
Landmarks Revisited

Silvia Richter
Griffith University, Queensland, Australia

and
NICTA, Queensland, Australia

silvia.richter@nicta.com.au

Malte Helmert and Matthias Westphal
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Freiburg, Germany

{helmert,westpham}@informatik.uni-freiburg.de

Abstract
Landmarks for propositional planning tasks are variable as-
signments that must occur at some point in every solution
plan. We propose a novel approach for using landmarks
in planning by deriving a pseudo-heuristic and combining it
with other heuristics in a search framework. The incorpo-
ration of landmark information is shown to improve success
rates and solution qualities of a heuristic planner. We fur-
thermore show how additional landmarks and orderings can
be found using the information present in multi-valued state
variable representations of planning tasks. Compared to pre-
viously published approaches, our landmark extraction algo-
rithm provides stronger guarantees of correctness for the gen-
erated landmark orderings, and our novel use of landmarks
during search solves more planning tasks and delivers con-
siderably better solutions.

Introduction
Landmarks for propositional planning were introduced by
Porteous, Sebastia and Hoffmann (2001) and later studied in
more depth by the same authors (Hoffmann, Porteous, and
Sebastia 2004). According to their definition, landmarks are
propositions that must be true at some point in every solu-
tion plan for a given planning task. For example, consider a
Blocksworld task where the goal is to have block A stacked
on block B. If some other block C is initially stacked on B,
then C must be unstacked from B and B must be clear at
some point for the goal to be achieved. Hence, clear(B) is
a landmark for this problem instance. From the definition,
goals are trivially landmarks, so on(A,B) is another land-
mark. We can also conclude an ordering on these two land-
marks, denoted by clear(B) → on(A,B), indicating that
block B must be clear before A can be stacked on it.

Hoffmann, Porteous and Sebastia propose an algorithm,
called LMRPG in the following, that extracts landmarks and
their orderings from the relaxed planning graph of a plan-
ning task. They use landmarks in a local search procedure,
called LMlocal in the following, which searches iteratively
for plans to the “nearest” landmarks, rather than searching
for a plan to the goal. Their experiments demonstrate a sub-
stantial speed-up compared to an otherwise identical plan-
ner that does not use landmarks. However, they also note

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that the higher greediness of their search results in longer
plans, and the iterative search for subgoals can fail on solv-
able tasks even if the underlying base planner is complete.

In this work, we propose a new way of using landmarks
within a heuristic search planner which generally leads to
shorter plans and an improved success rate compared to both
the original LMlocal algorithm and state-of-the-art heuristics
that do not exploit landmarks. Furthermore, we present an
alternative algorithm for identifying landmarks and land-
mark orderings, in particular for a multi-valued state vari-
able representation of planning tasks. Unlike LMRPG, our
algorithm only generates sound orderings.

The rest of this paper is organised as follows: first, we
give some background on planning, in particular with multi-
valued state variables, and landmarks. Next, we describe our
algorithms for finding and using landmarks. We then eval-
uate our approach experimentally, followed by a discussion
of the results and a conclusion.

Notation and Background
We consider planning in the SAS+ planning formalism
(Bäckström and Nebel 1995). A concise SAS+ represen-
tation of a planning task can be generated from a typical
PDDL representation automatically (Helmert 2009).

Definition 1 SAS+ planning task
An SAS+ planning task is a tuple Π = 〈V,O, s0, s?〉where:

• V is a finite set of state variables, each with a finite do-
main Dv . A fact is a pair 〈v, d〉 (also written v 7→ d),
where v ∈ V and d ∈ Dv . A partial variable assignment
s is a set of facts, each with a different variable. (We use
set notation such as 〈v, d〉 ∈ s and function notation such
as s(v) = d interchangeably.) A state is a partial variable
assignment defined on all variables V .

• O is a set of operators, where an operator is a pair
〈pre, eff〉 of partial variable assignments.

• s0 is a state called the initial state.
• s? is a partial variable assignment called the goal.

An operator o = 〈pre, eff〉 ∈ O is applicable in state s iff
pre ⊆ s. In that case, it can be applied to s, which produces
the state s′ with s′(v) = eff(v) where eff(v) is defined and
s′(v) = s(v) otherwise. We write s[o] for s′. For operator
sequences π = 〈o1, . . . , on〉, we write s[π] for s[o1] . . . [on]

(only defined if each operator is applicable in the respective
state). The operator sequence π is a plan iff s? ⊆ s0[π].

Each state variable of an SAS+ planning task has an asso-
ciated directed graph which captures the ways in which the
value of the variable changes through operator application
(Jonsson and Bäckström 1998).
Definition 2 domain transition graph
The domain transition graph of a state variable v ∈ V of
an SAS+ task 〈V,O, s0, s?〉 is the digraph 〈Dv, A〉 which
includes an arc 〈d, d′〉 iff d 6= d′ and there is an operator
〈pre, eff〉 ∈ O with pre(v) = d or pre(v) undefined, and
eff(v) = d′.

Domain transition graphs have many uses, for example for
computing heuristic goal distance estimates (Helmert 2004).
We use them for deriving landmarks.
Definition 3 landmark
Let Π = 〈V,O, s0, s?〉 be an SAS+ planning task, let π =
〈o1, . . . , on〉 be an operator sequence applicable in s0, and
let i ∈ {0, . . . , n}.

A fact F is true at time i in π iff F ∈ s0[〈o1, . . . , oi〉].
A fact F is added at time i in π iff F is true at time i in π,

but not at time i − 1. (Facts in s0 are considered added at
time 0.)

A fact F is first added at time i in π iff F is true at time i
in π, but not at any time j < i.

A fact F is a landmark of Π iff in each plan for Π, it is
true at some time.

Note that facts in the initial state and facts in the goal are
always landmarks by definition (consider i = 0 and i = n,
respectively). In addition to knowing which landmarks a
planning task has, it is also useful to know in which or-
der they must be reached. The following definition follows
the terminology of Hoffmann et al. (Porteous, Sebastia, and
Hoffmann 2001; Hoffmann, Porteous, and Sebastia 2004).
Definition 4 orderings between facts
Let A and B be facts of an SAS+ planning task Π.

There is a natural ordering between A and B, written
A → B, iff in each operator sequence where B is true at
time i, A is true at some time j < i.

There is a necessary ordering between A and B, written
A→n B, iff in each operator sequence where B is added at
time i, A is true at time i− 1.

There is a greedy-necessary ordering between A and B,
written A→gn B, iff in each operator sequence where B is
first added at time i, A is true at time i− 1.

Natural orderings are the most general; every necessary
or greedy-necessary ordering is natural, but not vice versa.
Similarly, every necessary ordering is greedy-necessary, but
not vice versa. Hoffmann et al. introduce two further types
of orderings, reasonable and obedient reasonable, which are
less important to our contribution.

Hoffmann et al. show that deciding if a fact is a landmark
and deciding orderings between facts are PSPACE-complete
problems. Thus, practical methods for finding landmarks are
incomplete (fail to find a given landmark or ordering) or un-
sound (falsely declare a fact to be a landmark, or determine
a false ordering).

Previous Extraction of Landmarks and Orderings
The LMRPG algorithm by Hoffmann et al. proceeds in three
stages. First, potential landmarks and orderings are sug-
gested by a fast candidate generation procedure. Second, a
filtering procedure evaluates a sufficient condition for land-
marks on each candidate fact, removing those which fail
the test. (Note that unsound landmark orderings may re-
main.) Third, reasonable and obedient reasonable orderings
between the landmarks are approximated.

We will briefly explain the first two stages, adapted to
SAS+ planning (LMRPG is based on the STRIPS formalism).
For a more detailed exposition, including the third stage, we
refer to the original description of the algorithm (Hoffmann,
Porteous, and Sebastia 2004).

In general, landmarks can be generated from a set of
known landmarks (e. g., the facts in the goal) through
backchaining. If a fact B is a landmark that is not already
true in the initial state and all achievers of B (operators that
haveB as an effect) share a common preconditionA, thenA
is a landmark, too. Unfortunately, with this strong condition
only few landmarks are usually found (Hoffmann, Porteous,
and Sebastia 2004). Instead, one may restrict attention to
those operators which achieve B for the first time. However,
it is PSPACE-hard to determine this set of operators exactly,
so the candidate generation procedure of LMRPG uses an ap-
proximation based on relaxed planning graphs. For SAS+

tasks, these are defined as follows: for i ∈ N0, let

Si :=

{
s0 i = 0
Si−1 ∪

⋃
〈pre,eff〉∈Oi−1

eff i > 0

Oi := {〈pre, eff〉 ∈ O | pre ⊆ Si} \
⋃
j<i

Oj .

The set Si is an over-approximation of all facts that can be
reached by applying up to i operators under the usual simpli-
fying assumptions for “relaxed plans” (Hoffmann and Nebel
2001). The setOi contains precisely the operators which are
applicable in the relaxation after i steps, but not previously.
Landmark candidates are then suggested as follows: starting
from a known landmark B which first appears in the relaxed
planning graph in Si (i > 0), consider all operators in Oi−1
that achieve B. If these operators have a common precon-
dition A, then A is a landmark candidate which is ordered
greedy-necessarily before B.

In addition, LMRPG finds further landmarks with a one-
step lookahead: it may happen that the first achievers of a
landmark B do not share a precondition, but that there is
a fact A which is in turn needed for the preconditions of
the first achievers. Let the set of operators {o1, . . . , on} be
the set of first achievers of a landmark B, and let X :=
{L1, . . . , Ln} be facts s. t. Li ∈ preoi – i. e., each Li is part
of the precondition for oi. Then X is a disjunctive land-
mark in the sense that one of the facts in X needs to occur
in every plan. While LMRPG does not record such disjunc-
tive landmarks, they are used as intermediaries for finding
landmarks: if the union of all first achievers of the facts in
X share a precondition A, then A is a landmark that must
occur (at least) two steps before B. To avoid having to test
an exponential number of such intermediaries, LMRPG only

considers sets X where all facts share the same predicate
symbol in the original PDDL representation.

Due to the various approximations within the candidate
generation procedure, there is no guarantee that the gener-
ated landmarks are sound. Therefore, the filtering procedure
in the second stage applies a sufficient criterion to elimi-
nate non-landmarks. Each fact A is tested by removing all
achievers of A from the original task, and then checking
whether the resulting task still has a relaxed solution. If not,
then A is indeed critical to the solution of the original task,
and is thus guaranteed to be a landmark. Otherwise, the can-
didate A is rejected. We remark that this pruning criterion
guarantees that LMRPG only generates true landmarks; how-
ever, landmark orderings are not pruned, and there are no
guarantees of soundness for them. Indeed, LMRPG may even
generate landmarks with cyclic orderings (Porteous, Sebas-
tia, and Hoffmann 2001).

In later work, Porteous and Cresswell (2002) propose a
different approximation for the set of first achievers of B
that considers more operators and guarantees the correctness
of the found landmarks and orderings. Rather than building
the relaxed planning graph using all operators and stopping
when B first occurs, any operator is left out that would add
B. When the relaxed planning graph levels out, its last set
of facts is an over-approximation of the set of facts that can
be achieved before B in the planning task; we denote it by
pb(B) (for possibly before). Any operator that achieves B
and is applicable given pb(B) qualifies as being possibly ap-
plicable before B in the original task, and conversely, any
operator that is indeed applicable before B in the original
task will be contained in this approximation.

Zhu and Givan (2003) propose a technique for finding
landmarks by propagating “necessary predecessor” informa-
tion in a planning graph. Their approach is less closely re-
lated to ours than the work by Hoffmann et al., so we do not
discuss it in detail.

Using Landmarks as Intermediary Goals
For exploiting landmarks during search, Hoffmann et al.
propose the LMlocal procedure which decomposes the plan-
ning task into smaller subtasks by making the landmarks in-
termediary goals. Instead of searching for the goal of the
task, LMlocal iteratively aims to achieve a landmark that is
minimal with respect to the orderings.

In detail, LMlocal first builds a landmark graph (with land-
marks as vertices and orderings as arcs). Possible cycles are
broken by removing some arcs. The sources S of the result-
ing directed acyclic graph are handed over to a base planner
as a disjunctive goal, and a plan is generated to achieve one
of the landmarks in S. This landmark, along with its in-
cident arcs, is then removed from the landmark graph, and
the process repeats from the end state of the generated plan.
Once the landmark graph becomes empty, the base plan-
ner is asked to generate a plan to the original goal. (Note
that even though all goal facts are landmarks and were thus
achieved previously, they may have been violated again.)

As a base planner for solving the subtasks any planner can
be used; Hoffmann et al. experimented with FF. They found

that the decomposition into subtasks can lead to a more di-
rected search, solving larger instances than plain FF in many
domains. However, they also observed that solutions were
often longer than those produced by plain FF, as it may hap-
pen that the disjunctive search control frequently switches
between different parts of the task which may have destruc-
tive interactions. Sometimes this even leads to dead ends, so
that LMlocal fails on solvable tasks.

In an extension to this work, Sebastia, Onaindia, and
Marzal (2006) employ a refined preprocessing technique
that groups landmarks into consistent sets minimising the
destructive interactions between the sets. Taking these sets
as intermediary goals, they avoid the increased plan length,
however, the preprocessing is computationally expensive
and may take longer than solving the original problem.

Finding Landmarks for SAS+ Planning
Our algorithm for finding landmarks is similar to LMRPG,
but differs in some ways. We adapted it to the SAS+ setting,
use the possibly before criterion to ensure that only sound
orderings are found and applied some further extensions. As
a result, we generally find more landmarks and orderings.

Instead of the one-step lookahead that LMRPG performs
to find further landmarks, we opt for the more general ap-
proach to admit disjunctive landmarks (Porteous and Cress-
well 2002). Like LMRPG we create disjunctive sets of facts
from the preconditions of first achievers of a landmark B
such that a set contains one precondition fact from each first
achiever of B. Like LMRPG, we require that all facts must
stem from the same predicate symbol, and we also discard
any sets of size greater than 4 in order to limit the number of
possible sets. Each setA found this way is then recorded as a
disjunctive landmark and ordered greedy-necessarily before
B. If B is a disjunctive landmark, then the first achievers of
B are all operators which achieve one of the facts in B.

An additional cheap and easy way of extracting more
landmarks is offered by the SAS+ representation using do-
main transition graphs (DTGs; see Def. 2). Given a simple
(i. e., non-disjunctive) landmark B = {v 7→ d′} that is not
part of the initial state s0, consider the DTG of v. The nodes
of the DTG correspond to the values that can be assigned
to v, and the arcs to the possible transitions between them.
If there is a node d that occurs on every path from s0(v) to
d′, then A = {v 7→ d} is a landmark, which can be natu-
rally ordered before B. To find these kinds of landmarks,
we iteratively remove one node from the DTG and test with
a simple graph algorithm whether s0(v) and d′ are still con-
nected – if not,A is a landmark. Note that all assignments to
v which are not in pb(B) can be removed prior to this test,
as they can only occur after B and do not have to be tested.

After all landmarks have been generated, we can intro-
duce some further natural orderings: for all landmarks A
and B, if B /∈ pb(A), then B cannot be achieved without
achieving A first, and hence we add the ordering A→ B.

As an optional post-processing step, we may also intro-
duce reasonable and obedient reasonable orderings in the
same way as LMRPG (Hoffmann, Porteous, and Sebastia
2004). Note, however, that these are not always sound.

Using Landmarks as a Pseudo-Heuristic
Our aim is to incorporate the landmark information while
searching for the original goal of the planning task. For this
purpose, it is desirable to be able to smoothly integrate the
landmark information with other useful heuristics.

The most straightforward way of using landmark infor-
mation for search is to estimate the goal distance of a state s
by the number of landmarks l that still need to be achieved
from s onwards. We estimate this number as l̂ := n−m+k,
where n is the total number of landmarks, m is the number
of landmarks that are accepted, and k is the number of ac-
cepted landmarks that are required again. A landmark B
is accepted in a state s if it is true in that state and all land-
marks ordered beforeB are accepted in the predecessor state
from which swas generated. An accepted landmark remains
accepted in all successor states. An accepted landmark is
required again if it is not true in s and it is the greedy-
necessary predecessor of some landmark which is not ac-
cepted. Note that l̂ is not a proper state heuristic in the usual
sense, as its definition depends on the way s was reached
during search. Nevertheless, it can be used like a heuristic
in best-first search.

Simply using pure landmarks counting, as outlined above,
in best-first search already leads to good results in some
cases. The results can furthermore be substantially improved
by combining landmark counting with other heuristics, and
by using preferred operators. Preferred operators (Helmert
2006) are operators that are believed to be useful for im-
proving the heuristic value from a given state. For example,
in the case of the FF heuristic, operators that can appear at
the start of a relaxed plan from the state to the goal (help-
ful actions) are preferred. Exploiting preferred operators in
heuristic search has been shown to improve results notably
(Helmert 2006; Hoffmann and Nebel 2001). In our case, an
operator is preferred in a state if applying it achieves an ac-
ceptable landmark in the next step, i. e., a landmark whose
predecessors have already been accepted. If no acceptable
landmark can be achieved within one step, the preferred op-
erators are those which occur in a relaxed plan to the nearest
simple acceptable landmark.

In the following, we describe in detail the search algo-
rithm used for our experiments. As a framework, we use
the Fast Downward (FD) planner (Helmert 2006). FD trans-
lates STRIPS tasks to SAS+ and uses best-first search to
solve them. It already contains the functionality to com-
bine various heuristics and to use preferred operators. When
configured to use more than one heuristic and no preferred
operators, the FD planner manages several queues for state
expansion, one for each heuristic. Any state that is eval-
uated during search is evaluated by all heuristics, and its
successors are saved in each queue with the heuristic value
computed by the heuristic of that queue. When retrieving
the state to evaluate next, FD alternates between the queues,
thus giving equal importance to all heuristics. If FD is con-
figured to use preferred operators with one or more of the
heuristics, it constructs an additional queue for each such
heuristic. When a state is evaluated and expanded, those
successor states that are reached via a preferred operator are

put into the preferred operator queues, in addition to being
put into the regular queues (for more details, see Helmert,
2006). States in the preferred operator queues thus are eval-
uated earlier on average. In addition, FD can be configured
to give even more impact to preferred operators by using
those queues more often than the regular queues.

Experiments
We evaluated our new techniques for generating and using
landmarks on nearly all planning tasks from the international
planning competitions 1998–2006, leaving out only the triv-
ial Movie domain. In all experiments, the time and memory
limits were 30 minutes and 3 GB respectively for each task,
running on a 2.66 GHz Intel Xeon CPU.

Since the generation method for landmarks is orthogonal
to their usage during search, and furthermore search algo-
rithms using landmarks can be combined with different base
planners, we can vary three independent dimensions. In or-
der to keep the number of configurations manageable, we
conducted two different experiments, with one of the three
dimensions fixed in each of them.

In the first experiment, we evaluate our new method for
using landmarks with three different base planners, keeping
the landmark generation method fixed. Specifically, we use
the original LMRPG algorithm for generating landmarks. The
three base planners are all based on greedy best-first search,
each using a different heuristic, namely the FF heuristic,
Causal Graph heuristic, and a “blind” heuristic assigning 1
to non-goal states and 0 to goal states. For each heuristic, we
compare an algorithm using no landmark information (base)
to the local search algorithm by Hoffmann et al. (local) and
our new usage of landmarks as a pseudo-heuristic (heur).
Preferred operators were used in all applicable cases (i. e.,
whenever a non-blind heuristic was used), and reasonable
orders were used in all configurations using landmarks.

Tab. 1 shows the percentage of tasks solved by each al-
gorithm in each domain. With all three base planners, the
landmarks pseudo-heuristic outperforms the other two alter-
natives (base and local). The results show that the land-
marks pseudo-heuristic can be beneficially combined with a
base heuristic: when using the FF or Causal Graph heuris-
tic, the results are significantly better than with the blind
heuristic. However, heur still performs well even with the
blind heuristic, demonstrating that the landmarks pseudo-
heuristic is powerful in itself. In contrast, the local land-
marks search algorithm, when used in conjunction with the
FF or CG heuristic, is even worse than the base planner on
average. This is mostly due to the incompleteness of the
LMlocal approach – it is prone to getting stuck in dead ends.

Overall, the best results are achieved when using the FF
heuristic in the base planner. Here, the average difference of
1 percentage point between the landmarks pseudo-heuristic
and the base planner (see last row of the table) may not seem
big at first, but we note that in 10 of the 31 domains, using
landmarks leads to more problems being solved than in the
base planner, while the converse is only true in 3 domains.
Over all domains, there are 25 tasks solved by heur but not
base and 12 tasks solved by base but not heur. A detailed

FF heuristic CG heuristic blind heuristic
Domain base local heur base local heur base local heur

Airport (50) 72 32 64 46 20 48 34 10 64
Assembly (30) 100 97 100 10 20 83 0 0 7
Blocks (35) 100 100 100 100 100 100 43 69 100
Depot (22) 86 100 95 45 18 100 9 82 95
Driverlog (20) 100 100 100 100 100 100 25 70 100
Freecell (80) 95 80 98 89 60 98 16 66 98
Grid (5) 100 100 100 80 100 100 20 80 100
Gripper (20) 100 100 100 100 100 100 25 100 100
Logistics-1998 (35) 94 100 100 100 100 100 6 29 97
Logistics-2000 (28) 100 100 100 100 100 100 36 100 100
Miconic (150) 100 100 100 100 100 100 27 100 100
Miconic-FullADL (150) 91 91 90 89 91 90 41 43 42
Miconic-SimpleADL (150) 100 100 100 100 100 100 37 100 100
MPrime (35) 89 80 97 100 100 100 37 49 86
Mystery (30) 53 53 57 57 57 60 37 43 53
Openstacks (30) 100 100 100 70 23 100 23 70 100
OpticalTelegraphs (48) 4 8 4 2 0 6 2 8 100
Pathways (30) 93 100 97 23 27 100 13 17 100
Philosophers (48) 96 67 100 100 10 100 8 10 73
Pipesworld-NoTankage (50) 84 78 88 48 38 84 22 56 78
Pipesworld-Tankage (50) 78 58 86 28 26 64 12 30 66
PSR-Large (50) 64 66 64 64 64 62 20 22 64
PSR-Middle (50) 100 100 100 100 100 100 50 54 100
PSR-Small (50) 100 100 100 100 100 100 94 96 100
Rovers (40) 100 100 100 80 65 100 10 43 100
Satellite (36) 97 97 97 97 97 97 11 22 97
Schedule (150) 99 61 100 99 67 100 7 25 94
Storage (30) 63 63 60 67 70 63 40 50 57
TPP (30) 100 100 100 77 77 100 17 77 100
Trucks (30) 40 3 40 30 3 30 13 7 23
Zenotravel (20) 100 100 100 100 100 100 35 90 100
Averaged over domains 87 82 88 74 66 87 25 52 84

Table 1: Percentage of tasks solved using three different base planners (FF heuristic, Causal Graph heuristic, blind heuristic) and
three different methods for using landmarks (base planner using no landmarks, Hoffmann et al.’s LMlocal algorithm, landmark
pseudo-heuristic). Bold results indicate better performance than the other two methods for a given base planner and domain. In
all cases, Hoffmann et al.’s LMRPG algorithm was used for generating landmarks and orderings. (Total number of tasks in each
domain is shown in parentheses after the domain name in all tables.)

FF heuristic
Domain base heur

Airport (50) 6 2
Depot (22) 0 2
Freecell (80) 1 3
Logistics-1998 (35) 0 2
Miconic-FullADL (150) 2 0
MPrime (35) 0 3
Mystery (30) 0 1
Pathways (30) 1 2
Philosophers (48) 0 2
Pipesworld-NoTankage (50) 0 2
Pipesworld-Tankage (50) 1 5
Schedule (150) 0 1
Storage (30) 1 0
Total 12 25

Table 2: Comparing the number of tasks solved exclusively by the FF-heuristic base planner and the landmark pseudo-heuristic
approach, respectively. An entry of n for a given approach and domain means that the approach solved n tasks in this domain
which the other approach did not solve. Domains where both approaches solved the same set of tasks are not shown.

Hoffmann et al. Zhu & Givan New generation method
Domain LMs Orderings LMs Orderings LMs (Disj./DTG) Orderings

Airport (50) 42614 294965 37156 73850 38203 (1014/7287) 1459285
Depot (22) 1420 4937 1240 2629 1440 (159/179) 6961
Freecell (80) 8448 38809 7855 13700 7716 (0/2834) 95330
Gripper (20) 960 1400 960 1380 1420 (460/460) 2780
Logistics-1998 (35) 2374 5261 2177 1965 2909 (732/1230) 8167
Miconic-SimpleADL (150) 6583 8676 10045 11469 6583 (0/80) 10762
MPrime (35) 199 159 132 92 164 (44/51) 198
Rovers (40) 2827 1946 1565 785 2338 (379/2) 2095
Schedule (150) 8572 6508 7555 5491 11530 (0/2958) 9466
Total 121056 433977 153370 345515 140630 (4977/19052) 2104220

Table 3: Numbers of landmarks and orderings produced by different generation methods. For the new generation method, num-
bers in parentheses indicate disjunctive landmarks and landmarks found by the domain transition graph criterion, respectively.
Bold results indicate largest number of landmarks/orderings found in a given domain across the three approaches. Totals (last
row) are across all domains from Tab. 1, not just the subset shown in this table.

base vs. base vs. base vs. base vs.
Domain local-HPS heur-HPS heur-ZG heur-RHW

Airport (50) 4 / 0 (+6%) 0 / 14 (−1%) 2 / 14 (−2%) 0 / 14 (−1%)
Assembly (30) 16 / 23 (±0%) 13 / 16 (±0%) 30 / 43 (−1%) 0 / 0 (±0%)
Blocks (35) 57 / 37 (+22%) 34 / 51 (−7%) 20 / 48 (−3%) 20 / 65 (−13%)
Depot (22) 40 / 45 (−11%) 27 / 45 (−5%) 22 / 45 (−16%) 22 / 54 (−17%)
Driverlog (20) 45 / 45 (−1%) 35 / 60 (−4%) 30 / 60 (−4%) 30 / 60 (−5%)
Freecell (80) 57 / 6 (+12%) 61 / 23 (+5%) 81 / 7 (+20%) 72 / 10 (+12%)
Grid (5) 40 / 20 (+5%) 40 / 40 (+3%) 60 / 20 (+4%) 20 / 60 (−7%)
Gripper (20) 100 / 0 (+7%) 100 / 0 (+4%) 0 / 0 (±0%) 0 / 100 (−23%)
Logistics-1998 (35) 71 / 14 (+5%) 31 / 37 (−1%) 57 / 20 (+2%) 14 / 60 (−3%)
Logistics-2000 (28) 96 / 0 (+13%) 46 / 7 (+2%) 60 / 14 (+3%) 32 / 14 (+1%)
Miconic (150) 6 / 80 (−8%) 0 / 96 (−17%) 23 / 56 (−2%) 0 / 96 (−18%)
Miconic-FullADL (150) 23 / 25 (±0%) 8 / 30 (−1%) 62 / 20 (+6%) 50 / 28 (+4%)
Miconic-SimpleADL (150) 96 / 0 (+28%) 58 / 28 (+4%) 6 / 80 (−9%) 56 / 29 (+3%)
MPrime (35) 14 / 20 (+2%) 5 / 22 (−6%) 5 / 22 (−6%) 8 / 28 (−6%)
Mystery (30) 3 / 23 (−5%) 0 / 26 (−9%) 0 / 26 (−9%) 0 / 26 (−12%)
Openstacks (30) 86 / 0 (+3%) 86 / 0 (+3%) 76 / 0 (+2%) 76 / 0 (+2%)
OpticalTelegraphs (48) 0 / 0 (±0%) 0 / 0 (±0%) 0 / 0 (±0%) 0 / 0 (±0%)
Pathways (30) 33 / 33 (+1%) 23 / 40 (±0%) 26 / 36 (±0%) 30 / 33 (±0%)
Philosophers (48) 60 / 2 (+25%) 25 / 4 (+3%) 22 / 4 (+2%) 25 / 4 (+3%)
Pipesworld-NoTankage (50) 36 / 24 (+9%) 18 / 40 (−3%) 22 / 42 (−3%) 30 / 42 (±0%)
Pipesworld-Tankage (50) 24 / 22 (+8%) 22 / 40 (+4%) 38 / 32 (+20%) 22 / 42 (±0%)
PSR-Large (50) 10 / 24 (−5%) 8 / 14 (−2%) 14 / 12 (−1%) 12 / 12 (+1%)
PSR-Middle (50) 2 / 32 (−5%) 6 / 18 (−2%) 12 / 18 (±0%) 12 / 14 (+3%)
PSR-Small (50) 14 / 0 (+4%) 4 / 0 (+1%) 0 / 0 (±0%) 2 / 0 (±0%)
Rovers (40) 22 / 62 (−2%) 22 / 50 (−2%) 22 / 52 (−2%) 22 / 55 (−2%)
Satellite (36) 25 / 55 (−6%) 2 / 63 (−10%) 11 / 61 (−7%) 22 / 50 (−6%)
Schedule (150) 16 / 33 (−2%) 20 / 66 (−8%) 32 / 58 (−3%) 20 / 66 (−8%)
Storage (30) 46 / 0 (+44%) 16 / 0 (+22%) 6 / 6 (+1%) 26 / 6 (+25%)
TPP (30) 86 / 0 (+32%) 13 / 50 (−3%) 13 / 50 (−3%) 16 / 46 (−2%)
Trucks (30) 3 / 0 (+10%) 6 / 6 (±0%) 13 / 3 (+1%) 13 / 10 (+1%)
Zenotravel (20) 60 / 10 (+14%) 40 / 10 (+4%) 40 / 20 (+3%) 25 / 45 (+0%)
Averaged over domains 38 / 20 (+6%) 25 / 29 (−1%) 26 / 28 (−1%) 22 / 34 (−3%)

Table 4: Plan length comparison. Each result column compares the base planner to a configuration using landmarks. An
entry like “71/14 (+5%)” indicates that the base planner found a shorter plan than the landmark configuration for 71% of
the instances and a longer plan for 14% of the instances. (In the remaining cases, both produced plans of equal length.) The
number in parentheses indicates that the plans generated by the landmark approach were 5% longer on average. The landmarks
configurations use different methods for using landmarks (local: local landmarks search approach; heur: landmarks pseudo-
heuristic) and different landmark generation methods (HPS: Hoffmann et al.; ZG: Zhu & Givan; RHW: new method from this
paper). All configurations are based on best-first search with the FF heuristic and only compare on instances solved by both
approaches.

comparison is shown in Tab. 2.
In this experiment, we did not vary the method of gen-

erating landmarks. We have also run our search algorithm
heur with landmarks from alternative generation methods,
namely the one proposed by Zhu and Givan (2003) and our
new method for SAS+ planning introduced in this paper.
We do not report detailed results here, as the average re-
sults are very similar to the landmark generation method by
Hoffmann et al. In particular, the same average coverage is
achieved for all configurations using the FF heuristic as a
base, while average results for other base planners vary by
up to one percentage point.

However, the three approaches have slightly different
strengths and weaknesses. For example, Tab. 1 (present-
ing results for the landmark generation method of Hoffmann
et al.) shows that in the Airport domain and using the FF
heuristic in the base planner, the base configuration (no land-
marks) solves 72% of the tasks, while the heur configuration
(landmarks pseudo-heuristic) only solves 64%. Hence, we
do not seem to find useful landmarks in this domain. Us-
ing Zhu and Givan’s landmarks, however, heur solves 80%
of the Airport tasks, a considerable improvement over the
baseline (see also Fig. 1). In the Philosophers domain, on
the other hand, Tab. 1 shows that heur solves all tasks, while
using Zhu and Givan’s landmarks instead reduces the suc-
cess rate to 75%.

Interestingly, the performance differences between the
landmark generation approaches cannot be explained purely
by the number of landmarks and/or orderings found. Tab. 3
shows the number of landmarks and orderings for the three
approaches in some example domains, and summed up over
all domains (including those not shown in the table). None
of the generation approaches dominates the others consis-
tently: for each approach, there is a domain where it finds
more landmarks than the others. Zhu and Givan’s procedure
often finds fewer landmarks and orders than the other two;
this is also the case in the Airport domain. At the same time,
it leads to the best success rate of the three approaches in this
domain. Our generation technique finds slightly more land-
marks than LMRPG on average. More notably, it finds many
more orderings than both other approaches. While this does
not affect the average number of tasks solved, it can make
a difference in terms of plan quality, i. e., the length of the
solution plans found.

To highlight this issue, Tab. 4 contains a comparison of
plan lengths for various combinations of landmark gener-
ation and search procedures. In this second experiment,
we always use the FF heuristic in the base planner, since
this produced the highest success rate in the first experi-
ment. Each column compares the base planner (without
landmarks) to a different planner configuration that makes
use of landmarks. As expected, the local search algorithm by
Hoffmann et al. typically leads to significantly longer plans
than the base planner. (For local, we only show results for
one of the three landmark generation methods. The general
observation holds for all three methods.) In 5 (10) domains,
local increases the plan length for more than 80% (50%) of
the tasks, compared to the base planner. In 5 domains, the
increase is more than 20% on average. In Storage, it is a

striking 44%.
In contrast, using the landmarks pseudo-heuristic reduces

plan lengths compared to the base planner. This is true for all
three landmark generation methods; however, the best result
is achieved when using our landmarks generation procedure
(heur-RHW in the table). Compared to the base planner, it
decreases plan length by 3% on average, with its best do-
main being Gripper, where plan length is decreased in every
task (by 23% on average), and its worst domain Storage,
where plan length is increased in 26% of the tasks (by 25%
on average). Gripper is an example where disjunctive land-
marks are particularly helpful. Without them, all landmarks
are of the form “at ball1 roomb” and “at robot roomb”. This
means that after picking up a ball in room a, the fastest way
to achieve a new landmark is to move the robot to room b
and drop the ball there. Such a landmark search results in
plans where each ball is carried individually. With disjunc-
tive landmarks, we have additional landmarks of the form
“carry ball1 right ∨ carry ball1 left”. This means that when
the robot has picked up one ball, it can immediately achieve
a new landmark by picking up another ball with its free grip-
per. As a result, our landmark generation method leads to
optimal plans in the Gripper domain (see also Fig. 1).

Finally, some remarks on runtime. Computing landmarks
is usually very inexpensive, as relaxed planning graphs can
be built in linear time. For most tasks, landmark computa-
tion time is below one second. Therefore, overall runtime is
dominated by search time for all but the simplest planning
tasks. Using the landmarks pseudo-heuristic during search
in addition to a base heuristic results in somewhat larger
runtime per state expansion (because every state now needs
to be evaluated by two heuristics). On small or medium-
size problems, this overhead often translates into somewhat
longer overall runtime of the landmarks approach.

As problems grow larger, however, the higher goal-
directedness of the landmark search often pays off, as fewer
states are evaluated compared to the base planner. Thus, for
more difficult problems, the runtime of the heur approach
is often lower than for the base planner. Averaged over all
tasks solved by both approaches, the runtime of heur is at
most 18% higher than that of the base planners. (The in-
crease of 18% occurs when using the FF heuristic as base
and the landmarks of Hoffmann et al.; using our landmarks
instead results in an average decrease in runtime of 1%).
Fig. 1 shows detailed results for some particular domains.

Conclusion
We showed how landmark information can be used in a
heuristic search framework to increase the number of prob-
lem instances solved and improve the quality of the solu-
tions. As opposed to the previously published landmark ap-
proach by Hoffmann, Porteous and Sebastia (2004), our al-
gorithm cannot run into dead ends and we generally achieve
better solutions. Our approach can easily be combined with
other heuristic information, while the earlier approach ap-
pears not to benefit significantly from additional heuristics.
As an example, we showed that two state-of-the-art heuris-
tics, FF and Causal Graph, can both be significantly im-
proved by integrating landmark information.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

R
un

tim
e

(s
ec

s.
)

Problems

Runtime in Airport

base
local-HPS
heur-RHW

heur-ZG

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

R
un

tim
e

(s
ec

s.
)

Problems

Runtime in Gripper

base
local-HPS
heur-HPS

heur-RHW

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

R
un

tim
e

(s
ec

s.
)

Problems

Runtime in Schedule

base
local-HPS
heur-RHW

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 5 10 15 20 25 30 35 40

P
la

n
le

ng
th

Problems

Plan length in Airport

base
local-HPS
heur-RHW

heur-ZG

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2 4 6 8 10 12 14 16 18 20

P
la

n
le

ng
th

Problems

Plan length in Gripper

base
local-HPS
heur-HPS

heur-RHW

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160

P
la

n
le

ng
th

Problems

Plan length in Schedule

base
local-HPS
heur-RHW

Figure 1: Runtimes and plan lengths of various landmark approaches in three particular planning domains (Airport, Gripper,
Schedule). Base planner for all plots is best-first search with the FF heuristic. In the graphs at the top, a point at (10, 0.02)
indicates that 10 of the instances in the domain were solved by the respective approach in 0.02 seconds or less. Similarly, in the
graphs at the bottom, a point at (18, 101) indicates that for 18 of the instances in the domain, solutions of length at most 101
were found.

Acknowledgments
We thank Charles Gretton for helpful discussions.

NICTA is funded by the Australian Government, as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy, and the Australian Research
Council, through the ICT Centre of Excellence program.

This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See http://www.
avacs.org/ for more information.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–
655.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling (ICAPS
2004), 161–170. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence
Research 22:215–278.
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and com-
plexity. Artificial Intelligence 100(1–2):125–176.
Porteous, J., and Cresswell, S. 2002. Extending land-
marks analysis to reason about resources and repetition. In
Proceedings of the 21st Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG ’02), 45–54.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In Cesta, A., and Borrajo, D., eds., Pre-proceedings of the
Sixth European Conference on Planning (ECP 2001), 37–
48.
Sebastia, L.; Onaindia, E.; and Marzal, E. 2006. Decompo-
sition of planning problems. AI Communications 19(1):49–
81.
Zhu, L., and Givan, R. 2003. Landmark extraction via
planning graph propagation. In ICAPS 2003 Doctoral Con-
sortium, 156–160.

