Incremental LM-cut

Florian Pommerening and Malte Helmert

Universität Basel
Departement Informatik

14. 06. 2013
Content

1. **Theory**
 - Planning
 - Incremental Computation

2. **Practice**

3. **Conclusion**
Heuristic Search for STRIPS Planning

- Variables $V = \{A\text{-Is-Open}, B\text{-Is-Open}, \ldots\}$
- Initial state $I = \{A\text{-Is-Open}, G\text{-Is-Open}\}$
- Goal state $G = \{\text{Has-}T_1, \text{Has-}T_2, \text{Has-}T_3\}$
- Operators $O = \{o_A, o_B, \ldots, p_1, p_2, \ldots\}$
- Plan $\pi = \langle p_1, o_F, p_2, o_B, o_C, p_3 \rangle$

- **Heuristic function**
 - Distance estimate
 - Admissibility

- **Search methods**
 - A* Search
 - IDA* Search
Disjunctive Action Landmarks

- **Disjunctive action landmarks**
 - Set of operators
 - Every plan contains at least one of them
 - Cost of a landmark: cost of cheapest contained operator

- Landmarks in this state
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \ldots \)
1. Calculate $h^{\text{max}}(s)$
 - Only achieve most expensive subgoal/precondition
 - $h^{\text{max}}(s) = \infty$ task unsolvable
 - $h^{\text{max}}(s) = 0$ stop searching for landmarks

2. Use h^{max} values to discover new landmark L

3. Reduce cost of each operator in L by L's cost
 - Introduces a cost partitioning
 - Sum of landmark costs is admissible heuristic

4. Repeat
Incremental Computation (Example)

- Discovered landmarks in this state
 - $\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}$
- Landmarks after application of o_B?
Incremental Computation (Example)

- Discovered landmarks in this state
 - \(o_A \), \(o_B \), \(o_C \), \(o_D \), \(o_E \), \(o_F \)
- Landmarks after application of \(o_B \)
 - \(o_A \) remains landmark
Incremental Computation (Example)

- Discovered landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}

- Landmarks after application of o_B
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} remain landmarks
Incremental Computation (Example)

- Discovered landmarks in this state
 - $\{a_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}$

- Landmarks after application of o_B
 - $\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}$ remain landmarks
 - Newly discovered landmark: $\{o_C, o_D\}$
Incremental Computation

- Successor generated by applying operator o
 - All landmarks not containing o are landmarks in successor
 - Discharge landmarks containing o
 - Return landmark’s costs to *remaining cost*
 - Can change h^{max} value
 - Start LM-cut algorithm with set of known landmarks

Theorem
The LM-cut algorithm discovers a new landmark if the h^{max} cost of the successor increases.
Incremental Computation (Example)

- Landmarks in this state:
 - \(\{o_A\}\), \(\{o_B, o_C, o_D\}\), \(\{o_E, o_F\}\)
Incremental Computation (Example)

- Landmarks in this state
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} \)
- Open door A
- Open door B
- Open door E
- Open door F
Incremental Computation (Example)

- Landmarks in this state
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} \)
- Open door A
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} \)
- Open door B
- Open door E
- Open door F
Incremental Computation (Example)

- Landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B
- Open door E
- Open door F

Pommerening, Helmert
Incremental LM-cut
14. 06. 2013
Incremental Computation (Example)

- Landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door E
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door F
Landmarks in this state
- \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}

Open door A
- \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}

Open door B
- \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}

Open door E
- \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}

Open door F
Incremental Computation (Example)

- Landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\}
- Open door E
- Open door F
Incremental Computation (Example)

- Landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B
 - \{o_A, o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\}
- Open door E
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door F
Incremental Computation (Example)

- Landmarks in this state
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} \)
- Open door A
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} \)
- Open door B
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\} \)
- Open door E
 - \(\{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\} \)
- Open door F
Incremental Computation (Example)

- Landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\}
- Open door E
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_F, o_G\}
- Open door F
Incremental Computation (Example)

- Landmarks in this state:
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A:
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B:
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\}
- Open door E:
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_F, o_G\}
- Open door F:
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
Incremental Computation (Example)

- Landmarks in this state
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door A
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
- Open door B
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\}
- Open door E
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}, \{o_C, o_D\}
- Open door F
 - \{o_A\}, \{o_B, o_C, o_D\}, \{o_E, o_F\}
1 Theory

2 Practice
 - Basic Results
 - Saving Memory

3 Conclusion
Evaluation
- 1396 tasks in 44 domains
- Time limit: 30 min
- Memory limit: 2 GB

Measured
- Coverage (number of solved tasks)
- Search time
- Failure reason (timeout or out of memory)
Basic Results

- First idea (h^iLM-cut)
 - Regular A* search
 - Store landmarks for all search nodes
 - (Side note: This makes the heuristic consistent)
- Compare with A^*/h^{LM}-cut
 - Speed-ups by up to an order of magnitude
 - More tasks running out of memory
 - Increased from 31 to 526

Coverage

<table>
<thead>
<tr>
<th>h^{LM}-cut</th>
<th>h^iLM-cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>757</td>
<td>762</td>
</tr>
</tbody>
</table>
Removing Landmarks

- Stored landmarks take up too much memory
 - Information can be removed at any time
 - Recompute missing values non-incrementally
- Easy fix ($h^i_{\text{LM-cut}}$)
 - Remove information for closed nodes
 - Only needed again if the node is reopened
Results

- Runtime reduction over baseline
 - 77% (geometric mean)
 - 93% (miconic ×)
- Coverage increased by another 4 tasks

Coverage

<table>
<thead>
<tr>
<th>h^{LM}-cut</th>
<th>h^{iLM}-cut</th>
<th>h^{iLM}-cut frontier</th>
</tr>
</thead>
<tbody>
<tr>
<td>757</td>
<td>762</td>
<td>766</td>
</tr>
</tbody>
</table>

![Graph showing comparison of A^*/h^{LM}-cut and A^*/h^{iLM}-cut frontier]
Fixed Memory Bounds

- Why stop because of exhausted memory at all?
 - Can always free up memory
 - Remove stored landmarks

- Fixed memory bound (h_{bound})
 - Keep track of used memory
 - Remove half of the stored landmarks when hitting the bound

- Dynamic memory bound
 - Technical problems
 - Measure memory pressure and memory requirements accurately
 - Results estimated from fix bounds
Results

- Improvements even for small bounds (50 MB)
- Increasing limit
 - Less timeouts (■)
 - Memory exhausted more often (□)
- Sweet spot for 500 MB

<table>
<thead>
<tr>
<th>Coverage</th>
<th>h_{LM-cut}</th>
<th>h^{iLM-cut}</th>
<th>h^{iLM-cut}_{frontier}</th>
<th>h^{iLM-cut}_{500 MB}</th>
<th>h^{iLM-cut}_{dynamic}</th>
</tr>
</thead>
<tbody>
<tr>
<td>757</td>
<td>762</td>
<td>766</td>
<td>778</td>
<td>786</td>
<td></td>
</tr>
</tbody>
</table>
Local Incremental Computation

- More generated nodes than expanded nodes
 - Factor 8 in the geometric mean
 - Save work during node generation
 - Additional work during node expansion amortized
- Local incremental computation (h_{loc}^{LM-cut})
 - Recompute landmarks for parent node
 - Incremental computation for child nodes
 - Minimal memory overhead

<table>
<thead>
<tr>
<th>LM-cut Computations</th>
<th>h^{LM-cut}</th>
<th>h_{loc}^{LM-cut}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node generation</td>
<td>Non-incremental</td>
<td>Incremental</td>
</tr>
<tr>
<td>Node expansion</td>
<td>0</td>
<td>Non-incremental</td>
</tr>
</tbody>
</table>
Results

- Runtime changes
 - -49% (geometric mean)
 - -89% (miconic \times)
 - $+40\%$ (openstacks \times)
- Bad performance of openstacks
 - $h^{\text{LM-cut}}(s) = 1$ for most states s
 - Many 0-cost operators

Coverage

<table>
<thead>
<tr>
<th>$h^{\text{LM-cut}}$</th>
<th>$h^{\text{iLM-cut}}$</th>
<th>$h^{\text{iLM-cut}_{\text{frontier}}}$</th>
<th>$h^{\text{iLM-cut}_{\text{500 MB}}}$</th>
<th>$h^{\text{iLM-cut}_{\text{dynamic}}}$</th>
<th>$h^{\text{iLM-cut}_{\text{local}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>757</td>
<td>762</td>
<td>766</td>
<td>778</td>
<td>786</td>
<td>783</td>
</tr>
</tbody>
</table>
IDA*

- **IDA*** Search
 - Classical solution to memory issues with A***

- Here: Sufficient memory for all search nodes
 - Use unlimited transposition table
 - Perfect duplicate detection
 - Store heuristic values for inner nodes

- Remaining advantage over A***
 - Depth-first expansion order
 - Only store landmarks for current branch
Results

- Best Coverage result
- Skewed by openstacks (×)
 - Better tie-breaking with depth-first order
 - Deeper nodes are preferred
 - Explains 14 tasks

<table>
<thead>
<tr>
<th>Coverage</th>
<th>A*</th>
<th>IDA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>hLM-cut</td>
<td>hLIM-cut</td>
<td>hLIM-cut frontier</td>
</tr>
<tr>
<td>757</td>
<td>762</td>
<td>766</td>
</tr>
</tbody>
</table>

A* / hLM-cut vs. uns.
Conclusion

- Incremental computation of LM-cut for STRIPS planning
 - Much faster
 - Higher memory requirements

- Dealing with memory limitations
 - Local computation
 - Fixed bounds
 - IDA*

- Not limited to LM-cut

- Necessary conditions
 - Incremental computation is faster
 - Missing information can be computed non-incrementally
Thank you for your attention!
Any questions?