LP-based Heuristics for Cost-optimal Planning

¹University of Basel, Switzerland

²Universidad Simón Bolívar, Venezuela

June 24, 2014

LP Heuristics 000000000		

- Recent interest in heuristics based on linear programming
 - Certified "hot topic"
 - (AAAI 2013 Spotlight Talk: What's Hot at ICAPS?)
 - Landmarks, state equation, PDBs, optimal cost partitioning
- Contributions
 - Common framework
 - Combination of heuristic values beyond the maximum
 - Theoretical tool to show dominance

A framework for LP-based heuristics

Background

- Classical planning tasks
 - States assign values to variables
 - Operators allow to manipulate states
 - Implicitly defined transition system
- Finding optimal solutions
 - Cheapest sequence of operators from initial state to a goal
 - Common approach: A^* + admissible heuristic

LΡ	Heuristics
00	000000

Operator occurrences in potential plans					
(2,1,0)	(1,1,2)	(0,0,0)			
(1,2, (1,3, (2,2,0)	l) (0, (3,2,2) (2,2,1)	.0,1) (3,0,2) (1,2,0)			
(3,1,))				

LΡ	Heuristics
00	000000

LΡ	Heuristics
00	000000

Operator-counting Constraints

• Operator-counting constraint

- Linear constraints
- Operator-counting variable Y_o for each operator
- Satisfied by occurrences in any plan
- Example: $Y_{o_1} \ge 2Y_{o_2}$
- IP/LP heuristics
 - Minimize $\sum_{o \in \mathcal{O}} \mathsf{cost}(o) \cdot \mathsf{Y}_o$ subject to

some operator-counting constraints

- LP relaxation solvable in polynomial time
- Admissible heuristics

How do existing heuristics fit?

LΡ	Heuristics
00	0000000

Example 1: Disjunctive Action Landmarks

- Disjunctive action landmarks
 - Set of operators
 - At least one has to be used in any plan

$$\sum_{o \in L} \mathsf{Y}_o \geq 1$$

• Existing heuristic

- Optimal cost partitioning for landmarks
 - (Karpas and Domshlak 2009)
- Extended by Keyder, Richter, and Helmert (2010)
- Formulation by Bonet and Helmert (2010) fits the framework

Example 2: Pattern Databases

• Pattern databases

- Admissible
- Only subset of operators is relevant

Post-hoc optimization constraints

$$h^P(s) \leq \sum \operatorname{cost}(o) \cdot \mathsf{Y}_o$$

 \boldsymbol{o} relevant for \boldsymbol{P}

• Existing heuristic

Post-hoc optimization

(Pommerening, Röger, and Helmert 2013)

• Minor reformulation fits the framework

LP Heuristics 0000000●0			

Example 3: Net Change

- Net change for a value of a variable
 - Operators produce or consume the value

Net change constraints

- Number of producers and consumers must balance out
- Lower bound estimation for operators that sometimes produce/consume.
- Existing heuristic
 - State-equation heuristic (van den Briel et al. 2007, Bonet 2013, Bonet and van den Briel 2014)
 - Fits the framework

Example 4: Explicit State Abstractions

- Explicit State Abstractions
 - PDBs, Merge&Shrink, CEGAR, ...
- Existing heuristic
 - Optimal cost partitioning heuristic (Katz and Domshlak 2010)
 - Dual LP: new perspective on same problem
 - Dual constraints are operator-counting constraints

Theoretical Results

LΡ	

Combination of Heuristic Values

Theorem

The LP heuristic for a set of operator-counting constraints dominates the maximum over LP heuristics for the individual constraints

- Better way to combine different sources of information
- Dominance can be strict

Dominance of heuristics

- LP heuristics as analytic tool
- General scheme to show dominance of h_1 over h_2
 - **(**) h_1 is the LP heuristic with constraints C_1
 - 2 h_2 is the LP heuristic with constraints C_2
 - **③** Every solution of C_1 satisfies constraints in C_2
 - $h_1 \ge h_2$

Theoretical Results 000●0	

Dominance of heuristics

Theorem

$$h_{Sys_1}^{\mathsf{OCP}} \le h^{\mathsf{SEQ}}$$

- $h_{Sys_1}^{OCP}$
 - Optimal cost partitioning heuristic
 - Abstractions: one projection to each goal variable
- h^{SEQ}
 - State-equation heuristic
- A counter example shows $h^{\mathsf{SEQ}} \not\leq h^{\mathsf{OCP}}_{\mathsf{Sys}_1}$

Implied constraints

- Safety-based improvement of the state-equation heuristic (Bonet 2013)
 - Net change constraints contain lower bound estimation
 - Corresponding upper bound estimation can be added
 - Some inequalities become equalities

Theorem

The safety-based improvement cannot increase the heuristic value of the state-equation heuristic.

LP Heuristics 000000000	Empirical Results 0●0
Results	

Individual Constraints					
SEQ	$PhO\text{-}Sys^1$	$PhO\text{-}Sys^2$	LMC	$OPT\text{-}Sys^1$	
630	587	631	744	443	

Combination of	Constraint	5			
			LMC		
LMC	LMC	$PhO\operatorname{-}Sys^2$	$+ PhO\operatorname{-}Sys^2$		
$+ PhO-Sys^2$	+ SEQ	+ SEQ	+ SEQ	h^{LM-cut}	
758	788	672	763	763	

Interaction of Constraints

- Comparing combination in LP with maximum
- Coverage is unchanged
- Stronger heuristic estimates (synergy)
 - Fewer expansions
 - More tasks solved with perfect heuristic

Conclusion

Conclusion

- Common framework for LP-based heuristics
 - Operator-counting constraints
 - $\bullet~{\rm IP}/{\rm LP}$ heuristics
 - Fits many existing heuristics
- Can be used to prove properties of heuristics
- Combination of information from different sources
 - Stronger estimates than through maximization
 - Synergy effects

Conclusion

- Common framework for LP-based heuristics
 - Operator-counting constraints
 - $\bullet~{\rm IP}/{\rm LP}$ heuristics
 - Fits many existing heuristics
- Can be used to prove properties of heuristics
- Combination of information from different sources
 - Stronger estimates than through maximization
 - Synergy effects
- Poster presentation today in the second session (17:30)