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Abstract
Optimal cost partitioning of classical planning
heuristics has been shown to lead to excellent
heuristic values but is often prohibitively expen-
sive to compute. We analyze the application
of Lagrangian decomposition, a classical tool in
mathematical programming, to cost partitioning of
operator-counting heuristics. This allows us to
view the computation as an iterative process that
can be seeded with any cost partitioning and that
improves over time. In the case of non-negative
cost partitioning of abstraction heuristics the com-
putation reduces to independent shortest path prob-
lems and does not require an LP solver.

1 Introduction
The goal of optimal classical planning is to find a cheapest
sequence of actions that transform a given initial state into
a state satisfying some goal conditions. Each action trans-
forms the world in a deterministic way and is associated with
a cost. An optimal plan is a sequence of actions that reaches
a goal with minimal total cost. A typical approach to find-
ing such plans is heuristic search (e.g., with A∗) in the state
space implicitly defined by the initial state, actions, and goal
conditions. To guarantee optimality A∗ requires an admissi-
ble heuristic function, i.e., a function that maps world states
to estimates for the distance to the closest goal state without
overestimating this distance. For example, abstraction heuris-
tics homomorphically map the state space to an abstract state
space that is small enough to be constructed explicitly. Every
plan in the original state space remains a plan in the abstract
state space, so the cost of a shortest abstract plan can be used
as an admissible heuristic. The most common example of
abstraction heuristics are pattern database (PDB) heuristics
[Edelkamp, 2001] that project the factored state space to a
subset of its factors (called variables).

Multiple admissible heuristics can be combined admissibly
by using their maximum but the maximum of a large num-
∗Contact Author
†This is an abridged version of a paper that won the best paper

award at ICAPS 2019 [Pommerening et al., 2019].

ber of weak heuristics remains weak. Cost partitioning [Katz
and Domshlak, 2010; Pommerening et al., 2015] splits up the
cost function and evaluates each involved heuristic under a
reduced cost function to make their sum admissible. The op-
timal way of splitting up the cost function can be computed
for abstraction heuristics in time polynomial in the size of
the abstract state spaces. Even with small PDB heuristics
that consider only up to three variables each, cost partition-
ing can produce near-perfect heuristic values [Pommerening,
2017]. While the computation of these values is polynomial
in the size of abstractions, it requires solving a large linear
program (LP) which is still prohibitively expensive to com-
pute in many cases.

Operator-counting heuristics [Pommerening et al., 2014]
offer an alternative way of admissibly combining admissible
heuristics. Abstraction heuristics and many other heuristics
can be expressed with an LP over variables that express how
often an operator is used. Each such heuristic can be writ-
ten as linear constraints expressing a necessary property of
a plan, so minimizing the total cost subject these constraints
is an admissible heuristic. Multiple such heuristics can be
combined by using all their constraints in a single LP. The re-
sulting heuristic combination is equivalent to the optimal cost
partitioning of the operator-counting heuristics for the indi-
vidual constraints. While the LPs for abstraction heuristics
are more compact than their cost partitioning counterparts,
their evaluation is still too expensive to handle a large num-
ber of component heuristics.

The LPs computed by operator-counting heuristics exhibit
a structure that can be exploited by Lagrangian decomposi-
tion [Geoffrion, 1974; Guignard and Kim, 1987], a classical
tool from mathematical programming. It splits a large LP
with a block structure into subproblems that depend on a set
of parameters called the Lagrangian multipliers. Solving each
subproblem for an optimal value of the multipliers achieves
the same value as the original LP. The problem thus decom-
poses into finding good values for the multipliers and opti-
mal solutions for the subproblems under these multipliers.
We show that in the context of operator-counting heuristics
the multipliers correspond to cost functions for the individual
(cost-partitioned) heuristics.

Rather than evaluating the monolithic LP other methods



can be used on the decomposed problem. For example, sub-
gradient optimization is an iterative process that can be used
to optimize the Lagrangian multipliers. We show that in the
case of operator-counting heuristics the subgradients are up-
dates to the cost functions and have a clear and intuitive inter-
pretation. In the special case of non-negative cost partitioning
of abstraction heuristics, a subgradient approach on the La-
grangian decomposition corresponds to a simple algorithm.
It repeatedly solves a shortest path problem in each abstract
state space under a certain cost function and uses the solutions
to update the cost functions. Each iteration produces a (sub-
optimal) cost partitioning, so the algorithm can be stopped at
any time with the best known cost partitioning.

2 Background
Consider the mathematical program minx∈Rn{c>x | Ax ≥
b, x ∈ X} with a linear constraint Ax ≥ b (the complicating
constraint) and an arbitrary constraint x ∈ X. Lagrangian
relaxation of the constraint Ax ≥ b introduces a penalty term
λ ∈ Rm≥0 (wherem is the number of rows inA) called the La-
grangian multiplier. The constraint is then relaxed to the ob-
jective function as φ(λ) = minx∈Rn{c>x+λ>(b−Ax) | x ∈
X}. For every choice of values for λ, φ(λ) is a lower bound
to the original problem, and finding the best lower bound is
the Lagrangian dual: φ∗ = maxλ∈Rm

≥0
φ(λ). The function

φ(λ) is continuous and concave, so it can be optimized with
any nondifferentiable optimization algorithm such as the sub-
gradient method [Shor, 1985].

Lagrangian decomposition applies Lagrangian relaxation
to programs that decompose into independent subproblems
when the complicating constraints are removed. We are inter-
ested in an LP P that does not have complicating constraints
but complicating variables x:

min c>x subject to
A1x+B1y1 ≥ b1
· · ·
Akx+Bkyk ≥ bk
x, y1, . . . , yk ≥ 0

(1)

We can bring P into the required form by creating copies xi
of the variables x and adding constraints x = xi for 1 ≤ i ≤
k. The resulting subproblems then are

φi(λi) = minλ>i xi subject to
Aixi +Biyi ≥ bi
xi, yi ≥ 0

(2)

and the value of our original problem P is

φ∗ = max

k∑
i=1

φi(λi) subject to
k∑
i=1

λi ≤ c. (3)

For lack of space we refer to the original paper for the detailed
derivation [Pommerening et al., 2019].

We use the subgradient method to compute φ∗, which starts
from any vector λ(1) and repeatedly updates it following a
subgradient. In iteration t, the next value is computed as

λ(t+1) = PΩ

(
λ(t) + η(t)g(t)

)
(4)

where g(t) is a subgradient of φ at λ(t), η(t) > 0 is the step
length at iteration t, and PΩ is the projection to the space of
vectors satisfying

∑k
i=1 λi ≤ c. Under mild assumptions on

the function η, the method converges to an optimal solution.
In our decomposed problem, subgradients g(t) are concate-
nations of subgradients for each subproblem φi. From the
definition of φi it can be shown that optimal solutions of the
problems φi(λ(t)) are such subgradients.

3 Application to Operator Counting
Operator-counting heuristics are computed by an LP of the
form (1) where the variables x represent how often an action
is used, the objective coefficients c correspond to the costs
of each action, and each group of constraints Aix + Biyi ≥
bi corresponds to one component heuristic. The variables yi
are auxiliary variables that are not shared between constraints
and can have different interpretations in different constraints.
The heuristic is admissible if every constraint Aix+ Biyi ≥
bi has a solution for every plan π where xo is the number
of times action o is used in π. Different heuristics can be
expressed in this way. For example, abstraction heuristics are
expressed by constraints that describe a shortest path problem
in the abstract state space. As mentioned earlier, individual
heuristics can be combined by optimizing the LP subject to
the union of their constraints, and this computes their optimal
cost partitioning.

Looking at the subproblems φi(λi) of the Lagrangian de-
composition (2) we can see that they have the same form as an
operator-counting heuristic for the single component heuris-
tic i, but instead of the original cost function c, they use the
cost function λi. In fact, they compute the component heuris-
tic i under the modified cost function λi. The Lagrangian dual
φ∗ (3) then optimizes the way the cost functions λi are cho-
sen in a way that maximizes the sum of the heuristic values
while satisfying the cost partitioning constraint

∑k
i=1 λi ≤ c

that guarantees that costs are partitioned.
Applying the subgradient method to this problem means

that we start from any cost partitioning (λ(1)) and continue
to update it with subgradients according to equation (4). The
subgradients correspond to optimal solutions of the subprob-
lems (2), i.e., values for the operator-counting variables in an
optimal solution of the component heuristic. For abstraction
heuristics, we can specialize this algorithm further because
the operator-counting variables in an optimal solution directly
correspond to the number of times an operator is used in an
optimal abstract plan. This leads to an algorithm for comput-
ing the optimal cost partitioning of abstraction heuristics that
does not involve an LP solver:

1. Let cost(1)
i for 1 ≤ i ≤ k be a cost partitioning. Repeat

the following steps for t = 1, 2, . . .

2. Compute an optimal plan π(t)
i under cost function cost(t)i

for each abstraction αi. Let occurrences(o, π(t)
i ) be the

number of occurrences of o in π(t)
i .

3. Follow the subgradient for a step with length η(t), i.e.,
set c(t+1)

i (o) = cost(t)i (o) + η(t)occurrences(o, π(t)
i ).



Πα1 : 1 2 3

Πα2 : a b c d

α1 α2

t

1 cost 0.5 0.5 0.5 0.5 0.5 0.5
π/cost(π) 〈 , 〉/1 〈 , 〉/1
x∗ 1 0 1 1 1 0
cost′ 1.5 0.5 1.5 1.5 1.5 0.5

2 cost 0.5 0 1 0.5 1 0
π/cost(π) 〈 , 〉/1 〈 , , 〉/1
x∗ 0 1 1 2 0 1
cost′ 0.5 0.5 1.5 1.5 1 0.5

3 cost 0 0.25 1 1 0.75 0
π/cost(π) 〈 , 〉/1 〈 , 〉/1.75
x∗ 1 0 1 1 1 0
cost′ 0.3̄ 0.25 1.3̄ 1.3̄ 1.083̄ 0

4 cost 0 0.083̄ 1 1 0.916̄ 0
π/cost(π) 〈 , 〉/1 〈 , 〉/1.916̄
x∗ 1 0 1 1 1 0
cost′ 0.25 0.083̄ 1.25 1.25 1.16̄ 0

5 cost 0 0 1 1 1 0
π/cost(π) 〈 , , 〉/1 〈 , , 〉/2

Figure 1: Example for five steps of the subgradient method with
two abstractions α1 and α2. The transition systems of α1 and α2

are shown at the top and the evolution of the cost partitioning in the
table below. All operators have the cost 1.

4. Set cost(t+1) = PΩ(c
(t+1)
1 , . . . , c

(t+1)
k ), where Ω =

{〈c1, . . . , ck〉 ∈ Rk|O| |
∑k
i=1 ci ≤ cost}.

The final step projects cost functions into the space of cost
partitionings. If all costs are non-negative, this can be done
by setting costt+1

i (o) = max(ct+1
i (o) − δt+1(o), 0), where

δt+1(o) is the smallest adjustment necessary to satisfy the
cost partitioning constraint for o.

4 Example
Figure 1 shows an example of the subgradient algorithm that
optimizes a cost partitioning among two abstractions α1 and
α2 in five steps. The top of the figure shows the abstract tran-
sition systems of the two abstractions. There are three opera-
tors , , and that all have a cost of 1. The cost par-
titioning is initialized to the uniform cost partitioning which
assigns a cost of 0.5 to each operator in each abstraction be-
cause all operators are relevant to both abstractions.

We use η(t) = 1/t for the step length at iteration t, which
guarantees convergence to an optimal solution.

In the first iteration, both abstractions have a shortest plan
of cost 1. In α1 there are three possible shortest plans and we

assume the algorithm discovered 〈 , 〉. In α2 there is
only one choice: 〈 , 〉.

With step length η(1) = 1, the cost of is increased by
1 in both abstractions, while the cost of is only increased
in α1 and that of only in α2. The resulting cost func-
tions cost′ no longer satisfy the cost partitioning constraint
and have to be projected back into the space of non-negative
cost partitionings. For we reduce both costs by 1 and for
the other operators, we reduce both costs by 0.5.

Under the new cost functions, different plans are now op-
timal in both abstractions (〈 , 〉 and 〈 , , 〉).
Both plans still have a cost of 1, so our modification of the
cost functions did not increase the overall heuristic value yet.
We increase the cost of and in α1. They are both
used once and our step length is now η(2) = 0.5, so we in-
crease their cost by 0.5. In α2 we increase the cost of by
0.5 as well but increase the cost of by 1 because it is used
twice. The projection decreases the costs of and by
0.5 and the costs of by 0.25 in both abstractions.

After this step, the two shortest plans (〈 , 〉 and
〈 , 〉) have a total cost of 2.75, showing that our cost
partitioning improved. We update the costs of all used opera-
tors by η(3) = 0.3̄ and project back to a cost partitioning.

In the fourth step the shortest plans are the same as before,
but the cost partitioning improves again and has a total value
of 2.916̄. After updating the cost of all used operators by
η(4) = 0.25, we project to a cost partitioning again. This
time, the cost of cannot be reduced by the same amount
in α1 and α2, so its cost is reduced to 0 in α1 and to 1 in α2.

The final cost partitioning is optimal in this case and has a
heuristic value of 3. There are multiple shortest plans under
these cost functions, but note that there are shortest plans that
use each operator the same number of times in both abstrac-
tions. This corresponds to an optimal solution of the operator-
counting LP where these numbers have to be the same be-
cause they are represented by the same variable. From the
perspective of the subgradient method, these plans are also
interesting. They increase the cost of each operator by the
same amount in each abstraction, which means the costs are
projected back to the value they started from. This shows that
0 is a subgradient and we have reached an optimal value.

5 Experiments
We implemented the subgradient algorithm in the Fast Down-
ward planning system [Helmert, 2006] and evaluated it on
instances from the international planning competitions (IPC
1998–2018). We refer to the original paper for additional de-
tails and results. The results we discuss here use all projec-
tions to 1 or 2 variables of the planning task that are relevant
in the context of non-negative cost partitioning. We limit time
to 300 s and memory to 2 GiB for each instance. As a step
length function, we use η(t) = 1/t, which guarantees con-
vergence to an optimal solution. We tested four suboptimal
cost partitioning methods to seed the algorithm: uniform, op-
portunistic uniform, greedy zero-one, and saturated cost par-
titioning [Seipp et al., 2017]. The latter three depend on an
order of the abstractions. We tried both a random order and
and order that was greedily improved for 100 s.
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Figure 2: Heuristic quality of different suboptimal cost parti-
tioning methods measured as the geometric mean of the ratio
hC(s)/hC∗

(s). Order-dependent methods are used with random (r)
or improved (*) orders. In each case, the horizontal line shows the
quality of the cost partitioning method while the other line shows
how the quality improves with subgradient optimization. We only
consider instances where all methods finished 10000 iterations and
the optimal cost partitioning could be computed.

Figure 2 shows how the heuristic quality of the initial state
(compared to optimal cost partitioning) improves with itera-
tions of the subgradient algorithm. In all cases, the quality
improves steeply in the first few iterations. In the first 200
iterations most methods reach a quality of at least 90%, sur-
passing our best baseline method (saturated cost partitioning
with an improved order). The results also show that starting
from a higher quality seed generally leads to better results but
all seeds can be improved to a high quality.

One source of suboptimality were tasks with high action
costs such as from the domain ParcPrinter. In these instances,
actions can have costs on the order of 106 but plans are usu-
ally short, using most operators at most once. Combined with
a step length function of η(t) = 1/t this means that the cost
functions change by less than 1 in most steps, and it takes
many iterations to significantly modify a cost partitioning.

The above implementation does not require an LP solver
and uses Dijkstra’s [1959] algorithm to solve the shortest path
problems. We compared this to a more straight-forward im-
plementation of Lagrangian decomposition that uses CPLEX
12.8 to solve the subproblems. The abstract state spaces of
our abstractions are very small (< 105 states), so the over-
head of an LP solver over a specialized algorithm is high. In
our experiments, the LP solver was 10–200 times slower.

Finally, Figure 3 compares the time to compute the first 200
iterations of the subgradient algorithm to the time to evalu-
ate the monolithic LP that computes the optimal non-negative
cost partitioning. The time for the subgradient method scales
linearly with the number of iterations, so there is a trade-off
between accuracy and speed. For easier instances where the
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Figure 3: Time required to compute the heuristic value of the initial
state using either 200 iterations of the subgradient method or solving
the monolithic cost partitioning LP.

optimum is reached in less than 200 iterations, we can see
that computing the monolithic LP is faster, but in general the
results show that an accuracy of 90% can be reached in a
fraction of the time. There are also many cases where the
monolithic LP exceeded the resource limits but the subgradi-
ent algorithm could still compute a value.

6 Conclusion
We applied Lagrangian decomposition to operator-counting
heuristics and found that the multipliers correspond to par-
titioned cost functions. We developed a general anytime al-
gorithm that converges to an optimal cost partitioning and a
specialization for non-negative cost partitioning of abstrac-
tion heuristics that does not rely on an LP solver.

The interpretation with Lagrangian decomposition opens
operator-counting heuristics to all techniques developed in
the area of nondifferentiable optimization. We used the sub-
gradient method with straight-forward choices for gradient,
step length, and stopping condition. More elaborate choices
are possible, and there is a rich literature in the area with
many possible extensions. We discuss this in more detail in
the original paper.
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