Classical planning

iPDB proced

Post-hoc optimization heuristic

Experimental results

Getting the Most Out of Pattern Databases for Classical Planning

Florian Pommerening Gabriele Röger Malte Helmert

University of Basel, Switzerland

U N I B A S E L

IJCAI 2013

Classical planning	PDBs oo	iPDB procedure	Post-hoc optimization heuristic	
Structure o	f this t	alk		

Classical planning	PDBs oo	iPDB procedure	Post-hoc optimization heuristic	
Structure o	f this t	alk		

Classical planning	PDBs 00	iPDB procedure 000	Post-hoc optimization heuristic	
Structure	of this	talk		

Classical planning	PDBs 00	iPDB procedure 000	Post-hoc optimization heuristic	
Structure	of this	talk		

Classical planning ●○	PDBs oo	iPDB procedure 000	Post-hoc optimization heuristic	
Planning	tasks			

Planning task

- Variables
 - Variable assignments are states
- Operators
 - Allow to manipulate states
 - Transitions in implicitly defined transition system
- Initial state
- Goal description
 - Find (shortest) path

Classical planning	PDBs oo	iPDB procedure 000	
Solving pl	anning	tasks	

Common approach

- Informed search algorithm + heuristic
- Optimal planning
 - A* + admissible heuristic
- One type of admissible heuristics
 - Pattern database (PDB) heuristics

Classical planning 00	PDBs ●0	iPDB procedure 000	

Pattern database heuristics by example

Pattern database

- Projection to subset of variables
- Abstract distance as heuristic value

Classical planning 00	PDBs ●0	iPDB procedure 000	

Pattern database heuristics by example

Pattern database

- Projection to subset of variables
- Abstract distance as heuristic value

Classical planning 00	PDBs o●	iPDB procedure 000	
Running ex	ample		

Example task

- Three variables $\{A, B, C\}$
- Each operator affects only one variable
- Pattern databases

$$\begin{split} h^{\{A\}}(s) &= h^{\{B\}}(s) &= h^{\{C\}}(s) &= 1 \\ h^{\{A,B\}}(s) &= h^{\{A,C\}}(s) &= h^{\{B,C\}}(s) = 6 \end{split}$$

What is the best heuristic value we can get from this information?

Classical planning 00	PDBs 00	iPDB procedure ●00	
Using mul	tiple P	DBs	

Key idea: Use multiple PDBs

Two aspects

- Pattern selection
- 2 Heuristic combination

Classical planning 00	PDBs oo	iPDB procedure ●00	
Using mul	tinle P	DRs	

Key idea: Use multiple PDBs

iPDB procedure [Haslum et al.]

- **2** Heuristic combination \rightarrow canonical heuristic

Classical planning 00	PDBs oo	iPDB procedure o●o	
Cananical	hourie	tio	

Canonical heuristic

Additivity of a pattern collection $\ensuremath{\mathcal{C}}$

- No operator affects variables in two patterns
- Sum of heuristic values is admissible

Canonical heuristic

- Sum where possible, maximize where necessary
- $MAS(\mathcal{C})$: set of maximal additive subsets of \mathcal{C}

Definition (Canonical heuristic)

$$h^{\mathcal{C}}(s) = \max_{\mathcal{A} \in MAS(\mathcal{C})} \sum_{P \in \mathcal{A}} h^{P}(s).$$

Classical planning

iPDE 000

iPDB procedure

Post-hoc optimization heuristic

Experimental results

Canonical heuristic (example task)

Example task

Each operator affects only one variable

- \Rightarrow Disjoint patterns are additive
 - For example $h^{\{A\}}(s) + h^{\{B,C\}}(s) = 1 + 6$

$$h^{\mathcal{C}}(s) = 7$$

Post-hoc optimization heuristic: idea

Getting the Most Out of Pattern Databases for Classical Planning \rightarrow Can we do better than the canonical heuristic?

Classical planning 00	PDBs 00	iPDB procedure 000	Post-hoc optimization heuristic	

Example task

 $h^{\{A,B\}} = 6$

Classical planning	PDBs	iPDB procedure	Post-hoc optimization heuristic	
00	00	000	000000	

Example task

 $h^{\{A,B\}} = 6$

$$6 = h^{\{A,B\}} \leq type-A + type-B$$

Classical planning	PDBs	iPDB procedure	Post-hoc optimization heuristic	
00	00	000	0●00000	

Example task

 $h^{\{A,B\}} = 6$

Classical planning 00	PDBs 00	iPDB procedure 000	Post-hoc optimization heuristic	

Example task

 $h^{\{A,B\}} = 6$

Classical planning	PDBs	iPDB procedure	Post-hoc optimization heuristic	
00	00	000	000000	

Example task

 $h^{\{A,B\}} = 6$

 \Rightarrow Any solution spends at least cost 6 on operators modifying A or B.

 $\Rightarrow\,$ at least cost 9 in any plan

Classical planning	PDBs	iPDB procedure	Post-hoc optimization heuristic	
00	00	000	000000	

Example task

 $h^{\{A,B\}} = 6$

 \Rightarrow Any solution spends at least cost 6 on operators modifying A or B.

\Rightarrow at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results 00 000 000 000 000 000

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

- Variable X_o for each operator $o \in \mathcal{O}$
 - Cost incurred by operator o in a plan
 - $X_o \ge 0$ for each $o \in \mathcal{O}$

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results 00 00 000 000 000 000

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

- Variable X_o for each operator $o \in \mathcal{O}$
 - Cost incurred by operator o in a plan
 - $X_o \ge 0$ for each $o \in \mathcal{O}$
- PDB heuristics admissible

$$h^P(s) \leq \sum\nolimits_{o \in \mathcal{O}} X_o$$
 for each pattern $P \in \mathcal{C}$

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results 00 000 000 000 000

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

- Variable X_o for each operator $o \in \mathcal{O}$
 - Cost incurred by operator o in a plan
 - $X_o \ge 0$ for each $o \in \mathcal{O}$
- PDB heuristics admissible

$$h^P(s) \leq \sum_{o \in \mathcal{O}} X_o$$
 for each pattern $P \in \mathcal{C}$

• Can tighten constraints to

$$h^P(s) \le \sum_{o \in \mathcal{O}: o \text{ affects } P} X_o$$

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results 00 000 000 000 000

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

- Variable X_o for each operator $o \in \mathcal{O}$
 - Cost incurred by operator o in a plan
 - $X_o \ge 0$ for each $o \in \mathcal{O}$
- PDB heuristics admissible

$$h^P(s) \leq \sum\nolimits_{o \in \mathcal{O}} X_o$$
 for each pattern $P \in \mathcal{C}$

• Can tighten constraints to

$$h^P(s) \le \sum_{o \in \mathcal{O}: o \text{ affects } P} X_o$$

- Total cost of the plan is $\sum_{o \in \mathcal{O}} X_o$
- Minimizing total cost leads to admissible estimate

Classical planning

iPDB 000

procedure

Post-hoc optimization heuristic 0000000

Experimental results

Post-hoc optimization heuristic: definition and admissibility

Definition (Post-hoc optimization heuristic)

The post-hoc optimization heuristic h_C^{PhO} is the objective value of the linear program for C as described above.

Classical planning

iPDB 000

'DB procedure 00 Post-hoc optimization heuristic

Experimental results

Post-hoc optimization heuristic: definition and admissibility

Definition (Post-hoc optimization heuristic)

The post-hoc optimization heuristic $h_{\mathcal{C}}^{\text{PhO}}$ is the objective value of the linear program for \mathcal{C} as described above.

Theorem

The post-hoc optimization heuristic is admissible.

Classical planning 00	PDBs oo	iPDB procedure 000	Post-hoc optimization heuristic	
Aside: cost	: partiti	oning		

- Alternative way of using multiple patterns: operator cost partitioning
- Account only for a fraction of the actual operator costs in each PDB so that estimates can be summed up admissibly

Classical planning 00	PDBs 00	iPDB procedure 000	Post-hoc optimization heuristic	
Aside: cost	partiti	oning		

- Alternative way of using multiple patterns: operator cost partitioning
- Account only for a fraction of the actual operator costs in each PDB so that estimates can be summed up admissibly

Examples

- Uniform cost partitioning
 - Operator o affects k patterns \Rightarrow each PDB uses cost c(o)/k
- Optimal cost partitioning [Katz and Domshlak]
 - Best way to admissibly partition costs
 - State-specific LP

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results 00 00 000 000 000 000 000

Post-hoc optimization heuristic: insight

Duality Theorem

- Rewrite minimization LP as maximization LP
- Same objective value
- Different view on the same problem

Dual of LP in $h_{\mathcal{C}}^{\mathsf{PhO}}$

- State-specific cost partitioning
- Scales operator costs for heuristic h^P by a factor Y_P
- Much smaller than LP for optimal cost partitioning

Classical planning

s

DB procedure

Post-hoc optimization heuristic

Experimental results

Relation to canonical heuristic

Theorem

Consider the dual of the LP solved by h_{C}^{PhO} in state s. If we restrict the variables to integers, the objective value is the canonical heuristic value $h^{C}(s)$. Classical planning 00 DBs

PDB procedure

Post-hoc optimization heuristic

Experimental results

Relation to canonical heuristic

Theorem

Consider the dual of the LP solved by h_{C}^{PhO} in state s. If we restrict the variables to integers, the objective value is the canonical heuristic value $h^{C}(s)$.

Theorem

The post-hoc optimization heuristic $h_{\mathcal{C}}^{\text{PhO}}$ dominates the canonical heuristic $h^{\mathcal{C}}$.

Classical planning PDBs iPDB procedure Post-hoc optimization heuristi oo oo ooo oooooo Experimental results

Experimental results I

Coverage	iPDB hill-climbing		Systematic (size 2		size 2)	
	$h^{\mathcal{C}}$	h^{PhO}	h^{OCP}	$h^{\mathcal{C}}$	h^{PhO}	h^{OCP}
IPC 2011 (280)	133	133	56	126	158	43
IPC 1998-2008 (1116)	456	459	241	446	475	231
Sum (1396)	589	592	297	572	633	274

More detailed results on the poster

Classical planning	PDBs	iPDB procedure	Post-hoc optimization heuristic	Experimental results
00	oo	000		0●0
Experime	ntal res	ults II		

Why is h^{PhO} better than $h^{\mathcal{C}}$?

Additional evaluation on systematic pattern collections:

- Theoretical dominance of h^{PhO} ?
- Faster computation?

Classical planning	PDBs oo	iPDB procedure 000	Post-hoc optimization heuristic	Experimental results 0●0
Experime	ntal res	ults II		

Why is h^{PhO} better than $h^{\mathcal{C}}$?

Additional evaluation on systematic pattern collections:

- Theoretical dominance of h^{PhO} ?
 - Better guidance on only a few domains
- Faster computation?

Classical planning	PDBs oo	iPDB procedure 000	Experimental results 0●0
Experime	ntal res	ults II	

Why is h^{PhO} better than $h^{\mathcal{C}}$?

Additional evaluation on systematic pattern collections:

- Theoretical dominance of h^{PhO}?
 - Better guidance on only a few domains
- Faster computation?
 - $\bullet\,$ Considered tasks solved by $h^{\rm PhO}$ but not by $h^{\mathcal C}$
 - Most ran out of memory during generation of *MAS*(*C*)
 - $\bullet\,$ On these tasks, $h^{\mathcal{C}}$ would be extremely slow
 - \bullet On commonly solved tasks $h^{\mathcal{C}}$ tends to be faster

Classical planning 00	PDBs 00	iPDB procedure 000	
Conclusion			

Two contributions

- Post-hoc optimization heuristic
 - Middle ground between canonical heuristic and optimal cost partitioning
- Systematic generation of interesting patterns
 - Improves over iPDB hill climbing when used with suitable heuristic

Classical planning 00	planning PDBs iPDB procedure 00 000				
Thank you					

Thank you for your attention!

Poster presentation

• Friday 8:30 - 9:45

Corresponding dual program to h^{PhO} LP

Maximize $\sum_{P \in \mathcal{C}} Y_P h^P(s)$ subject to

 $\sum_{P \in \mathcal{C}: o \text{ affects } P} Y_P \le 1 \qquad \text{for all } o \in \mathcal{O}$ $Y_P \ge 0 \qquad \text{for all } P \in \mathcal{C}.$

Post-hoc optimization heuristic: simplifying the LP

Reduce size of LP

- Aggregate variables which always occur together in constraints
- Happens when several operators are relevant for exactly the same PDBs
- Merge individual variables into one new variable
 - Represents their sum

Example task

Merged all operators modifying A into variable type-A

Classical planning 00	PDBs 00	iPDB procedure 000	

Detailed experimental results I

	HC ^C		HC ^{PhO}	Sys^2			
	$h^{\mathcal{C}}$	h^{PhO}	h^{OCP}	h^{PhO}	$h^{\mathcal{C}}$	h^{PhO}	h^{OCP}
barman (20)	4	4	0	0	4	4	0
elevators (20)	16	16	0	16	16	15	0
floortile (20)	2	2	0	2	2	2	0
nomystery (20)	16	16	3	16	18	18	6
openstacks (20)	14	14	5	14	5	14	0
parcprinter (20)	8	8	8	8	7	13	15
parking (20)	5	5	1	5	0	1	0
pegsol (20)	0	0	0	0	5	17	1
scanalyzer (20)	10	10	1	7	10	8	1
sokoban (20)	20	20	18	20	20	20	2
tidybot (20)	14	14	6	11	14	14	6
transport (20)	6	6	2	6	6	6	0
visitall (20)	16	16	10	16	16	16	10
woodworking (20)	2	2	2	1	3	10	2
Sum IPC 2011 (280)	133	133	56	122	126	158	43
IPC 1998-2008 (1116)	456	459	241	426	446	475	231
Sum (1396)	589	592	297	548	572	633	274

Classical planning	PDBs	iPDB procedure	

Detailed experimental results II

	Sys ¹		S	ys^2	S	ys ³	Sys*
	$h^{\mathcal{C}}$	h ^{PhO}	$h^{\mathcal{C}}$	h ^{PhO}	$h^{\mathcal{C}}$	h^{PhO}	h^{PhO}
barman (20)	4	4	4	4	0	0	4 (1-2)
elevators (20)	9	9	16	15	16	14	15 (2)
floortile (20)	2	2	2	2	2	2	2 (1-3)
nomystery (20)	12	12	18	18	19	19	19 (3-4)
openstacks (20)	14	14	5	14	2	9	14 (1-2)
parcprinter (20)	11	11	7	13	5	18	20 (4)
parking (20)	5	5	0	1	0	0	5 (1)
pegsol (20)	17	17	5	17	1	16	17 (1-2)
scanalyzer (20)	10	10	10	8	10	4	10 (1)
sokoban (20)	19	19	20	20	20	13	20 (2)
tidybot (20)	13	13	14	14	8	14	14 (2-3)
transport (20)	6	6	6	6	9	8	8 (3)
visitall (20)	16	16	16	16	16	16	16 (1-3)
woodworking (20)	5	5	3	10	1	9	10 (2)
Sum IPC 2011 (280)	143	143	126	158	109	142	174
IPC 1998-2008 (1116)	449	449	446	475	406	422	501
Sum (1396)	592	592	572	633	515	564	675