Lagrangian Decomposition for Optimal Cost Partitioning

Florian Pommerening¹ Gabriele Röger¹ Malte Helmert¹ Hadrien Cambazard² Louis-Martin Rousseau³ Domenico Salvagnin⁴

¹University of Basel, Switzerland

²Univ. Grenoble Alpes, CNRS, Grenoble INP*, G-SCOP, 38000 Grenoble, France *Institute of Engineering Univ. Grenoble Alpes

³Polytechnique Montreal, Canada

⁴University of Padua, Italy

July 14, 2019

Lagrangian Decomposition	Relation to Cost Partitioning	Subgradient Optimization	Application to Cost Partitioning	

Structure

In this presentation

- context: cost partitioning in classical planning
- Lagrangian decomposition
 - simplified, specialized, ignoring assumptions
 - see paper for details
- relation to cost partitioning
- subgradient optimization
- algorithm to compute optimal cost partitioning without an LP solver

Lagrangian Decomposition	Subgradient Optimization	
00000		

Lagrangian Decomposition

Lagrangian Decomposition
◦●○○○Relation to Cost Partitioning
○○○Subgradient Optimization
○○○Application to Cost Partitioning
○○○Experiments
○○○

Starting with a Linear Program

 Lagrangian Decomposition
 Relation to Cost Partitioning
 Subgradient Optimization
 Application to Cost Partitioning
 Experiments

 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

Starting with a Linear Program

Lagrangian Decomposition	Subgradient Optimization	
00000		

Lagrangian Relaxation

Lagrangian Decomposition	Subgradient Optimization	
00000		

Lagrangian Relaxation

Lagrangian Decomposition	Subgradient Optimization	
00000		

Lagrangian Relaxation

Problem
$$P(\lambda)$$

Min c x $+ \sum_{i} \lambda_{i}$ $(x_{i} - x)$ s.t.
 A_{i} $x_{i} \ge b_{i}$ $\forall i$
 x $, x_{i} \ge 0$ $\forall i$

- Penalty term λ_i for violating $x = x_i$ called Lagrangian multiplier
- for every choice of λ : $\mathsf{value}(P(\lambda)) \leq \mathsf{value}(P)$
- Lagrangian dual problem: find λ that gives best lower bound
- best lower bound is perfect here: $Max_{\lambda}P(\lambda) = value(P)$

Lagrangian Decomposition
00000Relation to Cost Partitioning
0000Subgradient Optimization
000Application to Cost Partitioning
000Experiments
0000

Lagrangian Decomposition

Problem
$$P(\lambda)$$

Min c x + \sum_{i} λ_{i} $(x_{i} - x)$ s.t.
 A_{i} $x_{i} \ge b_{i}$ $\forall i$
 x , $x_{i} \ge 0$ $\forall i$

 $P(\lambda)$ decomposes into independent subproblems $P(\lambda) = \sum_i P_i(\lambda)$

Problem
$$P_0(\lambda)$$

Min $\begin{pmatrix} c & -\sum_i \lambda_i \end{pmatrix} x$ s.t.
 $x \ge 0$

Problem $P_i(\lambda)$ Min λ_i x_i s.t. A_i $x_i \ge b_i$ $x_i \ge 0$

Lagrangian Decomposition	Relation to Cost Partitioning	Subgradient Optimization	Application to Cost Partitioning	Experiments 0000

A closer look at $P_0(\lambda)$

Problem $P_0(\lambda)$ Min $\begin{pmatrix} c & -\sum_i \lambda_i \end{pmatrix} x$ s.t. $x \ge 0$

- if all objective coefficients non-negative: $\operatorname{value}(P_0(\lambda)) = 0$
- otherwise $P_0(\lambda)$ is unbounded

Lagrangian Decomposition	Relation to Cost Partitioning	Subgradient Optimization	Application to Cost Partitioning	
	0000			

Relation to Cost Partitioning

Summarizing Lagrangian Decomposition

Ori	Original Problem P					
	Mir	1	c	x	s.t.	
	A_i	x	\geq	b_i	$\forall i$	
		x	; 2	<u>></u> 0		

Lagrangian Dual Problem
Max $\sum_i P_i(\lambda)$ s.t.
$\sum \lambda_i \leq c$
i

Subproblem
$$P_i(\lambda)$$

Min λ_i x_i s.t.
 A_i $x_i \ge b_i$
 $x_i \ge 0$

Cost Partitioning of Operator-Counting Heuristics

He	Heuristic h					
	Min	СС	ost	x	s.t.	
	A_i	x	\geq	b_i	$\forall i$	
		x	2	2 0		

Optimal Co	ost Par	tition	ing
Max \sum_i	$h_i(co)$	$st_i)$ s.	t.
<u> </u>	$st_i \leq$	cost	
i			

Heuristic
$$h_i(cost_i)$$

Min $cost_i$ x_i s.t.
 A_i $x_i \ge b_i$
 $x_i \ge 0$

How to Solve the Lagrangian Dual Problem

- Computing an optimal cost partitioning corresponds to solving the Lagrangian dual
- ... but how can we solve it?
- P(λ) is concave and we want to maximize it
 → can use subgradient optimization

Lagrangian Decomposition	Subgradient Optimization	
	000	

Subgradient Optimization

Subgradient Optimization

 \bullet choose point $\lambda^{(1)}$

Subgradient Optimization

• choose point $\lambda^{(1)}$

• repeat for
$$t = 1, 2..$$

 \bullet find subgradient $g^{(t)}$ at $\lambda^{(t)}$

Subgradient Optimization

- choose point $\lambda^{(1)}$
- repeat for $t = 1, 2 \dots$
 - $\bullet~{\rm find~subgradient}~g^{(t)}$ at $\lambda^{(t)}$
 - \bullet compute step length $\eta(t)$

Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Projected Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Projected Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- $\bullet~{\rm find~subgradient}~g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Projected Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- $\bullet \ \mbox{compute step length} \ \eta(t)$

• set
$$\lambda^{(t+1)} = \lambda^{(t)} + \eta(t)g^{(t)}$$

Projected Subgradient Optimization

• repeat for
$$t = 1, 2..$$

- find subgradient $g^{(t)}$ at $\lambda^{(t)}$
- \bullet compute step length $\eta(t)$

• set
$$\lambda^{(t+1)} = \operatorname{proj}((\lambda^{(t)} + \eta(t)g^{(t)}))$$

Lagrangian Decomposition	Subgradient Optimization	Application to Cost Partitioning	
		••••	

Application to Cost Partitioning over Abstractions

Analogies in cost partitioning (t)

- current point $\lambda^{(t)}$
- \bullet subgradient $g^{\left(t\right)}$

projection

Analogies in cost partitioning

- current point $\lambda^{(t)}$
 - current cost functions $cost_1, \ldots, cost_k$
- subgradient $g^{(t)}$

projection

Analogies in cost partitioning

- current point $\lambda^{(t)}$
 - current cost functions $cost_1, \ldots, cost_k$
- subgradient $g^{(t)}$
 - optimal solutions of subproblems $P_i(\lambda^{(t)})$
 - if subproblems are abstraction heuristics: shortest paths in abstractions

projection

Analogies in cost partitioning

- current point $\lambda^{(t)}$
 - current cost functions $cost_1, \ldots, cost_k$
- subgradient $g^{(t)}$
 - optimal solutions of subproblems $P_i(\lambda^{(t)})$
 - if subproblems are abstraction heuristics: shortest paths in abstractions
- projection
 - project arbitrary set of cost functions to cost partitioning

Anytime algorithm

- choose any cost partitioning *cost*⁽¹⁾
- repeat for $t = 1, 2 \dots$
 - $\bullet\,$ for each abstraction i
 - find optimal solution π^* under $\textit{cost}_i^{(t)}$
 - set $\textit{cost}_i^{(t+1)}(o) = \textit{cost}_i^{(t)}(o) + \eta(t)\textit{occurrences}(o, \pi^*)$
 - project $cost^{(t+1)}$ to a cost partitioning

Lagrangian Decomposition	Subgradient Optimization	Experiments
		0000

Experiments

Experiment Setup

Experiment setup

- IPC instances from optimal tracks (1998-2018)
- projections to all interesting patterns up to size 2 (and 3)
- non-negative cost partitioning
 - no good way to project to general cost partitioning
- 300 s time limit, 2 GB memory limit
- heuristic values of initial states
- seeded with different cost partitioning methods
 - uniform
 - opportunistic uniform (random/improved order)
 - greedy zero-one (random/improved order)
 - saturated (random/improved order)

Lagrangian Decomposition	Subgradient Optimization	Experiments
		0000

Runtime

Lagrangian Decomposition	Relation to Cost Partitioning	Subgradient Optimization	Application to Cost Partitioning	

Conclusion

Lagrangian Decomposition	Subgradient Optimization	

Conclusion

Contributions to Cost Partitioning

- new interpretation as Lagrangian decomposition
- interesting relation to subgradient optimization
- anytime algorithm for suboptimal cost partitioning

Future Work

- techniques from subgradient optimization
 - better stopping conditions
 - dynamic step length functions
 - improved updates
- open questions
 - projection for general cost partitioning
 - consider highly different operator costs