Optimal Planning for Delete-free Tasks with Incremental LM-cut

Florian Pommerening and Malte Helmert

Universität Basel
Departement Informatik
27.06. 2012

Content

(1) Theoretical Background
(2) Contributions
(3) Experiments

4 Conclusion

Delete-free Planning

- Binary cost delete-free STRIPS task $\Pi=\langle V, I, G, O\rangle$
- V set of variables
- $I, G \subseteq V$ initial/goal state
- O set of operators $o=\langle\operatorname{pre}(o) \rightarrow \operatorname{add}(o)\rangle_{\operatorname{cost}(o)}$
- $\operatorname{cost}(o) \in\{0,1\}$
- Optimal planning
- Search for cheapest operator sequence $o_{1}, \ldots o_{n}$
- $G \subseteq s\left[o_{1}\right] \cdots\left[o_{n}\right]$
- NP-equivalent instead of PSPACE-equivalent
- Why?
- Cost of optimal plan: delete-relaxation heuristic h^{+}
- h^{+}is well-informed
- Other heuristics are based on h^{+}
- Interesting delete-free domains

$h^{\text {LM-cut }}$

- Based on disjunctive action landmarks (LMs)
- Set of operators $I=\left\{o_{1}, \ldots, o_{n}\right\}$
- Every plan contains at least one o_{i}
- Cost of a landmark: $\min _{o_{i} \in \mathcal{I}}\left\{\operatorname{cost}\left(o_{i}\right)\right\}$
(1) Calculate $h^{\max }$
- Only achieve most expensive subgoal/precondition
- $h^{\text {max }}(s)=\infty$ task unsolvable
- $h^{\text {max }}(s)=0$ stop searching for LMs
(2) Use $h^{\text {max }}$ values to discover new LM
(3) Reduce operator costs by landmark's cost for operators in LM
- Sum of landmark costs is admissible heuristic
(9) Repeat

Search Strategies

Branch-and-Bound (BnB) Search

- Memory friendly depth-first search
- Recursively search for solution in cost interval
- Decrease upper bound for every discovered solution
- Continue search for cheaper solution
- Prune nodes with lower bound outside of interval

Iterative-deepening A * (IDA*) Search

- Search for solution with increasing cost $h^{\text {LM-cut }}(I), \ldots, h^{+}(I)$
- IDA* layer i : BnB search with closed interval $[i, i]$

Theorem

BnB and IDA* are complete and optimal if used with a finite search space and an admissible heuristic.

Content

(1) Theoretical Background

(2) Contributions

- Search Space
- Incremental Computation
- Improvements
(3) Experiments

4 Conclusion

Search Space

Theorem

Applying an operator cannot make an applicable operator inapplicable in delete-free tasks.

Theorem

No operator has to occur twice in an optimal relaxed solution.

- Order can mostly be ignored
- Search in serializable subsets of O
- Branch over applicable operator
- Apply it now or never
- Finite branching factor (2) and search tree depth (|O|)

Incremental Computation

- Successor generated by applying/removing operator
- Binary cost tasks
- Each operator o has containing $L M L_{o}$
- $L_{o}=\{0\}$ or $\left|L_{o}\right|>1$ or L_{o} undefined
- Apply operator o
- L_{0} discharged
- All other LMs are LMs in successor
- Remove operator o
- o no longer possible choice
- Remove o from L_{0}
- $L_{0} \backslash\{0\}$ is LM in successor
- Task unsolvable if $L_{o}=\{0\}$
- All other LMs are LMs in successor

Re-calculation of $h^{\text {LM-cut }}$

- Removing a LM
- Return landmark's costs to remaining cost
- Binary cost tasks: Set operator cost back to 1
- Can change $h^{\text {max }}$ value

Theorem

The LM-cut algorithm discovers a new landmark if the $h^{\text {max }}$ cost of the successor increases.

- Only possible if
- $L_{o}=\left\{o, o_{1}, \ldots, o_{n}\right\}$
- 0-cost operator forbidden with L_{o} undefined

Variable Ordering

- Minimum remaining values heuristic
- CSP technique
- Choosing variables to branch over
- One operator from each LM is needed
- Smaller LM \Rightarrow fewer choices
- Smallest $\mathrm{LM} \sim$ variable with minimum remaining values
- $I_{\text {min }}$: size of smallest LM containing applicable operators
- Collect applicable operators in LMs of size $I_{\text {min }}$
- Randomly select one for branching

Automatic Application of Operators

- Automatically apply operators with $L_{o}=\{0\}$
- Branching strategy already contains effect
- Useful with different heuristic
- Automatically apply 0-cost operators
- Very useful in domains with such operators
- No 0-cost operators in tested domains

Content

(1) Theoretical Background
(2) Contributions
(3) Experiments

4 Conclusion

Methodology

- Evaluation
- 876 tasks in 22 domains
- Time limit: 300 s
- Memory limit: 2 GB (only reached for huge tasks)
- Coverage scores
- Solve probability for randomly selected domain and task
- Averages of 5 runs with different seeds

Basic Results

- FastDownward with A^{*} and $h^{\mathrm{LM}-c u t}$
- Incremental LM-cut with BnB/IDA*

Resuts

	Coverage (\%)
FastDownward	49.249
BnB	59.032
IDA *	60.120

- Improvement over Fast Downward
- IDA* better than BnB
- But still room for improvement for BnB

Plan Improvement

- Better upper bound \Rightarrow more pruned nodes
- Initial upper bound
- Use cost of relaxed solution (here: with $h^{\text {lst }}$)
- No search if $h^{\text {lst }}(I)=h^{\text {LM-cut }}(I)$
- Improve intermediate solutions
- Local Steiner tree improvement (based on $h^{\text {lst }}$)
- Continue search with improved solution and new bound

Results

Coverage (\%)

BnB	59.032
IDA *	60.120
BnB (initial upper bound)	59.981
BnB (improved all solutions)	60.519

Content

(1) Theoretical Background

(2) Contributions
(3) Experiments

4 Conclusion

Future Work

- Optimization for binary cost tasks
- Performance of implementation
- Different operator orders
- Smaller search space (e.g. task decomposition)
- Generalization to arbitrary costs
- Branching decisions no longer mutually exclusive
- Different data structures needed
- Generalization to general planning
- Classical search space
- Depth of search space not limited by $|O|$
- Use A* $/$ IDA $^{*} / \ldots$ instead of branch-and-bound search

Main Contributions

- New h^{+}values
- 576 of 876 tasks solved
- Evaluation of other heuristics ($h^{\mathrm{lst}}, h^{\mathrm{LM}-c u t}, h^{\text {max }}, h^{\mathrm{FF} / \text { add }}, \ldots$)
- New ways to calculate h^{+}
- BnB/IDA* search with custom search space
- Incremental version of $h^{\text {LM-cut }}$
- Exceeds performance of Fast Downward ($\mathrm{A}^{*} / h^{\text {LM-cut }}$)
- BnB and IDA* incomparable
- BnB as any-time search

Thank you for your attention! Any questions?

Planning

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi=\langle V, I, G, O\rangle$

Formal definition

Example (LOGISTICS)

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
- $\operatorname{pre}(o) \subseteq V$ Preconditions
- add $(o) \subseteq V$ Add effects
- $\operatorname{del}(o) \subseteq V$ Delete effects
- $\operatorname{cost}(o) \in \mathbb{R}_{0}^{+}$Cost

Planning

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi=\langle V, I, G, O\rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
- $\operatorname{pre}(o) \subseteq V$ Preconditions
- add $(o) \subseteq V$ Add effects
- $\operatorname{del}(o) \subseteq V$ Delete effects
- $\operatorname{cost}(o) \in \mathbb{R}_{0}^{+}$Cost

Example (LOGISTICS)

- at(package, location)
- at(vehicle, location)
- in(package, vehicle)

Planning

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi=\langle V, I, G, O\rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with

Example (LOGISTICS)

- \{at(p-1, loc-B-1), at(p-2, loc-A-2), at(truck-1, loc-A-1), at(truck-2, loc-B-2)\}
- $\operatorname{pre}(o) \subseteq V$ Preconditions
- add $(o) \subseteq V$ Add effects
- $\operatorname{del}(o) \subseteq V$ Delete effects
- $\operatorname{cost}(o) \in \mathbb{R}_{0}^{+}$Cost

Planning

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi=\langle V, I, G, O\rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
- $\operatorname{pre}(o) \subseteq V$ Preconditions
- add $(o) \subseteq V$ Add effects
- $\operatorname{del}(o) \subseteq V$ Delete effects
- $\operatorname{cost}(o) \in \mathbb{R}_{0}^{+}$Cost

Example (LOGISTICS)

- \{at(p-1, loc-B-1), at(p-2, loc-A-3) \}

Planning

- Development of domain independent problem solvers
- Common formalism needed
- STRIPS planning task $\Pi=\langle V, I, G, O\rangle$

Formal definition

- V set of variables
- $I \subseteq V$ initial state
- $G \subseteq V$ goals
- O set of operators with
- pre $(o) \subseteq V$ Preconditions
- add $(0) \subseteq V$ Add effects
- $\operatorname{del}(o) \subseteq V$ Delete effects
- $\operatorname{cost}(o) \in \mathbb{R}_{0}^{+}$Cost

Example (LOGISTICS)

- o = load-truck(?t, ?p, ?।)
- $\operatorname{pre}(o)=\{a t(? t, ? l)$, at(?p, ?l)\}
- $\operatorname{add}(o)=\{\operatorname{in}(? p, ? \mathrm{t})\}$
- $\operatorname{del}(o)=\{a t(? p, ? l)\}$
- $\operatorname{cost}(o)=1$

$h^{\mathrm{FF} / a d d}$

- Cheapest way to reach a variable: achiever
- Achieve all preconditions/subgoals ($h^{\text {add }}$)
- Recursively collect necessary achievers in set

Path finding example

- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal

- Overestimation due to greedy search
- In general not admissible ($\left.h^{+} \leq h^{\mathrm{FF} / \text { add }}\right)$

$h^{\mathrm{FF} / a d d}$

- Cheapest way to reach a variable: achiever
- Achieve all preconditions/subgoals ($h^{\text {add }}$)
- Recursively collect necessary achievers in set

Path finding example

- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal

- Overestimation due to greedy search
- In general not admissible ($\left.h^{+} \leq h^{\mathrm{FF} / \text { add }}\right)$

$h^{\mathrm{FF} / a d d}$

- Cheapest way to reach a variable: achiever
- Achieve all preconditions/subgoals ($h^{\text {add }}$)
- Recursively collect necessary achievers in set

Path finding example

- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal

- Overestimation due to greedy search
- In general not admissible ($\left.h^{+} \leq h^{\mathrm{FF} / \text { add }}\right)$

$h^{\mathrm{FF} / a d d}$

- Cheapest way to reach a variable: achiever
- Achieve all preconditions/subgoals ($h^{\text {add }}$)
- Recursively collect necessary achievers in set

Path finding example

- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal

- Overestimation due to greedy search
- In general not admissible ($\left.h^{+} \leq h^{\mathrm{FF} / \text { add }}\right)$

$h^{F F} /$ add

- Cheapest way to reach a variable: achiever
- Achieve all preconditions/subgoals ($h^{\text {add }}$)
- Recursively collect necessary achievers in set

Path finding example

- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal

- Overestimation due to greedy search
- In general not admissible ($\left.h^{+} \leq h^{\mathrm{FF} / \text { add }}\right)$

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Local Steiner Tree Plan Improvement Procedure

Path finding example

- Pick a variable: B
- Partition plan
- Part dependent on B
- Part only used to add B
- Rest

- Find cheaper alternative to reach B
- $h^{\text {lst }}$: Optimization of $h^{\mathrm{FF} / \text { add }}$
- Achiever mapping for arbitrary plan π
- Achiever of v : first operator adding v in π
- Extract solution with $h^{\mathrm{FF} / \text { add }}$
- Remove unnecessary achiever settings

Justification Graph

- Precondition choice function (pcf)
- Maps operators to most expensive precondition
- Not unique
- LMs discovered with justification graph
- One node per variable
- One edge per add effect $a \in \operatorname{add}(o)$
- $\operatorname{pcf}(0) \xrightarrow{\circ} a$

- $V=\{A, B, C, i, g\}$
- $I=\{i\}, G=\{g\}$
- $O=\left\{o_{i}, o_{1}, o_{2}, o_{g}\right\}$
- $o_{i}=\langle i \rightarrow A\rangle_{0}$
- $o_{1}=\langle A \rightarrow B, C\rangle_{1}$
- $o_{2}=\langle A \rightarrow C\rangle_{1}$
- $o_{g}=\langle B, C \rightarrow g\rangle_{0}$

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest (P_{B}^{0})
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem

- Pick a variable: B
- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

$h^{\text {lst }}$

- $h^{\mathrm{FF} / \text { add }}$ is greedy
- Path planning example
- First reach A and B, then go to goal
- Choose cheapest way to A
- Choose cheapest way to B
- Go to Goal
- $h^{\text {lst }}$ optimizes achiever choices
- Based on Steiner tree problem
- Pick a variable: B

- Partition plan
- Part dependent on $B\left(P_{B}^{+}\right)$
- Part only used to add $B\left(P_{B}^{-}\right)$
- Rest $\left(P_{B}^{0}\right)$
- Find cheaper alternative for P_{B}^{-}given P_{B}^{0}

Branch-and-Bound Search (Pseudo Code)

```
def BranchAndBound(problem):
    global variable interval = [0, \infty)
    global variable bestSolution = None
    initialNode = SearchNode(parent = None
    subproblem = problem)
```

 BranchAndBoundRecursive(initialNode)
 return bestSolution
 def BranchAndBoundRecursive(node):
if [node.calculateLowerBound(), ∞) \cap interval == $\emptyset:$
return
if node.subproblem is solution:
bestSolution $=$ extractSolution(node)
interval $=$ interval \cap [0, bestSolution.cost)
return
for sucessor in node.subproblem.successors:
$\begin{aligned} \text { successorNode }=\text { SearchNode (parent } & =\text { node } \\ \text { subproblem } & =\text { sucessor) }\end{aligned}$
BranchAndBoundRecursive(successorNode)

Avoid unnecessary re-calculations

$h^{\text {LM-cut }}$ computed
o was applied
L_{0} undefined
$L_{o}=\{0\}$
$L_{o}=\left\{o, o_{1}, \ldots, o_{n}\right\}$
o was forbidden
L_{o} undefined
$L_{0}=\{0\}$
$L_{o}=\left\{o, o_{1}, \ldots, o_{n}\right\}$
Always

Automatic Application of Operators - Unit Propagation

- Model checking technique
- Set variable to last remaining value
- Analogy: LMs with only one element $I=\{0\}$
- Every plan must contain o
- Apply o without branching
- Repeat until fixed point is reached
- Here: not necessary
- Operator from smallest LM is selected
- No re-calculation of $h^{\text {LM-cut }}$
- Unsolvable task is detected immediately
- Could be useful with different heuristic
- Isolated effect shows significant increase in coverage

Automatic Application of Operators - 0-Cost Operators

- Pure symbol heuristic
- Literal only occurs positive \Rightarrow set variable to true
- Analogy: Operators with base cost 0
- Does not change solution cost
- Cannot make applicable operators inapplicable
- Automatic application

Results

	Coverage (\%)
BnB	87.778
BnB (0-cost)	100.000
IDA *	87.778
IDA * (0-cost)	100.000

Evaluated on different domains

IDA*-Layer Analysis

- Three phases in IDA* node expansions:
- Solution discovery (last layer)
- Proof of optimality (second to last layer)
- Avoidable part of proof (all other layers)
- Few expansions in avoidable layers (4.19\% on average)
- Better search strategy with same operator order
- Small expected improvement
- Different operator order
- Can decrease expansions in all layers

IDA*-Layer Analysis (cont.)

Expansion score
1 0.80.60.40.2 0

- Bar length: Expansion score
- Longer bar ~ more expansions
- Coloring: relative size of IDA* layers
- Blue ~ Last layer
- Green ~ Second to last layer
- Black ~ All other layers

DEPOT

LOGISTICS98

PIPESWORLD-
TANKAGE

ROVERS

Restarts

- Operator order depends on random seed
- Heavy-tailed distribution for some tasks
- Could benefit from random restarts

LOGISTICS98
PROB13

