
Theoretical Background Contributions Experiments Conclusion

Optimal Planning
for Delete-free Tasks

with Incremental LM-cut

Florian Pommerening and Malte Helmert

Universität Basel
Departement Informatik

27. 06. 2012

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 1 / 19

Theoretical Background Contributions Experiments Conclusion

Content

1 Theoretical Background

2 Contributions

3 Experiments

4 Conclusion

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 2 / 19

Theoretical Background Contributions Experiments Conclusion

Delete-free Planning

Binary cost delete-free STRIPS task Π = 〈V , I ,G ,O〉
V set of variables
I ,G ⊆ V initial/goal state
O set of operators o = 〈pre(o)→ add(o)〉cost(o)
cost(o) ∈ {0, 1}

Optimal planning

Search for cheapest operator sequence o1, . . . on

G ⊆ s[o1] · · · [on]
NP-equivalent instead of PSPACE-equivalent

Why?
Cost of optimal plan: delete-relaxation heuristic h+

h+ is well-informed
Other heuristics are based on h+

Interesting delete-free domains

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 3 / 19

Theoretical Background Contributions Experiments Conclusion

hLM-cut

Based on disjunctive action landmarks (LMs)

Set of operators l = {o1, . . . , on}
Every plan contains at least one oi

Cost of a landmark: minoi∈l{cost(oi)}

1 Calculate hmax

Only achieve most expensive subgoal/precondition
hmax(s) =∞ task unsolvable
hmax(s) = 0 stop searching for LMs

2 Use hmax values to discover new LM
3 Reduce operator costs by landmark’s cost for operators in LM

Sum of landmark costs is admissible heuristic

4 Repeat

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 4 / 19

Theoretical Background Contributions Experiments Conclusion

Search Strategies

Branch-and-Bound (BnB) Search

Memory friendly depth-first search

Recursively search for solution in cost interval

Decrease upper bound for every discovered solution
Continue search for cheaper solution
Prune nodes with lower bound outside of interval

Iterative-deepening A∗ (IDA∗) Search

Search for solution with increasing cost hLM-cut(I), . . . , h+(I)

IDA∗ layer i : BnB search with closed interval [i , i]

Theorem

BnB and IDA∗ are complete and optimal if used with a finite
search space and an admissible heuristic.

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 5 / 19

Theoretical Background Contributions Experiments Conclusion

Content

1 Theoretical Background

2 Contributions
Search Space
Incremental Computation
Improvements

3 Experiments

4 Conclusion

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 6 / 19

Theoretical Background Contributions Experiments Conclusion

Search Space

Theorem

Applying an operator cannot make an applicable operator
inapplicable in delete-free tasks.

Theorem

No operator has to occur twice in an optimal relaxed solution.

Order can mostly be ignored

Search in serializable subsets of O

Branch over applicable operator

Apply it now or never

Finite branching factor (2) and search tree depth (|O|)

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 7 / 19

Theoretical Background Contributions Experiments Conclusion

Incremental Computation

Successor generated by applying/removing operator

Binary cost tasks

Each operator o has containing LM Lo

Lo = {o} or |Lo | > 1 or Lo undefined

Apply operator o

Lo discharged
All other LMs are LMs in successor

Remove operator o

o no longer possible choice
Remove o from Lo

Lo \ {o} is LM in successor
Task unsolvable if Lo = {o}
All other LMs are LMs in successor

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 8 / 19

Theoretical Background Contributions Experiments Conclusion

Re-calculation of hLM-cut

Removing a LM

Return landmark’s costs to remaining cost
Binary cost tasks: Set operator cost back to 1

Can change hmax value

Theorem

The LM-cut algorithm discovers a new landmark if the hmax cost
of the successor increases.

Only possible if

Lo = {o, o1, . . . , on}
0-cost operator forbidden with Lo undefined

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 9 / 19

Theoretical Background Contributions Experiments Conclusion

Variable Ordering

Minimum remaining values heuristic

CSP technique
Choosing variables to branch over

One operator from each LM is needed

Smaller LM ⇒ fewer choices
Smallest LM ∼ variable with minimum remaining values

lmin: size of smallest LM containing applicable operators

Collect applicable operators in LMs of size lmin

Randomly select one for branching

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 10 / 19

Theoretical Background Contributions Experiments Conclusion

Automatic Application of Operators

Automatically apply operators with Lo = {o}
Branching strategy already contains effect
Useful with different heuristic

Automatically apply 0-cost operators

Very useful in domains with such operators
No 0-cost operators in tested domains

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 11 / 19

Theoretical Background Contributions Experiments Conclusion

Content

1 Theoretical Background

2 Contributions

3 Experiments

4 Conclusion

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 12 / 19

Theoretical Background Contributions Experiments Conclusion

Methodology

Evaluation

876 tasks in 22 domains
Time limit: 300 s
Memory limit: 2 GB (only reached for huge tasks)

Coverage scores

Solve probability for randomly selected domain and task
Averages of 5 runs with different seeds

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 13 / 19

Theoretical Background Contributions Experiments Conclusion

Basic Results

FastDownward with A* and hLM-cut

Incremental LM-cut with BnB/IDA∗

Resuts

Coverage (%)

FastDownward 49.249
BnB 59.032
IDA∗ 60.120

Improvement over Fast Downward

IDA∗ better than BnB

But still room for improvement for BnB

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 14 / 19

Theoretical Background Contributions Experiments Conclusion

Plan Improvement

Better upper bound ⇒ more pruned nodes

Initial upper bound
Use cost of relaxed solution (here: with hlst)
No search if hlst(I) = hLM-cut(I)

Improve intermediate solutions
Local Steiner tree improvement (based on hlst)
Continue search with improved solution and new bound

Results

Coverage (%)

BnB 59.032
IDA∗ 60.120
BnB (initial upper bound) 59.981
BnB (improved all solutions) 60.519

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 15 / 19

Theoretical Background Contributions Experiments Conclusion

Content

1 Theoretical Background

2 Contributions

3 Experiments

4 Conclusion

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 16 / 19

Theoretical Background Contributions Experiments Conclusion

Future Work

Optimization for binary cost tasks

Performance of implementation
Different operator orders
Smaller search space (e.g. task decomposition)

Generalization to arbitrary costs

Branching decisions no longer mutually exclusive
Different data structures needed

Generalization to general planning

Classical search space
Depth of search space not limited by |O|
Use A∗/IDA∗/. . . instead of branch-and-bound search

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 17 / 19

Theoretical Background Contributions Experiments Conclusion

Main Contributions

New h+ values

576 of 876 tasks solved
Evaluation of other heuristics (hlst, hLM-cut, hmax, hFF/add, . . .)

New ways to calculate h+

BnB/IDA∗ search with custom search space
Incremental version of hLM-cut

Exceeds performance of Fast Downward (A∗/hLM-cut)
BnB and IDA∗ incomparable

BnB as any-time search

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 18 / 19

Extra Slides for Q&A

Thank you for your attention!
Any questions?

Pommerening, Helmert h+ with Incremental LM-cut 27. 06. 2012 19 / 19

Extra Slides for Q&A

Planning

Development of domain independent problem solvers

Common formalism needed

STRIPS planning task Π = 〈V , I ,G ,O〉

Formal definition

V set of variables

I ⊆ V initial state

G ⊆ V goals

O set of operators with

pre(o) ⊆ V Preconditions
add(o) ⊆ V Add effects
del(o) ⊆ V Delete effects
cost(o) ∈ R+

0 Cost

Example (logistics)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 20

Extra Slides for Q&A

Planning

Development of domain independent problem solvers

Common formalism needed

STRIPS planning task Π = 〈V , I ,G ,O〉

Formal definition

V set of variables

I ⊆ V initial state

G ⊆ V goals

O set of operators with

pre(o) ⊆ V Preconditions
add(o) ⊆ V Add effects
del(o) ⊆ V Delete effects
cost(o) ∈ R+

0 Cost

Example (logistics)

at(package, location)

at(vehicle, location)

in(package, vehicle)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 20

Extra Slides for Q&A

Planning

Development of domain independent problem solvers

Common formalism needed

STRIPS planning task Π = 〈V , I ,G ,O〉

Formal definition

V set of variables

I ⊆ V initial state

G ⊆ V goals

O set of operators with

pre(o) ⊆ V Preconditions
add(o) ⊆ V Add effects
del(o) ⊆ V Delete effects
cost(o) ∈ R+

0 Cost

Example (logistics)

{at(p-1, loc-B-1),
at(p-2, loc-A-2),
at(truck-1, loc-A-1),
at(truck-2, loc-B-2)}

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 20

Extra Slides for Q&A

Planning

Development of domain independent problem solvers

Common formalism needed

STRIPS planning task Π = 〈V , I ,G ,O〉

Formal definition

V set of variables

I ⊆ V initial state

G ⊆ V goals

O set of operators with

pre(o) ⊆ V Preconditions
add(o) ⊆ V Add effects
del(o) ⊆ V Delete effects
cost(o) ∈ R+

0 Cost

Example (logistics)

{at(p-1, loc-B-1),
at(p-2, loc-A-3)}

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 20

Extra Slides for Q&A

Planning

Development of domain independent problem solvers

Common formalism needed

STRIPS planning task Π = 〈V , I ,G ,O〉

Formal definition

V set of variables

I ⊆ V initial state

G ⊆ V goals

O set of operators with

pre(o) ⊆ V Preconditions
add(o) ⊆ V Add effects
del(o) ⊆ V Delete effects
cost(o) ∈ R+

0 Cost

Example (logistics)

o = load-truck(?t, ?p, ?l)

pre(o) = {at(?t, ?l),
at(?p, ?l)}

add(o) = {in(?p, ?t)}
del(o) = {at(?p, ?l)}
cost(o) = 1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 20

Extra Slides for Q&A

hFF/add

Cheapest way to reach a variable: achiever

Achieve all preconditions/subgoals (hadd)

Recursively collect necessary achievers in set

Path finding example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

Start

A

B

Goal

2

2

2

2

1
1

1

Overestimation due to greedy search

In general not admissible (h+ ≤ hFF/add)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 21

Extra Slides for Q&A

hFF/add

Cheapest way to reach a variable: achiever

Achieve all preconditions/subgoals (hadd)

Recursively collect necessary achievers in set

Path finding example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

Start

A

B

Goal

2

2

2

2

1
1

1

Overestimation due to greedy search

In general not admissible (h+ ≤ hFF/add)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 21

Extra Slides for Q&A

hFF/add

Cheapest way to reach a variable: achiever

Achieve all preconditions/subgoals (hadd)

Recursively collect necessary achievers in set

Path finding example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

Start

A

B

Goal

2

2

2

2

1
1

1

Overestimation due to greedy search

In general not admissible (h+ ≤ hFF/add)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 21

Extra Slides for Q&A

hFF/add

Cheapest way to reach a variable: achiever

Achieve all preconditions/subgoals (hadd)

Recursively collect necessary achievers in set

Path finding example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

Start

A

B

Goal

2

2

2

2

1

1

1

Overestimation due to greedy search

In general not admissible (h+ ≤ hFF/add)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 21

Extra Slides for Q&A

hFF/add

Cheapest way to reach a variable: achiever

Achieve all preconditions/subgoals (hadd)

Recursively collect necessary achievers in set

Path finding example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

Start

A

B

Goal

2

2

2

2

1

1

1

Overestimation due to greedy search

In general not admissible (h+ ≤ hFF/add)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 21

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

2

2

2

1

11

1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

2

2

2

1

11

1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

2

2

2

1

11
1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

22

2

1

11

1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

2

2

2

1

11

1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

22

2

1

1

1

1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Local Steiner Tree Plan Improvement Procedure

Path finding example

Pick a variable: B

Partition plan

Part dependent on B
Part only used to add B
Rest

Find cheaper alternative to reach B

Start

A

B

Goal

2

2

2

22

11

1
1

1

hlst: Optimization of hFF/add

Achiever mapping for arbitrary plan π

Achiever of v : first operator adding v in π
Extract solution with hFF/add

Remove unnecessary achiever settings

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 22

Extra Slides for Q&A

Justification Graph

Precondition choice function (pcf)

Maps operators to most expensive precondition
Not unique

LMs discovered with justification graph

One node per variable
One edge per add effect a ∈ add(o)

pcf(o)
o−−→ a

i(0) A(0)

B(1)

C (1)

g(1)
oi (0)

o1(1)

o1(1)

o2(1)

og (0)

V = {A,B,C , i , g}
I = {i},G = {g}
O = {oi , o1, o2, og}

oi = 〈i → A〉0
o1 = 〈A→ B,C 〉1
o2 = 〈A→ C 〉1
og = 〈B,C → g〉0

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 23

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

2

222

2

222

1

11

1

111

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

2

2

22

2

222

1

11

1

111

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

2

222

2

2

22

1

11

1

111

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

2

222

2

222

1

11
1

1

11

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

22

2

2

22

2

2

1

11
11

1

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

22

2

2

22

2

2

1

11
11

1

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

22

2

2

22

2

2

1

11
111

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

22

2

2

222

2

1

11
11

1

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

222

2

22

2

2

1

11
11

1

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

22

2

2

222

2

1

1

1
11

1

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

hlst

hFF/add is greedy

Path planning example

First reach A and B, then go to goal

Choose cheapest way to A
Choose cheapest way to B
Go to Goal

hlst optimizes achiever choices

Based on Steiner tree problem

Pick a variable: B
Partition plan

Part dependent on B (P+
B)

Part only used to add B (P−
B)

Rest (P0
B)

Find cheaper alternative for P−B given P0
B

Start

A

B

Goal

22

2

2

2

222

11

1

11

1

1

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 24

Extra Slides for Q&A

Branch-and-Bound Search (Pseudo Code)

def BranchAndBound(problem):
global variable interval = [0, ∞)
global variable bestSolution = None
initialNode = SearchNode(parent = None

subproblem = problem)
BranchAndBoundRecursive(initialNode)
return bestSolution

def BranchAndBoundRecursive(node):
if [node.calculateLowerBound(), ∞) ∩ interval == ∅:

return
if node.subproblem is solution:

bestSolution = extractSolution(node)
interval = interval ∩ [0, bestSolution.cost)
return

for sucessor in node.subproblem.successors:
successorNode = SearchNode(parent = node

subproblem = sucessor)
BranchAndBoundRecursive(successorNode)

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 25

Extra Slides for Q&A

Avoid unnecessary re-calculations

hLM-cut computed

o was applied

Lo undefined Never

Lo = {o} Never

Lo = {o, o1, . . . , on} Always

o was forbidden

Lo undefined If and only if
cost(o) = 0

Lo = {o} unsolvable

Lo = {o, o1, . . . , on} Always

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 26

Extra Slides for Q&A

Automatic Application of Operators - Unit Propagation

Model checking technique

Set variable to last remaining value

Analogy: LMs with only one element l = {o}
Every plan must contain o
Apply o without branching
Repeat until fixed point is reached

Here: not necessary

Operator from smallest LM is selected
No re-calculation of hLM-cut

Unsolvable task is detected immediately

Could be useful with different heuristic

Isolated effect shows significant increase in coverage

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 27

Extra Slides for Q&A

Automatic Application of Operators - 0-Cost Operators

Pure symbol heuristic

Literal only occurs positive ⇒ set variable to true

Analogy: Operators with base cost 0

Does not change solution cost
Cannot make applicable operators inapplicable
Automatic application

Results

Coverage (%)

BnB 87.778
BnB (0-cost) 100.000
IDA∗ 87.778
IDA∗ (0-cost) 100.000

Evaluated on
different domains

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 28

Extra Slides for Q&A

IDA∗-Layer Analysis

Three phases in IDA∗ node expansions:

Solution discovery (last layer)
Proof of optimality (second to last layer)
Avoidable part of proof (all other layers)

Few expansions in avoidable layers (4.19% on average)

Better search strategy with same operator order

Small expected improvement

Different operator order

Can decrease expansions in all layers

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 29

Extra Slides for Q&A

IDA∗-Layer Analysis (cont.)

Bar length: Expansion score

Longer bar ∼ more
expansions

Coloring: relative size of
IDA∗ layers

Blue ∼ Last layer
Green ∼ Second to last
layer
Black ∼ All other layers

depot
1 0.80.60.40.2 0

Expansion score

logistics98

pipesworld-
tankage

rovers

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 30

Extra Slides for Q&A

Restarts

Operator order depends on random seed

Heavy-tailed distribution for some tasks

Could benefit from random restarts

Experiments

Different constant restart times
Geometrically increasing time
Universal restart strategy (Luby et al.)
[1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .]

No positive effect

Not enough tasks benefit from restarts
0 300 1 800

logistics98
prob13

Pommerening, Helmert (Uni Basel) h+ with Incremental LM-cut 27. 06. 2012 31

	Theoretical Background
	Contributions
	Search Space
	Incremental Computation
	Improvements

	Experiments
	Conclusion
	Appendix
	Extra Slides for Q&A

