
Fast Downward Dead-End Pattern Database

Florian Pommerening and Jendrik Seipp
University of Basel
Basel, Switzerland

{florian.pommerening,jendrik.seipp}@unibas.ch

This paper describes our submission to the Unsolvability
International Planning Competition 2016. It uses a dead-end
pattern database to prune states in a breadth-first search.

Pattern databases (PDBs) (Culberson and Schaeffer 1998;
Edelkamp 2001) are usually computed by projecting a plan-
ning task onto a subset of its variables (the pattern). For ev-
ery abstract state (i.e., partial state defined on the variables
in the pattern) the perfect goal distance in the projection is
computed and stored. If an abstract state has no path to an
abstract goal in the projection, any concrete state consistent
with it cannot have a path to a goal state either. If we reach
such a state during the search, it can be pruned.

One simple way to use PDBs for detecting unsolvability
is to compute PDBs for a collection of patterns and then use
these PDBs for pruning states during a search in the transi-
tion system of the original planning task: for every encoun-
tered state, retrieve the heuristic value of all PDBs; if any of
them is∞, prune the state.

However, all entries other than ∞ in the PDB can never
be used for pruning. Likewise, abstract states that are un-
reachable in the abstraction are unreachable in the original
task and can also never be used for pruning. Dead-end pat-
tern databases thus consider only abstract states from a PDB
that are reachable in the abstraction and have an infinite goal
distance. Viewing each such abstract state as a partial state,
we end up with a set of partial states. Any concrete state that
is consistent with any partial state in the set can be pruned.

During a preprocessing step, we compute a collection of
patterns and generate the PDB for each pattern. After con-
structing each PDB, we add the partial states that can po-
tentially lead to pruning to our collection of dead ends and
destroy the PDB again, so we only have one complete PDB
and our growing collection of dead ends in memory at all
times. We limit time and memory spent in the preprocessing
phase and start searching once the limits are reached or all
patterns in our collection have been handled. If any of the
partial states is consistent with the initial state, we can stop
the preprocessing early and immediately report the task as
unsolvable.

The pattern collection we used for the IPC systematically
computes all patterns of a certain size. We restrict our at-
tention to interesting patterns as defined by Pommerening,
Röger, and Helmert (2013). Once all patterns of one size
are handled, we continue with the next larger size and repeat

this process until either
• the time limit of 900 seconds is reached, or
• the memory limit of 10 million partial states stored in the

dead-end PDB is reached, or
• a partial state consistent with the initial state is found, or
• no larger interesting pattern exists.

We implemented dead-end PDBs as a heuristic in the Fast
Downward planning system (Helmert 2006) and use it to
prune a simple breadth-first search. To efficiently store the
set of partial states, we use a match tree data structure, simi-
lar to the way the successor generator is stored in Fast Down-
ward. Each inner node of the match tree corresponds to one
variable and has a child for each value of the variable and
one additional child for a “don’t care” value. Leaves deter-
mine whether the path leading to them represents a dead-
end. A new partial state p can be added to the match tree by
following the correct value successor for every variable on
which p is defined and the “don’t care” successor for other
variables until a leaf is reached. If that leaf denotes a dead
end, a more general partial state already is contained in the
match tree. Otherwise, the leaf is replaced with a sequence
of nodes for all remaining variables in the domain of p fol-
lowed by a leaf denoting a dead-end. A concrete state can
be tested against all partial states in the match tree by always
following both the matching value successor and the “don’t
care” successor. If a leaf denoting a dead end is found, the
state can be pruned.

Acknowledgments
We would like to thank all Fast Downward contributors, and
Malte Helmert in particular.

References
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.


