
Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Getting the Most Out of Pattern Databases
for Classical Planning

Florian Pommerening Gabriele Röger Malte Helmert

University of Basel, Switzerland

IJCAI 2013

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Structure of this talk

Getting the Most Out of Pattern Databases for Classical Planning

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Structure of this talk

Getting the Most Out of Pattern Databases for Classical Planning

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Structure of this talk

Getting the Most Out of Pattern Databases for Classical Planning

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Structure of this talk

Getting the Most Out of Pattern Databases for Classical Planning

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Planning tasks

Planning task

Variables

Variable assignments are states

Operators

Allow to manipulate states
Transitions in implicitly defined transition system

Initial state

Goal description

Find (shortest) path

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Solving planning tasks

Common approach

Informed search algorithm + heuristic

Optimal planning

A∗ + admissible heuristic

One type of admissible heuristics

Pattern database (PDB) heuristics

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Pattern database heuristics by example

Pattern database

Projection to subset of variables
Abstract distance as heuristic value

011 000

001

010

101

100

200

210

110

111

211

201

311

310

301

300

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Pattern database heuristics by example

Pattern database

Projection to subset of variables
Abstract distance as heuristic value

011 000

001

010

011

001

010

000

101 110

100 111

101 110

111100

200

210

211

201

200 211

201210

311

310

301

300300

310

301

311

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Running example

Example task

Three variables {A,B,C}
Each operator affects only one variable

Pattern databases

h{A}(s) = h{B}(s) = h{C}(s) = 1

h{A,B}(s) = h{A,C}(s) = h{B,C}(s) = 6

What is the best heuristic value we can get from this information?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Using multiple PDBs

Getting Much Out of Pattern Databases for Classical Planning

Key idea: Use multiple PDBs

Two aspects

1 Pattern selection

2 Heuristic combination

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Using multiple PDBs

Getting Much Out of Pattern Databases for Classical Planning

Key idea: Use multiple PDBs

iPDB procedure [Haslum et al.]

1 Pattern selection → hill-climbing search

2 Heuristic combination → canonical heuristic

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Canonical heuristic

Additivity of a pattern collection C
No operator affects variables in two patterns

Sum of heuristic values is admissible

Canonical heuristic

Sum where possible, maximize where necessary

MAS(C): set of maximal additive subsets of C

Definition (Canonical heuristic)

hC(s) = max
A∈MAS(C)

∑
P∈A

hP (s).

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Canonical heuristic (example task)

Example task

Each operator affects only one variable

⇒ Disjoint patterns are additive

For example h{A}(s) + h{B,C}(s) = 1 + 6

hC(s) = 7

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Getting the Most Out of Pattern Databases for Classical Planning

→ Can we do better than the canonical heuristic?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Example task

h{A,B} = 6

⇒ Any solution spends at least cost 6 on operators
⇒ modifying A or B.

6 = h{A,B} ≤ type-A + type-B

6 = h{A,C} ≤ type-A + type-C

6 = h{B,C} ≤ type-B + type-C

18 ≤ 2type-A + 2type-B + 2type-C
9 ≤ type-A + type-B + type-C

⇒ at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Example task

h{A,B} = 6

⇒ Any solution spends at least cost 6 on operators
⇒ modifying A or B.

6 = h{A,B} ≤ type-A + type-B

6 = h{A,C} ≤ type-A + type-C

6 = h{B,C} ≤ type-B + type-C

18 ≤ 2type-A + 2type-B + 2type-C
9 ≤ type-A + type-B + type-C

⇒ at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Example task

h{A,B} = 6

⇒ Any solution spends at least cost 6 on operators
⇒ modifying A or B.

6 = h{A,B} ≤ type-A + type-B

6 = h{A,C} ≤ type-A + type-C

6 = h{B,C} ≤ type-B + type-C

18 ≤ 2type-A + 2type-B + 2type-C
9 ≤ type-A + type-B + type-C

⇒ at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Example task

h{A,B} = 6

⇒ Any solution spends at least cost 6 on operators
⇒ modifying A or B.

6 = h{A,B} ≤ type-A + type-B

6 = h{A,C} ≤ type-A + type-C

6 = h{B,C} ≤ type-B + type-C

18 ≤ 2type-A + 2type-B + 2type-C

9 ≤ type-A + type-B + type-C

⇒ at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Example task

h{A,B} = 6

⇒ Any solution spends at least cost 6 on operators
⇒ modifying A or B.

6 = h{A,B} ≤ type-A + type-B

6 = h{A,C} ≤ type-A + type-C

6 = h{B,C} ≤ type-B + type-C

18 ≤ 2type-A + 2type-B + 2type-C
9 ≤ type-A + type-B + type-C

⇒ at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: idea

Example task

h{A,B} = 6

⇒ Any solution spends at least cost 6 on operators
⇒ modifying A or B.

6 = h{A,B} ≤ type-A + type-B

6 = h{A,C} ≤ type-A + type-C

6 = h{B,C} ≤ type-B + type-C

18 ≤ 2type-A + 2type-B + 2type-C
9 ≤ type-A + type-B + type-C

⇒ at least cost 9 in any plan

Can we generalize this kind of reasoning?

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

Variable Xo for each operator o ∈ O
Cost incurred by operator o in a plan
Xo ≥ 0 for each o ∈ O

PDB heuristics admissible

hP (s) ≤
∑

o∈O
Xo for each pattern P ∈ C

Can tighten constraints to

hP (s) ≤
∑

o∈O:o affects P
Xo

Total cost of the plan is
∑

o∈OXo

Minimizing total cost leads to admissible estimate

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

Variable Xo for each operator o ∈ O
Cost incurred by operator o in a plan
Xo ≥ 0 for each o ∈ O

PDB heuristics admissible

hP (s) ≤
∑

o∈O
Xo for each pattern P ∈ C

Can tighten constraints to

hP (s) ≤
∑

o∈O:o affects P
Xo

Total cost of the plan is
∑

o∈OXo

Minimizing total cost leads to admissible estimate

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

Variable Xo for each operator o ∈ O
Cost incurred by operator o in a plan
Xo ≥ 0 for each o ∈ O

PDB heuristics admissible

hP (s) ≤
∑

o∈O
Xo for each pattern P ∈ C

Can tighten constraints to

hP (s) ≤
∑

o∈O:o affects P
Xo

Total cost of the plan is
∑

o∈OXo

Minimizing total cost leads to admissible estimate

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: linear program

Construct linear program for pattern collection C:

Variable Xo for each operator o ∈ O
Cost incurred by operator o in a plan
Xo ≥ 0 for each o ∈ O

PDB heuristics admissible

hP (s) ≤
∑

o∈O
Xo for each pattern P ∈ C

Can tighten constraints to

hP (s) ≤
∑

o∈O:o affects P
Xo

Total cost of the plan is
∑

o∈OXo

Minimizing total cost leads to admissible estimate

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: definition and admissibility

Definition (Post-hoc optimization heuristic)

The post-hoc optimization heuristic hPhO
C is the objective value

of the linear program for C as described above.

Theorem

The post-hoc optimization heuristic is admissible.

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: definition and admissibility

Definition (Post-hoc optimization heuristic)

The post-hoc optimization heuristic hPhO
C is the objective value

of the linear program for C as described above.

Theorem

The post-hoc optimization heuristic is admissible.

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Aside: cost partitioning

Alternative way of using multiple patterns:
operator cost partitioning

Account only for a fraction of the actual operator costs
in each PDB so that estimates can be summed up admissibly

Examples

Uniform cost partitioning

Operator o affects k patterns ⇒ each PDB uses cost c(o)/k

Optimal cost partitioning [Katz and Domshlak]

Best way to admissibly partition costs
State-specific LP

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Aside: cost partitioning

Alternative way of using multiple patterns:
operator cost partitioning

Account only for a fraction of the actual operator costs
in each PDB so that estimates can be summed up admissibly

Examples

Uniform cost partitioning

Operator o affects k patterns ⇒ each PDB uses cost c(o)/k

Optimal cost partitioning [Katz and Domshlak]

Best way to admissibly partition costs
State-specific LP

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: insight

Duality Theorem

Rewrite minimization LP as maximization LP

Same objective value

Different view on the same problem

Dual of LP in hPhO
C

State-specific cost partitioning

Scales operator costs for heuristic hP by a factor YP

Much smaller than LP for optimal cost partitioning

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Relation to canonical heuristic

Theorem

Consider the dual of the LP solved by hPhO
C in state s.

If we restrict the variables to integers, the objective value
is the canonical heuristic value hC(s).

Theorem

The post-hoc optimization heuristic hPhO
C dominates

the canonical heuristic hC .

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Relation to canonical heuristic

Theorem

Consider the dual of the LP solved by hPhO
C in state s.

If we restrict the variables to integers, the objective value
is the canonical heuristic value hC(s).

Theorem

The post-hoc optimization heuristic hPhO
C dominates

the canonical heuristic hC .

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Experimental results I

Coverage iPDB hill-climbing Systematic (size 2)

hC hPhO hOCP hC hPhO hOCP

IPC 2011 (280) 133 133 56 126 158 43
IPC 1998–2008 (1116) 456 459 241 446 475 231
Sum (1396) 589 592 297 572 633 274

More detailed results on the poster

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Experimental results II

Why is hPhO better than hC?

Additional evaluation on systematic pattern collections:

Theoretical dominance of hPhO?

Better guidance on only a few domains

Faster computation?

Considered tasks solved by hPhO but not by hC

Most ran out of memory during generation of MAS(C)
On these tasks, hC would be extremely slow
On commonly solved tasks hC tends to be faster

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Experimental results II

Why is hPhO better than hC?

Additional evaluation on systematic pattern collections:

Theoretical dominance of hPhO?

Better guidance on only a few domains

Faster computation?

Considered tasks solved by hPhO but not by hC

Most ran out of memory during generation of MAS(C)
On these tasks, hC would be extremely slow
On commonly solved tasks hC tends to be faster

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Experimental results II

Why is hPhO better than hC?

Additional evaluation on systematic pattern collections:

Theoretical dominance of hPhO?

Better guidance on only a few domains

Faster computation?

Considered tasks solved by hPhO but not by hC

Most ran out of memory during generation of MAS(C)
On these tasks, hC would be extremely slow
On commonly solved tasks hC tends to be faster

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Experimental results III

Time to calculate heuristic value of initial state

Colored by |C|

10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

hPhO/Sys2

h
C /

Sy
s2

100–101

101–102

102–103

103–104

Colored by |MAS(C)|

10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

hPhO/Sys2

h
C /

Sy
s2

100–101

101–102

102–103

103–104

104–105

105–106

106–107

107–108

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Conclusion

Two contributions

Post-hoc optimization heuristic

Middle ground between canonical heuristic
and optimal cost partitioning

Systematic generation of interesting patterns

Improves over iPDB hill climbing
when used with suitable heuristic

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Thank you

Thank you for your attention!

Poster presentation

Friday 8:30 – 9:45

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

hPhO LP

Minimize
∑

o∈OXo subject to

∑
o∈O:o affects P

Xo ≥ hP (s) for all P ∈ C

Xo ≥ 0 for all o ∈ O.

Corresponding dual program to hPhO LP

Maximize
∑

P∈C YPh
P (s) subject to

∑
P∈C:o affects P

YP ≤ 1 for all o ∈ O

YP ≥ 0 for all P ∈ C.

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Post-hoc optimization heuristic: simplifying the LP

Reduce size of LP

Aggregate variables which always occur together in constraints

Happens when several operators are relevant for exactly the
same PDBs

Merge individual variables into one new variable

Represents their sum

Example task

Merged all operators modifying A into variable type-A

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Detailed experimental results I

HCC HCPhO Sys2

hC hPhO hOCP hPhO hC hPhO hOCP

barman (20) 4 4 0 0 4 4 0
elevators (20) 16 16 0 16 16 15 0
floortile (20) 2 2 0 2 2 2 0
nomystery (20) 16 16 3 16 18 18 6
openstacks (20) 14 14 5 14 5 14 0
parcprinter (20) 8 8 8 8 7 13 15
parking (20) 5 5 1 5 0 1 0
pegsol (20) 0 0 0 0 5 17 1
scanalyzer (20) 10 10 1 7 10 8 1
sokoban (20) 20 20 18 20 20 20 2
tidybot (20) 14 14 6 11 14 14 6
transport (20) 6 6 2 6 6 6 0
visitall (20) 16 16 10 16 16 16 10
woodworking (20) 2 2 2 1 3 10 2
Sum IPC 2011 (280) 133 133 56 122 126 158 43
IPC 1998–2008 (1116) 456 459 241 426 446 475 231
Sum (1396) 589 592 297 548 572 633 274

Classical planning PDBs iPDB procedure Post-hoc optimization heuristic Experimental results

Detailed experimental results II

Sys1 Sys2 Sys3 Sys∗

hC hPhO hC hPhO hC hPhO hPhO

barman (20) 4 4 4 4 0 0 4 (1–2)

elevators (20) 9 9 16 15 16 14 15 (2)

floortile (20) 2 2 2 2 2 2 2 (1–3)

nomystery (20) 12 12 18 18 19 19 19 (3–4)

openstacks (20) 14 14 5 14 2 9 14 (1–2)

parcprinter (20) 11 11 7 13 5 18 20 (4)

parking (20) 5 5 0 1 0 0 5 (1)

pegsol (20) 17 17 5 17 1 16 17 (1–2)

scanalyzer (20) 10 10 10 8 10 4 10 (1)

sokoban (20) 19 19 20 20 20 13 20 (2)

tidybot (20) 13 13 14 14 8 14 14 (2–3)

transport (20) 6 6 6 6 9 8 8 (3)

visitall (20) 16 16 16 16 16 16 16 (1–3)

woodworking (20) 5 5 3 10 1 9 10 (2)

Sum IPC 2011 (280) 143 143 126 158 109 142 174
IPC 1998–2008 (1116) 449 449 446 475 406 422 501
Sum (1396) 592 592 572 633 515 564 675

	Classical planning
	PDBs
	iPDB procedure
	Post-hoc optimization heuristic
	Experimental results

