

Cuts in abstractions are landmarks.

They yield interesting operator-counting and transition-counting constraints.

Transition Landmarks from Abstraction Cuts Florian Pommerening, Clemens Büchner and Thomas Keller

Finding Cuts

- Any way of cutting is fine.
- Our method is inspired by LM-cut.
 - 1. Cut off goal zone
 - 2. Reduce cost of transitions in cut
 - 3. Repeat
- variants for disjoint/overlapping cuts

Example

Efficient data structure to store cuts

Cuts = {{ t_4, t_5 }, { t_1, t_3 }, { t_1, t_2 }} States = { s_4, s_3, s_2, s_1, s_0 }

Theoretical Connections

- Details depend on cut generation and used constraints.
- Most informed version is non-negative cost partitioning over landmarks.
 - Dominates non-negative saturated posthoc optimization.
 - Dominated by non-negative optimal cost partitioning.

Experiments

- Projecting out transition-counting variables helps.
- Approximating constraints helps.
- Overall there is not much benefit over operator-counting constraints.
 - Needs better cut generation.