From Non-Negative to General Operator Cost Partitioning

Florian Pommerening Malte Helmert Gabriele Röger Jendrik Seipp

University of Basel, Switzerland

January 29, 2015

- Common approach: A^* with admissible heuristic
- One heuristic often not sufficient
- How to combine heuristics?

- Common approach: A^* with admissible heuristic
- One heuristic often not sufficient
- How to combine heuristics?
 - Sum?

- Common approach: A^* with admissible heuristic
- One heuristic often not sufficient
- How to combine heuristics?
 - Sum? Not admissible

- Common approach: A^* with admissible heuristic
- One heuristic often not sufficient
- How to combine heuristics?
 - Sum? Not admissible
 - Maximum?

- Common approach: A^* with admissible heuristic
- One heuristic often not sufficient
- How to combine heuristics?
 - Sum? Not admissible
 - Maximum? Does not use all information

State space search

- Common approach: A^* with admissible heuristic
- One heuristic often not sufficient
- How to combine heuristics?
 - Sum? Not admissible
 - Maximum? Does not use all information

Breakthrough: Cost partitioning

- Make arbitrary heuristics additive
- Part of many state-of-the-art heuristics

Operator Cost Partitioning

Main idea

- Create copies of the original problem
- Distribute operator cost function between copies
- Compute one heuristic per copy
- Sum resulting heuristic values

Operator Cost Partitioning

Operator Cost Partitioning [Katz and Domshlak 2010]

Find cost functions c_1, \ldots, c_n with

- Non-negative costs: $c_i \ge 0$
- Costs are distributed: $\sum_i c_i \leq \text{original cost}$
- \Rightarrow Admissible estimates using cost function c_i are additive

Operator Cost Partitioning

Operator Cost Partitioning [Katz and Domshlak 2010]

Find cost functions c_1, \ldots, c_n with

- Non-negative costs: $c_i \ge 0$
- Costs are distributed: $\sum_i c_i \leq \text{original cost}$
- \Rightarrow Admissible estimates using cost function c_i are additive

Why restrict costs to non-negative values?

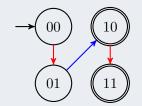
General Operator Cost Partitioning

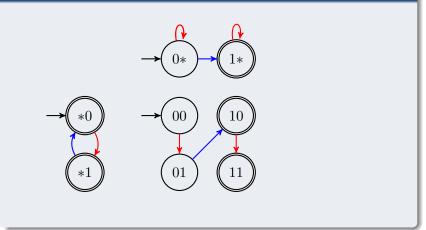
General Operator Cost Partitioning

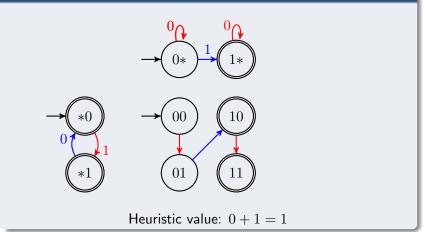
General Operator Cost Partitioning

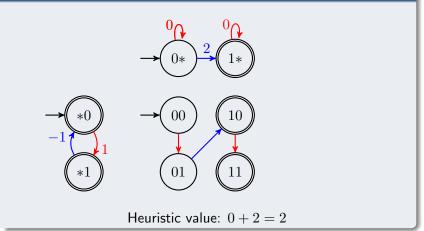
Find cost functions c_1, \ldots, c_n with

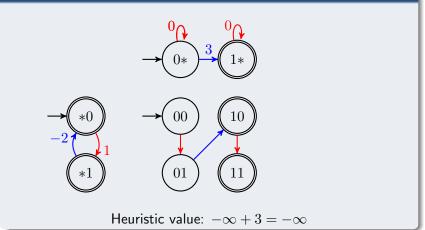
- Non-negative costs: $c_i \ge 0$
- Costs are distributed: $\sum_i c_i \leq \text{original cost}$
- \Rightarrow Admissible estimates using cost function c_i are additive





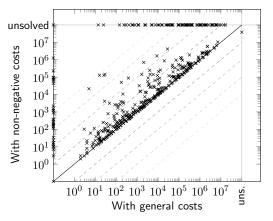






Heuristic Quality of General Cost Partitioning

Expansions for optimal cost partitioning of atomic projections



Relation to Other Topics in Heuristic Search Planning

General Operator Cost Partitioning in Relation to ...

- Operator-counting heuristics
- State equation heuristic
- A new approach to heuristic construction (potential heuristics)

1) Operator-Counting Heuristics

Operator-counting heuristics [Pommerening et al. 2014]

- Minimize total plan cost
- Subject to necessary properties of any plan (constraints)

Different sets of constraints define different heuristics

Relation to other Topics

1) Operator-Counting Heuristics: Theoretical Result

Theorem

Combining operator-counting heuristics in one LP is equivalent to computing their optimal general cost partitioning.

2) State Equation Heuristic

Special case: state equation heuristic [van den Briel et al. 2007, Bonet 2013]

- Categorization previously unclear
 - Landmarks?
 - Abstractions?
 - Delete relaxations?
 - Critical paths?

2) State Equation Heuristic

Special case: state equation heuristic [van den Briel et al. 2007, Bonet 2013]

- Categorization previously unclear
 - Landmarks?
 - Abstractions?
 - Delete relaxations?
 - Critical paths?

Theorem

State equation heuristic

Optimal general cost partitioning of all atomic projection heuristics

2) State Equation Heuristic

Special case: state equation heuristic [van den Briel et al. 2007, Bonet 2013]

- Categorization previously unclear
 - Landmarks?
 - Abstractions
 - Delete relaxations?
 - Critical paths?

Theorem

State equation heuristic

Optimal general cost partitioning of all atomic projection heuristics

3) Potential Heuristics

Potentials

- Numerical value associated with each fact
- Heuristic value is sum of potentials for facts in state

Image credit: David Lapetina

3) Potential Heuristics

Potentials

- Numerical value associated with each fact
- Heuristic value is sum of potentials for facts in state

Linear constraints over potentials

- Express consistency and admissibility
- Necessary and sufficient conditions

Image credit: David Lapetina

3) Potential Heuristics

Potentials

- Numerical value associated with each fact
- Heuristic value is sum of potentials for facts in state

Linear constraints over potentials

- Express consistency and admissibility
- Necessary and sufficient conditions

Optimization criterion

- Can optimize any function over potentials
- Here: maximize heuristic value of a state

Image credit: David Lapetina

3) Potential Heuristics: Theoretical Result

Theorem

Potential heuristic optimized in each state

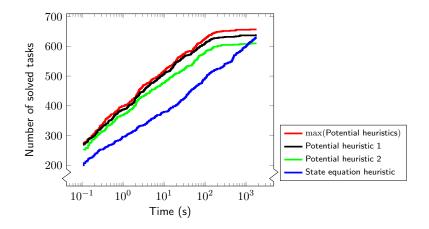
State equation heuristic

Optimizing potentials less frequently

- Trade off accuracy for evaluation speed
- Here: optimize once for heuristic value of initial state

Relation to other Topics

3) Potential Heuristics: Practice



Take Home Messages

Heuristic combination

Operator counting

Optimal general cost partitioning

Equivalent heuristics

State equation heuristic

Optimal general cost partitioning of atomic projections

Potential heuristic (optimized in each state)

Interesting new heuristic family: potential heuristics

Potential Heuristics (Details)

Potential heuristic

$$\begin{array}{l} \text{Maximize } f(\textit{Potentials}) \text{ subject to} \\ & \sum_{V}\textit{Potential}_{\textit{goal}[V]} \leq 0 \\ & \sum_{V}(\textit{Potential}_{\textit{pre}(o)[V]} - \textit{Potential}_{\textit{eff}(o)[V]}) \leq \textit{cost}(o) \quad \text{for each } o \in O \end{array}$$

Heuristic properties

- Admissibility: $h(s) \le h^*(s)$ for all states s
- Consistency: $h(s) \leq h(s') + c(o)$ for all transitions $s \stackrel{o}{\rightarrow} s'$
- Goal awareness: $h(s) \leq 0$ for all goal states s
- Goal awareness + consistency \Leftrightarrow admissibility + consistency