


Assume we already have these candidate cost functions available.

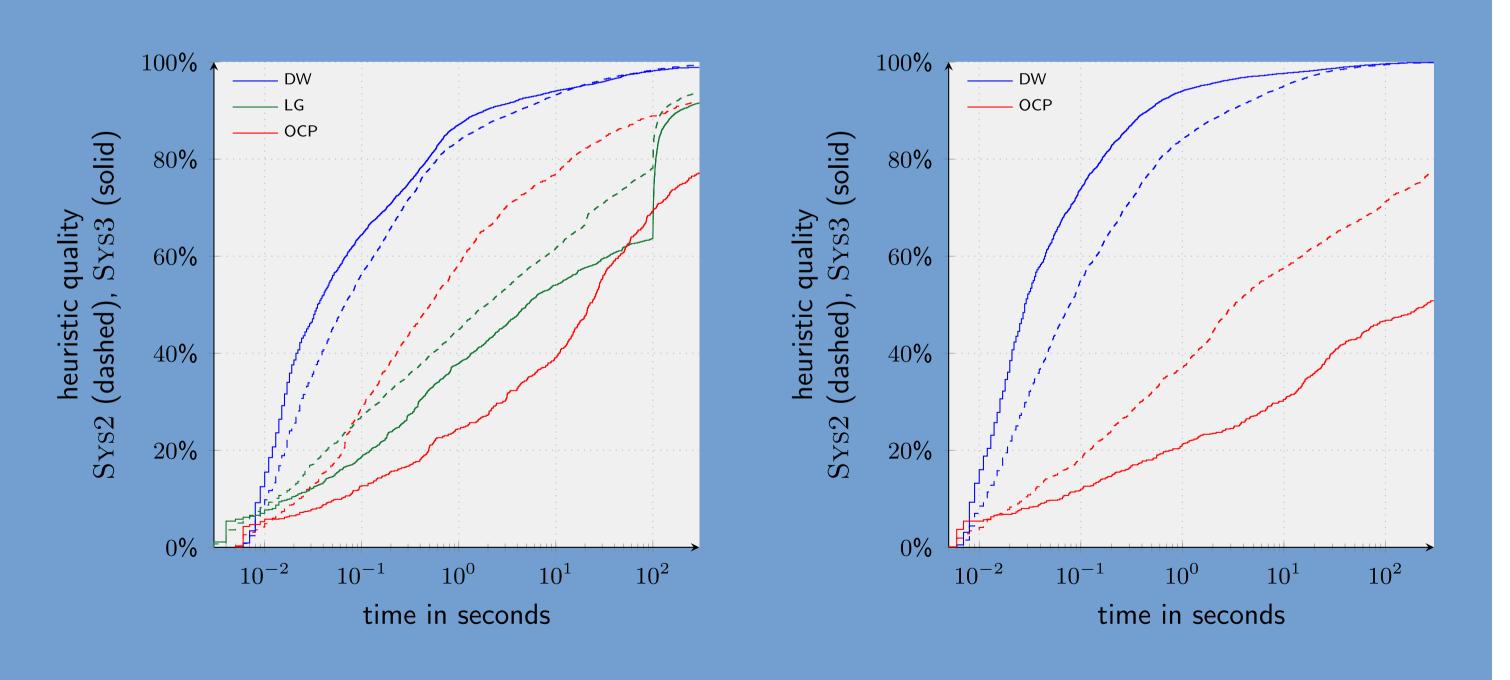
	Abstr. 1	Abstr. 2
cost(R)	1	0
cost(B)	1	0
cost(G)	0	1
h	1	1

The best combination uses each column once for a heuristic value of 2. In the dual Master Problem each column corresponds to one constraint.

Dual Master Problem				
Minimize $y_R + y_B + y_G$ s.t.				
$y_R + y_B \ge 1$				
$y_G \geq 1$				
$m{y_R} \ge 0 m{y_B} \ge 0 m{y_G} \ge 0$				
Optimal Solution				
$y_R = 1 y_B = 0 y_G = 1$				

The dual solution is used in the objective of the pricing problems.

 $\begin{array}{l} \mbox{Minimize } \pmb{c}(\pmb{R}) + \pmb{c}(G) - \pmb{h} \mbox{ s.t.} \\ \pmb{h} \leq \mbox{heuristic } i \mbox{ under cost } \pmb{c} \end{array}$


Optimal Solution for First Abstraction c(R) = 1 c(B) = 1 c(G) = -1 h = 1

The solution of the pricing problem is added as a new column.

	Abstr. 1		Abstr. 2
$cost(\mathbf{R})$	1	1	0
cost(B)	1	1	0
cost(G)	0	-1	1
h	1	1	1

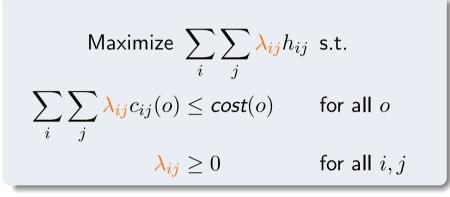
The best combination now uses the last column twice and the middle column once for a total heuristic value of 3.

Dantzig-Wolfe decomposition **speeds up cost partitioning** and the involved LPs have **intuitive interpretations.**

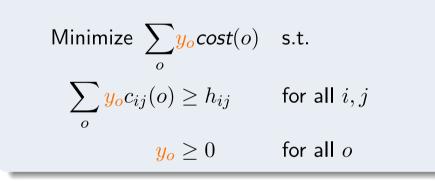
Dantzig-Wolfe Decomposition for Cost Partitioning Florian Pommerening, Thomas Keller, Valentina Halasi, Jendrik Seipp, Silvan Sievers, Malte Helmert

Extensions

Combine equivalent labels Consider only interesting patterns Incrementally add subproblems


Relaxations

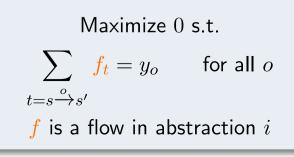
- Stop adding subproblems
- Stop adding columns
- Stop evaluating the master problem


Interpretations

Master Problem:

Combine candidate cost funtions.

Dual Master Problem: Posthoc optimization heuristic.



Pricing Problem:

Balance cost of operator count *y* and cheapest abstract plan. Return saturated cost function.

 $\begin{array}{l} \text{Minimize } c(y) - h \text{ s.t.} \\ h \leq \text{heuristic } i \text{ under cost } c \end{array}$

Dual Pricing Problem: Generate column iff given operator count induces no flow.

