Transition Landmarks from Abstraction Cuts

Florian Pommerening Clemens Büchner Thomas Keller

University of Basel, Switzerland

June, 2024

Classical Planning and Abstractions

Classical Planning and Abstractions

Classical Planning and Abstractions

Cuts in Abstractions are Landmarks

Operator-Counting Constraints from Cuts

Operator-Counting Constraints from Cuts

Operator-Counting Constraints	
$Y_{\longrightarrow} + Y_{\longrightarrow} \ge 1$	// Cut 1
$Y \longrightarrow + Y \longrightarrow \ge 1$	// Cut 2

Issue: The constraints are satisfied by a single use of ---even though we clearly need two steps here.

Transition-Counting Constraints from Cuts

Transition-Counting Constraints

Issue: Transition counts have to be connected to operator counts.

Transition-Counting Constraints from Cuts

Transition-Counting Constraints

$$\begin{array}{c} Y_{\underline{1}} + Y_{\underline{2}} \geq 1 & // \ \text{Cut 1} \\ Y_{\underline{3}} + Y_{\underline{4}} \geq 1 & // \ \text{Cut 2} \\ Y_{\underline{\rightarrow}} = Y_{\underline{1}} + Y_{\underline{4}} & // \ \text{Link} \rightarrow \\ Y_{\underline{\rightarrow}} = Y_{\underline{2}} & // \ \text{Link} \rightarrow \\ Y_{\underline{\rightarrow}} = Y_{\underline{3}} & // \ \text{Link} \rightarrow \end{array}$$

Issue: One variable per (abstract) transition can be too much.

Projection for Disjoint Cuts

Transition-Counting Constraints after Projection

$$\begin{array}{ccc} Y \longrightarrow + Y \longrightarrow \geq 1 & // \ {\rm Cut} \ 1 \\ Y \longrightarrow + Y \longrightarrow \geq 1 & // \ {\rm Cut} \ 2 \\ Y \longrightarrow + Y \longrightarrow + Y \longrightarrow \geq 2 & // \ {\rm Cuts} \ 1+2 \end{array}$$

- mathematically a projection to $\{Y_{\rightarrow}, Y_{\rightarrow}, Y_{\rightarrow}\}$
- equivalent with respect to operators

General Form for Disjoint Cuts

$$\sum_{\substack{o \in O \\ o \text{ mentioned in } S}} Y_o \ge |S|$$

for all subset of cuts \boldsymbol{S}

Issue: requires one constraint for each subset of cuts.

We can approximate the constraint by considering fewer subsets.

Our cut generation is inspired by LM-cut.

Our cut generation is inspired by LM-cut.

Cuts:

Our cut generation is inspired by LM-cut.

Cuts:

• $\{4, 5\}, \{1, 3\}$

Our cut generation is inspired by LM-cut.

Disjoint cuts:

•
$$\{4, 5, 5\}, \{1, 3\}$$

Overlapping cuts:

• $\{4, 5\}, \{1, 3\}, \{1, 2\}$

Theoretical Connections

Dominance relations for a given set of abstractions

Non-negative saturated posthoc optimization heuristic \leq Transition-counting heuristic based on cuts \leq Non-negative optimal cost partitioning

(Details depend on cut generation and approximation.)

In practice

- projecting out transition-counting variables helps
- approximating constraints helps
- overall, not much benefit over operator landmarks
- \rightsquigarrow needs better cut generation

Take-away Messages

- Cuts in abstractions are landmarks.
- We can use them as operator-counting and transition-counting constraints.

Link to paper, poster, slides, and source code Future Work

• Find better cut generation methods.