A Normal Form for Classical Planning Tasks

Florian Pommerening¹ Malte Helmert

University of Basel, Switzerland

June 9, 2015

¹Supported by the GI-FB KI Travel Grant

Introduction ●0		Other Planning Techniques	Conclusion 000
Pop Quiz			

Pop quiz on classical planning

- Question 1 (Incomplete operators) An operator *o* unconditionally sets variable *A* to 1.
 - (a) What transition does o induce in the DTG for A?
 - (b) Does o produce the fact $A \mapsto 1$?
- Question 2 (Partial goal states) The only goal is to set A to 1
 (a) What is the goal value of B?
 - (b) What is the regression of the goal with operator o?

Introduction ●0		Other Planning Techniques	
Pop Quiz			

Pop quiz on classical planning

- Question 1 (Incomplete operators) An operator *o* unconditionally sets variable *A* to 1.
 - (a) What transition does o induce in the DTG for A?
 - $v \to 1$ for all values v of A
 - (b) Does o produce the fact $A \mapsto 1$? Not necessarily
- Question 2 (Partial goal states) The only goal is to set A to 1
 - (a) What is the goal value of *B*? Any value is fine
 - (b) What is the regression of the goal with operator *o*? The set of all states

Introduction ●0		Other Planning Techniques	
Pop Quiz			

Pop quiz on classical planning

- Question 1 (Incomplete operators) An operator *o* unconditionally sets variable *A* to 1.
 - (a) What transition does o induce in the DTG for A?
 - $v \to 1$ for all values v of A
 - (b) Does o produce the fact $A \mapsto 1$? Not necessarily
- Question 2 (Partial goal states) The only goal is to set A to 1
 - (a) What is the goal value of *B*? Any value is fine
 - (b) What is the regression of the goal with operator *o*? The set of all states

Not impossible to answer but would be easier with complete operators and a complete goal state

Introduction		Other Planning Techniques	
00			

Task Transformation

Simplification

- Restrict attention to simpler form
- Show that any task can be transformed into this form
- Transformed task should be equivalent to original
 - Meaning of "equivalent" depends on application
 - Transformation maintains important properties: Shortest path, landmarks, etc.

Transition Normal Form	Other Planning Techniques	
0000000		

Transition Normal Form

	Transition Normal Form 0000000	Other Planning Techniques	
Transiti	on Normal Form		

Definition (Transition Normal Form)

- A planning task is in transition normal form if
 - vars(pre(o)) = vars(eff(o)) for all operators
 - Every variable has a goal value

Transition Normal Form	Other Planning Techniques	

Folklore Transformation

Multiply out effects

Example

$$o: \langle \emptyset, \{A \mapsto 1, B \mapsto 0\} \rangle$$

•
$$o_1: \langle \{A \mapsto 0, B \mapsto 0\}, \{A \mapsto 1, B \mapsto 0\} \rangle$$

•
$$o_2: \langle \{A \mapsto 0, B \mapsto 1\}, \{A \mapsto 1, B \mapsto 0\} \rangle$$

•
$$o_3: \langle \{A \mapsto 1, B \mapsto 0\}, \{A \mapsto 1, B \mapsto 0\} \rangle$$

•
$$o_4: \langle \{A \mapsto 1, B \mapsto 1\}, \{A \mapsto 1, B \mapsto 0\} \rangle$$

Problem: Exponential increase in task size

	Transition Normal Form 00000000	Other Planning Techniques	Conclusion 000
Transitio	n Normalization		

Alternative transformation with only linear size increase

- Allow to forget the value of any variable at any time
- New value **u** represents "forgotten" value
- Require the value ${\bf u}$ when there are no other restrictions

Heuristics 000000 Other Planning Techniques

Conclusion 000

Transition Normalization Definition

Definition $(TNF(\Pi))$

- Add fresh value **u** to each variable domain
- Forgetting operator for each fact
 - ${\: \bullet \:}$ Allows transition from $V \mapsto v$ to $V \mapsto {\sf u}$
 - No cost
- Precondition $V\mapsto v$ without effect on V
 - Add effect $V\mapsto v$
- Effect $V \mapsto v$ without precondition on V
 - $\bullet~\mbox{Add}$ precondition $V\mapsto {\bf u}$
- Unspecified goal value for V
 - Add goal value $V\mapsto \mathbf{u}$

Transition Normal Form
00000000

Heuristics

Other Planning Techniques

Conclusion 000

Transition Normalization Example

Example

$$o: \langle \{B \mapsto 0\}, \{A \mapsto 1\} \rangle$$

$$\textit{goal} = \{A \mapsto 1\}$$

• Forgetting operators (cost = 0)

- $\textit{forget}_{A\mapsto 0}: \langle \{A\mapsto 0\}, \{A\mapsto \mathbf{u}\} \rangle$
- $\mathit{forget}_{A\mapsto 1}: \langle \{A\mapsto 1\}, \{A\mapsto \mathbf{u}\} \rangle$
- $\textit{forget}_{B\mapsto 0}: \langle \{B\mapsto 0\}, \{B\mapsto \mathbf{u}\} \rangle$
- $\textit{forget}_{B\mapsto 1}: \langle \{B\mapsto 1\}, \{B\mapsto \mathbf{u}\} \rangle$
- Modify precondition and effect

•
$$o' = \langle \{ A \mapsto \mathbf{u}, B \mapsto 0 \}, \{ A \mapsto 1, B \mapsto 0 \} \rangle$$

Modify goal

• $goal' = \{A \mapsto 1, B \mapsto \mathbf{u}\}$

Transition Normal Form	Other Planning Techniques	

Correctness

Theorem $(\Pi \rightarrow TNF(\Pi))$

Every plan for Π can be efficiently converted to a plan with the same cost for $\textit{TNF}(\Pi).$

Proof idea: insert forgetting operators where necessary

Theorem $(TNF(\Pi) \rightarrow \Pi)$

Every plan for $\mathit{TNF}(\Pi)$ can be efficiently converted to a plan with the same cost for $\Pi.$

Proof idea: remove all forgetting operators

	Transition Normal Form 0000000●	Other Planning Techniques	Conclusion 000
Rest of th	nis talk		

- Properties maintained by this transformation
- When and when not to use the transformation

	Heuristics	Other Planning Techniques	Conclusion
	●00000		

Effect of Transition Normalization on Heuristics

		Heuristics 0●0000	Other Planning Techniques	
Delete Re	elaxation			

Delete relaxation heuristic h^+

• Ignores delete effects of operators

Theorem

 Π and *TNF*(Π) have the same h^+ values on all states from Π .

		Heuristics 000000	Other Planning Techniques	Conclusion 000
Critical F	aths			

Critical path heuristics $h^{m} % \left(h^{m} \right) = h^{m} \left(h^{m} \right) \left(h^{m} \right) \left(h^{m} \right)$

- Considers only fact sets up to size m
- h^m -value of a set of facts F: cost to reach all facts in F
- Special case: $h^1 = h^{\max}$

Theorem

 Π and $TNF(\Pi)$ have the same h^m values for fact sets from Π .

Corollary

 Π and $TNF(\Pi)$ have the same h^m values on all states from Π .

		Heuristics 000000	Other Planning Techniques	Conclusion 000
Landmar	ks			

(Disjunctive action) landmark

- Set of operators
- At least one operator occurs in each plan

Theorem

Landmarks without forgetting operators are the same in Π and $TNF(\Pi)$.

Theorem

 Π and $\mathit{TNF}(\Pi)$ have the same $h^{\mathsf{LM-cut}}$ values on all states from Π (if they break ties in the same way).

		Heuristics 0000€0	Other Planning Techniques	
Abstract	ions			

Domain Transition Graphs (DTGs)

- Model operator effects on single variables
- Used in merge-and-shrink, LAMA, etc.
- Are not the same in Π and $\textit{TNF}(\Pi)$

Theorem

Every operator in $TNF(\Pi)$ only introduces one transition.

Corollary

Worst-case number of transitions is linear instead of quadratic.

		Heuristics 00000●	Other Planning Techniques	
Potential	Heuristics			

Potential heuristics

- Recently introduced class of heuristics
- Heuristic value is weighted sum over facts in state
- Weights constrained so heuristic is admissible and consistent
- Can generate best potential heuristic

Constraints in $TNF(\Pi)$

$$\sum_{f \in \mathsf{goal}} P_f = 0$$

$$\sum_{f \in pre(o)} P_f - \sum_{f \in eff(o)} P_f \leq cost(o) \quad \text{for all operators } o$$

• Formulation for general tasks much more complicated

Introduction Iransition Nor	mal Form Heuristics	Other Planning Techniques	
		000	

Effect of Transition Normalization on other Planning Techniques

		Other Planning Techniques 0●0	Conclusion 000
Zobrist H	lashing		

• Zobrist hashing for states

- Associate random bit string with each fact
- hash(s) = XOR over bit strings for each fact in s
- Change for successor state after applying operator
 - XOR with bit strings for all deleted facts
 - XOR with bit strings for all added facts
- $\bullet~\mbox{In } {\it TNF}(\Pi)$ deleted and added facts are known in advance
 - Effect of an operator can be precomputed
 - Only one XOR necessary

Similar application: perfect hash functions for PDB heuristics

	Other Planning Techniques	Conclusion 000

Regression

- Applying operators in regression is involved
 - Special cases for partial states
 - Special cases for unspecified preconditions
- Regression in $TNF(\Pi)$
 - Switch preconditions and effects of each operator
 - Switch initial state with goal state
 - Same application rules as in progression
 - Always work on complete states

	Other Planning Techniques	Conclusion
		000

Conclusion

		Other Planning Techniques	Conclusion ○●○
Using T	NF in Practice		

"I want to implement a new bi-directional search algorithm. Should I work on the transition normalization?"

	Transition Normal Form 00000000	Other Planning Techniques	Conclusion
Using T	NF in Practice		

"I want to implement a new bi-directional search algorithm. Should I work on the transition normalization?"

- Not for the implementation!
 - Size of reachable search space can increase exponentially
- Intended use mostly as theoretical tool
 - Design and description of planning techniques
 - Theoretical analysis
- But also lots of practical applications
 - Techniques that are polynomial in the task description size: e.g., mutex discovery, relevance analysis, landmark computation, (most) heuristic computations

	Other Planning Techniques	Conclusion

Conclusion

Transition normalization

- Linear increase in task size useful in practice
- Simplifies concepts in many areas
- Helps in design and analysis of planning techniques
- Makes it more obvious what is going on e.g., DTG, potential heuristics