LP-based Heuristics for Cost-optimal Planning

Florian Pommerening¹ Gabriele Röger¹ Malte Helmert¹ Blai Bonet²

¹University of Basel, Switzerland ²Universidad Simón Bolívar, Venezuela

A Framework for LP-based Heuristics

- Operator-counting constraint
- Linear constraints
- ► Operator-counting variable Y_o for each operator
- ("Number of times o is used in a plan")
- Satisfied by occurrences in any plan
- ▶ Example: $Y_{o_1} \ge 2Y_{o_1}$
- ("o₁ must occur at least twice as often as o₂")
- ▶ IP/LP heuristics
- ▶ Minimize $\sum cost(o) \cdot Y_o$ subject to some operator-counting constraints
- ▶ LP relaxation solvable in polynomial time
- Admissible heuristics

Example 1: Disjunctive Action Landmarks

Landmark constraints

$$\sum_{o \in I} Y_o \ge 1$$

- Existing heuristic
- ► Optimal cost partitioning for landmarks (Karpas and Domshlak 2009)
- ▶ cf. Keyder, Richter, and Helmert (2010) and Bonet and Helmert (2010)

Example 2: Net change

- ▶ Net change for a fact *f*
- ► Operators produce (make true) or consume (make false) f
- Number of producers and consumers must balance out
- ► Lower bound estimation for operators that sometimes produce/consume *f*
- Net change constraints

$$\sum_{\substack{o \text{ guaranteed to produce } f}} \mathsf{Y}_o + \sum_{\substack{o \text{ sometimes produces } f}} \mathsf{Y}_o - \sum_{\substack{o \text{ guaranteed to consume } f}} \mathsf{Y}_o \geq \mathit{LB}(f)$$

- Existing heuristic
- ► State-equation heuristic (van den Briel et al. 2007, Bonet 2013, Bonet and van den Briel 2014)

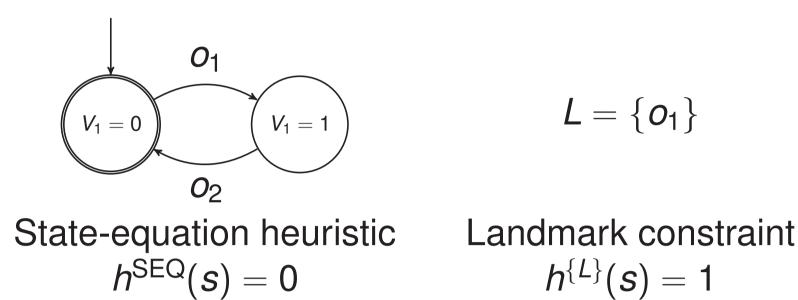
Example 3: Pattern databases

- Pattern databases
- Admissible heuristic, only influenced by subset of operators
- Post-hoc optimization constraints

$$h^P(s) \leq \sum_{o \text{ relevant for } P} \operatorname{cost}(o) \cdot Y_o$$

- Existing heuristic
- ► Post-hoc optimization (Pommerening, Röger, and Helmert 2013)

Example 4: Explicit State Abstractions


- ► Abstractions with explicit transition system
- Examples: Pattern databases, Merge&Shrink, CEGAR
- Existing heuristic
- ► Optimal cost partitioning heuristic (Katz and Domshlak 2010)
- ► Dual formulation fits our framework
- OCP constraints
- ► Transitions start or end in abstract states
- Used transitions must balance out
- Operator count must support all used transitions

Combination of Heuristic Values

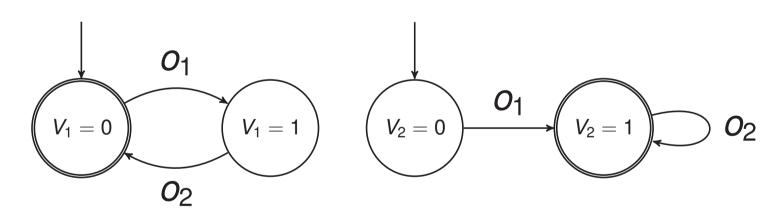
Theorem

The LP heuristic for a set of operator-counting constraints dominates the maximum over LP heuristics for the individual constraints

- ▶ Better way to combine different sources of information
- ▶ Dominance can be strict:

 $\max\{h^{SEQ}(s), h^{\{L\}}(s)\} = 1 < h^{SEQ+\{L\}}(s) = 2$

Dominance of heuristics


- ▶ LP heuristics as analytic tool
- ▶ General scheme to show dominance of h_1 over h_2
- 1. h_1 is the LP heuristic with constraints C_1
- 2. h_2 is the LP heuristic with constraints C_2
- 3. Every solution of C_1 satisfies constraints in C_2
- 4. $h_1 \geq h_2$

Theorem

The state-equation heuristic dominates optimal cost partitioning over projections to goal variables

$$h_{\mathsf{Sys}_1}^{\mathsf{OCP}} \leq h^{\mathsf{SEQ}}$$

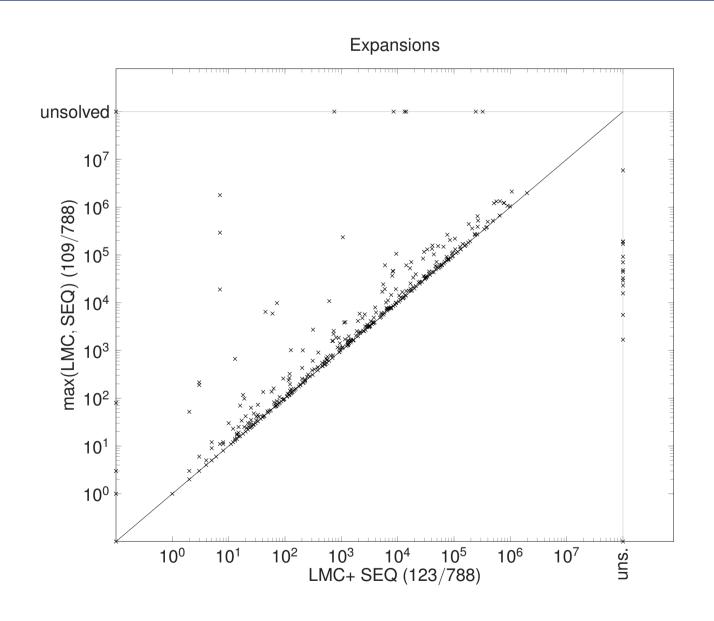
► A counter-example shows $h^{SEQ} \not\leq h_{Syst}^{OCP}$

Implied constraints

- Safety-based improvement of the state-equation heuristic (Bonet 2013)
- ► Net change constraints contain lower bound estimation
- Corresponding upper bound estimation can be added
- Some inequalities become equalities
- Constraint implied by all lower bound net change constraints

Theorem

The safety-based improvement cannot increase the heuristic value of the state-equation heuristic.


► Caveat: only if *all* lower bound net change constraints are present

Empirical Results

	SEQ	PhO-Sys1	PhO-Sys ²	LMC	OPT-Sys ¹	LMC+ PhO-Sys ²	LMC+ SEQ	PhO-Sys ² + SEQ	LMC+ PhO-Sys ² + SEG	<i>h</i> LM-Cut
barman (20)	4	4	4	4	4	4	4	4	4	4
elevators (20)	7	9	16	16	4	17	16	15	16	18
floortile (20)	4	2	2	6	2	6	6	4	6	7
nomystery (20)	10	11	16	14	8	16	12	14	14	14
openstacks (20)	11	14	14	14	5	14	11	11	11	14
parcprinter (20)	20	11	13	13	7	14	20	20	20	13
parking (20)	3	5	1	2	1	1	2	1	1	3
pegsol (20)	18	17	17	17	10	17	18	17	16	17
scanalyzer (20)	11	9	4	11	7	10	10	10	8	12
sokoban (20)	16	19	20	20	13	20	20	20	19	20
tidybot (20)	7	13	14	14	4	14	10	8	10	14
transport (20)	6	6	6	6	4	6	6	5	6	6
visitall (20)	17	16	16	10	15	17	19	17	18	11
woodworking (20)	9	5	10	11	2	13	16	10	16	12
Sum IPC 2011 (280)	143	141	153	158	86	169	170	156	165	165
IPC 1998–2008 (1116)	487	446	478	586	357	589	618	516	598	598
Sum (1396)	630	587	631	744	443	758	788	672	763	763

- Individual Constraints
- ► LM-cut constraints have highest coverage
- Optimization of LM-cut landmarks does not pay off
- State-equation and PhO heuristic similar coverage
- Computation of optimal cost partitioning too expensive
- Combination of Constraints
- Clear improvement over individual constraints
- ► State-equation heuristic with LM-cut constraints exceeds coverage of h^{LM-cut}
- Combining all three sources does not pay off

Interaction of Constraints

- Comparing combination in LP with maximum
- ► Coverage is unchanged
- Stronger heuristic estimates (synergy)
- Fewer expansions
- More tasks solved with perfect heuristic