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Abstract

We introduce transition-counting constraints as a principled
tool to formalize constraints that must hold in every solution
of a transition system. We then show how to obtain transi-
tion landmark constraints from abstraction cuts. Transition
landmarks dominate operator landmarks in theory but require
solving a linear program that is prohibitively large in practice.
We compare different constraints that project away transition-
counting variables and then further relax the constraint. For
one important special case, we provide a lossless projection.
We finally discuss efficient data structures to derive cuts from
abstractions and store them in a way that avoids repeated
computation in every state. We compare the resulting heuris-
tics both theoretically and on benchmarks from the interna-
tional planning competition.

Introduction
Operator counting (Pommerening et al. 2014) is a frame-
work in classical planning to combine information from dif-
ferent sources. It uses constraints on the number of times
each operator of the task is used. One source of inaccuracy
in this framework is that one planning operator usually in-
duces many transitions. Information on how often an oper-
ator is used aggregates over these transitions an thus cannot
distinguish different uses of the same operator.

We introduce transition counting as an extension of oper-
ator counting to a more fine grained level. Since the number
of transitions in a planning task is prohibitively large, we
show how to derive transition-counting constraints from ab-
stractions. Such constraints are more compact and can be
linked to the operator-counting framework as well.

In particular, we investigate transition landmarks based on
cuts in a transition system. These can have an advantage over
operator landmarks derived from the same information as
they distinguish different uses of the same operator. We then
explore what effect these constraints have on the operator-
counting variables as this is the only way they can interact
with other constraints. Projections of cut-based constraints
to operator-counting variables can still be large but can be
relaxed further, trading off accuracy for a smaller size.

We also introduce a way of finding cuts in transition sys-
tems based on LM-cut (Helmert and Domshlak 2009) and
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an efficient data structure to access them during a search.
Finally, we empirically evaluate the constraints and their

relaxations on benchmarks from the international planning
competition.

Background
Classical planning We consider planning tasks with op-
erators O, a cost function cost : O → R0, and a factored
representation of states (e.g., Bäckström and Nebel 1995;
Haslum et al. 2019). Further details of the planning frame-
work are not important as we work on the induced transition
systems.

A planning task Π induces a transition system T (Π) =
⟨S,O, T, I,G, cost⟩ with a finite set of states S; the oper-
ators O of Π; a finite set of transitions T ⊆ S × O × S
where an individual transition is written as s o−→ s′ and
label(s o−→ s′) = o is used to denote its label; an initial
state I ∈ S; a set of goal states G ⊆ S; and the transition
cost function cost : T → R0 is defined based on the cost
function of Π as cost(t) = cost(label(t)).

A sequence of transitions π = ⟨t1, . . . , tn⟩ is an s-plan
for T (Π) iff ti ∈ T with ti = si−1

oi−→ si for 1 ≤ i ≤ n,
s0 = s and sn ∈ G. If s = I , π is a plan for Π. The cost of an
s-plan π = ⟨t1, . . . , tn⟩ is the sum over the transition costs
of the sequence, i.e., cost(π) =

∑n
i=1 cost(ti). An s-plan is

optimal if it has minimal cost among all s-plans. The perfect
heuristic h⋆ maps each state s to the cost of an optimal s-
plan and to ∞ if no such plan exists. A function h : S →
R+

0 ∪ {∞} is called an admissible heuristic if h ≤ h⋆.

Landmarks In this work we consider disjunctive action
landmarks (Zhu and Givan 2003; Helmert and Domshlak
2009; Büchner, Keller, and Helmert 2021) and call them
landmarks for brevity. Let T be a transition system with
operators O and let s be one of its states. We call a set of
operators L ⊆ O a landmark for s if for all s-plans π =
⟨t1, . . . , tn⟩ there is an 1 ≤ i ≤ n such that label(ti) ∈ L.

Abstractions An abstraction function α maps all states of
a transition system T to a set of states Sα, and a label ab-
straction function λ maps its operators to a set of labels Oλ.
Such abstraction functions induce an abstract transition sys-
tem (or abstraction) T αλ = ⟨Sα,Oλ, Tαλ, Iα, Gα, costλ⟩
where Tαλ = {α(s) λ(o)−−−→ α(s′) | s o−→ s′ ∈ T},
Iα = α(I), Gα = {α(s) | s ∈ G}, and costλ(s ℓ−→ s′) ≤



mino∈λ−1(ℓ) cost(o), where T are the transitions of T (Π),
G the goal states of T (Π), and λ−1(ℓ) = {o | λ(o) = ℓ} the
preimage of ℓ. Usually, α is chosen such that T α is much
smaller than T (Π). For example, if the states of T (Π) are
factored into variables, a state s can be projected to a small
subset P of variables. In that case the abstraction is called
a projection (or atomic projection if |P | = 1). A common
choice for λ is to map operators to the same label iff they
have the same cost and induce transitions between the same
pairs of abstract states.

An important property of abstractions is that all paths in
T are also feasible in T αλ. Given a sequence of transitions
⟨s0 o1−→ s1, . . . , sn−1

on−→ sn⟩ such that si−1
oi−→ si ∈ T for

all 1 ≤ i ≤ n, it holds that α(si−1)
λ(oi)−−−→ α(si) ∈ Tα. Put

differently, the cost of an optimal plan in the abstract transi-
tion system is a lower bound on the cost of an optimal plan
in the original transition system. The perfect heuristic for the
abstract transition system (hαλ) is therefore admissible for
the original transition system.

Operator Counting Consider a set of abstractions A =
{T α1λ1 , . . . , T αnλn}. Each heuristic hαiλi provides an ad-
missible estimate, but to use them in an optimal search al-
gorithm like A⋆ we have to combine them in a way that
maintains admissibility. Operator counting (Pommerening
et al. 2014) is a framework to admissibly combine admis-
sible heuristics that can be expressed in terms of necessary
plan properties called operator-counting constraints.

A linear inequality over some variables is a constraint and
we also consider a set of constraints as a constraint with the
interpretation that all constraints in the set should be sat-
isfied. An assignment to the variables that satisfies a con-
straint is a feasible solution. We denote with occur(o, π) the
number of occurrences of operator o ∈ O in a plan π. A
constraint over a set of non-negative real-valued and inte-
ger variables Y which includes an integer variable Yo for
each o ∈ O (and any number of additional variables) is an
operator-counting constraint for state s if for all s-plans π
there exists a feasible solution with Yo = occur(o, π) for
all o ∈ O. The objective value of the operator-counting in-
teger/linear program can be used as an admissible heuris-
tic for planning. It is computed by minimizing the function∑

o∈O cost(o)·Yo subject to a given set of operator-counting
constraints.

Operator-counting constraints have been derived from
a variety of planning heuristics, including landmarks and
orderings between landmarks (e.g., Büchner, Keller, and
Helmert 2021), the delete relaxation (e.g., Helmert and
Domshlak 2009; Imai and Fukunaga 2014) and net change
constraints (Bonet 2013). Abstraction heuristics have also
been used before to derive operator-counting constraints.
Pommerening, Röger, and Helmert (2013) introduce post-
hoc optimization constraints which describe the relationship
between operators that are relevant for the abstraction, their
cost and the heuristic value of the abstraction, and Seipp,
Keller, and Helmert (2021) strengthen post-hoc optimization
constraints by taking saturated costs into account.

Transition Counting
Pommerening et al. (2014) show that cost partitioning (Katz
and Domshlak 2010) of abstraction heuristics can be en-
coded in the operator-counting framework. They use aux-
iliary variables for the number of times each abstract tran-
sition is used. This turns out to be unnecessary as the same
heuristic can be encoded more compactly without these vari-
ables but it suggests an extension of the operator-counting
framework to the level of transitions.
Definition 1. Let ⟨S,O, T, I,G, cost⟩ be a transition system
and let s ∈ S. Let Y be a set of non-negative real-valued and
integer variables, including non-negative (integer-valued)
operator- and transition-counting variables Yo for each o ∈
O and Yt for each t ∈ T along with any number of ad-
ditional variables. We denote the number of occurrences of
operators o ∈ O and transitions t ∈ T in π with occur(o, π)
and occur(t, π). A constraint over Y is called a transition-
counting constraint for s if for all s-plans π there exists a
feasible solution with Yo = occur(o, π) for all o ∈ O and
Yt = occur(t, π) for all t ∈ T .

A transition constraint set for s is a set of transition-
counting constraints for s where the only common variables
between constraints are the counting variables.

By definition, every transition-counting constraint and ev-
ery transition constraint set is an operator-counting con-
straint. (Note that we have to consider a set of transition-
counting constraints as a single operator-counting constraint
because they share variables other than Yo.)

If we want transition-counting constraints to be useful in
the operator-counting framework, we have to link the transi-
tion counts to the operator counts.
Definition 2. Consider a transition system T with opera-
tors O and transitions T . The linking constraint is the set of
linear inequalities clink(T ):∑

t∈T
label(t)=o

Yt = Yo for all o ∈ O.

Please observe that the linking constraint is a transition-
counting (and thus also an operator-counting) constraint as
the equations obviously holds for any plan.

Using variables for every transition in a planning task Π is
typically intractable but we can do so for small abstractions
of Π. Unless the label abstraction function is the identity,
though, abstractions use labels different from O. The fol-
lowing constraint translates between O and Oλ.
Definition 3. Let λ be a label abstraction function. The
translation constraint for λ is the set of linear inequalities
ctranslate(λ): ∑

o∈λ−1(ℓ)

Yo = Yℓ for all ℓ ∈ Oλ.

With this constraint, we can use operator-counting con-
straints from abstractions.
Proposition 1. Let T αλ be an abstraction of planning task
Π and let c be an operator-counting constraint for a state
α(s) of T αλ. Then {c, ctranslate(λ)} is an operator-counting
constraint for s in Π.



Proof. Let π be an s-plan and let λ(π) be the sequence that
uses label λ(o) where π uses o. Since T αλ is an abstraction
of T (Π), λ(π) is an α(s)-plan. As c is an operator-counting
constraint for α(s) in T αλ, there is a solution of c with Yℓ =
occur(ℓ, λ(π)) =

∑
o∈λ−1(ℓ) occur(o, π). Extending it with

Yo = occur(o, π) also satisfies ctranslate(λ).

Note that ctranslate(λ) can be used to eliminate variables Yℓ

from c (replacing Yℓ with
∑

o∈λ−1(ℓ) Yo) so the resulting
constraint is in terms of the original operators.

We can thus derive transition-counting constraints for an
abstraction, link them together with a linking constraint, and
then use Proposition 1 to get an operator-counting constraint
for the original task. In the remainder of this paper, we thus
usually ignore the fact that a transition system is an abstrac-
tion and just treat it as the only transition system.

Comparing Operator-Counting Constraints
Since auxiliary variables like transition-counting variables
are not shared between different operator-counting con-
straints, we compare their relative strength solely based on
their solutions for operator-counting variables.

Definition 4. Let c be an operator-counting constraint.
The real-valued operator-counting solutions of c (denoted
SolLP(c)) are real-valued assignments to the operator-
counting variables such that an assignment to the auxiliary
variables used in c exists where the combined assignment
satisfies c.

We say an operator-counting constraint c1 is implied by
a constraint c2 for real-valued variables if SolLP(c2) ⊆
SolLP(c1). If there are solutions in SolLP(c1) that are not
in SolLP(c2), we say that c1 is weaker than c2 (or that
c2 is stronger) with respect to real-valued variables. If
SolLP(c2) = SolLP(c1), both constraints imply each other,
and we say they are equivalent with respect to real-valued
variables. Using a stronger operator-counting constraint in
an operator-counting LP can only increase the objective
value, while replacing a constraint with an equivalent one
will not change the objective value, even in the presence
of other constraints. A way to show that c1 is implied by
c2 for real-valued variables is to show that the inequalities
in c1 are conic combinations of the inequalities in c2. For
example, c2 := {2Yt − Ya ≥ 0, Yb − 2Yt ≥ 0} implies
c1 := {Yb ≥ Ya} because the inequality is the sum of the
inequalities in c2.

Analogously to the definitions above we define the set
of integer-valued solutions SolIP(c) and the terms implied,
weaker, stronger, and equivalent with respect to integer-
valued variables. We know that SolIP(c) ⊆ SolLP(c)∩Nn but
not all integer-valued solutions in SolLP(c) are necessarily
in SolIP(c). Consider for example a constraint c := {Ya ≤
2Yt, 2Yt ≤ Yb}. We have SolLP(c) = {Y | Ya ≤ Yb}, and
Ya = Yb = 1 is a solution in SolLP(c) ∩ Nn. However, this
solution is not in SolIP(c), as there is no integer Yt ∈ N with
Ya = 1 ≤ 2Yt ≤ 1 = Yb.

An important result from Operations Research (e.g., Con-
forti, Cornuéjols, and Zambelli 2014) shows that if the coef-
ficient matrix of the auxiliary variables is totally unimod-

∑
t∈C

Yt ≥ 1 for all C ∈ C∑
t∈T

label(t)=o

Yt = Yo for all o ∈ O

∑
o∈OC

Yo ≥ 1 for all C ∈ C

∑
o∈OS

Yo ≥ |S|
for all(*) S ⊆ C

(*) depending on X

∑
o∈O

( max
t∈T

label(t)=o

∑
C∈C
t∈C

αC)Yo ≥
∑
C∈C

αC
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Figure 1: Cut-based constraints introduced in the paper.

ular, then integer-valued solutions in SolLP(c) ∩ Nn can
always be extended to an integer-valued solution of c, so
SolLP(c) ∩ Nn = SolIP(c). In that case, if a constraint c1 is
implied by c2 with respect to real-valued variables, it is also
implied with respect to integer variables, and if it is weaker
with respect to integer variables, it is also weaker with re-
spect to real-valued variables. In such cases we just use the
terms implied and weaker without reference to integer or
real-valued variables.

Cut Landmarks
We now focus on specific transition-counting constraints re-
lated to landmarks. The literature suggests to derive land-
marks with label propagation in the relaxed task graph
(Zhu and Givan 2003; Keyder, Richter, and Helmert 2010),
backward-chaining in the delete relaxation (Hoffmann, Por-
teous, and Sebastia 2004; Richter, Helmert, and Westphal
2008), or as cuts in a graph justifying cost of a relaxed task
(Helmert and Domshlak 2009). We propose a new method
for deriving landmarks from cuts in (abstract) transition sys-
tems.

Definition 5. Let T = ⟨S,O, T, I,G, cost⟩ be a transition
system and s a state in S. A set of transitions C ⊆ T is an s-
cut iff there is a subset of states Z ⊂ S with s /∈ Z, G ⊆ Z,
and C = {s1 o−→ s2 ∈ T | s1 /∈ Z, s2 ∈ Z}.

Such cuts induce disjunctive action landmarks that must
hold in every plan for the transition system.

Proposition 2. If C is an s-cut then the set of operators
OC := {label(t) | t ∈ C} is a landmark for s.

In this and the following sections we introduce several
constraints based on cuts. Figure 1 collects the most impor-
tant ones in a single place and is meant for quick reference.
The first such constraint uses transition-counting constraints
to be more fine-grained than just talking about OC .

Proposition 3. If C is an s-cut then the transition landmark



sI

s1
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t1 : a

t2 : b
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C1 C2

Figure 2: Example transition system and two cuts (C1, C2).
Transitions are labeled with transition and operator, sepa-
rated by a colon.

constraint ctlm(C): ∑
t∈C

Yt ≥ 1

is a transition-counting constraint.
If the transition landmark constraint for a single cut C

is linked to operator counts, it contributes the same in-
formation to the operator-counting framework as the land-
mark OC . (We defer proving this statement to Proposition 7,
where we prove it in a more general form.)
Proposition 4. Let C be an s-cut derived from a transition
system T . Then the operator landmark constraint colm(C):∑

o∈OC

Yo ≥ 1

is equivalent to {ctlm(C), clink(T )}.
The advantage of transition landmarks over operator land-

marks becomes clear if we use more than one cut. Consider
the transition system and the two sI -cuts C1 and C2 depicted
in Figure 2. Operator landmark constraints just use the dis-
junctive action landmarks derived from these cuts:

Ya + Yb ≥ 1 colm(C1)

Ya + Yc ≥ 1 colm(C2)

These constraints have a solution Ya = 1 and Yb = Yc = 0.
However, we can see in the transition system that using op-
erator a once will not suffice to solve the task. If we distin-
guish transitions in the constraints, two cuts with different
transitions that are labeled with the same operator can no
longer be resolved with just a single use of the operator. The
transition landmark constraints for the cuts are

Yt1 + Yt2 ≥ 1 ctlm(C1)

Yt3 + Yt4 ≥ 1 ctlm(C2)

Together with the linking constraint clink(T ), in particular the
equation Yt1 + Yt4 = Ya, the assignment from above is no
longer a solution. In fact, every solution requires a total op-
erator count of at least 2.
Definition 6. Let T be a transition system, s one of its
states, and C a set of s-cuts in T . The transition landmark set
constraint for C is the transition constraint set ctlm-set(C) :=
{ctlm(C) | C ∈ C} ∪ {clink(T )}.

We get the following connection to operator landmarks as
a corollary of Proposition 4 and the example above.

Proposition 5. Let C be a set of s-cuts derived from a
transition system T . Then ctlm-set(C) implies colm-set(C) :=
{colm(OC) | C ∈ C} and can be stronger.

Even though the transition landmark set constraint dom-
inates the operator landmark set constraint in terms of
heuristic guidance, it comes with a significant drawback:
it requires many auxiliary variables and linking constraints
which, as we will see in our experimental evaluation, im-
pair planner performance in practice. We are therefore inter-
ested in projecting out transition-counting variables or ap-
proximating the projection.

Disjoint Cuts Constraints
If cuts are disjoint, this means every transition occurs in at
most one cut. It is important to note that this only refers to
the transitions. An operator can still be used to label different
transitions occurring in multiple cuts. In our running exam-
ple, cuts C1 and C2 are disjoint because they do not share
a transition, even though both cuts mention operator a. In
fact, if the induced landmarks of the cut are disjoint as well,
transition landmark set constraints have no advantage over
operator landmark set constraints.

If we consider a set of cuts S (say S = {C1, C2} in our
running example), every plan has to pass through all of the
cuts in S. If cuts in S are pairwise disjoint, this takes |S|
separate transitions. These transitions can only be labeled
with operators in OS := {label(t) | t ∈ C,C ∈ S} =⋃

C∈S OC , i.e., the operators mentioned anywhere in S. (In
our example, OS = {a, b, c}.) We can conclude that the sum
of operator-counts for operators in OS must be at least |S|.
In the example, this corresponds to the constraint Ya + Yb +
Yc ≥ 2. This argument holds in general, so the following
constraints are operator-counting constraints:
Definition 7. Let S be a set of pairwise disjoint s-cuts. The
disjoint cuts constraint for S is cdc(S):∑

o∈OS

Yo ≥ |S|.

To see the importance of cuts being pairwise disjoint, con-
sider that we add the cut C3 = {t2, t3} to the example. The
disjoint cut constraint for S = {C1, C2, C3} would exclude
plans of length 2, which clearly exist.

When comparing disjoint cuts constraints to operator
landmark constraints, we first observe that colm(C) for a cut
C is the same as the cdc(S) for a set of cuts S = {C}. For
larger sets S, the constraint becomes incomparable to op-
erator landmark constraints. We can see this in our running
example, where {colm(C1), colm(C2)} = {Ya + Yb ≥ 1, Ya +
Yc ≥ 1} and {cdc({C1,C2})} = {Ya + Yb + Yc ≥ 2}. The as-
signment Ya = Yc = 0 and Yb = 2 satisfies Ya+Yb+Yc ≥ 2
but not Ya + Yc ≥ 1, while the assignment Ya = 1 and
Yb = Yc = 0 satisfies Ya + Yb ≥ 1 and Ya + Yc ≥ 1 but not
Ya + Yb + Yc ≥ 2.

We now show that multiple disjoint cuts constraints can
be used to express a constraint equivalent to ctlm-set(C) if cuts
in C are pairwise disjoint. We start by showing that cdc(S) is
implied by ctlm-set(C) for every subset of cuts S ⊆ C.



Proposition 6. Let C be a set of pairwise disjoint s-cuts and
S ⊆ C one of its subsets. Then cdc(S) is implied by ctlm-set(C)

but can be weaker, even for S = C.

Proof. To show that cdc(S) is implied, we can sum up con-
straints ctlm(C) for C ∈ S. On the right-hand side, this adds
1 for each C ∈ S, resulting in |S|. Sums for different cuts
do not overlap, so each transition-counting variable occurs at
most once on the left-hand side. We can then add constraint
Yt ≥ 0 to include transition-counting variables on the left-
hand side that belong to operators in OS but do not occur in
the sum yet. Afterwards, we can use equations from clink(T )

for all o ∈ OS to replace sums of transition-counting vari-
ables with the corresponding operator-counting variables.

To see that cdc(S) for S = C can be weaker than ctlm-set(C)

consider our running example: Ya = Yc = 0 and Yb = 2 is
a solution for cdc(C) but not for ctlm-set(C).

While a single disjunctive cuts constraint can be weaker
than the transition landmark set constraint, including such
constraints for all subsets S ⊆ C makes the resulting con-
straint equivalent:

Proposition 7. Let C be a set of pairwise disjoint s-cuts
in a transition system T . Then ctlm-set(C) and c

dc-set(C)
all :=

{cdc(S) | S ⊆ C} are equivalent.

We refer to the technical report (Pommerening, Büchner,
and Keller 2024b) for the full derivation and only present a
rough sketch here.

Proof sketch. The coefficient matrix of ctlm-set(C) is totally
unimodular if cuts are pairwise disjoint, so showing equiva-
lence with respect to real-valued variables is sufficient. For
this case, we consider combinations of constraints ctlm(C),
clink(T ), and Yt ≥ 0, similar to the approach in the proof of
Proposition 6. However, instead of considering one specific
combination, we consider all conic combinations by multi-
plying the coefficient matrix with the extreme rays of a cone
D that describes conditions for all Yt reaching a coefficient
of 0. For a set of multipliers α, the resulting combination of
inequalities is the constraint ccutcost(C,α) :∑

o∈O
( max

t∈T
label(t)=o

∑
C∈C
t∈C

αC)Yo ≥
∑
C∈C

αC

and ctlm-set(C) is equivalent to {ccutcost(C,α) | α ≥ 0}.
We show that for disjoint cuts, a vector α can only be

an extreme ray of the cone D if it is binary, so ctlm-set(C)

is equivalent to {ccutcost(C,α) | α ∈ {0, 1}|C|}. Each binary
vector α corresponds to a subset Sα ⊆ C with Sα = {C ∈
C | αC = 1}. We can then see that

max
t∈T

label(t)=o

∑
C∈C
t∈C

αC =

{
1 o ∈ OSα

0 otherwise
and

∑
C∈C

αC = |Sα|.

This shows that ccutcost(C,α) exactly matches cdc(Sα). Thus
{ccutcost(C,α) | α ∈ {0, 1}|C|} is equivalent to cdc-set(C).

Say two cuts C1, C2 share an operator if OC1 ∩ OC2 ̸=
∅, i.e, some operator is used as a label in both of the cuts.
For a set of cuts S, consider the graph GS where each C ∈
S is a node and there is an edge between two cuts iff they
share an operator. We say S is connected if GS has a single
connected component. We now show that we only have to
consider connected subsets S ⊆ C. If S is not connected,
consider a connected component S1 of GS and S2 = S \S1.
In that case, OS1 and OS2 are disjoint, so cdc(S1)+cdc(S2) =
cdc(S), i.e., cdc(S) is implied by the other two constraints.
Together with Proposition 7 we get the following result:

Theorem 1. Let C be a set of pairwise disjoint s-cuts in a
transition system T . Then ctlm(C) and c

dc-set(C)
connected := {cdc(S) |

S ⊆ C, S is connected} are equivalent.

While ctlm(C) and c
dc-set(C)
connected express the same restriction

on the operator-counting variables they differ in size. In
a transition system with transitions T , and with a set of
cuts C, ctlm(C) has |C| + |O| inequalities and |O| + |T |
variables. The equivalent disjoint cuts set constraint has
O(2|C|) inequalities but only |O| variables. In transition
systems with a large number of transitions, this can pay
off. Additionally, the constraint can easily be relaxed by
dropping some of the disjunctive cuts constraints to get a
weaker but more compact representation. In one extreme,
only atomic subsets (cdc-set(C)

atomic := {cdc(S) | S ⊆ C, |S| = 1})
are considered and the constraints relaxes to colm-set(C).
In the other extreme all connected subsets are considered
and the constraint is equivalent to ctlm(C). But there are
options in between, for example c

dc-set(C)
atomic,max := {cdc(S) |

S ⊆ C, |S| = 1 or S is a maximally connected subset of C}.
This constraint has at most 2|C| constraints and dominates
the operator landmark set constraint.

Overlapping Cuts Constraints

To get a better understanding of ctlm-set(C), let us first con-
sider how a transition-counting LP combines the constraints
ctlm(C) for C ∈ C. A known result for operator counting
states that combining operator-counting constraints in an
operator-counting LP is equivalent to optimal operator cost
partitioning over heuristics that each consider one constraint
individually (Pommerening et al. 2015). This result gener-
alizes to transition cost partitioning (Keller et al. 2016) in a
straightforward way.

Let
∑

C∈C costC ≤ cost be the transition cost partition
computed by this combination. Assigning different costs to
two transitions t1, t2 ∈ C can never be useful, as the cheap-
est way of satisfying a single cut is to use its cheapest transi-
tion. Assigning negative costs to a transition also cannot be
useful as there is no upper limit how often a transition within
a cut can be used. Assigning negative costs would make the
heuristic value for this cut arbitrarily low, so it cannot be
part of an optimal cost partition. Finally, assigning non-zero
costs costC(t) > 0 for some transition t /∈ C can never
be beneficial. We can thus limit attention to cost functions



costC defined as

costC(t) =
{
αC if t ∈ C

0 otherwise

for some αC ≥ 0.
The operator-counting constraint ctlm-set(C) also contains

the linking constraint in addition to the constraints discussed
above. In the context of cost partitioning, it has the effect of
restricting the transition cost functions to the operator cost
function of the planning task. In our case, this requires that

cost(o) ≥ max
t∈T

label(t)=o

cost(t)

≥ max
t∈T

label(t)=o

∑
C∈C

costC(t) = max
t∈T

label(t)=o

∑
C∈C
t∈C

αc

In the proof of Proposition 7 we saw that ctlm-set(C) is
equivalent to {ccutcost(C,α) | α ≥ 0}. This is true even for
overlapping cuts and the argument above gives an intuition
on why this is the case: vectors α correspond to non-negative
transition cost partitions over the cuts, and the coefficients of
variables Yo correspond to cost functions that are just high
enough to guarantee admissibility.

Finding Cuts in Transition Systems
So far, we assumed a set of cuts C was given. We now show
one method to extract C from a transition system. The inten-
tion is to use sufficiently small abstractions but the method
works on any transition system.

The number of all possible cuts grows exponentially in the
number of states, which quickly becomes prohibitive even in
small transition systems, so we focus on generating informa-
tive cuts that cover different parts of the transition system.
Cuts having large overlaps are more likely to be satisfied
with a small set of transitions. Likewise, cuts that contain
both cheap and expensive transitions are more likely to be
satisfied by a cheap transition, wasting the cost of the more
expensive ones. We thus prefer cuts that only overlap in ex-
pensive transitions.

Our method is an adaption of LM-Cut (Helmert and
Domshlak 2009), where cuts in a justification graph are
found as the boundary to an incrementally increasing goal
zone. One difference is that in LM-Cut the justification
graph can change from one iteration to the next, whereas in
our case the transition system remains stable. Also, our al-
gorithm tracks costs of individual transitions where LM-cut
uses operator cost functions.

Given a transition system T = ⟨S,O, T, I,G, cost⟩, we
maintain a goal zone Z ⊆ S and a cost function rem that
tracks the remaining costs of all transitions. These are ini-
tialized to Z = G and rem = cost. We then generate cuts by
iterating the following loop until termination:

1. Add states to Z from which any state in Z can be reached
on a 0-cost path under cost function rem.

2. Compute the cut C = {s o−→ s′ ∈ T | s /∈ Z, s′ ∈ Z}.
3. Terminate if C = ∅.

s0 s1

s2

s3

s4

t1 : a

t2 : b t3 : b

t4 : c

t5 : c

t6 : d

C = {{t4, t5}, {t1, t3}, {t1, t2}}

S = {s4, s3, s2, s1, s0}

Figure 3: Example transition system with cost(t1) = 2 and
cost(ti) = 1 for i > 1. Boxes around states show the goal
zone after each iteration. Transitions entering a goal zone
are part of the cut. In the disjoint variant, the dashed cut is
not found. Below is the set C of discovered cuts and our data
structure mapping states s ∈ S to sets of s-cuts.

4. Reduce the remaining costs of each transition t ∈ C. We
consider two variants here:

• disjoint variant: Set rem(t) = 0.
• overlapping variant: Decrease rem(t) by the cost of

the cheapest transition in C, i.e., by mint′∈C rem(t′).

The top of Figure 3 shows an example of the generated
goal zones and cuts. In every iteration, the remaining cost of
at least one transition is updated from a positive value to 0
and the source of that transition will be added to Z in the
next iteration. This can only happen at most |S| times, so
the loop is guaranteed to terminate.

The disjoint variant adds all source states of the transitions
in the cut to the goal zone in the next iteration. In the exam-
ple in Figure 3 this can be observed after the cut {t1, t3} is
found. At this point the disjoint variant set the cost of t1 to 0,
so s0 is in the goal zone in the next iteration. Consequently,
a transition can occur in at most one cut in this variant, and
the resulting cuts are pairwise disjoint. In the overlapping
variant, expensive transitions can occur in multiple cuts.

Let Zi be the goal zone in iteration i, Ci be the generated
cut, and Si = {s | s o−→ s′ ∈ Ci}. It is easy to see that Ci

is an s-cut for all states s ∈ S \ Zi. This includes the set Si

but interestingly it also includes Sj for all j > i. We can use
this connection to efficiently store the cuts: We store all cuts
in a list [C1, . . . , Cn] in the order they were created. We then
store an index is into this list for every state s, where is is the
last iteration in which s ∈ Si. The bottom of Figure 3 has
an example of this data structure. If we want to retrieve the
set of s-cuts for some state s, this is just the first is entries
of the list. The index is zero for all states sg that are in the
goal zone initially: none of the computed cuts are sg-cuts for
such state. Dead-end states sde that have no path to the goal
use index n. Technically, all cuts are sde-cuts for such states
because the fact that every sde-plan passes through a cut is
vacuously true for all cuts if there are no sde-plans.

When considering disjoint cuts constraints, we are also in-
terested in subsets of cuts S ⊆ C where C is a set of s-cuts.



Different states s use different sets C and thus have differ-
ent choices for S. However, as before, we can create a list
of all possible choices of S ordered in a way that all sub-
sets involving only C1, . . . , Ci come before the first subset
involving Ci+1. We can then quickly identify the relevant
subsets S for each state s. This is useful as we can set up a
single linear program in which we only have to enable/dis-
able constraints when switching from one state to another.

Even if not all subsets should be considered, this approach
can be helpful. For example, consider the case, where we
want to consider only maximally connected subsets S ⊂ C.
We can order the maximally connected subsets involving
only cuts C1, . . . , Ci before any set involving Ci+1 again.
States in Si have a maximally connected component Xi

that includes Ci. If Ci+1 shares an operator with Ci, then
states in Si+1 will contain a maximally connected compo-
nent {Ci+1} ∪ Xi. This is a superset of Xi, so Xi is not
maximally connected for states in Si+1. Collecting the pre-
fix of the list up to the entry for Si+1 will thus collect more
sets than just the maximally connected ones. However, this
collection is still limited and supports efficient incremental
computation, so we also use it in our experiments. We call it
c

dc-set(C)
max and analogously define c

dc-set(C)
atomic,max.

Our algorithm not only generates cuts but also partitions
transition costs between them. Let αC = mint∈C rem(t)
be the minimal cost of a transition in the cut at the time it
is discovered. For these values of α the functions costC as
defined in the previous section form a cost partitioning of
the original cost function.

This is particularly interesting in the overlapping variant
of the algorithm, where cuts are created according to h∗-
layers in the transition system: The first cut is induced by
a goal zone Z1 consisting of all states s with h∗(s) = 0.
Then in each step the cut Ci separates states s ∈ Zi

with h∗(s) <
∑

j≤i αCj
from states with a higher heuris-

tic value. States s in Si have exactly the goal distance
h∗(s) =

∑
j≤i αCj

. Consider ccutcost(C,α) for these values
of α in a state s ∈ Si. The right-hand side simplifies to∑

j≤i αCj = h∗(s). For each transition t = s o−→ s′ on the
left-hand side, where h∗(s) > h∗(s′), we have

∑
C∈C
t∈C

αC =

h∗(s) − h∗(s′). Transitions where h∗(s) ≤ h∗(s′) will
never be in a cut. The cost function expressed in the coef-
ficients on the left-hand side of ccutcost(C,α) can then be inter-
preted as costsat(o) = maxs o−→s′∈T max{0, h∗(s)−h∗(s′)},
the saturated cost function in the transition system (Seipp
and Helmert 2014). Constraint ccutcost(C,α) for this choice
of α is

∑
o∈O costsat(o)Yo ≥ h∗(s). This matches the

saturated post-hoc optimization constraint (Seipp, Keller,
and Helmert 2021) with a minor difference: While Seipp
and Helmert (2014) use non-negative cost functions, Seipp,
Keller, and Helmert (2021) also allow saturated costs to be-
come negative for saturated post-hoc optimization.

The above result implies that for the right set of cuts,
ctlm-set(C) dominates non-negative saturated post-hoc opti-
mization. We can show with an example that this dominance
can be strict: In Figure 3, the saturated post-hoc optimiza-
tion constraint is 2Ya + Yb + Yc ≥ 3. It has a solution at

h∗gOCPnnOCPctlm-set(C)

c
dc-set(C)
all = c

dc-set(C)
connected

c
dc-set(C)
atomic = colm-set(C) c

dc-set(C)
max

nnsPhO
<<< or

(2)
=

(1)=

<

<

<

<>

(2)
<

Figure 4: Relation of different cut-based constraints to each
other and to other heuristics based on cost-partitioned ab-
stractions. An edge marked < from c to c′ denotes that c
is is implied by c′ and sometimes weaker. Edges marked
= are between constraints that are equivalent with respect
to operator-counting variables. The constraints marked <>
are incomparable. Limitations: (1) only for disjoint cuts, (2)
only for sufficiently many cuts.

Yc = 3, Ya = Yb = 0 which does not satisfy the transition
landmark Yc ≥ 1.

Many other ways of discovering cuts are possible. For ex-
ample, one could also start from the initial state and generate
landmarks in a forward direction. Another possible improve-
ment would be to consider a beyond-goal zone as in LM-cut,
of states that can only be reached after reaching a goal state.
The graph could also be limited to states reachable from s
when computing landmarks for s. This can be useful for ex-
ample in state s1 in Figure 3 where {t3} is an s1-cut but
both variants of our method only find {t1, t3}. Using this
cut would make efficient storage and re-use of the linear
program during search more difficult though. We leave the
exploration of other cut generation methods for future work
and focus on the two variants described above.

Connections to Other Abstraction Heuristics
Figure 4 shows how the different constraints introduced
here are related. For sets of pairwise disjoint cuts C, the
constraints c

dc-set(C)
X generally get stronger, the more sub-

sets S ⊆ C restriction X considers. We have shown that
if all (connected) subsets are used, the constraints can get
as strong as ctlm-set(C) and reduce to colm-set(C) when only
atomic subsets are used. We also have shown examples
where cdc-set(C)

atomic and c
dc-set(C)
max are incomparable. All cut-based

constraints are implied by ctlm-set(C) which can also be used
for overlapping cuts in contrast to cdc-set(C).

So far these arguments can all be made with a single ab-
straction. As our overall aim is to extract constraints from
many small abstractions and combine them in operator-
counting LP/IPs, we also compare this to other heuris-
tics that do so. In the previous section, we have seen that
ctlm-set(C) implies the non-negative saturated post-hoc opti-
mization constraint if C contains sufficiently many cuts.

Finally, we try to find an upper bound on the heuristic
quality and show that it can be tight. Combining constraints



from different cuts in an operator-counting LP corresponds
to optimal general cost partitioning. We have already seen
that negative costs cannot contribute to our cut-based con-
straints. Since our constraints are operator-counting con-
straints, using all constraints from a single abstraction in a
single operator-counting LP gives an admissible estimate for
that abstraction. This value cannot exceed the cost of a short-
est path in the abstraction. Non-negative cost partitioning of
abstraction heuristics (called nnOCP in Figure 4) combines
the cost of shortest paths in each abstraction, so our heuris-
tics are limited by it.

For sufficiently many cuts, we can show that the operator-
counting LP for ctlm-set(C) is optimal for its transition sys-
tem under all non-negative cost functions: Consider a non-
negative cost function cost and the set C of all s-cuts. Then
there is one set S ⊆ C that separates heuristic layers ac-
cording to cost. Any solution to the transition landmark con-
straints must pass through all those cuts and thus cause at
least cost h∗, i.e., min{

∑
o∈O cost(o)Yo | ctlm-set(C)} ≥

h∗(s, cost). This means that if we combine constraints
ctlm-set(C) for several abstractions in one operator-counting
LP and include sufficiently many cuts in all cases, the re-
sulting heuristic matches nnOCP over those abstractions.

Experimental Evaluation
We implemented transition counting and our cut generation
methods for Fast Downward version 22.06 (Helmert 2006).
We use its operator-counting heuristic with CPLEX 22.1.1
as the LP solver to evaluate operator-counting LPs for our
various constraints on the 1827 problems from the opti-
mal tracks of the international planning competitions 1998–
2018. Experiments are conducted on Intel Xeon Silver 4114
processors running on 2.2 GHz with a time limit of 30 min-
utes and a memory limit of 3.5 GiB. Our code, data, and
benchmarks are available online (Pommerening, Büchner,
and Keller 2024a).

In this section, we write disj and ovlp for cuts discovered
with the disjoint and overlapping variant of our cut gen-
eration algorithm, respectively. We use transition systems
induced by the projections to all interesting patterns up to
size 2 (Pommerening, Röger, and Helmert 2013) with the
following label abstraction functions: operators are mapped
to the same label iff they have the same cost and induce
transitions between the same pairs of abstract states. From
among all projection-based pattern generation algorithms
implemented in Fast Downward, we found that these tran-
sition systems yield best results.

Our baseline is ctlm-set(disj) which represents the full in-
formation of a given set of disjoint cuts. Comparing it to
ctlm-set(ovlp) shows the potential of allowing cuts to over-
lap. Both of these variants use transition-counting variables.
To avoid this prohibitively large number of LP variables,
we consider five variants that only use operator-counting
variables: c

dc-set(disj)
all , c

dc-set(disj)
connected , c

dc-set(disj)
max , c

dc-set(disj)
atomic , and

c
dc-set(disj)
atomic,max. Recall that cdc-set(disj)

atomic is the same as colm-set(disj),
a constraint that only considers the operator landmarks de-
rived from cuts.
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Coverage 733 754 742 782 806 805 803

Table 1: Number of solved tasks with different constraints.

Table 1 shows how many problems we solve with the dif-
ferent operator-counting constraints. Reaching the time limit
is the main reason for failure in these experiments, even for
constraints with relatively few inequalities like c

dc-set(disj)
max .

We first observe that ctlm-set(disj) solves the fewest tasks
among all tested configurations. Moreover, the ones it solves
are generally solved slower compared to the other configu-
rations. This supports our concern that the amount of vari-
ables in these constraints is too large. With ctlm-set(ovlp) we
have the same number of variables and a comparable num-
ber of constraints but the heuristic quality is improved, lead-
ing to fewer state expansions. This is not guaranteed in gen-
eral (i.e., the heuristic for ctlm-set(ovlp) does not dominate the
one for ctlm-set(disj)), but in our experiments, using ctlm-set(ovlp)

expands fewer states than ctlm-set(disj) in 99 tasks while the re-
verse is never the case.

We also compare the heuristic using ctlm-set(ovlp) to non-
negative saturated post-hoc optimization (nnsPhO) and non-
negative optimal cost partitioning (nnOCP). Given the way
we generate the cuts in ovlp, these heuristics form lower and
upper bounds to the one using ctlm-set(ovlp) (see Figure 4).1
In particular, our cut generation method generates all cuts
that separate heuristic layers under the original cost function,
but not under all non-negative cost functions, so nnOCP can
dominate it strictly. Figure 5 compares the number of ex-
pansions of those three configurations. Our experiment con-
firms the theoretical dominance results and we can see that
the dominance is often strict in practice for both cases. The
heuristic for ctlm-set(ovlp) thus forms a middle ground between
nnsPhO and nnOCP in terms of accuracy. In terms of cov-
erage, the faster evaluation speed of nnsPhO makes up for
the reduction in heuristic quality with nnsPhO solving 807
tasks while nnOCP only solves 440. Again, ctlm-set(ovlp) is a
middle ground with 754 tasks solved.

For disjoint cut sets, we have shown that cdc-set(disj)
all and

c
dc-set(disj)
connected are equivalent to ctlm-set(disj). Our experiments con-

firm this by yielding the same number of expanded states.
Moreover, we find that projecting away auxiliary variables
is beneficial, as cdc-set(disj)

all usually solves the problems faster
than ctlm-set(disj). On average, the number of evaluated states
per second increases from 6246.62 for ctlm-set(disj) to 6305.80

for cdc-set(disj)
all . The speed improvement is more pronounced

1Our implementation of abstraction heuristics prunes dead ab-
stract states, giving it a slight advantage over the implementation
we use for nnsPhO which does not prune. The dominance results
remain the same, though.
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Figure 5: Number of expansions for nnsPhO, nnOCP, and an operator-counting heuristic using ctlm-set(ovlp).

when considering c
dc-set(disj)
connected which only includes the con-

straints for connected subsets of disj and leads to 7623.09
evaluations per second on average.

While the weaker constraints c
dc-set(disj)
max , c

dc-set(disj)
atomic and

c
dc-set(disj)
atomic,max yield weaker heuristics, they still solve more prob-

lems than the other approaches. This is no surprise, as the
number of connected subsets of disj can still be exponential
in |disj|, while the number of inequalities for the weaker con-
straints is linear in |disj|. This speeds up the solver times for
evaluating the heuristic in each state at the expense of heuris-
tic quality. Evaluations per second increase to 7747.33 for
c

dc-set(disj)
max , 7817.43 for cdc-set(disj)

atomic , and 7710.12 for cdc-set(disj)
atomic,max.

The difference in terms of coverage and planning time is
marginal between these methods, with c

dc-set(disj)
max coming out

on top followed by c
dc-set(disj)
atomic . Even though these two are in-

comparable in theory, in practice c
dc-set(disj)
max never expands

more states than c
dc-set(disj)
atomic and expands fewer states in 128

cases. This suggests that cases where c
dc-set(disj)
atomic strengthens

the LP are rare.
We also observe that cdc-set(disj)

max expands more states than
c

dc-set(disj)
connected in only 3 out of the 47 domains. It is hence a much

cheaper relaxation that does not lose much information in
practice. However, given that cdc-set(disj)

atomic results in compara-
ble performance as cdc-set(disj)

max , the benefit of transition count-
ing over operator counting is limited for this particular set of
cuts. We still believe the approach is worth pursuing further,
as we have seen cases in our examples throughout the pa-
per where transition counting adds information. Examples
like the one in Figure 2 seem natural to us and not like rare
exceptions. Exploring alternative cut generation methods to
create more informed cuts is an interesting direction for fu-
ture work.

Conclusion

We introduced transition counting as a novel extension to
the operator-counting framework. Transition-counting con-
straints can be formulated in any transition system but
planning tasks of an interesting size induce transition sys-
tems with a prohibitive amount of transitions. Our linking
and translation constraints offer effective ways to formu-
late transition-counting constraints based on smaller abstrac-
tions with fewer transitions. They can then be used together
with other operator-counting constraints for the full planning
task.

Transition-counting constraints based on cuts can differ-
entiate multiple uses of the same operator in different con-
texts. They dominate the landmark constraints derived from
the same cuts, even if transition-counting variables are pro-
jected out. Projections to operator-counting variables such
as c

dc-set(C)
connected for pairwise disjoint cuts contain the same in-

formation as ctlm-set(C) but at a different size trade-off. Their
relaxations give up some accuracy for a smaller size.

Experimentally, we have seen that just considering max-
imally connected subsets of C (cdc-set(C)

max ) had the best trade-
off despite being an aggressive relaxation of cdc-set(C)

connected. While
we saw that distinguishing transitions in cuts can improve
the heuristic value, this happened only rarely in practice
and operator landmarks based on the same cuts perform al-
most as good. This might be an effect of our cut generation
method. New ways of extracting cuts from abstractions, par-
ticularly ones that generate an interesting set of overlapping
cuts, could lead to improved performance.

Another interesting line of future work is to add addi-
tional transition-counting constraints, for example (some re-
laxation of) state-equation constraints (van den Briel et al.
2007; Bonet 2013), or to consider larger abstractions.
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