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Higher-Dimensional Potential Heuristics
for Optimal Classical Planning

Find cheapest action sequence to achieve a goal.

States are variable assignments.

Operators change variable values.
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Higher-Dimensional Potential Heuristics
for Optimal Classical Planning

h(s) =
∑
f∈F

w(f)[s |= f ]

Weighted sum of state features

Two choices

Which features to use?
How to find good weights?
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Higher-Dimensional Potential Heuristics
for Optimal Classical Planning

Features are conjunctions of facts

Size of a feature: number of conjuncts

“Atomic” features (size 1)
w(at-A) = 10, w(at-B) = 5

“Binary” features (size 2)
w(at-B ∧ door-locked) = 10

. . .
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Why do we care about higher-dimensional features?

Initial heuristic values
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Atomic features are often not sufficient
for high-quality heuristics
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Goals

Find good weights automatically

Ideally:

Declare properties of heuristics (admissible, consistent)
Constraints characterize heuristics with these properties
Select best possible heuristic from the space of solutions
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Our Contributions

Describing admissible and consistent potential heuristics

Features Characterization

All atomic features compact [previous work]
All binary features compact [new]
All ternary features intractable [new]
Subset of all features fixed parameter tractable [new]

Also in the paper

Potential functions ' Transition cost partitioning
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Compact Characterization

Characterizing admissible and consistent heuristics

Goal awareness

h(s∗) ≤ 0

Easy: h(s∗) is a sum of weights

Consistency

h(s)− h(s′) ≤ cost(o) ∀s o−→ s′

Hard: exponential number of constraints
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Consistency

Consider a single operator

Three types of features

irrelevant: no variables in common with o
context-independent: all variables in common with o
context-dependent: some in common with o, some not

Heuristic difference caused by operator o

h(s)− h(s′) = ∆irr
o (s) + ∆ind

o (s) + ∆dep
o (s)
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Heuristic Difference when Applying Operator o

Consistency for an operator o

∆irr
o (s)0 + ∆ind

o (s) + ∆dep
o (s) ≤ cost(o) ∀s o−→ s′

Irrelevant features

No variables in common with o

No change in truth value when applying o

Does not cause change in heuristic
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Heuristic Difference when Applying Operator o

Consistency for an operator o

∆irr
o (s)0 + ∆ind

o (s) + ∆dep
o (s) ≤ cost(o) ∀s o−→ s′

Context-dependent features

At least one variable in common with o

At least one variable not mentioned by o

Heuristic change depends on state



Introduction Compact Characterizations Larger Features

Context-Dependent Features

Context-Dependent Features

Atomic features: no context-dependent features

Binary features: context limited to one variable

“Worst value” exists for each variable
Worst case: all variables have worst value
Constraint for worst state implies all other constraints

Theorem

Admissible and consistent potential heuristics over binary features
can be characterized by a compact set of linear constraints.
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Larger Features
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Intractability

In general

Change in potential when applying o
depends on more than one variable

Influence of V on o depends on larger context

Theorem

Testing whether a given potential function is consistent
is coNP-complete.

This already holds with only ternary features.

Proof:

Reduction from non-3-colorability



Introduction Compact Characterizations Larger Features

Fixed Parameter Tractbility

Approach for binary features can be generalized

Factor out influence of one variable at a time

Generalization of Bucket Elimination algorithm
from numerical cost functions to linear expressions

Theorem

Computing a set of linear constraints that characterize the
admissible and consistent potential heuristics for a set of features

is fixed-parameter tractable.
Parameter: tree-width of feature connectivity.
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Take Home Messages
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Take Home Messages

Characterization of admissible and consistent potential functions

Compact for binary features

coNP-complete for ternary or larger features . . .

. . . but fixed parameter tractable
Parameter: tree-width of feature connectivity
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