Let R(x̄, do(a, s)) ↔ ΦR(x̄, a, s) be
the successor state axiom for R. Then T (Π) |= R(c̄, do(A(c̄), s)) holds iff
T (Π) |= ΦR(x̄, a, s)[x̄/c̄, a/A(c̄)] is true. Using the notation from Definition
28, this holds iff T (Π) |= ΦAR(x̄, z̄, s)[x̄/c̄, z̄/c̄] iff T (Π) |= Φ′AR (x̄, z̄, s)[x̄/c̄, z̄/c̄]
(the latter due to the unique names axioms of T ).

Formula Φ′AR (x̄, z̄, s)[x̄/c̄, z̄/c̄] satisfies the requirements of the analogon
of Lemma 3 for the new compilation scheme. Therefore we can conclude
with the induction hypothesis that T (Π) |= Φ′AR (x̄, z̄, s)[x̄/c̄, z̄/c̄] iff s′ |=
θ(Φ′AR (x̄, z̄, s)[x̄/c̄, z̄/c̄]) iff s′ |= θ(Φ′AR (x̄, z̄, s))[x̄/c̄, z̄/c̄], which, using the nota-
tion from the definition, holds iff s′ |= ϕAR+(x̄, z̄)[x̄/c̄, z̄/c̄].

So far, we have established that

T (Π) |= R(c̄, do(A(c̄), s)) iff s′ |= ϕAR+(x̄, z̄)[x̄/c̄, z̄/c̄].

Consider now the only subeffect of PDDL action A′(c̄) that affects predicate
symbol R:

∀x̄((ϕAR+(x̄, z̄)[z̄/c̄] . R(x̄)) ∧ (¬ϕAR+(x̄, z̄)[z̄/c̄] . ¬R(x̄))).

Consider the application of A′(c̄) in state s′.
If s′ |= ϕAR+(x̄, z̄)[x̄/c̄, z̄/c̄] then the positive effect ϕAR+(x̄, z̄)[z̄/c̄] . R(x̄)

triggers for x̄ = c̄ and appA′(c̄)(s
′)(R(c̄)) = 1.

If s′ 6|= ϕAR+(x̄, z̄)[x̄/c̄, z̄/c̄] then the negative effect ¬ϕAR+(x̄, z̄)[z̄/c̄] .¬R(x̄)
triggers for x̄ = c̄. Since the respective positive is the only other effect affecting
R(c̄) and it does not trigger, we conclude that in this case appA′(c̄)(s

′)(R(c̄)) =
0.

Since the rest of the proof of Lemma 4 is independent from the modification
of the compilation scheme for general successor state axioms, the Lemma hold
analogously for the new compilation scheme.

It is easy to check that after we have established the analogous validity of
Lemmas 1–4, the proof of Theorem 6 directly carries over to the new compila-
tion scheme fRBATssa→PDDL.

We have seen that we can easily get rid of the restriction by Eyerich et al.
(2006) on the form of the successor state axioms.

Corollary 4 (R2 is not necessary). Restriction R2 is not necessary for the
compilability of RBAT to PDDL.
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However, we still did not consider fully general successor state axioms be-
cause we did not allow arbitrary action variables. Such restrictions on the
usage of sort action will be the topic of the next section.

6.8 Restrictions on the Usage of Sort action

According to restriction R4, the usage of sort action is restricted as follows:

1. Arguments of situation-independent predicates or relational fluents must
not be of sort action, i.e., each such relation R is of sort object ar(r) or
object ar(r)−1 × situation, respectively.

2. The right-hand side of the action precondition axioms, the goal formula γ
and the sub-expressions ϕ in restriction R2 must not contain any action
symbols.

3. Arguments of action functions in S cannot be of sort action.

Although these restrictions are formulated as individual points, they are so
interdependent that it does not make much sense to consider them separately.
For example, if we only loosen restriction R4.3 but keep R4.2 then the action
parameters of sort action are irrelevant because they can neither be accessed
in the action precondition axioms nor in the successor state axioms. Similarly,
if giving up R4.1 but keeping R4.2, the predicate parameters of sort action
cannot influence the dynamics of the domain or the truth of the goal formula
and therefore do not influence whether an action sequence is a plan or not.

Therefore, we concentrate on the formalism RBATactions that is defined
as formalism RBAT but without restriction R4. For predicates with action
parameters we retain the spirit of R3.1 and R3.2 and require that their initial
truth values are specified by explicitly listing all true ground atoms.

Theorem 15 (RBATactions 64u PDDL). There is no compilation scheme from
RBATactions to PDDL.

Proof. If we give up the restrictions on the usage of sort action, we face a
similar situation as with the formalism RBATsit-independent-functions, where we
used the functions to denote infinitely many tape cells of a Turing machine. We
can adapt the proof of Theorem 12 to show the analogous result for formalism
RBATactions:

Instead of using a constant p0 of sort object to denote the first tape cell,
we use a new action A0 : ε → action. The function succ : object → object
is replaced with an action function succ : action → action. Also the sort of
the first argument of predicates scan and star is changed from object to action
and these predicates are initialized by sentences scan(p, s0) ↔ p = A0() and
¬star(p, s0). In addition, we prevent the application of actions A0 and succ(a)
with the successor state axioms ¬poss(A0()) and ¬poss(succ(a)).

With these modifications, we can for a given Turing machine specify a
RBATactions task that is solvable iff the Turing machine halts. Since only the
initial state specification, the task-specific constants and the goal depend on
the given Turing machine, the domain is fixed. If there was a compilation
scheme, there would be a fixed PDDL domain that could be used to decide the
halting problem.
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We have argued before that considering the restrictions on sort action in-
dividually is not interesting. However, we would like to examine a particular
formalism that will allow us to generalize the previous compilability result for
successor state axioms to the most general form of successor state axioms. In
this formalism RBATactions-in-conditions, we only loosen restriction R4.2 and
only for the action precondition axioms and the successor state axioms.

This leads to a similar scenario as relinquishing the domain closure axiom:
There can be infinitely many objects (now of sort action) but we cannot refer
to them by constants or function terms. Indeed, we can compile this formalism
to RBAT in a very similar way as we compiled RBAT 0

nodca. Since we already
know that RBATssa 4e

p RBAT, we avoid technical complications, which would
be necessary to maintain the specific syntactic form of the successor state ax-
ioms, and present instead a compilation scheme from RBATactions-in-conditions

to RBATssa.

Theorem 16 (RBATactions-in-conditions 4e
p RBATssa). Omitting restriction

R4.2 for the action precondition axioms and the successor state axioms does
not increase the expressive power of RBATssa: RBATactions-in-conditions 4e

p

RBATssa.

Proof. The desired compilation scheme is essentially the same as in the proof
of Theorem 10: we need to explicitly represent a number of worlds, each con-
taining a different number of additional action objects.

We do not want to repeat the compilation scheme here but only address
the issues that need to be adapted. The only critical aspect is that we need
to represent an exponential number of action objects that can be denoted by
action functions with a polynomial number of constants of sort object.

We add for each A in the set A of all action function symbols of the domain
a new constant oA of sort object. In addition there are new constants actji
that are used for the unnamed action objects in the universe (analogously

to the objects cji in the proof of Theorem 10). The parameter k is now the
maximal quantifier rank of quantifiers over sort action occurring in the domain
description and we use the analogous world constants w0, . . . ,wk.

To identify the new objects that represent actions we add two predicates
action-function(x) and unnamed-action(x) and extend the initial database with
sentences

action-function(x)↔
∨

A∈A
x = oA. (6.67)

and
unnamed-action(x)↔

∨
1≤j≤i≤k

x = actji. (6.68)

Predicate in-world(x,w) is used analogously to the earlier proof but not
covering the objects that can be denoted by action functions:

in-world(x,w)↔ (x = act11 ∧ w = w1) ∨
(x = act12 ∧ w = w2) ∨ (x = act22 ∧ w = w2) ∨

... (6.69)

(x = act1k ∧ w = wk) ∨ · · · ∨ (x = actkk ∧ w = wk)
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Let m be the largest arity associated with any function symbol in A. In the
following, we use an abbreviation represents-action(o, x1, . . . , xm) that stands
for

unnamed-action(o) ∨ (action-function(o) ∧
∧

i∈{1,...,m}

constant(xi)).

In addition we will temporarily introduce a function

real-action : objectm+1 → action

with the intended interpretation that real-action(oA, x1, . . . , xm) denotes the
action A(x1, . . . , xar(A)) (ignoring the parameters xar(A)+1, . . . , xm) and that

real-action(actji, x1, . . . , xm) denotes the j-th unnamed action object in a uni-
verse with i such objects (ignoring all parameters x1, . . . , xm). We will later
replace the occurrences of real-action accordingly.

Let ϕ be a formula that is uniform in s. We define formula ϕw as the
formula we get after the following transformations:

1. Replace each occurrence of a relational fluent F (x̄, s) with predicate
F-in-world(x̄, w, s).

2. Replace each subformula ∃a(ψ) with

∃oa, y1, . . . , ym((in-world(oa, w) ∨ (6.70)

action-function(oa) ∧ represents-action(oa, y1, . . . , ym))

∧ ψ[a/real-action(oa, y1, . . . , ym)]),

where oa, y1, . . . , ym are new variables.

3. Replace each subformula ∀a(ψ) with

∀oa, y1, . . . , ym((in-world(oa, w) ∨ (6.71)

action-function(oa) ∧ represents-action(oa, y1, . . . , ym))

→ ψ[a/real-action(oa, y1, . . . , ym)]),

where oa, y1, . . . , ym are again new variables.

We apply this transformation on the action precondition axioms, the suc-
cessor state axioms, and the goal. Note that for the goal this only renames
predicates and adds a parameter for the world because there cannot be quan-
tifiers over actions in this formula (by the part of restriction R4.2 that we
maintained). On the other formulas, the transformations eliminate all quan-
tifications over sort action. Afterwards all terms of sort action in ϕw are either
functions or variables occurring freely in ϕw (and ϕ). Due to restriction R4.1,
such terms ti can only occur in equalities as ti = tj .

In a second step, we eliminate the temporarily introduced action function
real-action from the action precondition axioms and the successor state axioms
and replace equalities of action terms as follows depending on the form of the
terms:
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1. real-action(o, x1, . . . , xm) = real-action(o′, y1, . . . , ym) becomes

(o = o′) ∧
(
unnamed-action(o) ∨ (6.72)∨
A∈A

(
(o = oA) ∧ (x1 = y1) ∧ · · · ∧ (xar(A) = yar(A))

))
.

2. real-action(o, x1, . . . , xm) = A(y1, . . . , yl) becomes

(o = oA) ∧ (x1 = y1) ∧ · · · ∧ (xk = yl). (6.73)

3. A(x1, . . . , xl) = A(y1, . . . , yl) becomes

(x1 = y1) ∧ · · · ∧ (xl = yl). (6.74)

4. A(x1, . . . , xl) = A′(y1, . . . , yl′) for different action function symbols A
and A′ becomes some unsatisfiable expression (e. g., ¬(oA = oA)).

5. a = real-action(o, x1, . . . , xm) becomes∨
A∈A

(
(o = oA) ∧ (a = A(x1, . . . , xar(A))

)
. (6.75)

6. a = A(x1, . . . , xl) is not modified.

For all transformations but the fifth it is obvious that they implement the
intended meaning of real-action. For transformation 5 this is indeed only the
case if the interpretation maps a to an object to which we also can refer by
an action function. However, case 5 can only occur in the transformation of
the right-hand side of an action precondition axiom or a successor state axiom,
where a denotes the action applied in state s. Since the unnamed actions do not
exist in every model of the theory, they cannot be part of a plan and therefore
these axioms are irrelevant if a denotes an unnamed action.

Overall, we reduced quantifications and equalities over unnamed actions to
quantifications and equalities over sort object. With these modifications, the
idea of the compilation scheme from Theorem 10 also works for sort action:
Models with different numbers of unnamed objects (or in this case actions) are
represented explicitly in the theory and are therefore reliably simulated. The
argument why it is sufficient to only consider a finite number of such worlds
directly carries over from the proof of Theorem 10: models with more unnamed
actions than the maximal quantifier rank cannot be distinguished by the theory.

From the same argumentation as in the proof of Theorem 10 it follows that
the compilation scheme preserves plan size exactly. Moreover, it is easy to
check that it can be computed in polynomial time.

6.9 Omitting More than One Restriction

We have shown that some of the restrictions of the RBAT formalism are nec-
essary to stay within the expressivity of PDDL while others can be removed
or weakened:
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• Functions of more general sorts are permissible if their initial values are
completely specified for the initial situation.

• The domain closure axiom may be omitted.

• General successor state axioms can be permitted if their right-hand side
contains no quantifiers over sort action.

• Action precondition axioms and successor state axioms may contain ar-
bitrary symbols of sort action.

Each of these results has been achieved under the assumption that all other
restrictions are retained. What happens if we omit more than one restriction
at once?

Our main motivation for examining the last restriction was a generalization
of the result on successor state axioms. We can indeed combine the correspond-
ing compilation schemes.

Theorem 17. Removing restriction R2 on successor state axioms and at the
same time weakening R4.2 so that action symbols can be used in action pre-
condition axioms and successor state axioms does not increase the expressive
power of RBAT.

Proof. In the proof of Theorem 16 we presented a compilation scheme that
removes all action symbols forbidden by R4.2. Since this compilation scheme
does not depend on a particular syntactic form of the successor state axioms,
we can equally apply it to the formalism we consider here. In a second step, we
can apply the compilation scheme from RBATssa to PDDL. Since both these
compilation schemes are polynomial-time and preserve plan size exactly, we
also can combine them into one polynomial-time compilation scheme from the
source formalism to PDDL preserving plan size exactly (by Theorem 5).

We also can weaken the restriction on functions and give up the requirement
of a domain closure axiom without increasing the expressive power.

Theorem 18. Extending restricted basic action theories with functions as in
RBATfunctions and at the same time omitting the requirement of a domain
closure axiom does not increase the expressive power of the formalism.

Proof. If more general functions are allowed (R1.2 is weakened), the necessary
modification to restriction R3.2 states that all initial function values must be
enumerated explicitly (Equation 6.64):

f(x1, . . . , xn, s0) = y ↔
((x1 = c11) ∧ . . . ∧ (xn = c1n) ∧ (y = c1)) ∨ . . . ∨
((x1 = cm1) ∧ . . . ∧ (xn = cmn) ∧ (y = cm)) .

where the ci are the named constants. This specification necessarily im-
plies that there are no objects besides the named constants. If there ex-
isted an unnamed object o in a given model, then the above equation implies
f(o, . . . , o, s0) 6= y for all objects y. However, functions must have a defined
value. Hence, no such model exists.
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Therefore, we can weaken R1.2 and remove the domain closure axiom (R3.4)
at the same time. Either the basic action theory contains no functions of
the form forbidden by R1.2 (in which case it does not matter that R1.2 was
weakened), or the removal of R3.4 does not matter because the domain closure
axiom is implied.

Actually, we also can loosen all four restrictions together.

Theorem 19. We can weaken the RBAT formalism at the same time in all
four ways for which we presented positive compilability results without exceeding
the expressive power of PDDL.

Proof. We need to check that the correctness of the individual compilation
schemes does not depend on one of the other restrictions we want to weaken
and that the compilation schemes do not interfere with each other.

If there are functions we can always first replace them with predicates as
in the compilation scheme of Theorem 13.

In a next step, we would apply a combination of the compilation schemes
from Theorems 11 and 16. Both compilation schemes simulate a number of
worlds with different numbers of unnamed objects (of sort object and action,
respectively). Let k be the maximal number of unnamed objects of sort object,
and k′ be the maximal number of unnamed objects of sort action that these
compilation schemes would consider. We now need to distinguish worlds wj

i

(0 ≤ i ≤ k and 0 ≤ j ≤ k′) for all possible settings with up to k unnamed
objects of sort object and up to k′ unnamed objects of sort action. Since we
also represent unnamed objects of sort action with constants of sort object, we
need to ensure that these representatives do not interfere. This can easily be
done by protecting the type of the objects by means of two new predicates
object(x) and action(x), e.g. an existentially quantified subexpression ∃y(ψ)
over type object is replaced with ∃y(object(y)∧ in-world(y, w)∧ψw) instead of
only ∃y(in-world(y, w) ∧ ψw). Since these compilation schemes do not depend
on a particular form of the successor state axiom, also their combination is
applicable in the general case.

After this step, the task is in the form required by formalism RBATssa.
Therefore, we can apply the compilation scheme from Definition 28 to receive
a corresponding PDDL task.

All three compilation steps are polynomial-time computable and preserve
plan size exactly. Therefore, we can combine them into a single polynomial-time
compilation scheme from the source formalism to PDDL, which also preserves
plan size exactly.

Overall, we have seen that we can freely combine all four changes without
adding expressive power.

6.10 Summary of Theoretical Results

We took the restrictions on basic action theories by Eyerich et al. (2006) as
basis for our formalism RBAT (Definition 26) and examined for each of the
restrictions whether it is necessary for the same expressive power as PDDL.
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R1.1: Situation-independent object functions

Restriction R1.1 forbids all situation-independent object functions apart from
constants.

We considered a more general formalism RBATsit-independent-functions that
allows functions of sort object → object and generalizes the domain closure
axioms so that these functions are not only synonyms for constant symbols.
We showed that RBATsit-independent-functions 64u PDDL (Theorem 12).

R1.2: Functional fluents

Restriction R1.2 does not allow the usage of functional fluents of sort objectn×
situation→ object.

If we generalize the domain closure axiom the same way as for situation-
independent object functions, the negative result from there directly carries
over to functional fluents. Therefore, the formalism RBATfunctions introduces
functional fluents only as (fluent) synonyms of constant symbols. This does
not add expressive power to RBAT and it holds that RBATfunctions 4e

p PDDL
(Theorem 13).

R2: Syntactic form of successor state axioms

Restriction R2 requires a specific syntactic form of the successor state axioms.
We examined a generalized formalism RBATssa that allows successor state
axioms of the general form F (x̄, do(a, s))↔ ΦF (x̄, a, s) if ΦF (x̄, a, s) does not
contain variables of sort action besides a. We showed that RBATssa 4e

p PDDL
(Corollary 4) and generalized this result to the entirely unrestricted form of
successor state axioms (Theorem 17).

R3.1 and R3.2: Predicate specification in the initial database

Restrictions R3.1 and R3.2 require that the initial database enumerates all ini-
tially true ground atoms for the relational fluents and the situation-independent
predicates.

P (x1, . . . , xn, s0)↔ (x1 = c11 ∧ · · · ∧ xn = c1n) ∨ · · · ∨
(x1 = cm1 ∧ · · · ∧ xn = cmn) , (6.4)

We examined two formalisms that loosen this restriction.
The first formalism allows a space-saving representation with expressions

P (x1, . . . , xns0) ↔ ϕP (x1, . . . , xn) as long as these specifications are acyclic.
For this generalized formalism RBATcompact it holds that RBATcompact 64r

PDDL unless PSPACE = P (Theorem 7). This is already the case if the compact
representation is only allowed for a single predicate of arity 0.

The second formalism, RBATincomp, admits that the truth values of a single
unary situation-independent predicate are not specified in the initial database.
We showed that RBATincomp 64u PDDL (Theorem 8).

R3.3: Unique names axioms for constant symbols

Restriction R3.3 requires that the initial database contains a unique names
axiom ci 6= cj for each pair of different constant symbols ci, cj.



86 Chapter 6. Relative Expressiveness of PDDL and BATs

We studied the formalism RBATnoUNA that allows to omit these axioms
for some pairs of constant symbols and showed that RBATnoUNA 64u PDDL
(Theorem 9).

R3.4: Domain closure axiom

Restriction R3.4 requires a domain closure axiom x = c1 ∨ · · · ∨ x = cn in the
initial database.

We first considered a family of RBAT-variants RBAT r
nodca that do not re-

quire a domain closure axiom but therefore set a bound r on the quantifier rank
of the goal formula. We have shown that RBAT r

nodca 4
e
p RBAT (Theorem 10).

In the next step, we examined the variant RBAT∞,=nodca that allows an arbi-
trary quantifier rank but no predicate symbols except = in the goal formula.
Also for this formalism we could show that there is a polynomial-time compi-
lation scheme to RBAT, preserving plan size exactly: RBAT∞,=nodca 4

e
p RBAT

(Lemma 8).
In the last step, we finally considered the formalism RBAT∞nodca that is

like RBAT but without a domain closure axiom in the initial database. We
were able to suitably combine the compilation schemes of RBAT r

nodca and
RBAT∞,=nodca into a polynomial-time compilation scheme to RBAT preserving
plan size exactly: RBAT∞nodca 4

e
p RBAT (Theorem 11).

It follows directly that RBAT∞nodca 4
e
p PDDL (Corollary 3).

R4: Usage of sort action

Restriction R4 limits the usage of sort action. We considered the RBAT variant
RBATactions that omits restriction R4 and showed that RBATactions 64u PDDL
(Theorem 15).

Omitting More than One Restriction

Each of the previous results has been achieved under the assumption that all
other restrictions are retained. However, we have shown that we can freely com-
bine the changes for which we received positive compilability results without
increasing the expressive power of the base formalism (Theorem 19).



7
Experimental Results

We have seen that it is possible to translate a certain fragment of basic action
theories to PDDL and that the resulting plan has a direct correspondence to an
action sequence in the theory. We now want to examine whether it is worth to
integrate a planning system in a Golog system, i.e., whether the expected better
runtime of an external planner (compared to the internal search mechanisms)
pays of for the translation overhead.

For the integration, we chose the IndiGolog (de Giacomo and Levesque,
1999) framework because it supports interesting features such as sensing ac-
tions for gathering additional information and exogenous actions that change
the dynamic environment but are not under the control of the agent. This
framework allows us to specify tasks that are beyond the scope of classical
planning.

The IndiGolog (de Giacomo and Levesque, 1999) implementation1 we use
already supports an operator achieve that uses iterative deepening search
(courtesy of Hector Levesque) to find a plan for a given goal formula with a
given set of actions. Semantically, achieve implements the following program
construct solve.

solve(ϕ, [a1, . . . , an]) := Σ(while ¬ϕ do (πa.(a ∈ [a1, . . . , an])?; a) endWhile)

We extended IndiGolog with an analogous operator achieve ext that im-
plements the same semantics by translating the given subproblem to PDDL,
calling an external planning system, and extracting the resulting plan.

For our experiments, we further have extended the IndiGolog framework
by a simple simulator that plays the role of the outside world. It runs in
a separate instance of Prolog and communicates with Golog via TCP/IP
sockets. The basic idea is to keep track of the (relevant part of the) world state
using Prolog’s assert and retract mechanism. The simulator specifies the
outcome of sensing actions according to the true simulated world state. It also
can trigger exogenous actions at prespecified time points or if the simulated
world state satisfies a given condition.

This chapter is based on joint work with Jens Claßen, Viktor Engelmann
and Gerhard Lakemeyer (Claßen et al., 2008) but in this earlier work we only

1http://www.cs.toronto.edu/cogrobo/main/systems/
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ran experiments with the satisficing FF planning system (Hoffmann and Nebel,
2001). Since the internal planner gives an optimality guarantee, we now use
the Fast Downward Planning System2 (Helmert, 2006) that supports optimal
as well as satisficing configurations. We also improved some of the domain
formulations.

In the optimal planner configuration, we use A∗ search (Hart et al., 1968)
with the LM-Cut heuristic (Helmert and Domshlak, 2009). Since the original
LM-Cut heuristic does not support conditional effects, we considered two recent
extensions: the basic variant by Keyder et al. (2012) and the variant based
on context-splitting by Röger et al. (2014). While context-splitting leads to a
better heuristic guidance and better theoretical dominance properties, the basic
variant can be computed faster and leads to a higher coverage (Röger et al.,
2014). Therefore, we decided to use this latter version in our experiments.

In the satisficing configuration of Fast Downward, we use greedy best-first
search (Pearl, 1984) with the FF heuristic (Hoffmann and Nebel, 2001) and its
preferred operators.

For the experiments, we designed three example application domains, which
are all representatives of so-called transportation domains (Helmert, 2001).
The characterizing property of such problems is that there are portables that
should be transported from their origin to their destination location using
mobiles that can move between some of the locations. This type of problem
is especially interesting because such tasks arise very often in practice. This
is probably also the reason why a large fraction of the benchmarks used in
the International Planning Competitions is among these domains. The most
interesting aspect of our last example domain is that it in addition involves
sensing.

All experiments where conducted on an Intel Core i7-2640M CPU running
at 2.80GHz with a timeout (per instance) of 300 seconds and a 2GB memory
limit.

7.1 Elevator Domain

The first test domain has been inspired by the Miconic elevator domains of
the International Planning Competition in 2000 and is very similar to our
example from Figure 4.1. There is an elevator moving between the floors of a
building. At some floors passengers are waiting and should be transported to
their respective destination floor. The main difference to our previous example
domain is that during the program execution new passengers arrive randomly.
Since an elevator can move faster if it does not have to stop at each floor, there
are additional actions for fast movements that overcome two floors within one
step.

In the elevator domain, we defined a control program using prioritized in-
terrupts:

proc mainControl
〈 unservedPassengers −→ servePassengers 〉 〉〉
〈 ¬ finished −→ wait 〉

endProc

2http://www.fast-downward.org/

http://www.fast-downward.org/
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In each cycle of the (implicit) main loop, if there are passengers that have
not been served yet, compute a plan to bring them to their destination floors
and execute it. If this is not the case but execution is not yet finished, do
nothing for one cycle. Otherwise terminate. Here, finished is a fluent that
serves as a flag for signaling when program execution is supposed to halt.
This is necessary to be able to perform finite experiments for a task that is in
principle open-ended.

Testing whether there are unserved passengers is done by a straight-forward
procedure unservedPassengers:

proc unservedPassengers
∃p : passenger. ¬served(p)

endProc

We use exogenous actions of the form new ride(p,f1,f2) to represent
newly arriving passengers.

The procedure servePassengers uses planning to find a suitable action se-
quence for transporting all unserved passengers to their destination:

proc servePassengers
solve(∀p : passenger. served(p), [move fast,move,stop]) endProc

The first argument of solve is the goal formula and the second one the list of
actions the planner has to consider. In our experiments, we tested two different
versions of solve: one calling the external planning system via achieve ext,
the other, achieve, being an internal, Prolog-implemented construct of the
IndiGolog framework that basically performs an iterative deepening search.
The two planners were in each case given the same amount of information:
a list of available actions, the fluent predicates involved (including their ini-
tial values) and the types of objects and action parameters. Whereas the
internal achieve construct directly uses the appropriate part of the Golog do-
main axiomatization, the external planner is provided with the corresponding
PDDL translation that is created within the achieve ext call.

For both of the planners, we considered two variants. In the first one,
once a plan is found it gets executed entirely. Passengers arriving during that
time can be transported as side-effects of the plan execution but they are only
considered actively with the next call of the planner after the current execution
ended. In the other variant, the system aborts the current plan execution and
performs a re-planning after each new ride event.

For the benchmark instances of this domain we always start with two ini-
tially waiting passengers and let the number of new passengers vary among 3,
5, 7 and 9. The number of floors varies between 5 and 8. We created one in-
stance for each combination, i.e., a total of 16 tasks. The origin and destination
floors of the passengers are chosen randomly and the intervals between newly
arriving passengers lie between 2 and 8 steps, where one step corresponds to
the execution of a primitive, non-exogenous action.

For each planner variant and domain instance we measured the overall
runtime of the system and the number of steps (minus the number of wait

actions) that were taken until termination. Runs that did not terminate within
300 seconds were aborted. The runtime includes a wait interval of 0.3 seconds
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Figure 7.1: Experimental results for elevator tasks. The individual plots are
slightly shifted along the x-axis to make overlapping lines visible.
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no replanning replanning

internal external internal external

Passengers Floors opt opt sat opt opt sat

5 5 13 11 11 13 11 11

5 6 20 11 10 20 11 11

5 7 – 10 11 – 10 10

5 8 – 11 10 – 9 10

7 5 18 14 13 115 17 16

7 6 – 20 21 – 19 19

7 7 – 19 20 – 17 18

7 8 – 14 13 – 18 18

9 5 223 19 19 – 19 19

9 6 – 19 20 – 19 19

9 7 – 19 19 – 18 17

9 8 – 19 18 – 18 19

11 5 – 20 20 – 19 20

11 6 – 20 20 – 20 21

11 7 – 22 22 – 22 28

11 8 – 22 23 – 21 30

Table 7.1: Runtime on elevator tasks (in seconds).

after each executed action which was reserved to handle the communication
with and the state update of the simulator.

Even our comparatively simple test instances are challenging for the inter-
nal planner: while all variants with an external planner easily solve all the
tasks, only 4 of them can be solved with the internal search when we do not
replan after the arrival of a new passenger and only 3 when we use replan-
ning. All unsolved instances are due to timeouts; the memory consumption
was uncritical.

Figure 7.1a and Table 7.1 show the overall runtime for each configuration
and each task (with and without replanning). Even if the internal planner
solves an instance, the runtime can be significantly larger than with the external
planning system (note the a logarithmic scale of the y-axis).

Although it is not the main topic of our experiments, it attracts attention
that the results for the external planner appear not to be affected much by the
replanning strategy and by the choice of a satisficing or optimal configuration.
We suspect that the actual planning tasks are too simple for state-of-the-art
planning systems so that the overhead of the IndiGolog system dominates the
runtime results. Indeed, the reported total time of each Fast Downward run
was 0 seconds, i.e., too low to be measured reliably.

Figure 7.1b and Table 7.2 show the total number of move fast, move and
stop action applications for every configuration (i.e. we omit the wait actions
and semaphore actions that were required to handle the replanning strategy
because they would induce a negative bias against better plans).
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no replanning replanning

internal external internal external

Passengers Floors opt opt sat opt opt sat

5 5 20 20 20 20 20 20

5 6 21 21 21 20 20 20

5 7 – 24 25 – 19 19

5 8 – 25 23 – 17 19

7 5 26 26 26 32 33 33

7 6 – 41 41 – 37 39

7 7 – 42 44 – 38 42

7 8 – 34 34 – 39 40

9 5 39 40 40 – 37 38

9 6 – 48 53 – 38 38

9 7 – 46 48 – 35 35

9 8 – 50 48 – 36 41

11 5 – 48 48 – 38 38

11 6 – 50 51 – 37 38

11 7 – 49 51 – 41 62

11 8 – 55 58 – 43 70

Table 7.2: Number of steps on elevator tasks.

The number of steps required with the internal solver is similar to the
number required with the external planning system. Overall, replanning tends
to lead to better results, except for the last two instances where the satisficing
planner makes some very bad decisions.

It is striking that the optimality guarantee of the internal and the external
optimal planner does not always translate to a better (or equal) overall number
of steps than we achieve with the satisficing planner.

With replanning, this happens when a current plan is discarded to serve
a new request, and when later another new request is made it turns out that
following the original plan would have been less costly. However, due to the
side-effects of the plan execution on passengers that only arrived after the
planning phase (and maybe a luckier choice of the final elevator position in
each phase), this happens also without replanning.

7.2 Logistics Domain

Also our second example application domain falls in the class of so-called trans-
portation domains and shall serve as a representative for all kinds of logistics
applications. The task is to transport packages to their destination locations,
using a number of trucks which can hold up to two packages that can only be
unloaded in the reverse order as they have been loaded. The direct connections
between locations form a (not necessarily complete) connected graph structure.
The domain has the dynamic aspect that new packages keep arriving at run-
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time, represented by exogenous actions, and have to be picked up and delivered
in turn.

One difference to the elevator domain is that load and unload actions always
only affect a single package, so there are no side-effects on newly arriving
packages by the current plan application when we do not use replanning. There
is no longer a single vehicle but the planner has to decide which trucks to use.
Also the capacity restriction of the truck with the constraints on the load and
unload order makes this domain different. Moreover, the domain allows more
complicated graph structures that the vehicles can traverse.

The experimental setting for the logistics domain is analogous to the one
of the elevator domain and uses the following main program.

proc mainControl
〈 undeliveredPackages −→ deliverPackages 〉 〉〉
〈 ¬ finished −→ wait 〉

endProc

The program is to be understood as follows. In each cycle of the (implicit)
main loop, if there are packages that have not been delivered yet, compute a
plan to deliver them and execute it. If this is not the case but execution is not
yet finished, do nothing for one cycle. Otherwise terminate.

Fluent finished is again a flag for signaling when program execution is sup-
posed to halt. While delivering the currently pending packages, new delivery
requests keep arriving, each of which being modeled by an exogenous action
new package(p,l,d) that sets the current location of package p to l, its des-
tination to d and marks the package as undelivered. Since the system does not
know in advance when and how many new package arrivals will occur, a special
exogenous action no more packages is used to set finished to TRUE after the
last new package event indicating that the experiment ends at this point.

Testing whether there are still packages to be delivered is done by the simple
procedure undeliveredPackages:

proc undeliveredPackages
∃p : package. undeliveredPackage(p)

endProc

The deliverPackages procedure is in charge of planning the delivery of packages:

proc deliverPackages
solve(∀p : package. ¬undeliveredPackage(p), [load,unload,drive])

endProc

Again, we tested two versions of solve, one calling the internal planner, the
other calling the external planning system, each with and without re-planning
on the arrival of a new package.

We performed a series of experiments where the number of locations varied
between 4 to 7, the number of trucks between 2 and 3 and the number of
dynamically arriving packages among 3 and 5. Initially, there are always 2
additional packages waiting for delivery. The initial locations of trucks and
packages as well as the destinations of the packages are chosen randomly. Two
locations are connected with a probability of 50%; additional random edges
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Figure 7.2: Experimental results for logistics tasks. The individual plots are
slightly shifted along the x-axis to make overlapping lines visible.
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no replanning replanning

internal external internal external

Pack. Trucks Locations opt opt sat opt opt sat

5 2 4 71 10 9 – 10 9

5 2 5 111 10 10 – 10 10

5 2 6 – 10 10 – 10 12

5 2 7 – 10 10 – 11 11

5 3 4 – 9 9 – 12 10

5 3 5 – 9 9 – 11 11

5 3 6 – 9 9 – 10 11

5 3 7 – 10 9 – 31 11

7 2 4 – 16 14 – 15 15

7 2 5 – 14 14 – 14 16

7 2 6 – 17 16 – 17 16

7 2 7 – 13 12 – 15 15

7 3 4 – 13 11 – 17 14

7 3 5 – 15 15 – 16 14

7 3 6 – 16 15 – 16 15

7 3 7 – 16 15 – 17 17

Table 7.3: Runtime on logistics tasks (in seconds).

ensure that the roadmap graph forms a single connected component. The
intervals between the arrival times of new packages vary between 2 and 8 steps.

The interval between action executions was again set to 0.3 seconds.

As with the elevators domain, it was hard to find sufficiently easy instances
that could also be solved by the internal planning mechanism. Therefore only
two of our generated tasks were solved by the internal search, both without
replanning.

Figure 7.2a and Table 7.3 show the runtimes. For the two instances solved
with the internal achieve mechanism, the process took about a magnitude
longer than with the external planner. There is a tendency that solving the
tasks with replanning takes a bit longer, but the difference is in a range of 3
seconds, except for one task that required with the optimal planner configura-
tion 31 seconds with replanning compared to only 10 seconds without. Of these
31 seconds, 8.1 seconds relate to the sleep intervals between action executions
and 20.33 seconds to the four planner calls (where the last one required 18.59
seconds). For most other tasks, the optimal planner calls took a fraction of a
second, except for very few that were still solved withing 2 seconds. With the
satisficing configuration, no Fast Downward call took more than 0.03 seconds.
The time required for translating from the basic action theory to PDDL and
extracting the plan is negligible. Overall, we again observe that tasks that are
not challenge for an external planning system are by far out of reach of the
internal search.

Figure 7.2b and Table 7.4 show the total number of load, unload and
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no replanning replanning

internal external internal external

Pack. Trucks Locations opt opt sat opt opt sat

3 2 4 20 20 18 – 18 16

3 2 5 17 17 19 – 17 19

3 2 6 – 19 22 – 18 23

3 2 7 – 20 22 – 20 20

3 3 4 – 17 17 – 18 18

3 3 5 – 18 18 – 17 19

3 3 6 – 16 19 – 16 19

3 3 7 – 18 19 – 19 19

5 2 4 – 23 23 – 23 26

5 2 5 – 28 28 – 26 32

5 2 6 – 26 26 – 26 26

5 2 7 – 25 25 – 25 27

5 3 4 – 27 24 – 23 25

5 3 5 – 25 25 – 25 25

5 3 6 – 26 26 – 26 26

5 3 7 – 29 33 – 29 32

Table 7.4: Number of steps on trucks tasks.

drive actions. Neither optimal planning nor replanning gives consistently a
lower number of steps so for our benchmark tasks the additional overhead does
not pay off in the presence of unpredictable exogenous events.

7.3 Mail Delivery Robot

The third domain is a variant of a common application example (Tam et al.,
1997) of a mobile robot operating in an office environment, where it has to de-
liver letters and parcels between the workers’ mailboxes. Here, the structure of
the building is assumed to consist of a number of hallways, which are connected
(e.g. by an elevator) to other hallways, and where there is a certain number
of offices at each hallway. Each office may contain one or multiple different
mailboxes, each of which serving for both incoming and outgoing mails.

This domain involves sensing since the robot must look into a mailbox in
order to find out how many and which letters it currently contains. Further-
more, before the agent actually knows where to deliver a letter, it has to pick it
up and read off the addressee. For this domain, we assume that no new letters
appear online as it would for example be the case if the robot delivered the
letters at night when no-one is working in the office. An extension to newly
arriving letters could be implemented analogously to the previous domains.

The mail delivery robot is controlled as follows:
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proc mainControl
while (∃m : mailbox. ¬cleared(m)) do

(π m : mailbox. ?(¬cleared(m)); getLettersFrom(m));
deliverLetters

endWhile
endProc

As long as the robot is not sure that all mailboxes are cleared, it randomly
picks a candidate mailbox and collects all letters from there with the procedure
getLettersFrom.

proc getLettersFrom(m)
(π l : location.

at(m, l)?;
solve(robotAt(l), [move]));
look into(m);
takeAllLetters(m)

endProc

The path to the chosen mailbox is determined by means of planning. The robot
then looks into the mailbox (a sensing action) and takes out all letters from
this mailbox with the following procedure:

proc takeAllLetters(m)
while (∃l : letter. in(l,m))

(π l : letter.
in(l,m)?;
take out(l,m);
look at(l))

look into(m)
endWhile

endProc

The outcome of the sensing action look into(m) is a constant l denoting one
of the letters in the box (i.e. the robot can always only “see” the topmost one).
Thus, the agent gets to know that fluent in(l,m) is currently true. In case
the mailbox is empty, the return value is instead simply the special constant
“empty” and cleared(m) is set to true. After picking up l, action look at(l) is
applicable and causes addressee(l,m′) to become known to the agent for some
mailbox m′, which is the destination of letter l. If the addressee is not the
current mailbox, the action makes atom to deliver(l) true. For delivering the
letters obtained like this, we conceptually would like to use the planner with a
procedure like this:

proc deliverLetters′

solve(∀l : letter. to deliver(l)→ delivered(l), [put in,move])
endProc

The disadvantage of this program is that the robot would visit many mail-
boxes, putting letters in but not picking up letters on the go. However, the
intended behavior of the robot for checking the mailboxes is almost determin-
istic (in the sense that the actual choice of the nondeterministic aspects does
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not affect the outcome or the quality of the plan): If the robot puts a letter
in a mailbox, it should look into the mailbox. If it is not empty, it should col-
lect all letters with the procedure takeAllLetters. Since this behavior requires
sensing, we cannot integrate it in the call of the planner. However, collecting
letters from the visited mailboxes does not invalidate the plan for delivering
the original letters. We therefore extended the implementation of solve so that
we can specify for each action a macro that is executed instead of each actually
planned action. In this example, we use for each planned action put in(l,m)
the macro put in(l,m); look into(m). The look into action detects if there
is a letter in the mailbox. In this case, we can start the takeAllLetters procedure
by means of prioritized interrupts:

proc deliverLetters
〈 ∃l : letter, m : mailbox. in(l,m) −→

(π m : mailbox. ?(∃l : letter. in(l,m)); takeAllLetters(m)) 〉
〉〉 solve(∀l : letter. to deliver(l)→ delivered(l), [put in,move])

endProc

Again, we study the system’s behavior for the case in which solve uses the
internal planner and for the case where an external planning system is called
instead.

In our benchmark scenarios the number of offices varies among 4, 8 and 16,
the number of hallways among 2, 4 and 8, and the number of letters among 2,
4, 8 and 16. As in the other domains we created 10 instances for each combina-
tion, the offices being connected randomly to some hallway and hallways being
connected to one another in a tree-like fashion. There are as many mailboxes
as offices, but they are placed randomly. Therefore, it is possible that an office
contains multiple mailboxes, only one, or even none at all. The origins and
addressees of the letters are also chosen randomly. We again used a timeout of
300 seconds and an action execution interval of 0.3 seconds.

On this domain, the IndiGolog interpreter solved 21 of the 36 tasks using
the internal mechanism, all but three tasks using the external optimal planner,
and all tasks using the external satisficing planner. All unsolved tasks were
due to timeouts.

The runtimes for each method are given in Table 7.5 and shown graphi-
cally in Figure 7.3a. One aspect of the mail delivery domain that can affect
the planning time a lot, is how many letters the robot has to deliver when
deliverLetters is called. While this number is not very critical for a satisficing
planner, it is problematic for the approaches that need to give an optimality
guarantee. This makes the instances with 16 letters and 4 mailboxes (= num-
ber of offices) especially hard, and indeed only the satisficing variant is able to
solve these instances. For the easiest instances, the overhead of the IndiGolog
interpreter is so large that it dominates the overall runtime by far. On some
instances, the execution interval of 0.3 seconds per step already explains most
of the runtime. On the intermediately hard instances with 8 letters, we can
see the difference between the internal and external optimal solvers. While
the external search can still easily solve these instances, the internal variant
only solves instances sporadically, albeit then with not much more required
time. For the hard instances with 16 letters also the external optimal solver
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Figure 7.3: Experimental results for mail delivery tasks. The individual plots
are slightly shifted along the x-axis to make overlapping lines visible.
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steps runtime

internal external internal external

Letters Offices Hallways opt opt sat opt opt sat

2 4 2 16 16 16 7 8 8

2 4 4 26 26 26 9 10 11

2 4 8 18 18 18 9 9 9

2 8 2 36 36 36 16 16 16

2 8 4 53 53 53 26 25 24

2 8 8 53 53 53 21 20 20

2 16 2 60 60 60 25 26 26

2 16 4 77 77 77 37 35 34

2 16 8 75 75 75 38 29 28

4 4 2 30 28 28 10 10 10

4 4 4 28 29 29 11 11 12

4 4 8 39 39 39 14 14 14

4 8 2 46 46 46 19 17 18

4 8 4 58 58 58 24 22 22

4 8 8 52 58 58 62 23 22

4 16 2 82 82 82 35 33 33

4 16 4 81 79 79 37 35 32

4 16 8 100 100 100 50 35 36

8 4 2 – 48 48 – 17 17

8 4 4 52 51 51 29 18 17

8 4 8 – 64 64 – 22 21

8 8 2 – 67 67 – 23 23

8 8 4 73 73 73 32 25 25

8 8 8 – 77 77 – 27 29

8 16 2 – 95 95 – 33 34

8 16 4 94 94 94 43 34 32

8 16 8 – 143 143 – 52 52

16 4 2 – – 93 – – 33

16 4 4 – – 92 – – 36

16 4 8 – – 109 – – 38

16 8 2 – 108 108 – 111 35

16 8 4 – 109 109 – 94 36

16 8 8 – 110 110 – 91 36

16 16 2 – 147 147 – 191 49

16 16 4 – 171 171 – 228 58

16 16 8 – 161 161 – 252 55

Table 7.5: Number of steps and runtime (in seconds) on mail delivery robot
tasks.
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is pushed towards its limits, while the satisficing variant solves each of this
instances within a minute.

The number of steps for each method is also included in Table 7.5. A
graphical representation can be found in Figure 7.3b. There is no large differ-
ence between the variants, which is not surprising because the Golog program
and the basic action theory already fix most of the steps: there is exactly one
take out, one put in, one look at, and one look into action for each letter,
and there is always one additional look into action for each mailbox. The
only way the planners can influence the overall number of steps is by choosing
better routes. But even then, an optimal system is not guaranteed result in a
lower number of steps because it can be unlucky if there are several possible
optimal routes for delivering the current letters but one ends in a more favor-
able location. This also explains the cases where the number of steps differs
for the two optimal variants.

We observed in all three domains that the external planner scales much
further than the internal solver and that it provides better runtimes except for
the most trivial instances. In the elevators and the trucks domain, the planning
subtasks where so simple that the optimal and the satisficing configuration of
the external planner lead to similar results, both in terms of runtime and
number of steps. However, in the presence of unpredictable exogenous events
or sensing, the optimality guarantee of the subplanner does not translate to an
overall optimality guarantee. Due to their better scaling behavior, we therefore
expect that using satisficing planners is in most scenarios the better choice.
This is also indicated by the results on the mail delivery domain, where the
optimal configuration was not able to solve all tasks. Nevertheless, there might
be applications where optimal planning is more suitable, e.g. because there
are no exogenous events and sensing is not required, or because the actual
execution of an action takes a lot of time.

The main advantage of our approach is that the IndiGolog system uses the
common input language PDDL for communicating with the external planner.
Therefore, we can for each application plug in the planning system that is best-
suited for the given scenario, whether it is suboptimal or not, always using the
latest state-of-the-art planning techniques.





Part II
Potential and Limitations

of Heuristic Search

for Planning
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8
Heuristic Search in Automated Planning

The predominant approach for classical planning is heuristic state space search.
In the context of optimal planning, the most widely used algorithm is A∗(Hart
et al., 1968, 1972) in combination with an admissible heuristic. Indeed, all
awards in the sequential optimization track of the last International Planning
Competition (IPC 2011) went to planners using A∗ (all implemented on top
or within the Fast Downward planning system): The winner Fast Downward
Stone Soup is a portfolio planner combining several A∗ searches (with different
heuristics) and one configuration using the A∗ variant LM-A∗ (Karpas and
Domshlak, 2009), which is optimized for the use with landmarks. There were
two runner-ups ex-aequo: SelMax (Domshlak et al., 2011, 2012a) also runs the
A∗ variant LM-A∗ and learns online which heuristic to evaluate in each state.
The Merge-and-Shrink planner (Nissim et al., 2011b) uses A∗ with merge-and-
shrink abstraction heuristics (Nissim et al., 2011a)1.

In satisficing planning, where we are only interested in finding good but not
necessarily optimal plans, there are several heuristic search algorithms in use.
The most common approaches are probably greedy best-first search (Pearl,
1984) and weighted A∗(Pohl, 1970), which are used by many planning systems
like for example the winner LAMA (Richter and Westphal, 2010; Richter et al.,
2011) and the runner-up Fast Downward Stone Soup of the International Plan-
ning Competition in 2011. An alternative heuristic search algorithm in satis-
ficing planning is Enforced Hill-Climbing, used by the very successful planning
system FF (Hoffmann and Nebel, 2001).

Since heuristic state space search is so important for classical planning,
we examine in the following the potential but also the limitations of heuristic
search in planning. The emphasis lies not on the development of entirely new
approaches, but rather on the question of how far we can get with standard
heuristic search and how we can get the best out of existing techniques.

In the first section, we concentrate on the potential of heuristic search al-
gorithms such as A∗ and IDA∗ (Korf, 1985) for obtaining optimal sequential
solutions. Theoretical analyses, such as the well-known results of Pohl (1977),
Gaschnig (1977) and Pearl (1984), suggest that such heuristic search algorithms

1To do justice to other approaches: Gamer (Edelkamp and Kissmann, 2008), the winner
of the sequential optimization track of the IPC 2008, runs a symbolic search rather than an
A∗ variant.
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can obtain better than exponential scaling behavior, provided that the heuris-
tics are accurate enough. We show that for a number of common planning
benchmark domains, including ones that admit optimal solution in polyno-
mial time, general search algorithms such as A∗ must necessarily explore an
exponential number of search nodes even under the optimistic assumption of
almost perfect heuristic estimators, whose heuristic error is bounded by a small
additive constant.

In the second section we concentrate on the satisficing setting. The main
reason for the limitations of heuristic search in the optimal setting is that the
search needs to process a large part of the search space to prove the optimality
of the solution. Therefore, the results from the first section do not carry over to
planning without quality guarantees and it looks more effective there to reach
for better heuristic guidance. One possible approach is to develop new, stronger
estimators, an alternative one to use multiple existing heuristics concurrently
with the idea of exploiting their complementary strengths.

While the problem of effectively combining multiple heuristic estimators
has been studied extensively in the context of optimal planning, this is not the
case for the satisficing setting. To narrow this gap, we empirically examine
several ways of exploiting the information of multiple heuristics in a satisficing
best-first search algorithm, comparing their performance in terms of coverage,
plan quality and runtime. Our empirical results indicate that using multiple
heuristics for satisficing search is indeed useful and that the best results are
not obtained by the most obvious combination methods.



9
Limitations of Pure Heuristic Search

Optimal sequential planning is harder than satisficing planning. While there
is no difference in theoretical complexity in the general case (Bylander, 1994),
many of the classical planning domains are provably easy to solve sub-optimally,
but hard to solve optimally (Helmert, 2003).

Moreover, strikingly different scaling behavior of satisficing and optimal
planners has been observed in practice (Hoffmann and Edelkamp, 2005). In
fact, this disparity even extends to planning domains which are known to be
easy to solve optimally in theory. If we apply two state-of-the-art optimal
planning algorithms (Haslum et al., 2007; Helmert et al., 2007) to the Grip-
per domain, neither of them can optimally solve more than 8 of the standard
suite of 20 benchmarks within reasonable run-time and memory limits, whereas
the whole suite is solved in a few milliseconds by satisficing planners like FF
(Hoffmann and Nebel, 2001). Moreover, those 8 tasks are quickly solved by
breadth-first search, showing no significant advantage of sophisticated heuristic
methods over brute force.

Why is this the case? One possible explanation is that the heuristic estima-
tors of these planning systems may be grossly misleading for Gripper tasks.
However, we do not believe that this is the case – the Gripper domain in par-
ticular has resisted many attempts by optimal heuristic planners, hinting at a
different, more fundamental problem. In this chapter, we argue the following
claim:

For many, maybe all of the standard benchmark domains in plan-
ning, standard heuristic search algorithms such as A∗ quickly be-
come prohibitively expensive even if almost perfect heuristics are
used.

In the following, we will formally define what we mean with the notion of
almost perfect heuristics and discuss related work. Afterwards, we will present
theoretical results for problem families in three standard IPC benchmark do-
mains. An empirical evaluation will show that we can observe the same prob-
lematic behavior on the actual IPC benchmark tasks. We conclude with some
ideas how this limitation of pure heuristics search could be overcome by means
of complementary techniques.
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9.1 Almost Perfect Heuristics

The performance of heuristic search is commonly measured by the number of
performed node expansions. Of course, this measure depends on the search
algorithm used; for example, A∗ with admissible and consistent heuristics will
usually explore fewer states than IDA∗ in the same search space, and never
more (assuming that successors are ordered in the same way).

Here, we consider lower bounds for node expansions of the A∗ algorithm
with admissible and consistent heuristics and with full duplicate elimination.
Results for this algorithm immediately apply to other search algorithms that
rely exclusively on node expansions and admissible heuristic estimates to guide
search, such as IDA∗, A∗ with partial expansion (Yoshizumi et al., 2000),
breadth-first heuristic search (Zhou and Hansen, 2006), and many more. How-
ever, they do not apply to algorithms that use additional information for state
pruning, such as symmetry reduction (Fox and Long, 1999; Rintanen, 2003;
Pochter et al., 2011; Domshlak et al., 2012b), and neither to algorithms that
use fundamentally different techniques to find optimal plans, such as symbolic
breadth-first search (Edelkamp and Helmert, 2001; Kissmann, 2012) or SAT
planning (Kautz and Selman, 1999; Rintanen, 2010).

How many nodes does A∗ expand for a planning task T , given an admissible
heuristic h? Clearly, this depends on the properties of T and h. It also depends
on some rather accidental features of the search algorithm implementation, in
particular on the order in which nodes with identical f values are explored.
Because we are interested in lower bounds, one conservative assumption is
to estimate the solution effort by the number of states s with the property
f(s) := g(s) + h(s) < h∗(T ), where g(s) is the cost (or distance – we assume
a unit cost model) for reaching s from the initial state, h(s) is the heuristic
estimate for s, and h∗(T ) is the optimal solution cost for T . All states with
this property must be considered by A∗ in order to guarantee that no solutions
of length below h∗(T ) exist. In practice, a heuristic search algorithm will also
expand some states with f(s) = h∗(T ), but we ignore those in our estimates.

Our aim is to demonstrate fundamental limits to the scaling possibilities of
optimal heuristic search algorithms when applied to planning tasks. For this
purpose, we show that A∗ search effort already grows extremely fast for a family
of very powerful heuristic functions. More precisely, we consider heuristics
parameterized by a natural number c ∈ N1 where the heuristic estimate of
state s is defined as max(h∗(s) − c, 0), with h∗(s) denoting the length of an
optimal solution from state s as usual. In the following, we use the notation
“h∗− c” to refer to this heuristic (not reflecting the maximization operation in
the notation). In other words, (h∗ − c)(s) := max(h∗(s)− c, 0).

We call heuristics like h∗− c, which only differ from the perfect heuristic h∗

by an additive constant, almost perfect. Almost perfect heuristics are unlikely
to be attainable in practice in most planning domains. Indeed, for any of
the planning benchmark domains from IPC 1998–2004 that are NP-hard to
optimize, if there exists a polynomial-time computable almost perfect heuristic,
then APX = PTAS and hence P = NP (Helmert et al., 2006).

Throughout our analysis, we use the notation N c(T ) to denote the A∗ node
expansion lower bound for task T when using heuristic h∗− c. In other words,
N c(T ) is the number of states s with g(s) + (h∗ − c)(s) < h∗(T ). This can be
equivalently expressed as the number of states with f∗(s) := g(s) + h∗(s) <
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h∗(T ) + c and g(s) < h∗(T ). The objective of our analysis is to provide results
for N c(T ) for planning tasks T drawn from the standard IPC benchmark
domains, focusing on the “easiest” domains, namely those that fall within the
approximation class APX (Helmert et al., 2006). These domains are particularly
relevant because they would intuitively appear most likely to be within reach
of optimal planning techniques.

9.2 Related Work

There is quite a bit of literature on the computational costs of A∗ and related
algorithms. A widely cited result by Pohl (1977) considers precisely the kind
of heuristics we study in this paper, i.e., those with constant absolute error.
He proves that the A∗ algorithm requires a linear number of node expansions
in this case. However, the analysis relies on certain critical assumptions which
are commonly violated in planning tasks. First, it assumes that the branching
factor of the search space is constant across inputs. If the branching factor is
polynomially related to input size, as is often the case in planning, the number
of node expansions is still polynomial in the input size for a fixed error c, but of
an order that grows with c. More importantly, the analysis requires that there
is only a single goal state and that the search space contains no transpositions,
i.e., every state can only be reached by a single path. The latter assumption,
critical to Pohl’s tractability result, is violated in all common benchmark tasks
in planning. For example, in the following section we show that the Gripper
domain requires an exponential number of node expansions even with very
low heuristic inaccuracies due to the large number of transpositions. Pohl also
considers the case of heuristics with a constant relative error, i.e., h(s) ≈ c·h∗(s)
for some constant c < 1. However, as our negative results already apply to the
much more optimistic case of constant absolute error, we do not discuss this
analysis.

Gaschnig (1977) extends Pohl’s analysis to logarithmic absolute error (i.e.,
h∗(s) − h(s) = O(log(h∗(s)))), showing that A∗ also requires a polynomial
number of expansions under this less restrictive assumption. However, his
analysis requires the same practically rare search space properties (constant
branching factor, no transpositions, a single goal state).

Both Pohl’s and Gaschnig’s work is concerned with worst-case results. Pearl
(1984) extends their analyses by showing that essentially the same complexity
bounds apply to the average case.

More recently, Dinh et al. (2007) consider heuristics with constant relative
error in a setting with multiple goal states. While this is a significant step
towards more realistic search spaces, absence of transpositions is still assumed.

In addition to these analyses of A∗, the literature contains a number of
results on the complexity of the IDA∗ algorithm. The article by Korf et al.
(2001) is particularly relevant in the planning context, because it presents an
analysis which has recently been used to guide heuristic selection in the very
effective1 optimal sequential planner of Haslum et al. (2007). Korf et al. show

that IDA∗ expands at most
∑k
i=0NiP (k− i) nodes to prove that no solution of

length at most k exists (or to find such a solution, if it exists). Here, Ni is the

1With an efficient implementation of the underlying pattern database heuristics (Sievers
et al., 2012).
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number of nodes at depth i in the search tree, and P is the equilibrium distri-
bution with P (m) being the probability that a randomly drawn node “deep”
in the brute-force search tree has a heuristic value of at most m. However,
the formula only applies to IDA∗, and only in the limit of large k. We are
interested in lower bounds on complexity for any general heuristic search al-
gorithm, including ones that perform complete duplicate elimination. In that
case, the number of states Ni at depth i eventually becomes zero, so that it is
not clear what results that apply “in the limit of large k” signify. Moreover,
with complete duplicate elimination, there is no reasonable way of defining the
equilibrium distribution P . Zahavi et al. (2010) refined the analysis by Korf
et al., based on a conditional distribution of heuristic values that also takes
properties of the neighborhood of a search node into consideration. Since with
duplicate elimination there is no reasonable way of defining the conditional or
unconditional distribution, we do not discuss these complexity results further.

9.3 Theoretical Results

There are several ways of obtaining N c(T ) estimates. One way is to measure
them empirically for particular values of c and particular tasks T by using an
algorithm that conducts A∗ searches with the h∗ − c heuristic. One advantage
of this method is that it is fully general – it can be directly applied to arbitrary
planning tasks, and any value c ∈ N1. We present some results obtained by
this method in the following section.

However, the empirical approach has some drawbacks. Firstly, it is compu-
tationally expensive and thus limited to comparatively small planning tasks (in
particular, a subset of those which we can solve optimally by heuristic search).
Secondly, its results are fairly opaque. In addition to knowing lower bounds
for a certain set of planning tasks, we would also like to know why they arise,
and how to extrapolate them to instances of larger size. For these purposes,
theoretical results are preferable.

In this section, we present such theoretical results for three planning do-
mains: Gripper, Miconic-Simple-Adl, and Blocksworld. We assume
familiarity with these domains and point to the literature (Helmert, 2008)
for definitions and details. We choose these particular domains because we
consider them fairly representative of the IPC domains in class APX. Similar
theorems can be shown for most other APX domains such as Miconic-Strips,
Logistics, ZenoTravel, Depots, and Schedule.

Our theorems take the form of worst case results: In each of the domains,
we show that there exist tasks of scaling size for which the number of states
expanded by h∗−c grows exponentially. One problem with worst case consider-
ations is that they might only apply in some fairly unusual “corner cases” that
are unlikely to arise in practice. We partially avoid this problem by discussing
families of tasks of different types. For example, we can observe exponential
scaling of N i(T ) both for families of Blocksworld tasks where initial and
goal configurations consist of a single tower and for families of tasks consisting
of a large number of small towers. Still, average-case results are clearly also of
interest, and are left as a topic for future work.
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initial state goal state

Figure 9.1: Initial state and goal of Gripper task T4.

Gripper

The Gripper domain was included in the IPC 1998 benchmark set because
its tasks are trivially to solve for humans but lead to a combinatorial explosion
with most state-space search methods (McDermott, 2000). We will show that
this is indeed also the case with almost perfect heuristics.

In this domain, a robot with two arms needs to transport a number of balls
from one room to another (Fig. 9.1). All balls and the two robot arms can be
distinguished: for example, if two situations only differ in that the robot holds
a specific ball once with the left arm and once with the right arm, these two
situations correspond to two different states in the state space. Initially, the
robot and the balls are always located in one room (room A). The robot can
move between the rooms, and pickup or drop a ball with each gripper. In the
goal, all balls must be in the other room (room B). The robot position does
not matter for the goal.

Since Gripper tasks are completely characterized by the number of balls,
there is no difference between worst-case and average-case results in this do-
main. We denote with Tn (n ∈ N+) the task with n balls. For n ≥ 2, the total
number of reachable states of Tn is Sn := 2 ·(2n+2n2n−1 +n(n−1)2n−2). (The
initial factor of 2 represents the two possible robot locations; the three terms
of the sum correspond to the cases of 0, 1 and 2 carried balls, respectively,
and represent the contents of the robot arms and the locations of the balls not
being carried. Note that the two robot arms can be distinguished.)

A Gripper task can be solved optimally by repeating the following proce-
dure until the task is solved (Helmert, 2008, p. 76):

1. Pickup any two balls (or one if only one is left in the room).

2. Move to room B.

3. Drop all carried balls.

4. If not all balls are in room B, move to room A.

So, for an even number n of balls, an optimal plan has length h∗(Tn) = 3n− 1,
for a odd number of balls, h∗(Tn) = 3n

We now state our main result for Gripper.

Theorem 20. Let n ∈ N0 with n ≥ 3. If n is even, then N1(Tn) = N2(Tn) =
1
2Sn − 3 and N c(Tn) = Sn − 2n− 2 for all c ≥ 3. If n is odd, then N1(Tn) =
N2(Tn) = Sn − 3 and N c(Tn) = Sn − 2 for all c ≥ 3.
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Proof. For a Gripper state s, let As, Bs, and Rs be the set of balls which are
in room A, in room B, and carried by the robot in state s, respectively. In the
following, we will use the notation Bs ≺ Rs ≺ As to indicate that whenever
there is a choice between several balls (e. g., when picking them up or dropping
them), those from Bs will be preferred to all others and balls from Rs will be
preferred to balls from As.

We prove the two cases of the theorem separately.

1. n is even

In the case where n is even, we call a state s even if the number of balls
in each room is even, and odd otherwise. (Balls carried by the robot are
counted towards the room in which the robot is located.)

Exactly half of the Sn states are even, which can easily be seen by defining
a bijection between the odd and the even states as follows: Let < be an
arbitrary total order on the balls. If the robot carries no or two balls in a
state s, we map the state to the state which is identical to s except that
the smallest (with respect to <) ball not carried by the robot is located
in the other room. If the robot carries one ball in a state, we map this
state to the identical state except that the robot (and the carried ball) is
in the other room.

a) even states

All even states s apart from the two states where all balls are in
the same room and the robot is in the other room are part of some
optimal plan: we receive such a plan that leads through s from the
procedure above, when preferring balls according to Bs ≺ Rs ≺ As
and picking up balls in Rs with the arm holding them in s. So
all these states (except the reached goal state itself) are counted in
N c(Tn) (for all c).

For the special state with all balls in room A and the robot in
room B, the only applicable action is to move the robot to room
A which results in the initial state, so the minimal goal distance is
3n. Since the g value of this state is 1, its f -value with (h∗ − c) is
1 + max(3n − c, 0), which is smaller than the optimal plan length
3n− 1 iff c > 2.

In the second special state all balls are in room B and the robot is in
room A. This state can only be reached by moving the robot from
room B to room A in the last step, and the predecessor state is the
goal state. Hence, its g value exceeds h∗(Tn) and it will never be
expanded by A∗.

Overall, all but 3 even states are counted in N1(Tn) and N2(Tn). For
c > 2, N c(Tn) additionally captures one of the two special states.

b) odd states

All odd states are parts of plans of length h∗(Tn) + 2: For an odd
state s, transport first one ball from As (or Rs if Bs is empty) to
room B and move the robot back to room A. Afterwards follow
the optimal procedure preferring balls according to Bs ≺ Rs ≺
As. The resulting plan has length h∗(Tn) + 2 (two additional move
operations).
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However, the 2n odd states where all but one ball are in room B and
the robot holds one ball in room A are still ruled out from N c(Tn)
because their g value is h∗(Tn): Moving two balls from room A to
room B and going back to room A requires 6 steps (pickup, pickup,
move, drop, drop, move), doing the same for one ball requires 4 steps
(one pickup and one drop action less), so overall reaching these states
requires 6( 1

2n − 1) + 4 + 1 = h∗(Tn) steps (the last one for picking
up the last ball in room A). These are the only odd states with a g
value larger than h∗(Tn) (all other odd states are reached within a
smaller number of steps in the plan of length h∗(Tn) + 2 described
above), so all other odd states are counted in N c(Tn) for c > 2.

Odd states are never part of a plan of length smaller than h∗(Tn)+2:
Since for an odd state it is necessary to move with a single ball to
room B and to move the robot back afterwards in order to reach
the goal, a plan traversing an odd state must always contain two
additional move actions. So no odd state is counted in N1(Tn) and
N2(Tn).

Summing up, N1(Tn) = N2(Tn) = 1
2Sn − 3 (only even states) and for

c > 2, N c(Tn) = (1
2Sn − 2) + ( 1

2Sn − 2n) = Sn − 2n− 2.

2. n is odd

In the case where n is odd, all states except for the two states where all
balls are in the same room and the robot is in the other room are part
of some optimal plan. The special state with all balls in room A will
be expanded by A∗ with (h∗ − c) iff c > 2, the other one will never be
expanded because its g value exceeds the optimal plan length. The full
proof for this case is analogous to the one of case 1a). Since the reached
goal state (all balls and the robot in room B) is not counted by N c, this
results in N1(Tn) = N2(Tn) = Sn − 3 and N c(Tn) = Sn − 2 for all c ≥ 3.

The theorem shows that there is little hope of achieving significant pruning
for Gripper by using heuristic estimators, even in the easier case where the
number of balls is even. With a heuristic error of 1, about half of all reachable
states need to be considered already, because they all lie on optimal paths to
the goal. Moreover, once the heuristic error is greater than 2, the A∗ algorithm
has essentially no pruning power and offers no advantage over breadth-first
search with duplicate elimination.

Miconic-Simple-Adl

In the Miconic domain family, there is an elevator moving between the floors
of a building. There are passengers waiting at some of the floors; the goal is to
transport each passenger to their destination floor. In the Miconic-Simple-
Adl domain variant, there are movement actions, which move the elevator
from one floor to any other floor in a single step, and stop actions, which drop
off all boarded passengers whose destination is the current floor and cause all
passengers waiting to be served at that floor to enter.
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Figure 9.2: Initial state and goal of Miconic task T4.

We consider the following family of Miconic-Simple-Adl tasks Tn: There
are (n + 1) floors and n passengers. The elevator is initially located at the
bottom floor, which is also the destination of all passengers. There is one
passenger waiting to be served at each floor except the bottom one (Fig. 9.2).

An optimal plan for Tn clearly needs h∗(Tn) = 2(n + 1) steps: Move to
each floor where a passenger is waiting and stop there. Once all passengers are
boarded, move to the destination floor and stop again to drop off all passengers.

Altogether there are Sn := 3n(n+1) states in the search space (each passen-
ger can be waiting, boarded, or served; the elevator can be at (n+ 1) different
locations). Some of these states are never expanded by A∗ with any heuris-
tic (not even by h = 0) before the final search layer, because they cannot be
reached within less than h∗(Tn) steps. However, the fraction of such states
is fairly small, and all other reachable states must be expanded by A∗ if the
heuristic error is at least 4.

Theorem 21. For all c ≥ 4, N c(Tn) = Sn − (2n − 1)(n+ 1).

Proof. As noted above, h∗(Tn) = 2(n+1), which means that nodes with g(s) ≥
2(n+ 1) cannot possibly be expanded before the final f layer of the A∗ search
(which our definition of N c optimistically excludes from consideration). These
nodes can be exactly characterized: a state s requires at least 2(n+ 1) actions
to reach iff no passenger is waiting and at least one passenger is served in s.
(Under these conditions, the elevator must have moved to and stopped at each
of the (n+ 1) locations at least once, which requires 2(n+ 1) actions.) There
are exactly (2n−1)(n+1) states of this kind, where the first term characterizes
the 2n − 1 possible nonempty sets of served passengers, and the second term
characterizes the possible elevator locations.

Now let s be an arbitrary state which is not of this form and where the
elevator is at floor l. Consider the following plan: first collect all passengers
which are served in s and drop them off at the bottom floor (if there are any
such passengers), then collect all passengers boarded in s, then move to l if not
already there. (At this point, we are in state s.) Finally, collect the remaining
passengers and drop them off at the bottom floor. The plan visits s after less
than 2(n+ 1) steps, and has length at most h∗(Tn) + 3. Together, these facts
imply that s will be counted towards N c(Tn) for c ≥ 4.

We remark that the fraction of states not expanded by h∗ − 4 according to
our optimistic assumptions is almost exactly ( 2

3 )n, which quickly tends towards
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Figure 9.3: Initial and goal state of Blocksworld task T4.

zero as n increases. Thus, for larger values of n, heuristics with an error of 4
have no significant advantage over blind search. Since deciding whether there
is a plan of a given maximal length for a given Miconic-Simple-Adl task
is NP-complete (Helmert, 2001), computing the perfect heuristic h∗ for this
domain is NP-hard.

We also remark that a similar construction is possible with tasks where all
origin and destination floors are disjoint.

Blocksworld

In the Blocksworld domain blocks stacked into towers must be rearranged
by a robotic arm which can pick up the top block of a tower and place it on
another tower or on the table.

One easy way of defining a family of Blocksworld tasks for which non-
perfect heuristics must perform exponential amounts of search is to create a
linear number of “independent” subproblems. (This is a general idea that
works for a large number of benchmark domains, including many of those not
discussed here.) One example is an initial state with n stacks of two blocks
each, each of which needs to be reversed in the goal. Since the independent
subplans can be interleaved arbitrarily, there are exponentially many states
that are part of optimal plans, which implies that N1(Tn) grows exponentially.

However, we can prove a similar result even in the case where all blocks are
stacked into a single tower in the initial state and goal. Consider the class of
Blocksworld instances Tn (n ≥ 2) where one block shall be moved from the
top of a tower with n blocks to the base of the tower (Fig. 9.3).

For these tasks, a heuristic planner needs to expand an exponential number
of states – even if the heuristic only has an error of c = 1. The number N1(Tn)
of states that need to be expanded depends on the Bell numbers Bk (defined as
the number of partitions of a set with k elements), which grow asymptotically
faster than ck for an arbitrary constant c (de Bruijn, 1958; Berend and Tassa,
2010). More precisely, we get the following result:

Theorem 22. N1(Tn) = 4 ·
∑n−3
k=0 Bk + 3Bn−2 + 1

Proof. It is easy to see that N1(Tn) is equal to the number of states that are
part of some optimal plan, minus one. (Goal states themselves should not be
counted, and in this case, all optimal plans obviously end in the same goal
state.) We now compute this number by considering the states that are part of
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some optimal plan. An optimal plan works in two phases: in the first phase it
decomposes the source tower, and in the second phase it builds the goal tower.

First phase At the beginning of each optimal plan, bn is picked up. Together
with the initial state, this amounts to two states we need to count.

⇒ 2 states.

Now consider the states where k ∈ {1, . . . , n− 1} blocks have already been
moved. (Note: a block held by the robot arm does not count as having been
moved.) There are n− k blocks still on the source tower or held by the robot
arm and block bn lies on the table in a stack of its own. The other k − 1
blocks are allocated into arbitrary stacks, but the order within each stack is
fixed (blocks bi lie above blocks bj for i < j). Thus, the number of possible
arrangements is equal to the number of partitions of a set with k− 1 elements.
This is given by the Bell number Bk−1. The next block to be moved, bn−k, can
either still be part of the source tower or be held by the robot arm, so there
are two relevant states for each arrangement.

⇒
∑n−1
k=1 Bk−1 · 2 = 2

∑n−2
k=0 Bk states.

Second phase At the end of the first phase, b1 is held by the robot arm.
In the next action, b1 must be stacked on top of bn. There are Bn−2 possible
states after this action, corresponding to the possible arrangements of blocks
b2, . . . , bn−1.

⇒ Bn−2 states.

After b1 has been stacked on top of bn, the remaining blocks need to be
picked up and added to the goal tower, in sequence. Consider states where
k ∈ {1, . . . , n − 3} blocks (namely, blocks bn−k, . . . , bn−1) are not yet in goal
position and not held by the robot arm. As discussed for the first phase,
there are Bk possible arrangements for these blocks. Moreover, there are two
possibilities for the status of the robot arm; it is either free, or it holds block
bn−k−1.

⇒ 2
∑n−3
k=1 Bk = 2

∑n−3
k=0 Bk − 2 states.

There are only two more possible states in an optimal plan: The goal state
itself, and the state just before the goal state where bn−1 is held by the robot
arm. As discussed above, we do not count the goal state.

⇒ 1 state.

Summary By adding up the individual counts, we obtain a total count of

2 + 2

n−2∑
k=0

Bk +Bn−2 + 2

n−3∑
k=0

Bk − 2 + 1 = 4

n−3∑
k=0

Bk + 3Bn−2 + 1.

To get an impression of the rate of growth of N1(Tn), values for n =
2, . . . , 15 are shown in Fig. 9.4.
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n N1(Tn) n N1(Tn)
2 4 9 3748
3 8 10 17045
4 15 11 84626
5 32 12 453698
6 82 13 2605383
7 253 14 15924744
8 914 15 103071652

Figure 9.4: Lower bound of the number of expanded states in a Blocksworld
task Tn with heuristic error c = 1.

9.4 Empirical Results

We have seen that the h∗−c family of heuristics has surprisingly bad theoretical
properties in a number of common planning domains. This result immediately
prompts the question: can we observe this behavior in practice?

To answer this question, we have devised an algorithm to compute N c(T )
values and applied it to planning tasks from the IPC benchmark suite. One
obvious problem in computing these values is that they are defined in terms
of the perfect heuristic estimate of a state h∗(s), which usually cannot be
determined efficiently.

One possible way of computing N c(T ) is to completely explore the state
space of T , then search backwards from the goal states to determine the h∗(s)
values. However, generating all states is not actually necessary. Recall that we
are interested in N c(T ), which is the number of states s with g(s)+(h∗−c)(s) <
h∗(T ). Obviously, all these states are reachable within less than h∗(T ) steps
from the initial state. Furthermore, they must have a descendant which is a goal
state and has a depth of at most h∗(T )+c−1 (Fig. 9.5). Thus, for determining
h∗(s) for the relevant nodes s, it is sufficient to know all goal states until this
depth. For this purpose, we employ a consistent and admissible heuristic to
expand all nodes up to and including the f layer h∗(T ) + c− 1.

In summary, we use the following algorithm:

1. Perform an A∗ search with an arbitrary consistent, admissible heuristic
until a goal state is found at depth h∗(T ).

2. Continue the search until all states in layer h∗(T ) + c − 1 have been
expanded.

3. Determine the optimal goal distance h∗(s) within the explored part of
the search space for all expanded states s by searching backwards from
the detected goal states.

4. Count the states with g(s) + (h∗ − c)(s) < h∗(T ).

The outcome of the experiment is shown in Fig. 9.6. For all IPC tasks from
the domains considered, we attempted to measure N c(T ) for c ∈ {1, 2, 3, 4, 5}
using the technique outlined above. Instances within a domain are ordered by
scaling size; in cases where the IPC suite contains several tasks of the same
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Figure 9.5: Schematic view of the search space

size, we only report data for the one that required the largest search effort.
Results are shown up to the largest instance size for which we could reliably
complete the computation for c = 1 within a 3 GB memory limit. (Blank
entries for c > 1 correspond to cases where the memory limit was exceeded for
these larger values.)

For the Gripper domain and both Miconic variants, the theoretical worst-
case results are clearly confirmed by the outcome of the experiments. Even for
c = 1, run-time of the algorithm scales exponentially with instance size. The
data for Blocksworld and Logistics is less conclusive, but there appears
to be a similar trend (for Blocksworld, this is most pronounced for c = 5).

Extrapolating from the expansion counts in the figure, it appears unlikely
that a standard heuristic search approach can be used to solve Gripper tasks
of size beyond 10–12, or reliably solve Miconic tasks of size beyond 16–18.
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task h∗(T ) N1(T ) N2(T ) N3(T ) N4(T ) N5(T )
Blocksworld
04-1 10 10 10 16 16 29
05-2 16 28 28 72 72 162
06-2 20 27 27 144 144 476
07-1 22 106 106 606 606 2244
08-1 20 66 66 503 503 2440
09-0 30 411 411 3961 3961 21135
Gripper
01 11 125 125 246 246 246
02 17 925 925 1842 1842 1842
03 23 5885 5885 11758 11758 11758
04 29 34301 34301 68586 68586 68586
05 35 188413 188413 376806 376806 376806
06 41 991229 991229 1982434 1982434 1982434
07 47 5046269 5046269 10092510 10092510 10092510
Logistics (IPC 2000)
4-0 20 159 408 1126 1780 2936
5-0 27 459 2391 5693 14370 21124
6-0 25 411 2160 5712 14485 23967
7-1 44 17617 111756 427944 1173096
8-1 44 4843 27396 157645 558869
9-0 36 2778 15878 61507 183826 460737
10-0 45 10847
11-0 48 10495
Miconic-Simple-Adl
1-0 4 4 4 4 4 4
2-1 6 6 22 26 26 26
3-1 10 58 102 102 102 102
4-2 14 148 280 470 560 560
5-1 15 209 759 1136 1326 1399
6-4 18 397 948 1936 2844 3436
7-4 23 3236 7654 11961 15780 16968
8-3 24 1292 5870 15188 25914 34315
9-3 28 20891 39348 39348 39348 39348
10-3 28 6476 16180 65477 129400 224495
11-3 32 58268 130658 258977 399850 497030
12-4 34 83694 181416 541517 970632 1640974
13-2 40 461691 947674 2203931 3443154 4546823
Miconic-Strips
1-0 4 4 4 4 4 4
2-1 7 18 29 34 37 37
3-1 11 70 138 195 241 251
4-4 15 166 507 814 1182 1348
5-4 18 341 1305 2708 4472 5933
6-4 21 509 2690 7086 13657 21177
7-4 25 3668 13918 32836 61852 95548
8-3 28 4532 35529 97529 205009 349491
9-3 32 25265 114840 321202 700640 1239599
10-3 34 8150 97043 423641 1151402 2505892

Figure 9.6: Empirical results for IPC benchmark tasks.





10
Combining Heuristic Estimators for

Satisficing Planning

Heuristic forward search is also one of the most popular approaches in satisfic-
ing classical planning. However, the analysis in the previous chapter for optimal
planning does not carry over to the satisficing case because the problems in
the former case do not arise from finding a plan but merely from proving its
optimality.

In the last decade, researchers have put a lot of effort into the develop-
ment of new heuristics so that a wide range of heuristics are available these
days. None of these heuristics consistently outperforms all others across all
benchmark domains. Therefore, it appears worthwhile to use the information
of several heuristics during search instead of only one.

In the case of optimal planning, which most commonly means using A∗ with
an admissible heuristic, arbitrary admissible estimates can simply be combined
by using their maximum. The resulting heuristic dominates all individual ones,
which usually translates into a reduction of the state evaluations required to
solve the task. Often, even better combinations are possible: using action-
cost partitioning methods (Haslum et al., 2005; Katz and Domshlak, 2010), we
can add heuristic estimates in an admissible way, dominating their maximum.
The main drawback of these techniques is that efficiently finding good cost
partitionings remains a widely open research problem despite significant recent
progress (Katz and Domshlak, 2008).

In the case of satisficing planning, where greedy best-first search is the
most common approach, the setting for combining heuristic values is quite
different: the heuristics do not have to estimate the true distance to the goal in
any quantitatively meaningful way, since greedy search only cares about their
relative values: states further from the goal should receive larger estimates
than states close to the goal. Since there is no need to respect a criterion
like admissibility, we can combine estimates of several heuristics into a single
numeric value in essentially arbitrary ways.

Combining several heuristic estimates in a satisficing planner can poten-
tially lead to large performance and scalability improvements. Figure 10.1
shows a striking example of this. The graphs show the runtime, in seconds, for
solving instances of the IPC 2000 Assembly domain using the FF heuristic hFF
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Figure 10.1: Runtimes in the Assembly domain. (Ordering of tasks does not
correspond to the original benchmark suite.)

(Hoffmann and Nebel, 2001), the causal graph heuristic hCG (Helmert, 2004),
and the context-enhanced additive heuristic hcea (Helmert and Geffner, 2008).
None of the individual heuristics solves more than 15 instances. However, their
combination (labeled “Alternation” in the figure) solves 29 out of 30 instances,
including 13 instances not solved by any of the three heuristics it is based on.

The question, then, is how to combine the individual heuristic estimates to
achieve the best possible performance. One obvious way to do so, by analogy to
optimal planning, is to take their maximum or sum. However, for the Assembly
example this does not turn out to be very useful: none of the heuristics that can
be obtained by taking two or three of the candidate heuristics and computing
their maximum or sum solves more than 13 of the 30 tasks within usual time
and memory limits (30 minutes, 2 GB), so they are all outperformed by the
FF heuristic used alone.

An alternative idea is to use weighted sums, but this immediately raises
the question of how to determine suitable weights. In the given domain, we
experimented with all 30 combinations of the form h(s) = p·h1(s)+(1−p)h2(s)
where p ∈ {0, 0.1, 0.2, . . . , 1.0} and h1 and h2 are two heuristics from the given
set. None of these combinations improves over the basic FF heuristic. It might
be the case that better results could be obtained by using weighted sums of
all three heuristics, but then the space of possible weights quickly explodes
combinatorially.

So clearly, there are cases where maximization or summation is not the
best way to combine heuristics for satisficing planning. Indeed, in Fig. 10.1,
the Alternation method is vastly superior. This method is not new: it was in-
troduced by Helmert (2006) under the name “multi-heuristic best-first search”
(a term which we avoid in this thesis because it applies to any of the methods
we discuss), and it is one of the ingredients underlying the Fast Downward
(Helmert, 2006) and LAMA (Richter and Westphal, 2010) planners. However,
neither Alternation nor any other method for combining heuristic estimates
in satisficing planners has ever been evaluated in a principled way, and from
the literature it is completely unclear if, to what extent, and why Alternation
or any other method for combining heuristic values leads to better planner
performance than just using a single heuristic.

In the following, we attempt to rectify this situation by giving detailed
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Algorithm 2 Greedy best-first search (with duplicate detection)

1 open← new open-list
2 open.insert(sinit)
3 closed← ∅
4 while not open.empty() do
5 s← open.remove-best()
6 if s /∈ closed then
7 closed← closed ∪ {s}
8 if is-goal(s) then
9 return extract-solution(s)

10 foreach s′ ∈ successors(s) do
11 if not is-dead-end(s′) then
12 open.insert(s′)

13 return unsolvable

descriptions of several methods for combining heuristic estimates, providing a
thorough experimental study on common planning benchmarks, and conduct-
ing targeted experiments in artificial search spaces to illustrate the benefits of
using more than one heuristic for satisficing search.

One observation that motivates several of these methods is that maximiza-
tion and summation are not very robust approaches: the overall heuristic can
become wildly misleading as soon as a single estimator provides bad values. We
will describe several methods that do not share this weakness and show that
they convincingly outperform the non-robust approaches on typical planning
benchmarks.

The rest of this chapter is structured as follows: after briefly introducing
the greedy best-first search algorithm in the next section, we introduce sev-
eral combination methods in the following four sections. We then shed some
light on connections between these methods, followed by an extensive empirical
evaluation and conclusion.

10.1 Greedy Search with Multiple Heuristics

All search methods presented in this chapter are variations of greedy best-first
search (Pearl, 1984), differing only in the choice of which state to expand next.
Greedy best-first search is a well-known algorithm, so we only present it briefly
to introduce some terminology (Algorithm 2).

Starting from the initial state, the algorithm expands states until it has
found a path to a goal state or until it has completely explored the state space.
Expanding a state means generating its successors and adding them to the open
list. The open list plays a very important role because its remove-best operation
determines the order in which states are expanded. In single-heuristic search,
it is usually simply a min-heap ordered by s 7→ h(s), where s is a search state
and h : s→ N0 ∪ {∞} estimates the length of the shortest path from s to any
goal state. Hence, states with a low estimate are expanded first. If states share
the same estimate, they are usually ordered according to the FIFO principle.
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Figure 10.2: Buckets of an open list with heuristics h1 and h2. Each box rep-
resents a bucket that collects all entries with a certain combination of heuristic
estimates, e. g., the top-left box would contain all entries s with an estimate
of h1(s) = 1 and h2(s) = 6. White boxes indicate non-empty buckets, gray
buckets are empty. The symbols within some of the buckets are explained later.

This chapter deals with the question of how to use the estimates of multi-
ple heuristics h1, . . . , hn within this algorithm. In principle, the methods we
present only differ in which states are selected by the remove-best operation.

We can see the open list as a collection of buckets (Fig. 10.2), each associated
with an estimation vector (e1, . . . , en) and containing all open states s with
(h1(s), . . . , hn(s)) = (e1, . . . , en). (We assume that is-dead-end(s) evaluates to
true iff any of the heuristic estimators regards s as a dead end by mapping it to
∞, so estimates ei of states in the open list are always finite.) All combination
approaches we present can be understood as first selecting a bucket to expand
a state from, and then picking a state from this bucket according to the FIFO
principle. Hence, an approach can be largely characterized in terms of its
candidate buckets, i.e., the buckets that are possible candidates for expansion
at each step.

For example, the candidate buckets for the maximum method are exactly
those where max {e1, . . . , en} is minimized. In Fig. 10.2, this means that either
the bucket with estimation vector (4, 2) or the bucket with estimation vector
(4, 4) is chosen. Which of these buckets is actually selected again depends on
FIFO tie-breaking: the bucket with the “oldest” state is given preference. Of
course, an actual implementation of the method should not maintain separate
buckets for each estimation vector, but rather use a one-dimensional vector of
buckets indexed by max {e1, . . . , en}.

10.2 Maximum and Sum

The first combination methods we discuss are the already mentioned maximum
and sum approaches. The candidate buckets for the maximum approach are
those which minimize max {e1, . . . , en}, and the candidate buckets for the sum
approach are those which minimize e1 + · · ·+ en. In the example of Fig. 10.2,
these buckets are marked with an M for the maximum approach and S for the
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sum approach. Among all states in these buckets, the oldest one is expanded
first.

The maximum and sum methods are very easy to implement: since they
reduce each estimation vector to a single numeric value, a standard single-
heuristic open list can be used. However, we will later see in our experiments
that maximum and sum are among the weakest methods for combining heuris-
tic estimates and rarely offer a compelling advantage over using one of the
component heuristics individually. One explanation for this is that they are
easily misled by bad information. If one of the component heuristic provides
very inaccurate values, then these inaccuracies affect every single search de-
cision of the sum method, because each heuristic directly contributes to the
final estimation. For the maximum method, large inaccurate values from one
heuristic can completely cancel the information from all other heuristics.

Of course, one can try to balance a disproportionate influence of a single
heuristic by applying weights to the different estimates, but it is not clear how
reasonable weight values can be determined automatically, or if weighting can
help overcome the fundamental problems of these methods at all. One approach
we experimented with is to calculate weighted sums with weights determined
from the estimates of the initial state, trying to “balance” the contribution
of each heuristic. However, this approach did not show any positive effect
on planning benchmarks. One possible explanation for this is that such a
normalization not just levels the influence of bad estimates, but also of good
estimates.

Because initial experiments were discouraging and it is not clear how to
assign reasonable weights, our empirical evaluation does not include the case
of weighted sums. However, we do report experiments with the unweighted sum
and maximum methods, which serve as baselines for the other approaches, to
be introduced next.

10.3 Tie-breaking

Our experience with the maximum and sum methods suggests that aggregating
heuristic estimates into one value tends to dilute the quality and characteristics
of the individual heuristics. Therefore, in the following we concentrate on
methods that preserve the individual estimates. One obvious idea is to rank
the heuristics by importance and use the less important ones only for breaking
ties. With this approach, search is mainly directed by one good heuristic and
only if there are several states with the same minimum estimate, the other
heuristics are successively consulted to identify the most promising state. If
two states have exactly the same estimation vector, they are again expanded
according to the FIFO principle.

Tie-breaking always selects a single candidate bucket. In the example of
Fig. 10.2, this bucket is labeled as T1 for the case where h1 is the more im-
portant heuristic and h2 is used to break ties, and it is labeled as T2 for the
opposite case.

We considered two implementations of the tie-breaking method. One nat-
ural approach is to calculate only the main heuristic and to order the open list
according to these estimates. Upon each remove-best operation, we check if
several states share the same minimum estimate. Only then do we successively
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calculate the tie-breaking heuristics, until we have identified a single state to
expand. The advantage of this approach is that a heuristic estimate for a
tie-breaking heuristic is never computed if it is never needed.

However, in typical planning tasks the range of encountered heuristic values
is much smaller than the size of the search frontier, and there are usually
many states with the same estimate of the main heuristic. Therefore, the
disadvantage of this approach is that we must perform the same tie-breaking
calculations again and again, which is costly even if heuristic values are cached
after their first computation. While additional data structures may reduce the
effort of these recomputations, this causes overhead, and it is not clear if it is
worth the additional implementation complexity.

For this reason, we use a different implementation of tie-breaking: for each
state inserted into the open list, we calculate the estimates of all heuristics and
directly sort it to the appropriate position. With this approach, we can again
implement the open list as a min-heap, ordering states lexicographically by
their estimate vector. Our experimental data suggests that the cost of always
computing all heuristics is not problematic at least in the cases we consider.
(One important mitigating factor is that in our case, the main heuristic is more
computationally intensive than the tie-breaking heuristics and hence tends to
dominate overall runtime.)

Note that both implementations differ only in the time that is needed for
inserting and removing states from the open list and in the space requirements
for the open list data structure, but behave equivalently in all other aspects.
In particular, there is no difference in the number of expanded states.

A major drawback of tie-breaking is that we have to define an importance
ranking of the heuristics. For our experiments, we decided to order the heuris-
tics according to their (empirical) quality in single-heuristic search. It is appar-
ent that combining multiple heuristics via tie-breaking does not fully exploit
the available information: we only use the additional estimates if the main
heuristic does not distinguish two states. If it does, even if it performs very
badly, we ignore the estimates of the additional heuristics. Hence, the approach
is clearly not robust against bad estimates of the main heuristic.

Finally, we note that unlike the maximum and sum approaches, tie-breaking
is unaffected by changing the “scale” of the component heuristics. Increas-
ing estimates by an additive or multiplicative constant or applying any other
strictly increasing transformation to a heuristic function does not affect the
choices of the tie-breaking method. We see this as a strength rather than a
weakness because it offers some resilience against systematic errors in heuristic
estimates.

10.4 Selecting from the Pareto Set

We now present a method that, like tie-breaking, is robust to transformations
of heuristic estimates, but does not require us to arbitrarily favour one heuristic
over another. Such a method can be derived from the concept of Pareto opti-
mality that is well-known in economics and game theory. Pareto optimality has
been successfully applied in multi-objective search (Stewart and White, 1991;
Tung and Chew, 1992), where the goal is finding a state that is good in terms
of multiple objectives whose measures cannot be meaningfully compared.
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In order to introduce this method, we need to define the notion of domi-
nance. We say that a state s dominates a state s′ if all heuristics consider s at
least as promising as s′ and there is at least one heuristic that strictly prefers
s over s′.

Definition 29. A state s dominates a state s′, written s < s′, with respect to
heuristics h1, . . . , hn if hi(s) ≤ hi(s

′) for all i ∈ {1, . . . , n} and hi(s) < hi(s
′)

for at least one heuristic.

It appears reasonable to require that if state s dominates s′, then s should be
expanded before s′. Hence, we are interested in the Pareto set of nondominated
states, defined as

nondom
def
= {s ∈ open | @s′ ∈ open with s′ < s}.

In the Pareto approach, the candidate buckets are exactly those buckets
whose states belong to nondom. In the example in Fig. 10.2, these buckets are
labeled with P. We see that the set includes many of the candidate buckets of
the previous approaches, but not all of them. In particular, bucket (4, 4) which
is a candidate for the maximization approach is not Pareto-optimal because it
is dominated by (4, 2).

We experimented with two variants of the Pareto approach. Both variants
first randomly select one of the candidate buckets and then expand the oldest
state in that bucket. The two variants differ in how the random choice of
buckets is performed: in the uniform approach, each candidate bucket is chosen
with equal probability, while in the weighted approach each candidate bucket
is chosen with probability proportional to the number of states it contains.

Note that all previous combination methods define a total preorder on the
states. This is somewhat restricting because estimate vectors where neither
dominates the other cannot always be reasonably compared. However, algo-
rithmically it is very useful because it allows implementing the open list as a
min-heap. This is not possible in the Pareto approach because the preorder is
not total. For example, in a given situation the nondominated buckets might
have associated estimate vectors of (2, 4, 4) and (4, 4, 2), so that the oldest
states with these heuristic profiles, say s1 and s2, are candidates for expansion.
Now assume that we insert a new state with heuristic profile (2, 4, 3). This new
states dominates s1 but not s2, so one of the previously “best” states remains
a candidate for expansions, while another does not. Such effects complicate
the open list implementation for the Pareto approach, and therefore this ap-
proach can carry a much larger search overhead than the others. Moreover,
this overhead quickly increases with the number of heuristic estimators.

On the positive side, the Pareto method has none of the disadvantages of the
previous approaches: we neither have to aggregate estimates in a non-robust
way, nor do we have to fix a magic order of the heuristics. Instead, we use all
available ordering information, and whenever we prefer a state over another
one, we can theoretically justify this decision.

10.5 Alternation

The last approach we want to discuss is the alternation method. Like the Pareto
method, it avoids aggregating the individual heuristic estimates and makes
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equal use of all heuristics. The method gets its name because it alternates
between heuristics across search iterations. The first time a state is expanded,
it selects the oldest state minimizing h1. On the next iteration, it selects
the oldest state minimizing h2, and so on, until all heuristics have been used.
At this point, the process repeats from h1. The candidate buckets for the
alternation method are those whose estimate vectors minimize at least one
component (labeled with A in Fig. 10.2).

As mentioned earlier, the alternation method was originally proposed by
Helmert (2004, 2006) under the name multi-heuristic best-first search. It is
built on the assumption that different heuristics might be useful in different
parts of the search space, so each heuristic gets a fair chance to expand the
state it considers most promising. One heuristic might provide good guidance
in one part of the search space, but be weak in another. A second heuristic
might have its strong and weak regions distributed differently in the search
space. By alternating between the heuristics, it is always possible to escape a
plateau as long as at least one heuristic can give good guidance. There are two
important differences between alternation and the Pareto approach:

• Alternation only expands states that are considered most promising by
some heuristic. The Pareto approach can also expand states which offer
a good trade-off between the different heuristics, such as bucket (4, 2) in
Fig. 10.2.

• For states that are most promising to the currently used heuristic, the
alternation method completely ignores all other heuristic estimates. The
Pareto approach also attempts to optimize the other heuristics in such
situations. For example, it would not consider bucket (2, 6) in Fig. 10.2
because it is dominated by bucket (2, 5).

Alternation can be efficiently implemented by maintaining a set of min-
heaps, one ordered by each heuristic. The approach has been used by several
successful planners, including Fast Downward (Helmert, 2006), using the causal
graph and FF heuristics, and LAMA (Richter and Westphal, 2010), using the
FF and landmark heuristics.

10.6 Combining Alternation and Tie-breaking

Before we move to the experimental evaluation, we observe that with the ap-
proaches we presented, the design space for heuristic combination methods is
far from exhaustively covered. Indeed, one natural idea is to combine several
of the methods we have introduced.

One particularly interesting case is the combination of the alternation and
tie-breaking methods: one of the major drawbacks of tie-breaking is that we
must define a ranking of the heuristics. We can try to escape this problem
by alternating between all possible rankings. Combining alternation and tie-
breaking in this fashion can be seen as a compromise between the pure alter-
nation method and the Pareto approach: the combined approach only expands
states deemed most promising by some heuristic, a property that it shares with
alternation and that distinguishes it from the Pareto approach. However, like
the Pareto method and unlike alternation, it does not base its decision on one
heuristic alone, as states considered by tie-breaking are always Pareto-optimal.
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By restricting itself to Pareto-optimal states, this combination method re-
tains many of the characteristics of the Pareto approach. However, unlike that
method, it can be implemented quite efficiently if the number of heuristics is
not too large – for any fixed number of heuristics, the overhead compared to
single-heuristic search is bounded by a constant factor.

10.7 Experiments

We now turn to the central questions of this chapter: is the use of multiple
heuristics for satisficing best-first search actually beneficial? And if so, which
combination method performs best? To answer these questions, we conducted
two experiments. In the first experiment, we integrated the different combi-
nation methods into a state-of-the-art planning system, to investigate their
effect on typical planning benchmarks. In the second experiment, we stud-
ied the behavior of the different methods on artificial search spaces, to get a
cleanroom perspective of how factors like heuristic quality impact their relative
performance.

We conducted all experiments on computers with 2.3 GHz AMD Opteron
CPUs, setting a timeout of 30 minutes and a memory limit of 2 GB.

Experiment on IPC Benchmarks

In our first experiment, the benchmark suite consists of all planning tasks from
the first five international planning competitions (IPC 1998–2006). We report
results on coverage (number of solved instances), solution quality, speed, and
heuristic guidance (number of state expansions). We consider three different
heuristic estimators:

• hFF: the FF heuristic (Hoffmann and Nebel, 2001),

• hCG: the causal graph heuristic (Helmert, 2006), and

• hcea: the context-enhanced additive heuristic (Helmert and Geffner, 2008).

We evaluate each approach on all two- and three-element subsets of these
heuristics. For the tie-breaking approach we fixed the ranking of the heuristics
as hcea � hFF � hCG (so hcea is given the highest priority) based on the cov-
erage these heuristics achieve on the benchmark set in single-heuristic search.
For the Pareto method we only report results for the weighted approach, be-
cause it performs slightly better than the uniform approach and the difference
between these variants is low compared to the difference to other methods.

Our implementation is based on the Fast Downward planning system (Helmert,
2006), which we extended with implementations of the different combination
approaches. As we are interested in measuring the impact of heuristic combi-
nations, not other search enhancements, we did not use the preferred operator
information provided by the heuristics. We have run experiments both with
Fast Downward’s deferred variant of greedy best-first search and with the text-
book (“eager”) algorithm (Richter and Helmert, 2009), with virtually identical
results. Here, we report on the more standard eager algorithm. Results for
lazy search are reported in a workshop paper (Röger and Helmert, 2009).
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We first present the overall results, shown in Table 10.1. The table re-
ports scores according to four metrics: coverage, (solution) quality, speed, and
(heuristic) guidance. All scores are in the range 0–100, where larger values
indicate better performance. For each metric, the score is computed by as-
signing a value between 0 and 100 to each task, then averaging the scores for
the tasks of each domain to compute a domain score, and finally averaging the
domain scores to compute an overall score. Unsolved tasks are always scored
as 0, while the score for solved tasks depends on the metric:

• Coverage: Solved tasks receive a score of 100. This metric corresponds
to the probability (in percent) that the approach solves a “typical” bench-
mark task.

• Quality: Solved tasks receive a score of 100 · c∗/c, where c is the cost of
the generated solution and c∗ is the cost of the best solution generated
by any of the approaches.

• Speed: Tasks solved within one second receive a score of 100, and tasks
that require the full 1800 seconds receive a score of 0. Between these
extremes, scores are interpolated logarithmically, so that doubling the
runtime decreases the score by about 9.25.

• Guidance: Tasks solved within 100 state expansions receive a score of
100, and tasks solved with more than 1,000,000 expansions receive a score
of 0. Between these extremes, scores are interpolated logarithmically, so
that doubling expansions decreases the score by about 7.53.

We now turn to the interpretation of the results of Table 10.1.

Comparison between combination approaches. There is a clear clas-
sification of the different combination methods into three groups.

Alternation generally performs best: it gives the best results in terms of
coverage and quality on all four heuristic sets, and is best in terms of speed
and guidance in all cases except for one where its combination with tie-breaking
and the Pareto approach are slightly better.

Alternation combined with tie-breaking and the Pareto method perform
similarly to each other and always outperform the remaining approaches in
terms of speed and guidance. In terms of coverage and quality, the maximum
and sum approaches sometimes obtain comparable results.

The remaining three techniques, maximum, sum and tie-breaking, perform
quite similarly to each other and are clearly worst overall. In terms of coverage,
speed and guidance, the sum method appears to slightly outperform the other
two approaches; for quality, sum and maximum are too close to each other
to pick a winner. The tie-breaking method appears to be weakest overall. In
particular, it is almost always the worst method in terms of coverage (except for
the combination of all three heuristics where the maximum method performs
worse).

Comparison to single-heuristic methods. Another clear outcome of
the experiment is that using multiple heuristics can give considerable benefits,
especially with the alternation method. For any set of heuristics and any of
the four metrics, the alternation method improves the performance over the
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Coverage Quality Speed Guidance

hcea 74.62 68.67 65.27 65.65

hFF 73.85 70.55 66.81 64.07

hCG 72.66 65.36 64.16 60.43

hcea, hFF

Maximum 72.69 67.26 62.15 64.02

Sum 73.75 68.42 63.75 *65.67

Tie-breaking 72.44 67.14 62.90 64.67

Pareto *76.20 *70.71 66.32 *68.90

Alternation *77.95 *73.70 *67.84 *70.14

Alternation-TB *75.42 70.21 66.23 *68.48

hFF, hCG

Maximum *74.76 68.76 65.29 *65.08

Sum *75.01 67.99 65.41 *65.35

Tie-breaking 72.59 66.13 64.66 *64.41

Pareto *74.93 67.84 65.87 *66.19

Alternation *78.73 *73.28 *69.22 *69.28

Alternation-TB *74.75 67.45 66.06 *66.18

hcea, hCG

Maximum 74.06 67.95 63.63 65.51

Sum *74.76 67.70 64.12 *65.67

Tie-breaking 73.78 67.41 63.36 64.99

Pareto 74.52 67.70 64.48 *66.52

Alternation *75.20 *69.18 64.42 *66.39

Alternation-TB 74.58 67.79 64.59 *66.59

hcea, hFF, hCG

Maximum 72.21 66.54 61.13 63.71

Sum 73.47 67.52 62.98 65.24

Tie-breaking 72.49 66.95 61.90 64.34

Pareto *76.29 70.16 66.01 *69.18

Alternation *79.80 *74.62 *68.56 *71.91

Alternation-TB *76.05 70.15 65.83 *69.16

Table 10.1: Overall result summary. The best combination method for a given
set of heuristics and metric is highlighted in bold. Entries marked with a star
indicate results that are better than all respective single-heuristic approaches.

best single heuristic from the set, with only one small exception (speed for the
combination of hcea and hCG).

Indeed, adding more heuristics is almost universally a good idea for the
alternation method in our experiment. There are nine ways to choose a single
heuristic or two-heuristic set and a new heuristic to add, and there are four
metrics to measure. In 34 of these 36 cases, the marginal contribution of adding
the new heuristic is positive.

For the Pareto method and the combination of alternation and tie-breaking,
the comparison to single-heuristic search gives somewhat mixed results. While
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both approaches lead to better results in terms of coverage (except for the
combination of hcea and hCG where they perform slightly worse) and guidance,
their results in terms of quality and speed are worse than those of the best
individual heuristics.

For the maximum and sum methods, it is hard to argue that they offer any
compelling advantage over single-heuristic search, and the tie-breaking method
is clearly not worth using in this setting. It consistently performs worse on all
metrics than just using the main heuristic on its own, with only one exception.

Domain hcea hFF hCG Max. Sum Tie-br. Pareto

Airport –3 +7 +18 +2/–1 +3/–2 +7 +6

Assembly +20 +15 +24 +20 +20 +20 +14

Depot +2 –1 +3/–1 +2 +3/–1 –2

Driverlog +1 +1 +1 +2 +1 +2 +2

FreeCell +1/–1 +3/–2 +10/–1 +4/–1 +3/–1 +5 –1

Grid +1 +1 +1 +1 +1

Logistics-1998 –4 +4 –4 –1

Miconic-FullADL –1 +4/–1 +2 –1 +1/–1 –1 +1

MPrime +8 –1 +6 –1

Mystery +1 +3/–1 +1 –1

Openstacks +5 +4 +5 +5 +5

OpticalTelegraphs +3 +2

Pathways +5 +7 +4 +5 +6 +5 +5

Pipesw.-NoTank. +13 +7 +15/–1 +14 +12 +12 +9/–1

Pipesw.-Tankage +4/–1 +4/–3 +7/–3 +4 +4/–1 +5/–2 +2/–2

PSR-Large –2 +1/–1 –2 +1 +3 +3 +2

PSR-Middle +1 +1 +1

Rovers +7 +5 +7 +7 +8 +8 +7

Satellite –3 +1 –9

Schedule +9 +3/–12 +9 +9 +9 +9 +9

Storage +2 –1 +1 +2 +2

TPP +3/–4 +3 +1 +3 +3 +5 +2/–4

Trucks +2 +4/–1 +2 +1/–1

Total +74/–19 +79/–22 +114/–23 +88/–3 +84/–6 +90/–4 +63/–13

Table 10.2: Tasks solved by Alternation compared to single heuristics and other
combination approaches. Entry +x/−y means that Alternation solves x tasks
not solved by the other approach and fails to solve y tasks solved by the other
approach. Domains where all methods solve the same set are omitted. All
combination methods use all three heuristics.

Coverage details. We have established that we obtain the best results
when using the alternation method applied to all three heuristics. Hence, we
conclude our discussion of the planning experiment with some detailed data
for this particular approach, in order to see whether its benefits are limited to
a few benchmark domains or distributed more evenly.

Firstly, we remark that using the same nonparametric test that Hoffmann
and Nebel (2001) employ in their comparison of FF and HSP, the improvement
of coverage of the alternation method compared to any of the other combination
methods or individual heuristics is statistically significant at a level of p ≤
0.001. (The same is true for the use of alternation with two heuristics, except
for the combination of hcea and hCG, where the significance is lower.)

Secondly, to provide some more detail Table 10.2 reports, for all IPC 1998–
2006 benchmark domains, in which ways the set of tasks solved by the alterna-
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tion method differs from other approaches. We compare to all single heuristics
and to all pure combination methods that use the same (full) set of heuristics.
We omit the comparison to the combination of alternation and tie-breaking,
for which the results are very similar to the Pareto approach. The table shows
that the improvements are spread over many domains. Moreover, there are
very few cases where the alternation method fails to solve a substantial num-
ber of tasks solved by one of the single heuristics, indicating that it is indeed
very robust.

There are only five domains in which any of the single heuristics outper-
forms the alternation technique by more than one instance, and all of these
are (perhaps not coincidentally) among the IPC domains with the largest in-
stances. There are only three domains where the approach performs worse
than the average of the three heuristics it combines, Logistics-1998, PSR-Large
and Satellite. These are domains where heuristic guidance is generally near-
perfect, but raw search speed matters a lot due to the size of the tasks. On
the largest Satellite instances, even a perfect heuristic must evaluate several
hundred thousand states because optimal plan length is in the range of 300–500
steps and the branching factor exceeds 1000.

Controlled Experiments

In the second set of experiments, we investigate the behavior of the combination
approaches in a manually designed search space. The aim of the experiments is
to study some aspects of the algorithms in a controlled way. In particular, we
are interested in how heuristic quality affects the performance of the algorithms
and how the algorithms behave on instances of scaling size. We use a tree-
shaped infinite search space with uniform branching, following the controlled
experiments in the evaluation of preferred operators and deferred evaluation
by Richter and Helmert (2009)1.

Every state is characterized by a single value, its approximate goal distance
(agd), which defines the typical distance to the goal. States with an agd of
0 are goal states. In the first set of experiments, all initial states have an
approximate goal distance of 75; in the second set, we vary the agd of initial
states in the range 50–500. All states with agd n > 0 have 15 successors, whose
agd is chosen independently at random in such a way that on average, every
state has one successor closer to the goal (agd n − 1), ten successors at the
same distance to the goal (agd n), and four successors further away from the
goal (agd n+ 1).

Preliminary tests showed that greedy best-first search performs very poorly
on the artificial problems (and indeed, this algorithm is not complete for infinite
search spaces of this kind). Therefore, all experiments on artificial search spaces
used the weighted A∗ algorithm with a weight of 10 for the heuristics, which is
still quite greedy, but complete.

To control the quality of the heuristic, we use a family of heuristics hdev
that deviate by a factor 0 ≤ dev < 1 from the approximate goal distance. More
precisely, the estimate for a state with agd n is chosen uniformly from the range
[n(1− dev), n(1 + dev)], rounding down to a natural number.

1We thank Silvia Richter for making the code for the controlled experiments available to
us.
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Figure 10.3: Experiments in an artificial search space. In panels (a)–(c), the
quality of one heuristic is fixed while the quality of the second heuristic varies.
Panel (d) shows how the approaches scale with the size of the search space.
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In addition to the runtime and memory limits, we aborted all runs that
generated more than 107 states.

Influence of heuristic quality. In the first experiment we examine the
impact of heuristic quality on the performance of the different combination ap-
proaches. Figures 10.3(a)–(c) show the results for combinations of two heuris-
tics, where we fix the deviation of one heuristic and vary the deviation of the
other heuristic in the range 0.1–0.9. The graphs report the median number of
expansions based on 100 runs. (Other order statistics, such as the 25th or 75th
percentiles, produce very similar graphs.)

The alternation method provides the best guidance in wide parts of the
realistic settings where every involved heuristic has some deviation from the
real goal distance. As long as at least one heuristic is reasonably good, the
approach provides a clear advantage over single-heuristic search, as its graph
runs below both graphs of the involved heuristics. The only exception to this is
when one of the heuristics is really good, but even then the alternation method
demonstrates its robustness against bad estimates of the second heuristic.

The Pareto method shows similarly good robustness properties, but its guid-
ance is slightly worse than for alternation. Nevertheless, it still can have some
advantage over single-heuristic search. However, since we only measure the
number of expansions here, the graphs do not take into account the relatively
high per-state overhead of the approach.

Tie-breaking leads to almost identical results to the respective main heuris-
tic. One reason for this is that in the experiment setting the estimates deviate
symmetrically from the approximate goal distance. But even if we use the real
approximate goal distance for tie-breaking (Fig. 10.3(a): tie-breaking(hdev, h0)),
we can observe only a very low positive impact on the number of expansions.

The sum method can easily be misled by bad estimates of one heuristic,
even if the other heuristic provides almost accurate estimates. If both heuristics
have a similar quality, the sum method has some advantage in this experimental
setting: for each state, the two heuristics select randomly from the same range
around the (approximately) perfect estimate, so errors tend to cancel out. The
maximum method tends to do well when one heuristic is near-perfect, but is
among the worst methods in the more challenging settings (Fig. 10.3(b,c)).

Scaling behavior. Figure 10.3(d) explores the scaling behavior of the
different approaches. We use two heuristics with deviation factors 0.25 and 0.5
and vary the approximate goal distance of the initial state between 50 and 500.
The graph again shows the median number of expansions based on 100 runs.
To keep it legible, we omit the values for the tie-breaking approaches, which
are again almost identical to those of the respective main heuristics.

Alternation emerges as the clear winner of the comparison. Not only does
it solve almost all instances (for agd 500 it solves 97 of the 100 instances,
and for lower values it solves all of them), it also requires the lowest number
of expansions. It also offers consistent improvements over the results of the
better heuristic h0.25, unlike the other combination approaches.

The Pareto approach performs quite competitively in terms of expansions,
but times out on the harder instances: due to the wide spread of heuristic values
on these tasks and the weak correlation of the two component heuristics, the
number of estimate buckets to keep track of is very large, and the overhead for
maintaining the set of nondominated buckets grows with the square of the agd.
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The sum and maximum methods provide much worse guidance and exceed
the node limit on the harder instances.





11
Conclusion

In the first part of this thesis, we focused on the integration of Golog and
planning.

We make planning systems directly available to the Golog interpreter as a
kind of subsolver, building on previous work by Eyerich et al. (2006) who formu-
lated restrictions on the situation calculus that directly mimic the characteris-
tics of the planning language PDDL. However, it was entirely unclear which of
these restrictions are really necessary and which could safely be dropped. Our
contribution on the theoretical side is that we clarified exactly this question.

Indeed, not all original restrictions are required to preserve the same ex-
pressive power as PDDL and many results were not obvious at all, like for
example that the domain closure axiom can be dropped. However, we also
gained valuable insights from non-compilability results, revealing interesting
connections between features that are beyond the expressivity of PDDL.

The advantage of the positive results is that they directly define an algo-
rithm that allows to translate from basic action theories to PDDL and that
there is a trivial correspondence between the resulting plans and the action
sequences required by the Golog interpreter. Therefore, it is easily possible to
bring the theoretical results to a practical application.

Our empirical evaluation of the approach demonstrates how impressively
Golog systems can benefit from the integration of a planning system. Indeed,
it was almost impossible to find tasks that were solvable by the pure Golog
system but not entirely trivial for the system with an integrated planner.

The integration is designed in a way that allows to plug in arbitrary planning
systems that support the standard input language PDDL. This way, we can
always use the planning system that is best suited for the given application and
if there is a new and better planner on the market, we can make it available to
the Golog system within a minute of work.

In the second part of the thesis we focus on the actual planning problem
and its predominant approach – heuristic search.

We first have presented an analysis of heuristic search algorithms for optimal
sequential planning in some standard planning domains under the assumption
of almost perfect heuristics. Theoretical and empirical results show an expo-
nential cost increase as tasks grow larger. In many cases, such as the Gripper
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domain and a family of Miconic tasks, there is no significant difference in
node expansions between A∗ with an almost perfect heuristic and breadth-first
search.

We argue that this is not just a theoretical problem. There is a barrier to
the scaling capabilities of A∗-family algorithms, and current optimal heuristic
planners are pushing against it. To break the barrier, other ideas are needed.

One possible source of such ideas is the literature on domain-dependent
(optimal) search. For example, Junghanns and Schaeffer (2001) observe that
their Sokoban solver Rolling Stone only solves 5 out of 90 problem instances
from the standard benchmark suite when using only the basic heuristic search
algorithm with transposition tables. When coupled with other, domain-specific
search enhancements, the total number of solved problem instances increases
to 57 out of 90. Many of the techniques they present easily generalize to
domain-independent planning.

However, several of the search enhancements they consider would not im-
prove our analysis, which already makes a number of optimistic assumptions.
For example, their use of move ordering only helps in the last search layer,
which we optimistically ignored in our analysis. Their use of deadlock tables
to detect and prune states with infinite heuristic values cannot improve the
performance of our almost perfect heuristics, which by definition detect all
infinite-heuristic states reliably (otherwise the heuristic error of these states
would exceed the given constant). Other search enhancements, such as overes-
timation and relevance cuts, lose optimality or even completeness of the search
algorithm.

A few techniques remain that may reduce the numbers in our analysis.
These are mostly forward pruning techniques, which limit the set of allowed
interleavings of independent parts of the solution (e. g., tunnel macros). How-
ever, these techniques are the ones that are most Sokoban-specific, and find-
ing a widely useful generalization appears challenging. Some of these ideas
are closely related to the concept of partial-order reduction in model checking
(Valmari, 1989; Godefroid, 1996).

Several researchers in the planning community have picked up this line of
research since the first publication of our work in 2008:

The expansion core method (Chen and Yao, 2009; Xu et al., 2011) reduces
the search space of a planning task and can be cast (Wehrle and Helmert, 2012)
as an instance of strong stubborn sets (Valmari, 1989), which originally have
been introduced in the area of Petri nets. Wehrle et al. (2013) presented an
actual instantiation of strong stubborn sets that is as efficiently computable
as expansion core but provides a strictly higher pruning power. Wehrle and
Helmert (2014) generalize the strong stubborn set approach and examine sev-
eral instantiation strategies.

Stratified planning (Chen et al., 2009; Xu et al., 2011) is a recent transi-
tion reduction technique. However, it has been shown that its pruning power
is dominated by the much older commutativity pruning method (Haslum and
Geffner, 2000), which fixes the application order of commutative actions. Com-
mutativity pruning is in turn dominated (Wehrle and Helmert, 2012) by sleep
sets (Godefroid, 1996), which are known from model checking.

Move pruning (Burch and Holte, 2012) eliminates redundant operator se-
quences, but it is not yet clear how it can be effectively used with duplicate
pruning.
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One specific type of forward pruning that has been studied before in the
context of domain-independent planning is symmetry reduction (Fox and Long,
1999). For example, by detecting and exploiting the equivalence of the balls
of a Gripper task, we can easily solve arbitrarily large tasks in this domain
in low-order polynomial time. Recently, Pochter et al. (2011) proposed a suc-
cessful symmetry reduction technique based on automorphisms in the state
transition graph, which was extended by Domshlak et al. (2012b) to larger
symmetry classes. These techniques also proved to be useful for satisficing
planning (Domshlak et al., 2013).

Another approach that we deem to be promising that has not been thor-
oughly explored yet is problem simplification (Haslum, 2007). The main diffi-
culty in optimal sequential planning does not lie in finding the optimal plan;
it lies in proving that no shorter plan exists. Cutting down the number of
possibilities for “wasting time” by performing irrelevant actions may be a key
idea for this. Also the recent bounded intention planning (Wolfe and Russell,
2011) can be seen as work along these lines. It augments the planning task with
so-called intention variables, representing how the original variables should be
used or changed next. While the approach is interesting, it is currently only
applicable to unary SAS+ tasks, in which each operator affects a single vari-
able. So, problem simplification is a research area that still is wide open for
future work.

Beyond a certain point, only trying to improve a heuristic search algorithm
by refining its heuristic estimates is basically fruitless, and, indeed, several of
the recent non-heuristic techniques mentioned in this section lead to a much
more impressive progress than usually seen from heuristic improvements.

We therefore suggest to investigate such orthogonal performance enhance-
ments further to improve the scaling behavior of optimal planners – unless
one can reach the extremely ambitious goal of deriving perfect, and not merely
almost perfect heuristics, this way rendering the search trivial.

In another contribution, we have argued that the problem of combining
heuristic estimates for satisficing planning calls for different approaches than
the problem of combining heuristic estimates for optimal planning. We have
presented five different basic combination methods and compared them exper-
imentally.

The alternation method, which performs best in our experiments, is not
new: under the name multi-heuristic best-first search, it has been used in the
Fast Downward and LAMA planners. However, prior to our experiments, the
alternation method has never been systematically evaluated, and it was not
clear to what extent it contributes to the performance of these planners. More-
over, it has never been compared to other approaches for combining heuristic
estimates.

Our results show that aggregating different heuristic estimates into a single
numeric value through arithmetic operations like taking the maximum or sum
is not a good idea, even though it is the common approach for optimal planning.
Our explanation for this is that such aggregation methods are easily led astray
even if only one heuristic generates bad distance estimates. The Pareto and
alternation approaches are much more robust to such misleading estimates.

In future work, it would be interesting to see if even better results can be
obtained by including yet more estimators such as the additive (Bonet and
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Geffner, 2001) or landmark heuristic (Richter et al., 2008), or if performance
begins to degrade when four or more estimators are used. Another interest-
ing question is whether adaptive techniques that acquire information about
the heuristic during search (as for example done in the work by Domshlak
et al. (2012a) for optimal planning) can improve over the performance of the
alternation approach.



A
Appendix

A.1 Proof of Theorem 4

On page 36 we introduced Theorem 4 (without proof) as follows:

Theorem 4. If X �x Y with a modularity-preserving compilation and Y �x Z
with a modularity-preserving compilation then X �x Z with a modularity-
preserving compilation.

Proof. Let X ,Y, and Z be propositional planning formalisms and let f =
〈fξ, fi, fg, ti, tg〉 be a modularity-preserving compilation scheme from X to Y
and f ′ = 〈f ′ξ, f ′i , f ′g, t′i, t′g〉 be a modularity-preserving compilation scheme from
Y to Z. Consider an X -instance Π = 〈Ξ, I,G〉 with Ξ = 〈Σ,O〉. We can depict
the dependencies of the compilation schemes as follows, where the red lines
indicate that the respective function needs not to be computable in polynomial
time.

O Σ I G

O′ Σ′ I′ G′

O′′ Σ′′ I′′ G′′

fξ
fi

fg
tg

ti

f ′ξ
f ′i

f ′g
t′g

t′i

We define a compilation scheme f ′′ =
〈
f ′′ξ , f

′′
i , f

′′
g , t
′′
i , t
′′
g

〉
from X to Z that

is equivalent to the concatenation of f and f ′ via formalism Y. We will use
the notation from the picture to denote the components of the result of this
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concatenation. In addition, we will use fσ and fo do denote the first and
the second component of the result of fξ, i.e., fξ(Ξ) = 〈fσ(Ξ), fo(Ξ)〉 (for the
primed functions analogously).

The definition of f ′′ξ is trivial: we can define f ′′ξ (Ξ) := f ′ξ(fξ(Ξ)) because

〈Σ′′,O′′〉 = f ′ξ(〈Σ′,O′〉) = f ′ξ(fξ(〈Σ,O〉)).

Let li and lg be the modularity-preserving functions of f and l′i and l′g be
the modularity-preserving functions of f ′ as specified in Definition 23.

To see, how we can define the functions f ′′i and t′′i , we first show that we
can rewrite ti(Σ

′, I′) as

t′i(Σ
′, I′) = t′i(Σ

′, fi(〈Σ,O〉) ∪ ti(Σ, I))

(1)
= t′i(Σ

′ \ li(Σ), (fi(〈Σ,O〉) ∪ ti(Σ, I)) ∩ ̂(Σ′ \ li(Σ))) ∪

t′i(li(Σ), (fi(〈Σ,O〉) ∪ ti(Σ, I)) ∩ l̂i(Σ))

(2)
= t′i(Σ

′ \ li(Σ), fi(〈Σ,O〉)) ∪ t′i(li(Σ), ti(Σ, I))

(3)
= (t′i(Σ

′ \ li(Σ), fi(〈Σ,O〉)) ∩ l̂′i({})) ∪

(t′i(Σ
′ \ li(Σ), fi(〈Σ,O〉)) \ l̂′i({})) ∪

(t′i(li(Σ), ti(Σ, I)) ∩ l̂′i({})) ∪

(t′i(li(Σ), ti(Σ, I)) \ l̂′i({}))
(4)
= t′i({}, {}) ∪ (t′i(Σ

′ \ li(Σ), fi(〈Σ,O〉)) \ l̂′i({})) ∪

t′i({}, {}) ∪ (t′i(li(Σ), ti(Σ, I)) \ l̂′i({}))
(5)
= (t′i(Σ

′ \ li(Σ), fi(〈Σ,O〉)) \ l̂′i({})) ∪
t′i(li(Σ), ti(Σ, I))

with the following justifications:

(1) modularity of t′i,

(2) Definition 23: conditions 1 and 2,

(3) set operations,

(4) Definition 23: condition 5, and

(5) set operations.

Based on this, we define f ′′i and t′′i for Ξ = 〈Σ,O〉 as

f ′′i (Ξ) := f ′i(fξ(Ξ)) ∪ (t′i(fσ(Ξ) \ li(Σ), fi(Ξ)) \ l̂′i({})) and

t′′i (Σ, S) := t′i(li(Σ), ti(Σ, S)).
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This leads to the correct result which is easy to see by applying the previous
reformulation of t′(Σ′, I′) and using that Σ′ = fσ(Ξ):

I′′ = f ′i(〈Σ′,O′〉) ∪ t′i(Σ′, I′)

= f ′i(fξ(〈Σ,O〉)) ∪ (t′i(Σ
′ \ li(Σ), fi(〈Σ,O〉)) \ l̂′i({})) ∪

t′i(li(Σ), ti(Σ, I))

= f ′′i (Ξ) ∪ t′′i (Σ, I)

With an analogous argument, we can define f ′′g and t′′g for Ξ = 〈Σ,O〉 as

f ′′g (Ξ) := f ′g(fξ(Ξ)) ∪ (t′g(fσ(Ξ) \ li(Σ), fg(Ξ)) \ l̂′g({})) and

t′′g (Σ, S) := t′g(lg(Σ), tg(Σ, S)).

We have seen that the given definitions lead to the correct results but still
need to show that they define a modularity-preserving compilation scheme from
X to Z.

It is trivial that the functions preserve plan existence and satisfy the re-
strictions on the plan length because f and f ′ do so. It is also easy to check
that the place and time restrictions of compilation schemes are fulfilled. So it
is only left to show that the state translation function t′′i and t′′g are modular
and that the compilation is modularity-preserving. We start with the former:
Let Σ = Σ1 ∪ Σ2 and S ⊆ Σ̂. Then it holds for x = i, g that

t′′x(Σ, S) = t′x(lx(Σ), tx(Σ, S))

= t′x(lx(Σ1) ∪ lx(Σ2), tx(Σ, S))

= t′x(lx(Σ1), tx(Σ, S) ∩ l̂x(Σ1)) ∪

t′x(lx(Σ2), tx(Σ, S) ∩ l̂x(Σ2))

= t′x(lx(Σ1), tx(Σ1, S ∩ Σ̂1)) ∪ t′x(lx(Σ2), tx(Σ2, S ∩ Σ̂2))

= t′′x(Σ1, S ∩ Σ̂1) ∪ t′′x(Σ2, S ∩ Σ̂2).

In order to show that the compilation is modularity-preserving, we define
the modularity-preserving functions l′′i and l′′g of f ′′ as

l′′x(Σ) = l′x(lx(Σ)).

This definition satisfies the conditions of Definition 23 (for x = i, g):

1. t′′x(Σ, S) = t′x(lx(Σ), tx(Σ, S)) ⊆ ̂l′x(lx(Σ)) = l̂′′x(Σ)

2. Since f ′′x (Ξ) = f ′x(fξ(Ξ))∪(t′x(fσ(Ξ)\lx(Σ), fx(Ξ))\l̂′x({})) for Ξ = 〈Σ,O〉,
we can prove that f ′′x (Ξ) ∩ l̂′′x(Σ) = ∅ by showing that

f ′x(fξ(Ξ)) ∩ l̂′′x(Σ) = ∅, and

(t′x(fσ(Ξ) \ lx(Σ), fx(Ξ)) \ l̂′x({})) ∩ l̂′′x(Σ) = ∅.

a) As f ′ is modularity-preserving, f ′x(fξ(Ξ)) ∩ ̂l′x(fσ(Ξ)) = ∅. Since
lx(Σ) ⊆ fσ(Ξ), it holds that l′′x(Σ) = l′x(lx(Σ)) ⊆ l′x(fσ(Ξ)) and we

can conclude that f ′x(fξ(Ξ)) ∩ l̂′′x(Σ) = ∅.
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b) Since f ′ is modularity-preserving, it holds that

t′x(fσ(Ξ) \ lx(Σ), fx(Ξ)) ⊆ ̂l′x(fσ(Ξ) \ lx(Σ)).

As for the same reason l′x(fσ(Ξ)\ lx(Σ))∩ l′x(lx(Σ)) = l′x({}) is true,

we know that t′x(fσ(Ξ) \ lx(Σ), fx(Ξ)) ∩ l̂′′x(Σ) ⊆ l̂′x({}). Thus, we

can conclude that (t′x(fσ(Ξ) \ lx(Σ), fx(Ξ)) \ l̂′x({})) ∩ l̂′′x(Σ) = ∅.

3. For Σ1,Σ2 such that Σ = Σ1 ∪ Σ2 it holds that

l′′x(Σ) = l′x(lx(Σ))

= l′x(lx(Σ1) ∪ lx(Σ2))

= l′x(lx(Σ1)) ∪ l′x(lx(Σ2))

= l′′x(Σ1) ∪ l′′x(Σ2).

4. For Σ1 ∩ Σ2 = ∅ it holds that

l′′x(Σ1) ∩ l′′x(Σ2) = l′x(lx(Σ1)) ∩ l′x(lx(Σ2))

= l′x((lx(Σ1) \ lx(Σ2)) ∪ (lx(Σ1) ∩ lx(Σ2))) ∩
l′x((lx(Σ2) \ lx(Σ1)) ∪ (lx(Σ2) ∩ lx(Σ1)))

= l′x((lx(Σ1) \ lx(Σ2)) ∪ lx({})) ∩
l′x((lx(Σ2) \ lx(Σ1)) ∪ lx({}))

= (l′x(lx(Σ1) \ lx(Σ2)) ∪ l′x(lx({}))) ∩
(l′x(lx(Σ2) \ lx(Σ1)) ∪ l′x(lx({})))

= (l′x(lx(Σ1) \ lx(Σ2)) ∩ l′x(lx(Σ2) \ lx(Σ1))) ∪
(l′x(lx(Σ1) \ lx(Σ2)) ∩ l′x(lx({}))) ∪
(l′x(lx(Σ2) \ lx(Σ1)) ∩ l′x(lx({}))) ∪ l′x(lx({}))

= l′x({}) ∪ l′x({}) ∪ l′x({}) ∪ l′x(lx({}))
= l′x(lx({})) = l′′x({}).

5. For Σ′ ⊆ Σ (1) it holds that lx(Σ′) ⊆ lx(Σ) (2), so we can conclude (using
condition 5 of Definition 23) that

t′′x(Σ′, S ∩ Σ̂′) = t′x(lx(Σ′), tx(Σ′, S ∩ Σ̂′))

(1)
= t′x(lx(Σ′), tx(Σ, S) ∩ l̂x(Σ′))

(2)
= t′x(lx(Σ), tx(Σ, S)) ∩ ̂l′x(lx(Σ′))

= t′′x(Σ, S) ∩ l̂′′x(Σ′).

To sum up: If X �x Y with a modularity-preserving compilation scheme
f = 〈fξ, fi, fg, ti, tg〉 and Y �x Z with a modularity-preserving com-
pilation f ′ = 〈f ′ξ, f ′i , f ′g, t′i, t′g〉 then X �x Z with compilation f ′′ =
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〈f ′′ξ , f ′′i , f ′′g , t′′i , t′′g 〉 whose components are defined as

f ′′ξ (Ξ) = f ′ξ(fξ(Ξ)), (A.1)

f ′′i (Ξ) = f ′i(fξ(Ξ)) ∪ (t′i(fσ(Ξ) \ li(Σ), fi(Ξ)) \ l̂′i({})), (A.2)

f ′′g (Ξ) = f ′g(fξ(Ξ)) ∪ (t′g(fσ(Ξ) \ lg(Σ), fg(Ξ)) \ l̂′g({})), (A.3)

t′′i (Σ, S) = t′i(li(Σ), ti(Σ, S)), and (A.4)

t′′g (Σ, S) = t′g(lg(Σ), tg(Σ, S)), (A.5)

where li, lg, l
′
i, and l′g are the modularity-preserving functions of f and f ′,

respectively. Moreover, f ′′ is modularity-preserving with functions

l′′i (Σ) = l′i(li(Σ)) (A.6)

l′′g (Σ) = l′g(lg(Σ)). (A.7)
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Helmert, M., Mattmüller, R., and Röger, G. (2006). Approximation properties
of planning benchmarks. In Proceedings of the 17th European Conference on
Artificial Intelligence (ECAI 2006), pages 585–589.
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Röger, G., Pommerening, F., and Helmert, M. (2014). Optimal planning in the
presence of conditional effects: Extending LM-Cut with context splitting. In
Proceedings of the 21st European Conference on Artificial Intelligence (ECAI
2014). To appear.

Sacerdoti, E. D. (1975). The nonlinear nature of plans. In Proceedings of
the Fourth International Joint Conference on Artificial Intelligence (IJCAI
1975), pages 206–214.

Sandewall, E. (1994). Features and Fluents: A Systematic Approach to the
Representation of Knowledge about Dynamical Systems, volume 1. Oxford
University Press.

Savitch, W. J. (1970). Relationships between nondeterministic and determinis-
tic tape complexities. Journal of Computer and System Sciences, 4(2):177–
192.

Scherl, R. and Levesque, H. (1993). The frame problem and knowledge-
producing actions. In Fikes, R. and Lehnert, W., editors, Proceedings of
the Eleventh National Conference on Artificial Intelligence (AAAI 1993),
pages 689–695. AAAI Press.

Schiffel, S. and Thielscher, M. (2006). Reconciling situation calculus and flu-
ent calculus. In Proceedings of the Twenty-First National Conference on
Artificial Intelligence (AAAI 2006), pages 287–292. AAAI Press.

Schiffer, S., Ferrein, A., and Lakemeyer, G. (2012). Caesar – an intelligent
domestic service robot. Intelligent Service Robotics, 5(4):259–273.

Shanahan, M. (1995). A circumscriptive calculus of events. Artificial Intelli-
gence, 77(2):249–284.

Sievers, S., Ortlieb, M., and Helmert, M. (2012). Efficient implementation of
pattern database heuristics for classical planning. In Borrajo et al. (2012),
pages 105–111.

Sohrabi, S., Prokoshyna, N., and McIlraith, S. A. (2009). Composition via
the customization of Golog programs with user preferences. In Borgida,
A., Chaudhri, V., Giorgini, P., and Yu, E., editors, Conceptual Modeling:
Foundations and Applications, volume 5600 of Lecture Notes in Computer
Science, pages 319–334. Springer-Verlag.

Stewart, B. S. and White, III, C. C. (1991). Multiobjective A∗. Journal of the
ACM, 38(4):775–814.

Stockmeyer, L. J. and Meyer, A. R. (1973). Word problems requiring expo-
nential time. In Proceedings of the 5th Symposium on Theory of Computing,
pages 1–9. ACM.



160 Bibliography

Tam, K., Lloyd, J., Lespérance, Y., Levesque, H. J., Lin, F., Marcu, D., Re-
iter, R., and Jenkin, M. R. M. (1997). Controlling autonomous robots with
GOLOG. In Pollack, M. E., editor, Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI’97), pages 1–12. Morgan
Kaufmann.
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