
LP-based Heuristics for Cost-optimal Planning

Florian Pommerening and Gabriele Röger and Malte Helmert
Universität Basel

Basel, Switzerland
{florian.pommerening,gabriele.roeger,malte.helmert}@unibas.ch

Blai Bonet
Universidad Simón Bolı́var

Caracas, Venezuela
bonet@ldc.usb.ve

Abstract

Many heuristics for cost-optimal planning are based on linear
programming. We cover several interesting heuristics of this
type by a common framework that fixes the objective func-
tion of the linear program. Within the framework, constraints
from different heuristics can be combined in one heuristic
estimate which dominates the maximum of the component
heuristics. Different heuristics of the framework can be com-
pared on the basis of their constraints. With this new method
of analysis, we show dominance of the recent LP-based state-
equation heuristic over optimal cost partitioning on single-
variable abstractions. We also show that the previously sug-
gested extension of the state-equation heuristic to exploit safe
variables cannot lead to an improved heuristic estimate. We
experimentally evaluate the potential of the proposed frame-
work on an extensive suite of benchmark tasks.

Introduction

Several recent heuristics (van den Briel et al. 2007; Karpas
and Domshlak 2009; Bonet 2013; Pommerening, Röger, and
Helmert 2013) for cost-optimal planning show that it is fea-
sible and beneficial to obtain heuristic estimates by solving
a linear program for every state.

However, they obtain their constraints from very differ-
ent sources of information. Karpas and Domshlak use land-
marks, Pommerening et al. exploit information from abstrac-
tion heuristics, and van den Briel et al. and Bonet base their
linear program on network flows for the state variables.

We will show that all these approaches can be covered
by a single framework that fixes the optimization function
of the linear program. This will turn out to be beneficial in
two ways: first, we can combine the information from vari-
ous sources in one heuristic which dominates the individual
ones. Second, it provides us with the possibility to compare
heuristics on the basis of their constraints, which will lead
us to some interesting new theoretical results.

We start by introducing the SAS+ planning formalism and
our new framework, which is based on operator-counting
constraints. Afterwards, we present a wide range of such
constraints and explain how they can be used to express ex-
isting heuristics. We then prove some theoretical results on

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interesting connections between the heuristics and end with
an experimental study and conclusions.

SAS+ Planning

We consider SAS+ planning tasks with non-negative opera-
tor costs. A task is a tuple Π = 〈V,O, sI , sG, cost〉 where V
is a finite set of variables. Each variable V ∈ V has a finite
domain DV . A (partial) state s is a (partial) variable assign-
ment over V . We write vars(s) for the domain of definition
of s and s[V ] for the value of V in s. The notation s[V ] = ⊥
means that V /∈ vars(s). A partial state s is consistent with
a partial state s′ if s[V ] = s′[V ] for all V ∈ vars(s′). We
say that an atom V = v is true in state s iff s[V ] = v.

Each operator o in the finite set of operators O is associ-
ated with a precondition pre(o) and an effect eff(o), which
are both partial variable assignments over V . We require that
V = v cannot be both a precondition and an effect of o. This
is not a real restriction because such effects would be redun-
dant. The (complete) state sI is the initial state of the task
and the partial state sG describes its goal. The cost function
cost : O → R

+
0 assigns a non-negative cost to each operator.

An operator o is applicable in a state s if s is consistent
with pre(o). The resulting state of applying an applicable
operator o in state s is the state res(o, s) with

res(o, s)[V ] =

{

eff(o)[V ] if V ∈ vars(eff(o))

s[V ] otherwise.

A sequence of operators π = 〈o1, . . . , on〉 is applicable in
state s0 if there are states s1, . . . , sn with si = res(oi, si−1)
for 1 ≤ i ≤ n. The resulting state of this application is
res(π, s0) = sn. The cost of π is the sum of its operator
costs cost(π) =

∑n

i=1 cost(oi).
For state s, an s-plan is an operator sequence π applicable

in s such that res(π, s) is consistent with sG. An sI -plan
is just called a plan. A plan with minimal cost is called
optimal.

A function h that maps states to non-negative numbers (or
∞) is called a heuristic. A heuristic h is called admissible if
h(s) ≤ h∗(s) for all states s, where h∗(s) is the cost of an
optimal s-plan (or ∞ if no s-plan exists).

Operator-counting Constraints
Several recently proposed heuristics (van den Briel et al.
2007; Bonet 2013; Pommerening, Röger, and Helmert 2013)



are based on linear programs of similar form. They formal-
ize constraints that must be satisfied by every plan π and use
a variable Yo for each operator o such that setting Yo to the
number of occurrences of o in π satisfies the constraints.1

We will show that these heuristics (and some other ones)
can be covered by a common framework based on the notion
of operator-counting constraints:

Definition 1 (Operator-counting constraints) Let Π be a
planning task with operator set O, and let s be one of its
states. Let Y be a set of non-negative real-valued and inte-
ger variables, including an integer variable Yo for each op-
erator o ∈ O along with any number of additional variables.
The variables Yo are called operator-counting variables.

If π is an s-plan, we denote the number of occurrences of
operator o ∈ O in π with Y π

o . A set of linear inequalities
over Y is called an operator-counting constraint for s if for
every s-plan π, there exists a feasible solution with Yo = Y π

o

for all o ∈ O.
A constraint set for s is a set of operator-counting con-

straints for s where the only common variables between con-
straints are the operator-counting variables.

As an example, the inequality Yo1 − 2Yo2 ≥ 0 is an
operator-counting constraint expressing that in every plan,
o1 must occur at least twice as often as o2. The set of in-
equalities {Yo1 − Z ≥ 2,Yo2 + Z ≥ 1} with auxiliary inte-
ger variable Z is another operator-counting constraint, which
expresses in a roundabout way that the total number of oc-
currences of o1 and o2 in every plan is at least 3. The two
operator-counting constraints form a constraint set because
they do not share any auxiliary variables.

Definition 2 (Operator-counting integer/linear program)
The operator-counting integer program IPC for constraint
set C is:

Minimize
∑

o∈O

cost(o)Yo subject to C.

The operator-counting linear program LPC is the LP-
relaxation of IPC .

From Definition 1, if π is a plan, then there exists a so-
lution to both IPC and LPC where Yo = Y π

o for all o ∈ O.
The cost of the plan is cost(π) =

∑

o∈O cost(o) · Y π
o , and

hence the optimal plan cost is an upper bound for the objec-
tive value of the IP/LP. This allows us to define the following
admissible heuristics:

Definition 3 (IP and LP heuristic) Let Π be a planning
task, and let C be a function that maps states s of Π to con-
straint sets for s.

The IP heuristic hIP
C (s) is the objective value of the integer

program IPC(s). The LP heuristic hLP
C (s) is the objective

value of the linear program LPC(s). Infeasible IPs/LPs are
treated as having an objective value of ∞.

Note that the requirement that an operator-counting con-
straint must have a feasible solution with Yo = Y π

o for every

1For the post-hoc optimization heuristic (Pommerening, Röger,
and Helmert 2013) Yo instead is the cost incurred by o in π, which
is the number of occurrences of o in π multiplied by cost(o).

plan π is stricter than necessary for admissibility. It is suf-
ficient that whenever a solution exists, there is one optimal
plan π∗ such that all operator-counting constraints have a

feasible solution with Yo = Y π∗

o .
If all operator costs of a planning task are integer, we can

obviously improve the LP heuristic estimate without losing
admissibility by rounding up to the nearest integer.

Since adding operator-counting constraints can only re-
duce the set of feasible solutions for an operator-counting
integer/linear program, the resulting heuristic estimates can-
not decrease by the use of additional constraints.

Proposition 1 (Dominance) Let C, C′ be functions that map
states s of Π to constraint sets for s such that C(s) ⊆ C′(s)
for all states s. Then the IP/LP heuristic for C′ dominates
the respective heuristic for C: hIP

C ≤ hIP
C′ and hLP

C ≤ hLP
C′ .

Types of Operator-counting Constraints

In this section we describe four types of operator-counting
constraints that capture different state-of-the-art heuristics
for optimal planning.

Landmark Constraints

A disjunctive action landmark (Zhu and Givan 2003;
Helmert and Domshlak 2009) for a state s is a set of op-
erators of which at least one must be part of any s-plan.

Using linear programming to derive heuristic estimates
from landmarks was introduced by Karpas and Domshlak
(2009) as cost partitioning for landmarks. The LP formula-
tion was improved by Keyder, Richter, and Helmert (2010).
Bonet and Helmert (2010) introduced an alternative LP rep-
resentation that directly fits into the operator-counting con-
straint framework and showed that it is the dual of the rep-
resentation by Keyder et al.

Strengthening other heuristics with landmarks is not a
new idea: Domshlak, Katz, and Lefler (2012) propose it
for abstraction heuristics and Bonet (2013) for the LP-based
state-equation heuristic. He uses the same constraints as
Bonet and Helmert (2010):

Definition 4 Let L ⊆ O be a disjunctive action landmark
for state s of task Π. The landmark constraint clms,L for L is

∑

o∈L

Yo ≥ 1.

Since at least one operator of the landmark occurs in every
s-plan, landmark constraints clearly meet the requirements
of operator-counting constraints.

Net Change Constraints

Bonet (2013) introduces the state-equation heuristic hSEQ by
relating planning tasks to Petri nets and deriving constraints
based on the net change of the number of tokens in the Petri
net locations caused by the firing of transitions. Here, we
present the general ideas behind hSEQ again by working on
the planning task directly, without the translation to Petri
nets. This will not only lead us to a deeper understanding
but also to a wider class of constraints.



We define the net change of an atom V = v from a state s
to a state s′ as the change of its truth value, where 1 denotes
that the atom becomes true, 0 that it is unchanged, and −1
that it becomes false.

Definition 5 The net change of an atom V = v from a state
s to a state s′ is

netchanges→s′

V=v =







1 if s[V ] 6= v and s′[V ] = v

−1 if s[V ] = v and s′[V ] 6= v

0 otherwise.

We say that an operator o applied in state s produces an
atom V = v if s[V ] 6= v and res(o, s)[V ] = v and that it
consumes the atom if s[V ] = v and res(o, s)[V ] 6= v.

Obviously, the net change of the atom from state s to the
successor state res(o, s) is 1 if o produces the atom, −1 if
it consumes it and 0 otherwise. We would like to retain this
more operator-centric view:

Definition 6 Let o be an operator and π = 〈o1, . . . , on〉 be
applicable in state s. The net change that o induces for atom
V = v in s is

netchange(o)sV=v = netchange
s→res(o,s)
V=v

=







1 if o applied in s produces V = v

−1 if o applied in s consumes V = v

0 otherwise.

The accumulated net change induced by sequence π is

netchange(π)sV=v =

n
∑

i=1

netchange(oi)
res(〈o1,...,oi−1〉,s)
V=v .

It is obvious that we do not need to consider the interme-
diate states of the application of an operator sequence π but
can directly compare the initial and the resulting state:

Proposition 2 The accumulated net change induced by the
application of an operator sequence π in state s is the net
change from s to the resulting state res(π, s):

netchange(π)sV=v = netchange
s→res(π,s)
V=v .

We would like to use this information to derive operator-
counting constraints.

Informally speaking, the accumulated net change of an
operator sequence sums up all operator applications that pro-
duce the atom and subtracts the number of operator appli-
cations that consume the atom. Without knowing the state
in which an operator is applied, we cannot in general de-
cide whether an operator application consumes or produces
an atom. However, we can give upper and lower bounds
on the induced net change for arbitrary plans depending on
their operator counts. To do so, we distinguish four disjoint
classes of operators for each atom:

Operators that always produce atom V = v:

APV=v = {o ∈ O | eff(o)[V ] = v and

pre(o)[V ] = v′ with v′ 6= v}

Operators that sometimes produce atom V = v:

SPV=v = {o ∈ O | eff(o)[V ] = v and

pre(o)[V ] is undefined}

Operators that always consume atom V = v:

ACV=v = {o ∈ O | eff(o)[V ] = v′ with v 6= v′

and pre(o)[V ] = v}

Operators that sometimes consume atom V = v:

SCV=v = {o ∈ O | eff(o)[V ] = v′ with v 6= v′

and pre(o)[V ] is undefined}

Operators that do not fall into one of these classes never
change the truth value of the atom.

We can use these definitions to give bounds on the net
change induced by an operator which do not depend on the
state s:

netchange(o)sV=v ∈



























{1} if o ∈ APV=v

{0, 1} if o ∈ SPV=v

{−1} if o ∈ ACV=v

{−1, 0} if o ∈ SCV=v

{0} otherwise

This justifies the following proposition:

Proposition 3 The accumulated net change induced by the
application of operator sequence π in s can be bounded from
above and below as follows:

∑

o∈APV =v

Y π
o +

∑

o∈SPV =v

Y π
o −

∑

o∈ACV =v

Y π
o ≥ netchange(π)sV=v

≥
∑

o∈APV =v

Y π
o −

∑

o∈ACV =v

Y π
o −

∑

o∈SCV =v

Y π
o .

Note that if both classes SPV=v and SCV=v are empty,
the inequalities become an equality.

We can easily specify the possible net changes that a vari-
able can accumulate on its way to an arbitrary goal state:

pncs→⋆
V=v =



























{0, 1} if sG[V ] = ⊥ and s[V ] 6= v

{−1, 0} if sG[V ] = ⊥ and s[V ] = v

{1} if sG[V ] = v and s[V ] 6= v

{−1} if sG[V ] = v′ and s[V ] = v 6= v′

{0} otherwise

Together with Propositions 2 and 3 this yields constraints
that have a feasible solution for every s-plan:

Definition 7 (Net change constraint) For atom V = v and
state s, let L = min pncs→⋆

V=v , and let U = max pncs→⋆
V=v. The



lower-bound net change constraint cncls,V=v for atom V = v
and state s is the constraint

∑

o∈APV =v

Yo +
∑

o∈SPV =v

Yo −
∑

o∈ACV =v

Yo ≥ L

and the upper-bound net change constraint cncus,V=v is the
constraint

U ≥
∑

o∈APV =v

Yo −
∑

o∈ACV =v

Yo −
∑

o∈SCV =v

Yo .

Post-Hoc Optimization Constraints

Post-hoc optimization heuristics (Pommerening, Röger, and
Helmert 2013) exploit the fact that sometimes we know that
certain operators do not contribute to a heuristic estimate.
They give rise to another type of operator-counting con-
straints:

Definition 8 (Post-hoc optimization constraint) Let Π be
a planning task with operator set O, let h be an admissible
heuristic for Π, and let N ⊆ O be a set of operators that
are noncontributing in the sense that h is still admissible in
a modified planning task where the cost of all operators in
N is set to 0.

Then the post-hoc optimization constraint cPH
s,h,N for h, N

and state s of Π consists of the inequality
∑

o∈O\N

cost(o)Yo ≥ h(s) .

An example of suitable heuristics are pattern database
(PDB) heuristics (Culberson and Schaeffer 1998; Edelkamp
2001), which are based on projections of a planning task to
a subset (called a pattern) of the state variables. Operators
that do not modify any variable in the pattern are noncon-
tributing. Due to the importance of PDB heuristics, we give
a separate definition for the special case of post-hoc con-
straints for PDB heuristics:

Definition 9 For a planning task Π, a state s and PDB

heuristic hP for pattern P , the PDB constraint cpdbs,P is the
constraint

∑

o∈O
o affects P

cost(o)Yo ≥ hP (s) .

Cost Partitioning Constraints for Abstractions

The final type of constraints we introduce are more complex
than the previous ones because they require auxiliary IP/LP
variables, which means that they consist of several inequali-
ties that cannot be considered in isolation. To develop these
constraints, we must discuss the notion of cost partitioning
for abstraction heuristics.

An abstraction heuristic maps each state s of a planning
task Π through a homomorphic mapping α to an abstract
state α(s). The heuristic estimate for s is the cost of the
cheapest path from α(s) to an abstract goal state in the tran-
sition system induced by α on the transition system of Π.

In general the estimates of several abstraction heuristics
can only be combined admissibly by taking their maximum.

Action cost partitioning allows more informative estimates
by modifying the cost function of the abstract systems so
that the estimates can be admissibly summed up.

Optimal cost partitioning (Katz and Domshlak 2010)
computes the best estimate obtainable by cost partitioning
for a given set of abstraction mappings. Unfortunately, the
computation is state-dependent and the evaluation in every
state is often prohibitively expensive in practice (Pommeren-
ing, Röger, and Helmert 2013) although it only takes poly-
nomial time. However, it is still interesting from a theoreti-
cal perspective.

For a set A of abstraction mappings for task Π, let T α =
〈Sα, sαI , G

α, Tα〉 denote the transition system induced by
α ∈ A, where Sα is the set of abstract states, sαI is the ab-
stract initial state and Gα is the set of abstract goal states.
Each transition 〈s, o, s′〉 ∈ Tα from state s to state s′ is
labeled with the operator o that induces it. The subset
SCTα ⊆ Tα contains all state-changing transitions 〈s, o, s′〉
with s 6= s′.

The estimate of the optimal cost partitioning heuristic
hOCP
A for A in state s ∈ S is the objective value of the fol-

lowing LP or ∞ if the LP is not bounded feasible:

Maximize
∑

α∈A

H
α subject to

D
α
s′ = 0 for all α ∈ A and s′ = α(s)

D
α
s′′ ≤ D

α
s′ + C

α
o for all α ∈ A and 〈s′, o, s′′〉 ∈ SCTα

H
α ≤ D

α
s′ for all α ∈ A and s′ ∈ Gα

∑

α∈A

C
α
o ≤ cost(o) for all o ∈ O

with all variables restricted to be non-negative.

Intuitively, variable C
α
o describes the cost of operator o in

T α. Given this cost partitioning, variable D
α
s′ measures the

cheapest cost to reach s′ from α(s) in the abstract system
and H

α is the (additive) heuristic estimate for abstraction α.

At first glance, the cost partitioning LP seems unrelated
to the operator-counting constraint framework. It is con-
cerned with maximization, not minimization, and it has no
operator-counting variables. It is thus not apparent how and
if optimal cost partitioning can be integrated with, say, land-
mark constraints. However, it turns out that the dual of the
LP (which must have the same objective value) is a direct
fit for our framework, offering a new perspective on opti-
mal cost partitioning. This dual LP is of the following form:
Minimize

∑

o∈O cost(o)Yo subject to the operator-counting

constraints cOCP
s,α (defined next) for all abstraction mappings

α ∈ A. For an intuitive interpretation of the auxiliary vari-
ables used in cOCP

s,α , see the following proof.

Definition 10 Let α be an abstraction mapping for task Π
and let T α = 〈Sα, sαI , G

α, Tα〉 be the induced abstract
transition system with SCTα ⊆ Tα being the set of state-
changing transitions.

For a state s of Π, the optimal cost partitioning constraint
cOCP
s,α consists of:



1. a transition count inequality for each operator o ∈ O:

Yo ≥
∑

t∈SCTα

t labeled with o

T
α
t ,

2. a goal inequality
∑

s′∈Gα G
α
s′ ≥ 1,

3. a transition flow inequality for all abstract states s′ 6=
α(s) in Sα:

∑

t∈SCTα

t ends in s′

T
α
t −

∑

t∈SCTα

t starts in s′

T
α
t ≥

{

G
α
s′ if s′ ∈ Gα

0 if s /∈ Gα .

Proposition 4 Optimal cost partitioning constraints as
specified in Definition 10 are operator-counting constraints.

Proof sketch: Let π be an s-plan. To satisfy the inequalities
we set Yo to Y π

o . G
α
s
′ is 1 if executing π in T α ends in s′,

and 0 otherwise. The variables Tα
t are set to the number of

times that transition t is used when executing π in T α.

A closer look at the proof shows that the instantiation of
the LP variables for a given plan only uses integer values.
This means that the constraints remain sound when inter-
preting cOCP

s,α as an integer program. This results in a heuris-
tic that dominates Katz and Domshlak’s optimal cost parti-
tioning. (Of course, the new heuristic is not known to be
polynomial-time computable.) It is not hard to find exam-
ples that show that the dominance is strict. This relationship
parallels the relationship between IP-based landmark heuris-
tics based on hitting sets and LP-based landmark heuristics
based on cost partitioning (Bonet and Helmert 2010).

Relationship to Existing Heuristics

We now show how several existing heuristics can be ex-
pressed within the operator-counting constraint framework.
Full proofs would require a detailed presentation of these
previous heuristics, so due to space limitations we only
sketch the basic ideas.

State-equation heuristic The state-equation heuristic
(Bonet 2013) is defined via an LP that directly fits our frame-
work. Bonet also suggests a safety-based improvement and
a landmark-based improvement of hSEQ. A close look at the
constraints reveals the following connections to our frame-
work:

Proposition 5 For state s, let C(s) denote the set of lower-
bound net change constraints for s and all atoms. Then the
state-equation heuristic hSEQ equals the LP heuristic hLP

C .

The safety-based improvement of hSEQ corresponds to ex-
tending each set C(s) with the upper-bound net change con-
straints for s and all atoms V = v of variables V with
SPV=v′ = ∅ for all v′ ∈ DV .

The landmark-based improvement of hSEQ corresponds to
extending C(s) with the landmark constraints for the given
landmarks.

Post-hoc optimization heuristic The definition of the
post-hoc optimization heuristic (Pommerening, Röger, and
Helmert 2013) involves a variable merging step which
speeds up its computation but has no influence on the heuris-
tic estimate. If we omit this merging step, it is defined by an
LP which minimizes the objective function

∑

o∈O Co, where
intuitively Co represents the total cost incurred by operator o
in a plan. We can easily transform this LP into the required
form by replacing each occurrence of Co with cost(o)Yo.
Then the following proposition is obvious:

Proposition 6 Let hPhO
H,N be the post-hoc optimization

heuristic for a set of heuristics H where N (h) denotes
the noncontributing operators of h ∈ H. For state s, let
CH,N (s) = {cPH

s,h,N (h) | h ∈ H}. Then hPhO
H,N = hLP

CH,N
.

Landmark heuristic with optimal cost partitioning Op-
timal cost partitioning for landmarks (Karpas and Domshlak
2009) can be expressed in our framework. As already indi-
cated in the motivation of the landmark constraints, this fol-
lows from the related work by Keyder, Richter, and Helmert
(2010) and Bonet and Helmert (2010).

Proposition 7 For state s, let C(s) be a set of landmark con-
straints for s. Then hLP

C (s) = hLM
opt (s), where hLM

opt is the
landmark heuristic with optimal cost partitioning using the
same landmarks as in C.

The LM-cut heuristic (Helmert and Domshlak 2009) com-
putes a cost partitioning for a set of action landmarks it finds.
Bonet (2013) proposed to use these landmarks for specify-
ing landmark constraints in the sense of this paper. From the
previous proposition and Proposition 1, it follows that LP
heuristics using these constraints dominate LM-cut.

Optimal cost partitioning for abstractions We derived
the optimal cost partitioning constraints from the dual of the
LP which defines the optimal cost partitioning heuristic. As
a bounded feasible LP and its dual have the same optimal
value, the heuristic fits our framework.

Proposition 8 Let A be a set of abstractions. For state s, let
C(s) be the constraints {cOCP

s,α | α ∈ A}. Then hOCP
A = hLP

CA
.

In all cases above where hLP
C = h′ for a constraint func-

tion C and some existing heuristic h′, it of course follows
that the corresponding IP heuristic hIP

C dominates h′.

Net Change vs. Atomic Projections

One of the interesting features of the state-equation heuris-
tic hSEQ is that it appears to fall outside the common con-
cepts for planning heuristics like abstraction or delete re-
laxation (Bonet 2013). Here, we present a first theoretical
result that compares it to an established heuristic. Specifi-
cally, we prove that the LP heuristic induced by lower-bound
net change constraints (shown in the previous section to be
equal to hSEQ) dominates optimal cost partitioning on single-
variable projections.

In detail, let the set of abstractions Sys1 denote all pro-
jections on single goal variables. (Projections to non-goal
variables are not interesting because all abstract states are
goal states.) A projection on a variable V maps state s to the



abstract state {V 7→ s[V ]}, which we identify with s[V ] in
the following for simplicity.

We will show that the state equation heuristic dominates

the optimal cost partitioning for Sys1.

Lemma 1 Let Π = 〈V,O, sI , sG, cost〉 be a planning task,
let V ∈ vars(sG) be one of its goal variables, and let α be
the projection to V . Let C = {cncls,V=v | v ∈ DV } be the
constraint set consisting of all lower-bound net change con-
straints for V . If there is a feasible (real or integer) solution
for C (where Yo denotes the value of variable Yo), then the
following assignment is a feasible (real or integer) solution
for the optimal cost partitioning constraint cOCP

s,α :

Yo = Yo for all o ∈ O

G
α
v = 1 for v = sG[V ]

T
α
〈v,o,v′〉 =

{

Yo if pre(o)[V ] is defined or v = s[V ]

0 otherwise

for all 〈v, o, v′〉 ∈ SCTα.

Proof sketch: The transition count inequality for opera-
tor o is satisfied because there is at most one transition
t = 〈v, o, v′〉 ∈ SCTα with T

α
t 6= 0: If o has no effect

on variable V it does not induce a state-changing transi-
tion. Consider the case that o has an effect on V . If it
has a precondition on V then 〈pre(o)[V ], o, eff(o)[V ]〉 is the
only transition in SCTα labeled with o. Otherwise, the only
transition labeled with o that is assigned a positive value is
〈s[V ], o, eff(o)[V ]〉.

The goal inequality is trivially satisfied.

For the transition flow inequalities an argument similar
to the one for the transition count inequalities leads to the
following equations for abstract state v:

1)
∑

t∈SCTα

t ends in v

T
α
t =

∑

o∈APV =v∪SPV =v

∑

t∈SCTα

t labeled with o
t ends in v

T
α
t

=
∑

o∈APV =v

Yo +
∑

o∈SPV =v

Yo

2)
∑

t∈SCTα

t starts in v

T
α
t =

∑

o∈ACV =v∪SCV =v

∑

t∈SCTα

t labeled with o
t starts in v

T
α
t

=
∑

o∈ACV =v

Yo +
∑

o∈SCV =v

0 =
∑

o∈ACV =v

Yo .

Subtracting the second equation from the first shows that
the left-hand side of the transition flow inequality for ab-
stract state v matches the left-hand side of cncls,V=v.

It is easy to check that for v 6= s[V ] the right-hand side
of cncls,V=v is 1 if sG[V ] = v and otherwise 0. This is exactly
the right-hand side of the transition flow inequality under the
given valuation for Gα

v . As cncls,V=v is satisfied, the transition
flow inequality must be satisfied as well.

Theorem 1 The state equation heuristic dominates the op-
timal cost partitioning heuristic for Sys1: hOCP

Sys1
≤ hSEQ.

Proof: By Lemma 1, every solution of the LP solved by
hSEQ can be extended to a solution for the LP for hOCP

Sys1
(us-

ing the new formulation based on operator-counting con-
straints). Moreover, both solutions have the same objective
value. Therefore the estimate of the optimal cost partition-
ing heuristic cannot exceed the estimate of the state-equation
heuristic.

Role of Upper-bound Net Change Constraints

In the paper that introduced the state-equation heuristic,
Bonet (2013) also suggested the previously-mentioned ex-
tension exploiting safe state variables and reported a (mod-
est) improvement in performance when using it.

From Proposition 5 we know that the safety-based ex-
tension corresponds to adding upper-bound net change con-
straints to the LP. We now show that these constraints cannot
improve the heuristic beyond the basic hSEQ estimate.

Lemma 2 For every state variable V it holds that
∑

v∈DV

∑

o∈APV =v

Yo =
∑

v∈DV

∑

o∈ACV =v

Yo .

Proof sketch: In a directed graph the sum of in-degrees
over all vertices is equal to the sum of out-degrees over all
vertices. For the lemma, consider a directed graph whose
vertices are the values of the variable V and there is an arc
v

o
→ v′ for each operator o that has precondition V = v and

effect V = v′.

Lemma 3 For state variable V and v ∈ DV it holds that
∑

o∈SCV =v

Yo =
∑

v′∈DV \{v}

∑

o∈SPV =v′

Yo.

Proof: From the definitions of SP and SC it is clear that
o ∈ SPV=v′ with v′ 6= v implies that o ∈ SCV=v′′ for all
v′′ 6= v′ and in particular o ∈ SCV=v. Conversely, o ∈
SCV=v implies that there is a v′ 6= v with o ∈ SPV=v′ .
It also follows from the definition of SP that SPV=v′ and
SPV=v′′ are disjoint for v′ 6= v′′. Therefore the sum on
the right side counts no Yo more than once and the equation
holds.

Theorem 2 Every feasible solution of the set of all lower-
bound net change constraints for a task is also feasible for
the set of all upper-bound net change constraints.

Proof sketch: Consider an arbitrary value v for variable V .
If we sum up the left sides of the lower-bound net change

constraints for all other values of V we get the sum

S =
∑

v′∈DV \{v}

∑

o∈APV =v′

Yo +

∑

v′∈DV \{v}

∑

o∈SPV =v′

Yo −
∑

v′∈DV \{v}

∑

o∈ACV =v′

Yo .



We can reformulate this as

S =
∑

v′∈DV

∑

o∈APV =v′

Yo −
∑

o∈APV =v

Yo +

∑

v′∈DV \{v}

∑

o∈SPV =v′

Yo −

∑

v′∈DV

∑

o∈ACV =v′

Yo +
∑

o∈ACV =v

Yo .

Using Lemmas 2 and 3, S can be simplified to

S =
∑

o∈ACV =v

Yo −
∑

o∈APV =v

Yo +
∑

o∈SCV =v

Yo .

If we also sum up the right-hand side of the lower-bound
net change constraints for all v′ 6= v, we get the overall
inequality S ≥

∑

v′∈DV \{v} min pncs→⋆
V=v′ .

The upper-bound net change constraint for V = v is
−S ≤ max pncs→⋆

V=v. Therefore we can prove that every fea-
sible solution of the set of all lower-bound net change con-
straints for variable V is also feasible for cncuV=v by showing
that

∑

v′∈DV \{v} min pncs→⋆
V=v′ ≥ −max pncs→⋆

V=v .

Considering all cases of the definition of pnc, it is not
complicated to show that both sides of this inequality are in
fact equal (omitted here for lack of space).

This result challenges the safety-based improvement of
the state-equation heuristic.

Corollary 1 The safety-based improvement of the state-
equation heuristic cannot improve the heuristic estimates.

The experimental benefit reported for the safety-based im-
provement must hence be due to other factors, such as faster
heuristic computation or noise. We will get back to this point
in our experimental evaluation, which comes next.

Experimental Evaluation

We implemented a general framework for LP heuristics in
the Fast Downward planning system (Helmert 2006), sup-
porting net change, landmark, PDB and optimal cost par-
titioning constraints. The underlying LP solver is CPLEX
v12.5.1. For our evaluation, we use all tasks for opti-
mal planning from the IPC benchmark suite. All experi-
ments were conducted on Intel Xeon E5-2660 processors
(2.2 GHz) with a time limit of 30 minutes and a memory
limit of 2 GB for each planner run.

For the different types of operator-counting constraints,
we consider the following constraint groups:

SEQ All lower-bound net change constraints, correspond-
ing to the state-equation heuristic hSEQ.

PhO-Sys1 All post-hoc optimization constraints for projec-
tions on goal variables.

PhO-Sys2 All post-hoc optimization constraints for sys-
tematically generated projections on up to two variables.
This corresponds to the most successful configuration
of hPhO reported by Pommerening, Röger, and Helmert
(2013), but omits the variable merging optimization.

S
E

Q

P
h
O

-S
y
s1

P
h
O

-S
y
s2

L
M

C

O
P

T
-S

y
s1

L
M

C
+

P
h
O

-S
y
s2

L
M

C
+

S
E

Q

P
h
O

-S
y
s2

+
S

E
Q

L
M

C
+

P
h
O

-S
y
s2

+
S

E
Q

h
L

M
-c

u
t

barman (20) 4 4 4 4 4 4 4 4 4 4

elevators (20) 7 9 16 16 4 17 16 15 16 18

floortile (20) 4 2 2 6 2 6 6 4 6 7

nomystery (20) 10 11 16 14 8 16 12 14 14 14

openstacks (20) 11 14 14 14 5 14 11 11 11 14

parcprinter (20) 20 11 13 13 7 14 20 20 20 13

parking (20) 3 5 1 2 1 1 2 1 1 3

pegsol (20) 18 17 17 17 10 17 18 17 16 17

scanalyzer (20) 11 9 4 11 7 10 10 10 8 12

sokoban (20) 16 19 20 20 13 20 20 20 19 20

tidybot (20) 7 13 14 14 4 14 10 8 10 14

transport (20) 6 6 6 6 4 6 6 5 6 6

visitall (20) 17 16 16 10 15 17 19 17 18 11

woodworking (20) 9 5 10 11 2 13 16 10 16 12

Sum IPC 2011 (280) 143 141 153 158 86 169 170 156 165 165

IPC 1998–2008 (1116) 487 446 478 586 357 589 618 516 598 598

Sum (1396) 630 587 631 744 443 758 788 672 763 763

Table 1: Coverage on the IPC benchmark suite. Best results
are highlighted in bold.

LMC All landmark constraints for the landmarks found by
the LM-cut heuristic.

OPT-Sys1 All optimal cost partitioning constraints for pro-
jections on goal variables. This corresponds to the con-
straint set used in Theorem 1.

Individual constraint groups To get an idea of the quality
of the different constraint groups, we ran experiments with
A∗, using one of the above configurations at a time. The
resulting coverage is reported in the first block of Table 1.

Optimal cost partitioning on LM-cut landmarks leads to
the highest coverage with a clear lead over the state-equation

heuristic and the post-hoc optimization heuristic for Sys2

patterns, which are almost on par. Using only Sys1 patterns,
the post-hoc optimization heuristic solves 44 fewer tasks and
the optimal cost partitioning lags far behind with only 443
solved tasks, compared to 744 by the best LP configuration.

Comparing the coverage of the standard LM-cut heuristic
and of the LMC configuration reveals that the additional ef-
fort of computing the optimal cost partitioning for the same
landmarks does not pay off in terms of providing sufficiently
better guidance. A possible reason for this is that the LM-
cut heuristic already approximates h+ very closely, and the
corresponding LP heuristic is also bounded by h+.

To measure the impact of the safety-based improvement
of the state-equation heuristic, we conducted an additional
experiment (not reported in the table) where we extended
SEQ with the corresponding upper bound net change con-
straints. As expected from Corollary 1, this has no effect
on the number of expanded nodes. However, with the ad-
ditional constraints we solve six tasks less, which can be
attributed to slightly slower evaluations of the LP solver.



100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

u
n
s
.

unsolved

LMC+ PhO-Sys 2 (96/758)

m
ax

(L
M
C
,P
h
O
-
S
y
s

2
)
(8
4/
75
7)

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

u
n
s
.

unsolved

LMC+ SEQ (123/788)

m
ax

(L
M
C
,S
E
Q
)
(1
09

/7
88
)

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

u
n
s
.

unsolved

PhO-Sys 2+ SEQ (117/672)

m
ax

(P
h
O
-
S
y
s
2
,S
E
Q
)
(1
07
/6
74
)

Figure 1: Number of expansions (excluding nodes on the final f -layer). The numbers (x/y) behind the configurations express
that among the y solved tasks, x have been solved with perfect heuristic estimates.

We do not have a theoretical result that the upper bound
net change constraints are strictly weaker than the lower
bound net change constraints. However, if we solely use
all upper bound net change constraints, the LP heuristic re-
turns very poor estimates, resulting in a coverage of only
569 tasks. So these constraints are indeed strictly weaker.

Combinations of constraint groups In the following,
we examine combinations of different types of operator-
counting constraints. However, not all combinations make
sense.

From Theorem 1 we know that the state-equation config-

uration dominates OPT-Sys1 in terms of heuristic guidance.

Since OPT-Sys1 also requires much more time to compute
the heuristic, we will not consider it in our combinations.
Moreover, SEQ as well as PhO-Sys2 give better coverage

results and provably better guidance than PhO-Sys1. There-

fore, we will also omit PhO-Sys1 from the combinations.

This leaves us with all combinations of SEQ,PhO-Sys2,
and LMC. The coverage results are included in Table 1.

A combination of SEQ and PhO-Sys2 looks promising be-
cause they have their strengths and weaknesses in different

domains. For example, using PhO-Sys2 solves 14 tasks in
the tidybot domain, while only 7 can be solved with SEQ. In
the parcprinter domain the picture is reversed: using SEQ,

we solve 20 tasks in contrast to only 13 with PhO-Sys2. In-
deed, the combination solves 672 instances, a clear improve-
ment on each individual heuristic solving 630 and 631 tasks,
respectively.

The combination of PhO-Sys2 and LMC also pays off,
solving 758 task instead of 631 and 744, respectively.

The best combination of two of our constraint groups con-
sists of SEQ and LMC: with 788 task, it solves 44 more
tasks than its best component, LMC, alone. This combina-
tion also outperforms the standard LM-cut heuristic (with
763 tasks), which was previously the best performer among
the heuristics discussed in this paper.

However, adding more constraints does not always have
a positive effect. While the combination of all three com-
ponents is still better than the combination of SEQ and

PhO-Sys2 and of PhO-Sys2 and LMC, it leads to 25 fewer
solving instances than the combination of SEQ and LMC.

Constraint interactions Can we explain the better perfor-
mance of the combinations with the better guidance of more
individual components, or is there an additional positive ef-
fect through interactions of the different constraints in the
LP? The plots in Figure 1 show the number of expansions
using one LP heuristic with two constraint groups against
the expansions using the maximum of the two individual LP
heuristics.

In all three cases, we see clear synergy effects: combining
two sets of constraints in a single LP indeed leads to stronger
heuristic estimates than maximizing the heuristic estimates
from two separate LPs. These synergy effects are much

more pronounced in the combinations of SEQ and PhO-Sys2

and of SEQ and LMC than in the combination of PhO-Sys2

and LMC. In all three cases, there is a solid number of tasks
(10–14) that are solved with perfect heuristic estimates by
the combination into one LP, but not by the maximum of
two LP heuristics.

Considering coverage, however, the picture is somewhat
more mixed: some tasks can only be solved by the ap-
proaches using a single large LP, others only by the maxi-
mum over two LP heuristics, and both approaches end up
too close to tell apart in terms of overall coverage.

Conclusion

We introduced a class of IP/LP heuristics based on operator-
counting constraints that subsumes many existing heuristics,
including the state-equation, post-hoc optimization and ad-
missible landmark heuristic as well as optimal cost parti-
tioning of (explicit-state) abstraction heuristics. Our new
LP for optimal cost partitioning of abstraction heuristics is
based on a dualization of the originally suggested LP and
suggests new ways to combine abstraction heuristics with
other sources of knowledge, such as landmarks.

Our two other main theoretical results are that the state-
equation heuristic dominates optimal cost partitioning on
single-variable abstractions (and therefore also the post-hoc
optimization heuristic for these abstractions) and that the
safety-based extension of the state-equation heuristic cannot
improve heuristic accuracy.

Within our framework, heuristics can be arbitrarily com-
bined. In our experiments, the best configuration combines



constraints from the state-equation heuristic and from opti-
mal cost partitioning for LM-cut landmarks. This configura-
tion solves 25 more tasks on the IPC benchmark set than the
state-of-the-art LM-cut heuristic.

Another heuristic that fits into our framework and that we
have not discussed is the IP/LP heuristic by van den Briel
et al. (2007). While their base IP is very similar to the LP
of the state-equation heuristic, they propose two extensions
that further exploit the domain structure, which appear to be
an interesting starting point for future work. Bonet and van
den Briel (2014) further extend these ideas, defining new
heuristics which would also be very interesting to explore in
the context of our framework.

Acknowledgments

This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Abstraction
Heuristics for Planning and Combinatorial Search” (AH-
PACS).

References

Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334.
IOS Press.

Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014). AAAI
Press.

Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268–2274.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.

Domshlak, C.; Katz, M.; and Lefler, S. 2012. Landmark-
enhanced abstraction heuristics. Artificial Intelligence
189:48–68.

Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Pre-proceedings of the Sixth
European Conference on Planning (ECP 2001), 13–24.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Karpas, E., and Domshlak, C. 2009. Cost-optimal plan-
ning with landmarks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1728–1733.

Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12–13):767–798.

Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.

Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364.

van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.

Zhu, L., and Givan, R. 2003. Landmark extraction via plan-
ning graph propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.


