Dantzig-Wolfe Decomposition for Cost Partitioning

Florian Pommerening¹ Thomas Keller¹ Valentina Halasi Jendrik Seipp^{1,2} Silvan Sievers¹ Malte Helmert ¹

¹University of Basel, Switzerland

²Linköping University, Sweden

August, 2021

Classical Planning and Cost Partitioning

Classical Planning

Classical Planning and Cost Partitioning

Abstraction Heuristics

Classical Planning and Cost Partitioning

Cost Partitioning

Cost Partitioning LP

$$\begin{array}{ll} {\sf Maximize} \ \sum_i h_i \ {\sf subject} \ {\sf to} \\ & \sum_i c_i(o) \leq cost(o) & \mbox{ for all operators } o \\ & h_i = \mbox{heuristic } i \ {\sf under \ cost} \ c_i & \mbox{ for all heuristics } i \end{array}$$

Solving an LP with Dantzig-Wolfe Decomposition

We applied Dantzig-Wolfe decomposition to the cost partitioning LP.

The master problem finds the best possible mix from candidate cost functions added by the pricing problems.

Master Problem

$$\begin{array}{l} \text{Maximize } \sum_{i}\sum_{j}\lambda_{ij}h_{ij} \text{ subject to}\\ \sum_{i}\sum_{j}\lambda_{ij}c_{ij}(o) \leq cost(o) \quad \quad \text{for all operators } o\\ \lambda_{ij} \geq 0 \end{array}$$

The master problem finds the best possible mix from candidate cost functions added by the pricing problems.

Pricing problem for an abstraction

- parametrized with the dual solution y of master problem
- generates column iff y is not a valid flow

Pricing Problem

Minimize c(y) - h subject to $h \le heuristic i under cost c$

Heuristic Quality (non-negative costs)

Heuristic Quality (general costs)

Potential use as a planner

- Stop when solution is a flow in all considered abstractions.
- Otherwise add an abstraction where this is not a flow.