Theoretical Background	Contributions	Experiments	Conclusion
000	00000	000	

Optimal Planning for Delete-free Tasks with Incremental LM-cut

Florian Pommerening and Malte Helmert

Universität Basel Departement Informatik

27.06.2012

Theoretical Background	Contributions 00000	Experiments 000	Conclusion
Content			

2 Contributions

3 ×

= 990

Theoretical Background	Contributions	Experiments	Conclusion
•00	00000	000	00
Doloto froo Plan	aina		

- Binary cost delete-free STRIPS task $\Pi = \langle V, I, G, O \rangle$
 - V set of variables
 - $I, G \subseteq V$ initial/goal state

ıĸ

- *O* set of operators $o = \langle \operatorname{pre}(o) \to \operatorname{add}(o) \rangle_{\operatorname{cost}(o)}$
- $cost(o) \in \{0,1\}$
- Optimal planning
 - Search for cheapest operator sequence $o_1, \ldots o_n$
 - $G \subseteq s[o_1] \cdots [o_n]$
 - NP-equivalent instead of PSPACE-equivalent
- Why?
 - Cost of optimal plan: delete-relaxation heuristic h^+
 - h^+ is well-informed
 - Other heuristics are based on h^+
 - Interesting delete-free domains

Theoretical Background	Contributions	Experiments	Conclusion
○●○	00000	000	
h ^{LM-cut}			

- Based on disjunctive action landmarks (LMs)
 - Set of operators $I = \{o_1, \ldots, o_n\}$
 - Every plan contains at least one o_i
 - Cost of a landmark: $\min_{o_i \in I} { cost(o_i) }$
- Calculate h^{max}
 - Only achieve most expensive subgoal/precondition
 - $h^{\max}(s) = \infty$ task unsolvable
 - $h^{\max}(s) = 0$ stop searching for LMs
- 2 Use h^{\max} values to discover new LM
- **③** Reduce operator costs by landmark's cost for operators in LM
 - Sum of landmark costs is admissible heuristic
- 4 Repeat

Theoretical Background	Contributions	Experiments	Conclusion
000			
Search Strategies			

Branch-and-Bound (BnB) Search

- Memory friendly depth-first search
- Recursively search for solution in cost interval
 - Decrease upper bound for every discovered solution
 - Continue search for cheaper solution
 - Prune nodes with lower bound outside of interval

Iterative-deepening A* (IDA*) Search

• Search for solution with increasing cost $h^{\text{LM-cut}}(I), \ldots, h^+(I)$

• IDA^{*} layer *i*: BnB search with closed interval [i, i]

Theorem

BnB and IDA* are *complete* and *optimal* if used with a finite search space and an admissible heuristic.

Theoretical Background 000	Contributions	Experiments 000	Conclusion
Content			

1 Theoretical Background

2 Contributions

- Search Space
- Incremental Computation
- Improvements

3 Experiments

4 Conclusion

Theoretical Background	Contributions	Experiments	Conclusion
	•••••	000	00
Search Space			

Theorem

Applying an operator cannot make an applicable operator inapplicable in delete-free tasks.

Theorem

No operator has to occur twice in an optimal relaxed solution.

- Order can mostly be ignored
 - Search in serializable subsets of O
- Branch over applicable operator
 - Apply it now or never
- Finite branching factor (2) and search tree depth (|O|)

Incromontal Cor	multation		
Theoretical Background	Contributions	Experiments 000	Conclusion

- Successor generated by applying/removing operator
- Binary cost tasks
 - Each operator o has containing LM Lo
 - $L_o = \{o\}$ or $|L_o| > 1$ or L_o undefined
- Apply operator o
 - L_o discharged
 - All other LMs are LMs in successor
- Remove operator o
 - o no longer possible choice
 - Remove *o* from *L*_o
 - $L_o \setminus \{o\}$ is LM in successor
 - Task unsolvable if $L_o = \{o\}$
 - All other LMs are LMs in successor

Theoretical Background	Contributions	Experiments	Conclusion
	00000	000	00
Re-calculation of	h ^{LM-cut}		

- Removing a LM
 - Return landmark's costs to remaining cost
 - Binary cost tasks: Set operator cost back to 1
- Can change h^{max} value

Theorem

The LM-cut algorithm discovers a new landmark if the h^{max} cost of the successor increases.

• Only possible if

•
$$L_o = \{o, o_1, \ldots, o_n\}$$

• 0-cost operator forbidden with L_o undefined

Theoretical Background	Contributions	Experiments 000	Conclusion 00

• Minimum remaining values heuristic

• CSP technique

ъ

- Choosing variables to branch over
- One operator from each LM is needed
 - Smaller LM \Rightarrow fewer choices
 - $\bullet\,$ Smallest LM \sim variable with minimum remaining values
- I_{min}: size of smallest LM containing applicable operators
- Collect applicable operators in LMs of size I_{\min}
- Randomly select one for branching

Automatic Application of Operators

- Automatically apply operators with $L_o = \{o\}$
 - Branching strategy already contains effect
 - Useful with different heuristic
- Automatically apply 0-cost operators
 - Very useful in domains with such operators
 - No 0-cost operators in tested domains

Theoretical Background	Contributions 00000	Experiments	Conclusion 00
Content			

2 Contributions

1= 9QC

000	00000	•00	00
Methodology			

Evaluation

ъy

- 876 tasks in 22 domains
- Time limit: 300 s
- Memory limit: 2 GB (only reached for huge tasks)
- Coverage scores
 - Solve probability for randomly selected domain and task
 - Averages of 5 runs with different seeds

Theoretical Background	Contributions	Experiments	Conclusion
	00000	0●0	00
Basic Results			

- FastDownward with A* and $h^{\text{LM-cut}}$
- Incremental LM-cut with BnB/IDA^*

Resuts	
	Coverage (%)
FastDownward	49.249
BnB	59.032
IDA*	60.120

- Improvement over Fast Downward
- IDA* better than BnB
 - But still room for improvement for BnB

Theoretical Background	Contributions 00000	Experiments 00●	Conclusion
Plan Improvement			

- $\bullet~\mbox{Better}$ upper bound $\Rightarrow~\mbox{more}$ pruned nodes
- Initial upper bound
 - Use cost of relaxed solution (here: with h^{lst})
 - No search if $h^{\text{lst}}(I) = h^{\text{LM-cut}}(I)$
- Improve intermediate solutions
 - Local Steiner tree improvement (based on h^{lst})
 - Continue search with improved solution and new bound

Results			
		Coverage (%)	
	BnB	59.032	
	IDA*	60.120	
	BnB (initial upper bound)	59.981	
	BnB (improved all solutions)	60.519	

Pommerening, Helmert

Theoretical Background	Contributions 00000	Experiments 000	Conclusion
Content			

2 Contributions

3 Experiments

.

1= 9QC

Theoretical Background	Contributions	Experiments	Conclusion
	00000	000	●0
Future Work			

- Optimization for binary cost tasks
 - Performance of implementation
 - Different operator orders
 - Smaller search space (e.g. task decomposition)
- Generalization to arbitrary costs
 - Branching decisions no longer mutually exclusive
 - Different data structures needed
- Generalization to general planning
 - Classical search space
 - Depth of search space not limited by |O|
 - $\bullet~$ Use $A^*/IDA^*/\ldots$ instead of branch-and-bound search

Theoretical Background	Contributions	Experiments	Conclusion
	00000	000	○●
Main Contributions			

• New h^+ values

- 576 of 876 tasks solved
- Evaluation of other heuristics (h^{lst} , $h^{\text{LM-cut}}$, h^{max} , $h^{\text{FF/add}}$, ...)
- New ways to calculate h^+
 - BnB/IDA^{*} search with custom search space
 - Incremental version of $h^{\text{LM-cut}}$
 - Exceeds performance of Fast Downward (A^*/h^{LM-cut})
 - BnB and IDA* incomparable
 - BnB as any-time search

Thank you for your attention! Any questions?

Image: Image:

1= 9QC

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi = \langle V, I, G, O \rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
 - $pre(o) \subseteq V$ Preconditions
 - $\operatorname{add}(o) \subseteq V$ Add effects
 - $del(o) \subseteq V$ Delete effects
 - $cost(o) \in \mathbb{R}^+_0$ Cost

Example (LOGISTICS)

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi = \langle V, I, G, O \rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
 - $pre(o) \subseteq V$ Preconditions
 - $\operatorname{add}(o) \subseteq V$ Add effects
 - $del(o) \subseteq V$ Delete effects
 - $\operatorname{cost}(o) \in \mathbb{R}^+_0$ Cost

Example (LOGISTICS)

- at(package, location)
- at(vehicle, location)
- in(package, vehicle)

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi = \langle V, I, G, O \rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
 - $pre(o) \subseteq V$ Preconditions
 - $\operatorname{add}(o) \subseteq V$ Add effects
 - $del(o) \subseteq V$ Delete effects
 - $cost(o) \in \mathbb{R}^+_0$ Cost

Example (LOGISTICS)

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi = \langle V, I, G, O \rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
 - $pre(o) \subseteq V$ Preconditions
 - $\operatorname{add}(o) \subseteq V$ Add effects
 - $del(o) \subseteq V$ Delete effects
 - $cost(o) \in \mathbb{R}^+_0$ Cost

Example (LOGISTICS)

 {at(p-1, loc-B-1), at(p-2, loc-A-3)}

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi = \langle V, I, G, O \rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
 - $pre(o) \subseteq V$ Preconditions
 - $\operatorname{add}(o) \subseteq V$ Add effects
 - $del(o) \subseteq V$ Delete effects
 - $cost(o) \in \mathbb{R}^+_0$ Cost

Example (LOGISTICS)

• *o* = load-truck(?t, ?p, ?l)

•
$$pre(o) = \{at(?t, ?l), at(?p, ?l)\}$$

•
$$add(o) = \{in(?p, ?t)\}$$

•
$$del(o) = \{at(?p, ?l)\}$$

•
$$cost(o) = 1$$

- Cheapest way to reach a variable: achiever
 - Achieve all preconditions/subgoals (h^{add})
- Recursively collect necessary achievers in set

- Overestimation due to greedy search
- In general not admissible $(h^+ \leq h^{\mathsf{FF}/\mathsf{add}})$

- Cheapest way to reach a variable: achiever
 - Achieve all preconditions/subgoals (h^{add})
- Recursively collect necessary achievers in set

- Overestimation due to greedy search
- In general not admissible $(h^+ \leq h^{\mathsf{FF}/\mathsf{add}})$

- Cheapest way to reach a variable: achiever
 - Achieve all preconditions/subgoals (h^{add})
- Recursively collect necessary achievers in set

- Overestimation due to greedy search
- In general not admissible $(h^+ \leq h^{\mathsf{FF}/\mathsf{add}})$

- Cheapest way to reach a variable: achiever
 - Achieve all preconditions/subgoals (h^{add})
- Recursively collect necessary achievers in set

- Overestimation due to greedy search
- In general not admissible ($h^+ \leq h^{\mathsf{FF}/\mathsf{add}}$)

- Cheapest way to reach a variable: achiever
 - Achieve all preconditions/subgoals (h^{add})
- Recursively collect necessary achievers in set

- Overestimation due to greedy search
- In general not admissible $(h^+ \leq h^{\mathsf{FF}/\mathsf{add}})$

- Pick a variable: B
- Partition plan
 - Part dependent on ${\cal B}$
 - Part only used to add B
 - Rest
- Find cheaper alternative to reach B
 - h^{lst} : Optimization of $h^{\text{FF/add}}$
 - Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

- Pick a variable: B
- Partition plan
 - Part dependent on ${\cal B}$
 - Part only used to add B
 - Rest
- Find cheaper alternative to reach B
 - h^{lst} : Optimization of $h^{\text{FF/add}}$
 - Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

- Pick a variable: B
- Partition plan
 - Part dependent on ${\cal B}$
 - Part only used to add B
 - Rest
- Find cheaper alternative to reach B
 - h^{lst} : Optimization of $h^{\text{FF/add}}$
 - Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

- Pick a variable: B
- Partition plan
 - Part dependent on ${\cal B}$
 - Part only used to add B
 - Rest
- Find cheaper alternative to reach B
 - h^{lst} : Optimization of $h^{\text{FF/add}}$
 - Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

- Pick a variable: B
- Partition plan
 - Part dependent on B
 - Part only used to add B
 - Rest
- Find cheaper alternative to reach B
 - h^{lst} : Optimization of $h^{\text{FF/add}}$
 - Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

Path finding example

- Pick a variable: B
- Partition plan
 - Part dependent on B
 - Part only used to add B
 - Rest

• Find cheaper alternative to reach B

- h^{lst} : Optimization of $h^{\text{FF/add}}$
- Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

- Pick a variable: B
- Partition plan
 - Part dependent on ${\cal B}$
 - Part only used to add B
 - Rest
- Find cheaper alternative to reach B
 - h^{lst} : Optimization of $h^{\text{FF/add}}$
 - Achiever mapping for arbitrary plan π
 - Achiever of v: first operator adding v in π
 - Extract solution with $h^{\text{FF/add}}$
 - Remove unnecessary achiever settings

Extra Slides for Q&A

Justification Graph

- Precondition choice function (pcf)
 - Maps operators to most expensive precondition
 - Not unique
- LMs discovered with justification graph
 - One node per variable
 - One edge per add effect $a \in \operatorname{add}(o)$

•
$$V = \{A, B, C, i, g\}$$

• $I = \{i\}, G = \{g\}$
• $O = \{o_i, o_1, o_2, o_g\}$
• $o_i = \langle i \rightarrow A \rangle_0$
• $o_1 = \langle A \rightarrow B, C \rangle_1$
• $o_2 = \langle A \rightarrow C \rangle_1$
• $o_g = \langle B, C \rightarrow g \rangle_0$

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (P_B^0)
 - Find cheaper alternative for P_B^- given P_B^0

- $h^{FF/add}$ is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (P_B^0)
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- *h*^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- *h*^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (P_B^0)
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- *h*^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- *h*^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (P_B^0)
 - Find cheaper alternative for P_B^- given P_B^0

- *h*^{FF/add} is greedy
- Path planning example
- First reach A and B, then go to goal
 - Choose cheapest way to A
 - Choose cheapest way to B
 - Go to Goal
- h^{lst} optimizes achiever choices
- Based on Steiner tree problem
 - Pick a variable: B
 - Partition plan
 - Part dependent on $B(P_B^+)$
 - Part only used to add $B(P_B^-)$
 - Rest (*P*⁰_{*B*})
 - Find cheaper alternative for P_B^- given P_B^0

Branch-and-Bound Search (Pseudo Code)

```
def BranchAndBound(problem):
    global variable interval = [0, \infty)
    global variable bestSolution = None
    initialNode = SearchNode(parent = None
                              subproblem = problem)
    BranchAndBoundRecursive(initialNode)
    return bestSolution
def BranchAndBoundRecursive(node):
    if [node.calculateLowerBound(), \infty) \cap interval == \emptyset:
        return
    if node.subproblem is solution:
        bestSolution = extractSolution(node)
        interval = interval \cap [0, bestSolution.cost)
        return
    for sucessor in node.subproblem.successors:
      successorNode = SearchNode(parent
                                              = node
                                  subproblem = sucessor)
      BranchAndBoundRecursive (successorNode)
                                                         ELE DOG
```

Avoid unnecessary re-calculations

	h ^{LM-cut} computed
o was applied	
L _o undefined	Never
$L_o = \{o\}$	Never
$L_o = \{o, o_1, \ldots, o_n\}$	Always
o was forbidden	
L _o undefined	If and only if $cost(o) = 0$
$L_o = \{o\}$	unsolvable
$L_o = \{o, o_1, \ldots, o_n\}$	Always
	・日・ 《聞・ 《冊・ 《冊・ 副二

Extra Slides for Q&A

Automatic Application of Operators - Unit Propagation

- Model checking technique
 - Set variable to last remaining value
- Analogy: LMs with only one element $I = \{o\}$
 - Every plan must contain o
 - Apply o without branching
 - Repeat until fixed point is reached
- Here: not necessary
 - Operator from smallest LM is selected
 - No re-calculation of h^{LM-cut}
 - Unsolvable task is detected immediately
- Could be useful with different heuristic
 - Isolated effect shows significant increase in coverage

Extra Slides for Q&A

Automatic Application of Operators - 0-Cost Operators

- Pure symbol heuristic
 - Literal only occurs positive \Rightarrow set variable to true
- Analogy: Operators with base cost 0
 - Does not change solution cost
 - Cannot make applicable operators inapplicable
 - Automatic application

Coverage (%)	
87.778	Evaluated on
100.000	different domains
87.778	uncrent domains
100.000	
	Coverage (%) 87.778 100.000 87.778 100.000

IDA*-Layer Analysis

- Three phases in IDA* node expansions:
 - Solution discovery (last layer)
 - Proof of optimality (second to last layer)
 - Avoidable part of proof (all other layers)
- Few expansions in avoidable layers (4.19% on average)
- Better search strategy with same operator order
 - Small expected improvement
- Different operator order
 - Can decrease expansions in all layers

IDA*-Layer Analysis (cont.)

Expansion score

- Bar length: Expansion score
 Longer bar ~ more expansions
- Coloring: relative size of IDA* layers
 - $\bullet \ \, {\rm Blue} \sim {\rm Last \ layer}$
 - Green \sim Second to last layer
 - $\bullet~{\rm Black} \sim {\rm All~other~layers}$

- Operator order depends on random seed
- Heavy-tailed distribution for some tasks
 - Could benefit from random restarts
- Experiments
 - Different constant restart times
 - Geometrically increasing time
 - Universal restart strategy (Luby et al.) [1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,...]
- No positive effect
 - Not enough tasks benefit from restarts

