
New Perspectives on Cost Partitioning
for Optimal Classical Planning

Inauguraldissertation
zur

Erlangung der Würde eines Doktors der Philosophie
vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

FLORIAN POMMERENING

aus Tübingen, Deutschland

Basel, 2017

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

Dieses Werk ist lizenziert unter einer Creative Commons
Namensnennung - Nicht-kommerziell 4.0 International Lizenz.

http://edoc.unibas.ch/

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Malte Helmert,
Universität Basel, Dissertationsleiter, Fakultätsverantwortlicher

Prof. Dr. J. Christopher Beck
University of Toronto, Korreferent

Basel, den 23.05.2017

Prof. Dr. Martin Spiess,
Universität Basel, Dekan

Abstract

Admissible heuristics are the main ingredient when solving classical planning
tasks optimally with heuristic search. There are many such heuristics, and each
has its own strengths and weaknesses. As higher admissible heuristic values are
more accurate, the maximum over several admissible heuristics dominates each
individual one. Operator cost partitioning is a well-known technique to combine
admissible heuristics in a way that dominates their maximum and remains admis-
sible. But are there better options to combine the heuristics? We make three main
contributions towards this question:

Extensions to the cost partitioning framework can produce higher estimates
from the same set of heuristics. Cost partitioning traditionally uses non-negative
cost functions. We prove that this restriction is not necessary, and that allow-
ing negative values as well makes the framework more powerful: the resulting
heuristic values can be exponentially higher, and unsolvability can be detected
even if all component heuristics have a finite value. We also generalize operator
cost partitioning to transition cost partitioning, which can differentiate between
different contexts in which an operator is used.

Operator-counting heuristics reason about the number of times each operator
is used in a plan. Many existing heuristics can be expressed in this framework,
which gives new theoretical insight into their relationship. Different operator-
counting heuristics can be easily combined within the framework in a way that
dominates their maximum.

Potential heuristics compute a heuristic value as a weighted sum over state
features and are a fast alternative to operator-counting heuristics. Admissible
and consistent potential heuristics for certain feature sets can be described in a
compact way which means that the best heuristic from this class can be extracted
in polynomial time.

Both operator-counting and potential heuristics are closely related to cost parti-
tioning. They offer a new look on cost-partitioned heuristics and already sparked
research beyond their use as classical planning heuristics.

iii

Zusammenfassung

Zulässige Heuristiken sind ein Hauptbestandteil für das optimale Lösen von klas-
sischen Handlungsplanungsproblemen mit heuristischer Suche. Es gibt viele sol-
che Heuristiken und jede hat ihre eigenen Stärken und Schwächen. Da höhere
zulässige Heuristikwerte genauer sind, dominiert das Maximum über mehrere
zulässige Heuristiken jede einzelne. Operatorkostenpartitionierung ist eine be-
kannte Technik um zulässige Heuristiken auf eine Art zu kombinieren, die deren
Maximum dominiert und zulässig bleibt. Aber gibt es noch bessere Optionen um
die Heuristiken zu kombinieren? Wir machen drei wichtige Beiträge zu dieser
Frage:

Erweiterungen der Kostenpartitionierung erlauben es die gleichen zugrunde-
liegenden Heuristiken zu höheren zulässigen Werten zu kombinieren. Kosten-
partitionierung verwendet traditionellerweise nicht-negative Kostenfunktionen.
Wir beweisen, dass diese Einschränkung nicht nötig ist und dass das Frame-
work mächtiger wird, wenn auch negative Werte zugelassen werden: die resul-
tierenden Heuristikwerte können exponentiell grösser werden und Unlösbarkeit
kann auch erkannt werden, wenn alle Teilheuristiken endlich sind. Wir verallge-
meinern Operatorkostenpartitionierung ausserdem zu Transitionskostenpartitio-
nierung was es erlaubt zwischen verschiedenen Situationen zu unterscheiden, in
denen ein Operator angewandt wird.

Operator-counting-Heuristiken werden aus Aussagen darüber berechnet, wie
oft ein Operator in einem Plan verwendet wird. Viele existierende Heuristiken
können in diesem Framework ausgedrückt werden, was uns interessante Ein-
blicke in ihre Beziehungen erlaubt. Verschiedene Operator-counting-Heuristiken
können innerhalb des Frameworks einfach miteinander kombiniert werden, so
dass die Kombination deren Maximum dominiert.

Potentialheuristiken berechnen ihren Heuristikwert als gewichtete Summe über
Zustandseigenschaften und sind eine schnelle Alternative zu Operator-counting-
Heuristiken. Zulässige und konsistente Potentialheuristiken für bestimmte Men-
gen von Zustandseigenschaften können auf eine kompakte Art beschrieben wer-
den, die es erlaubt die beste Potentialheuristik in polynomieller Zeit zu extrahie-
ren.

Operator-counting- und Potentialheuristiken sind eng mit Kostenpartitionie-
rung verwandt. Sie eröffnen neue Perspektiven auf kostenpartitionierte Heuris-
tiken und haben schon jetzt Forschung in Anwendungen jenseits von klassischen
Planungsheuristiken angeregt.

iv

Acknowledgements

First and foremost, I would like to thank Malte Helmert. I cannot imagine having a
better PhD advisor. I learned so much from him during my time in Basel and continue
to be amazed by how quickly he completely understands something after listening to
just a few rambling sentences of mine. He always took the time to help even when his
own workload was crushing.

I would also like to thank Chris Beck for agreeing to join my thesis committee as my
second reviewer despite very tight time constraints from my side and a time consuming
exam period.

I am also very grateful to all my colleagues in Basel: Salomé Eriksson, Cedric Geiss-
mann, Manuel Heusner, Thomas Keller, Gabi Röger, Jendrik Seipp, Silvan Sievers, and
Martin Wehrle. They provided a fantastic working environment and many long and in-
teresting discussions. I am specifically grateful for their support during the last months,
which gave me the breathing room to finish this thesis.

I owe a great debt to Tom Mayer, Sven Wehner, Cedric Geissmann, Thomas Keller,
and Salomé Eriksson for proof reading, finding my mistakes, and helping me improve
this text, all on short notice.

Last but not least, I would like to thank my family – Bodo Pommerening, Karla
Oechelhaeuser, and Thilo Pommerening – and my friends (most of all Ingo Stößer,
Marlène Birk, and Tom Mayer) for their continuous encouragement and support.

Thank you!

v

vi

Contents
1. Introduction 1

1.1. Contributions . 2
1.2. Structure . 3
1.3. Experimental Setup . 4
1.4. Relation to Published Work . 4

2. Classical Planning and Heuristic Search 8
2.1. Planning Tasks . 8
2.2. Heuristic Search . 11
2.3. Abstraction Heuristics . 13
2.4. Transition Normal Form . 15

3. Linear Programs and Mixed Integer Programs 18

I. Cost Partitioning 23

4. Introduction to Cost Partitioning 24

5. Extensions to Cost Partitioning 30
5.1. General Operator Cost Partitioning 30
5.2. Non-negative Transition Cost Partitioning 36
5.3. General Transition Cost Partitioning 39

6. Experiments 42
6.1. Non-negative Operator Cost Partitioning 42
6.2. General Operator Cost Partitioning 43
6.3. Non-negative Transition Cost Partitioning 46
6.4. General Transition Cost Partitioning 47
6.5. Computation Time . 47

7. Summary 52

vii

II. Operator Counting 55

8. Introduction to Operator Counting 56

9. Operator-Counting Constraints 60
9.1. Action Landmarks . 60
9.2. Delete Relaxation . 61
9.3. Post-hoc Optimization . 65
9.4. Net Change . 68
9.5. Prevail Conditions . 71
9.6. Network Flow . 72

10. Theoretical Analysis 75
10.1. Connection to General Cost Partitioning 75
10.2. Analyzing Landmark Heuristics 78
10.3. Analyzing the State Equation Heuristic as a Net Change Heuristic . 78
10.4. Analyzing the State Equation Heuristic as a Flow Heuristic 80

10.4.1. Improving the Flow Constraint 81
10.4.2. Strengthening the State Equation Heuristic 87

10.5. Limits of Operator Counting . 88

11. Experiments 91
11.1. Individual Constraint Groups . 91

11.1.1. Landmarks . 94
11.1.2. Delete Relaxation . 94
11.1.3. Post-hoc Optimization . 95
11.1.4. Net Change . 98
11.1.5. Network Flow . 100

11.2. Combination of Constraint Groups 106

12. Related and Future Work 111
12.1. Under-Approximation Refinement 111
12.2. Operator Sequencing . 113
12.3. Extension to Conditional Effects 114
12.4. Extension to Other Planning Formalisms 115

13. Summary 117

viii

III. Potential Heuristics 119

14. Introduction to Potential Heuristics 120

15. Admissible and Consistent Potential Heuristics 122
15.1. Atomic Potential Heuristics . 122
15.2. Binary Potential Heuristics . 124
15.3. Higher-Dimensional Potential Heuristics 127

15.3.1. Intractability . 127
15.3.2. Parametrized Tractability 128

15.4. Objective Functions . 131

16. Theoretical Analysis 135
16.1. Connection to Operator Counting 135
16.2. Connection to Cost Partitioning . 137

17. Experiments 142
17.1. Atomic Potential Heuristics . 142
17.2. Binary Potential Heuristics . 146

18. Related and Future Work 149
18.1. Correlation Complexity . 149
18.2. Dead-end Detection . 152
18.3. Multi-Agent Planning . 158
18.4. Finding Good Feature Sets . 159

19. Summary 162

IV. Conclusion 165

20. Conclusion 166

ix

Contents

Appendix A. Proof of Theorem 10.1 169

Appendix B. From TNF to Unrestricted SAS+ 172
B.1. Net Change Constraints . 172
B.2. Flow Constraints . 175
B.3. Atomic Potential Heuristics . 176
B.4. Binary and Higher-Dimensional Potential Heuristics 178

Appendix C. Maximizing a Sum of Functions 180
C.1. Bucket Elimination . 181
C.2. Bucket Elimination for Linear Expressions 184

Bibliography 189

x

1. Introduction
The aim of automated planning (Ghallab, Nau, and Traverso, 2004) is to find a sequence
of actions that achieves a given goal. In a logistic problem, for example, actions could
be to drive trucks from one place to another, load packages into trucks, and unload
them again. A solution would then be a sequence of load, unload, and drive actions that
ensure that every package is delivered to its target destination. Examples for planning
tasks span a wide variety of applications: deciding which elevator to send to which floor,
scheduling activities for satellites and Mars rovers, solving puzzles like the sliding tile
puzzle, playing combinatorial games like Sokoban or FreeCell, and many more.

Research on domain-independent planning investigates techniques that solve plan-
ning problems without making assumptions about the specifics of the problem domain.
A domain-independent planner reads the description of the available actions, the initial
state of the world and the desired goal conditions, and returns a sequence of actions
achieving the goal from the initial state; no matter if the actions model loading a pack-
age into a truck, analyzing a rock sample with a rover, or moving a card in a solitaire
game.

Here, we mostly focus on classical planning, where actions have discrete, determin-
istic and fully observable effects, and the plan is created offline for a single agent who
executes actions in sequence. In particular, we consider optimal classical planning,
where the solutions must come with a guarantee that no cheaper solution exists.

Optimal domain-independent planning is often solved with A∗ search (Hart, Nilsson,
and Raphael, 1968). A∗ search iteratively chooses an unexplored state (starting with the
initial state of the world) and expands it: for every action that is applicable in the state,
one successor is generated that represents the state reached by applying the action. The
choice of which state to look at next is guided by a heuristic function (Pearl, 1984) that
estimates the cost of reaching a goal state from a given state. The sum of the heuristic
value of a state and the cost to reach the state is an estimate for the cost of a plan via
this state called the f -value. A∗ search always expands states with minimal f -value.
If the heuristic never overestimates the cheapest cost to reach a goal state, then A∗ is
guaranteed to find an optimal solution. Such a heuristic is called admissible. Even
though there are some exceptions (Holte, 2010), searching with admissible heuristics
that produce higher values generally requires expanding fewer nodes.

There are many admissible heuristics for optimal classical planning. Although some
heuristics are provably at least as accurate as others, it often depends on the domain
which heuristic performs best. The choice between several heuristic can be avoided by
using all of them. For example, most state-of-the-art solvers use multiple abstractions

1

1. Introduction

to cover different problem aspects. However, this brings up a new question which is
central to this thesis:

How can several admissible heuristics be combined
in a way that guarantees admissibility?

There are two established ways to answer this question. The maximum of a set of ad-
missible heuristics is always admissible and at least as good as any one of the heuristics.
Operator cost partitioning (Katz and Domshlak, 2010b) is an alternative that combines
the heuristics by evaluating each one on a copy of the task with a suitably reduced
cost function. Optimal cost partitioning achieves values that are at least as good as the
maximum and often much higher.

This thesis investigates extensions to operator cost partitioning that produce higher
admissible estimates from the same component heuristics. We also introduce two new
heuristic families that offer a new perspective on cost partitioning, compute higher qual-
ity heuristic combinations more quickly, and give new insight on existing heuristics.

1.1. Contributions
We make three main contributions which are all related to cost partitioning and heuristic
combination.

Operator cost partitioning has traditionally used only non-negative costs. Our first
main contribution is to prove that allowing negative costs as well maintains admissibil-
ity and can dramatically improve heuristic quality. Cost partitioning with general cost
functions can extract information from heuristics that report a value of 0; it can produce
exponentially high heuristic values even if each component heuristics only reports val-
ues that are polynomial in the size of the task; and it can detect that a task is unsolvable
even if all heuristics have a finite value. All of this is not possible with non-negative
cost functions. We also extend operator cost partitioning in an orthogonal way by par-
titioning the costs of individual transitions instead of whole operators. This allows us
to treat operators differently depending on the context in which they are used.

The second main contribution is the family of operator-counting heuristics. These
heuristics unify many existing heuristics in a common framework. Operator-counting
heuristics can easily by combined with each other in a way that dominates their max-
imum. We prove that this combination is a form of cost partitioning. This connection
helps us to better understand the involved heuristics. By analyzing their constraint
structure, we can show interesting connections between them and explain or improve
their performance. The framework of operator-counting heuristics is very general, so it
can be applied in many other areas as well. This way insights from classical planning
can be transferred to other planning formalisms.

Our third main contribution are potential heuristics, another new family of heuristics
which offer a fast alternative to operator-counting heuristics. Potential heuristics have a

2

1.2. Structure

fixed mathematical structure and desired properties can be expressed as constraints on
this structure. We show how to completely characterize interesting sets of heuristics in
a way that the best heuristics from these sets can be efficiently extracted. The simple
structure of potential heuristics makes them useful in other areas as well: we show how
they can be used to detect whether a task is solvable or to categorize how difficult a task
is. Potential heuristics are also closely related to cost partitioning and thus provide yet
another way of combining admissible heuristics.

1.2. Structure

Before we start with the main topic of this thesis, Chapter 2 formally introduces clas-
sical planning and heuristic search. The family of abstraction heuristics plays an im-
portant role in most of the thesis and is also introduced in Chapter 2. We discuss other
heuristics as they become relevant. Throughout the thesis, we use linear and mixed
integer programs. Chapter 3 gives a brief overview of the topic and introduces basic
terms and notation. A deeper understanding of linear programs is certainly useful, but
not required to read the rest of this thesis.

The main body of this thesis consists of three parts about cost partitioning, operator-
counting heuristics, and potential heuristics. The structure of all three parts is mostly
parallel and consists of the following chapters:

• Introduction of the basic concept

• Extensions to the basic concept

• (Only in Parts II and III) Deeper theoretical analysis of the heuristics introduced
in the previous two chapters. Here, we also connect each part to the previous
parts and show how operator-counting heuristics and potential heuristics relate to
cost partitioning.

• Experimental evaluation

• (Only in Parts II and III) Discussion of application areas outside of heuristic
search for optimal planning where the heuristics are already used or could be
used in the future.

• Summary

Chapter 20 finally concludes the thesis and discusses how the three parts fit together.

3

1. Introduction

1.3. Experimental Setup
Each part of this thesis concludes with an experimental evaluation of the described
techniques. To this end, we implemented the techniques in the Fast Downward planning
system (Helmert, 2006). All of our experiments share the same basic setup.

We use all tasks from the optimal tracks of the international planning competitions
(IPC) 1998–2014 as a benchmark set. This set consists of 1667 tasks from 57 domains.
The set contains duplicates because some domains and tasks were reused in different
IPCs. We did not remove such duplicates as the full set is an established benchmark
set in the planning literature. Tasks are given as PDDL files (Fox and Long, 2003). We
use the translator that is part of Fast Downward to translate them to SAS+ tasks (see
Section 2.1) in a preprocessing step.

We use the experiment framework downward-lab (Seipp et al., 2017) for all experi-
ments. Unless otherwise indicated, we limit runtime to 30 minutes and memory usage
to 2 GB. All experiments ran on a cluster of machines with Intel Xeon E5-2660 proces-
sors (2.2 GHz) and each task was limited to a single core. The number of concurrently
running tasks on different cores of the same CPU can differ over time. When an ex-
periment starts, all cores are used but towards the end of an experiments some cores
idle. This can influence the runtime of a task slightly (usually below 5%). To avoid
systematic bias, we therefore randomized the order in which tasks were started.

Linear programs and mixed integer programs were solved with CPLEX v12.5.1
(IBM, 2017). We access the CPLEX library through the open solver interface (OSI
v0.107.8) of the COIN-OR project (Lougee-Heimer, 2003).

We use the number of tasks solved within the resource bounds as a primary measure
of performance and call this the coverage of a configuration. In addition, we often
evaluate runtime and heuristic quality. The runtime excludes the time taken by Fast
Downward’s preprocessor as this step is identical for all configurations we consider.

Heuristic quality can be measured as the heuristic value of the initial state or as the
number of expansions of an A∗ search. When we report expansions, we always exclude
the expansions of the last f -layer because their number is influenced heavily by tie-
breaking. We often report initial heuristic values in scatter plots where each mark in
the plot represents one task and its coordinates are the heuristic values achieved by
different heuristics. We restrict such plots to values up to 50 because in the domain
ParcPrinter operator costs are so high that initial heuristic values are in the order of
105–106. Showing such high values in the same plot would hide the detail for a majority
of tasks. Values larger than 50 are projected down to 50.

1.4. Relation to Published Work
Most of the results reported in this thesis are published in conference proceedings of
major conferences on automated planning and artificial intelligence. I now briefly sum-

4

1.4. Relation to Published Work

marize the most important publications and how they relate to my thesis.

• Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014b. LP-based
heuristics for cost-optimal planning. In Proc. ICAPS 2014, 226–234.

We introduced operator-counting heuristics as a framework that unifies existing
heuristics based on linear programming. These heuristics form the core of Part II
and contributions from the paper occur in Chapters 8, 9, and 11, as well as in
Section 10.3.

The paper won the ICAPS 2014 outstanding paper award.

• Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015. From non-negative
to general operator cost partitioning. In Proc. AAAI 2015, 3335–3341.

We generalized the cost partitioning and connected it to operator-counting heuris-
tics. Cost partitioning is the main topic of Part I and relevant contributions from
the paper occur in Chapters 4, 5, and 6. I discuss the connection to operator-
counting heuristics in Chapter 10. The paper also introduces potential heuristics,
which are the topic of Part III and contribute to Chapter 14, Sections 15.1 and
17.1. The accompanying technical report (Pommerening et al., 2014a) proves
that a simplifying syntactical restriction can be lifted, which I do in Appendix B.

The paper won the outstanding paper award for AAAI 2015.

Apart from these two papers that form the core of my thesis, my contributions to the
following papers are also used here.

• Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the most out of
pattern databases for classical planning. In Proc. IJCAI 2013, 2357–2364.

We proposed post-hoc optimization, a method to combine heuristic estimates
from abstraction heuristics, which we later integrated into the operator-counting
framework. Post-hoc optimization is discussed in Section 9.3.

• Pommerening, F., and Helmert, M. 2015. A normal form for classical planning
tasks. In Proc. ICAPS 2015, 188–192.

We argued that many ideas in automated planning are easier to describe and un-
derstand if the tasks are assumed to be in a normal form and showed that general
tasks can be transformed into this form with small linear overhead. This nor-
mal form is introduced in Section 2.4 and used throughout the thesis to simplify
presentation.

• Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New optimization functions
for potential heuristics. In Proc. ICAPS 2015, 193–201.

We optimized potential heuristics for different objectives like a high initial or a
high average heuristic value. This is covered in Sections 15.4 and 17.1.

5

1. Introduction

• Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and Mattmüller, R. 2016. State-
dependent cost partitionings for Cartesian abstractions in classical planning. In
Proc. IJCAI 2016, 3161–3169.

Among other contributions we defined transition cost partitioning, which is in-
troduced in Sections 5.2 and 5.3 here.

• Pommerening, F.; Helmert, M.; and Bonet, B. 2017b. Higher-dimensional poten-
tial heuristics for optimal classical planning. In Proc. AAAI 2017, 3636–3643.

We investigated potential heuristics for different sets of features, after only con-
sidering the set of atoms in previous work. This contributed to Sections 15.2,
15.3, and 17.2. We also found a connection between potential heuristics and
transition cost partitioning, the last piece of the puzzle of connecting the three
parts of this thesis, which we discuss in Section 16.2. The paper also makes
a contribution in the area of constraint optimization that is mostly unrelated to
planning but required for a proof. Here, an extended proof is in Appendix C.

• Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Abstraction heuristics, cost
partitioning and network flows. In Proc. ICAPS 2017. Accepted for publication.

We investigated network flow heuristics and how to compactly represent them.
Here, we discuss this contribution in Sections 9.6 and 10.4.

In addition to the papers above, I also discuss my contribution to the following pub-
lications that are more tangential to the main topic of my thesis.

• Heusner, M.; Wehrle, M.; Pommerening, F.; and Helmert, M. 2014. Under-
approximation refinement for classical planning. In Proc. ICAPS 2014, 365–369.

We under-approximated a task by considering only a subset of operators. We
suggested to use operator-counting techniques for selecting the operators that
should be included in the under-approximation and mention this in Section 12.1.

• Röger, G.; Pommerening, F.; and Helmert, M. 2014. Optimal planning in the
presence of conditional effects: Extending LM-Cut with context splitting. In
Proc. ECAI 2014, 765–770.

We suggested context splitting, which plays a role in defining transition cost par-
titioning in Section 5.2.

• Röger, G., and Pommerening, F. 2015. Linear programming for heuristics in op-
timal planning. In AAAI 2015 Workshop on Planning, Search, and Optimization,
69–76.

We summarized current LP-based heuristics and already described the example
task from Section 2.1 and the LP formulation from Section 9.2 there.

6

1.4. Relation to Published Work

• Seipp, J.; Pommerening, F.; Röger, G.; and Helmert, M. 2016a. Correlation
complexity of classical planning domains. In Proc. IJCAI 2016, 3242–3250.

We used potential functions to define a measure of complexity for planning tasks.
Here, we describe it in Section 18.1.

• Seipp, J.; Pommerening, F.; Sievers, S.; Wehrle, M.; Fawcett, C.; and Alkhazraji,
Y. 2016b. Fast Downward Aidos. In Unsolvability International Planning Com-
petition: planner abstracts, 28–38.

Our submission to the first unsolvability planning competition (UIPC 2016) was
a portfolio called Aidos. Aidos includes heuristics based on potential functions,
which we discuss in Section 18.2.

Aidos was the winner of the UIPC 2016, outperforming 10 competitors.

7

2. Classical Planning and
Heuristic Search

Heuristic search with admissible heuristics is one of the most common approaches to
find optimal solutions for classical planning tasks. This chapter formally introduces
classical planning tasks and planning heuristics. We also introduce the family of ab-
straction heuristics, which is used throughout the thesis, and a normal form for planning
tasks, which we use to simplify presentation later on.

2.1. Planning Tasks
Throughout this thesis, we use the simple logistics task shown in Figure 2.1 as an ex-
ample for various techniques. In this task a truck that is initially at location A has to
pick up a package that is initially located at location B and bring it back to A. At the
end, the truck should be parked at location B. While this task is trivial, it is sufficiently
complex as an example in most cases.

We consider planning tasks, like this example, that can be encoded in the SAS+

formalism (Bäckström and Nebel, 1995). SAS+ tasks are based on a set of finite-
domain variables V , where each V ∈ V is associated with a finite set of values dom(V)
called its domain. The example task can be encoded using two variables: pos-T with
values dom(pos-T) = {A,B} to encode the position of the truck, and pos-P with values
dom(pos-P) = {A,B, T} to encode the position of the package. A tuple like 〈pos-P, B〉
encodes the fact that the package is at location B. Such tuples are called atoms.

Definition 2.1 (atom). Let V be a set of finite-domain variables. An atom is a tuple
〈V, v〉 of some variable V ∈ V and one of its values v ∈ dom(V). The set of all atoms
over V is A = {〈V, v〉 | V ∈ V , v ∈ dom(V)}.

Situations and conditions in our modeled world can be described by mapping the

A B

Figure 2.1: Example logistics task: the truck can drive betweenA andB, and the pack-
age can be loaded in and unloaded from the truck.

8

2.1. Planning Tasks

variables to values in their domain. For example, the state shown in Figure 2.1 could
be described as {pos-T 7→ A, pos-P 7→ B}.
Definition 2.2 (variable assignments and states). Let V be a set of finite-domain vari-
ables. A partial function f : V → ⋃

V ∈V dom(V) is called a variable assignment over
V if f(V) ∈ dom(V) for all variables V in the domain of f . We write the domain of a
variable assignment f as vars(f).

A variable assignment over V is also called a partial state and a partial state s with
vars(s) = V is called a state. The set of all states over V is S.

Depending on what is clearer in each context, we interpret a variable assignment s
either as a (partial) function, e.g. {pos-T 7→ A, pos-P 7→ B}, or as a set of atoms, e.g.
{〈pos-T, A〉, 〈pos-P, B〉}. When we interpret s as a function, we write s[V] instead of
s(V) to avoid confusion with other parentheses. We say an atom 〈V, v〉 is true in state
s if s[V] = v. To fully model our example, we also need to describe what actions an
agent can perform.

Definition 2.3 (operator). Let V be a set of finite-domain variables. An operator over V
is a tuple o = 〈p, e〉 where both the precondition pre(o) = p and the effect eff (o) = e
are partial variable assignments over V .

In our example task there is an operator drive-A-B to drive the truck from A to B
with the precondition {pos-T 7→ A} and the effect {pos-T 7→ B} and an analogous
operator drive-B-A to drive back. Additionally, there is an operator load-B to load the
package into the truck at location B with precondition {pos-T 7→ B, pos-P 7→ B} and
effect {pos-P 7→ T} and analogous operators load-A, unload-A, and unload-B.

Where V is clear from context, we usually just talk about atoms, (partial) states, and
operators and leave “over V” implied. We can now formally define SAS+ planning
tasks.

Definition 2.4 (planning task). A planning task is a tuple Π = 〈V ,O, sI, s?, cost〉 with
the following components:

• V is a finite set of finite-domain variables,

• O is a set of operators,

• sI is a state, called the initial state,

• s? is a partial state, called the goal condition, and

• cost : O → N0 is the cost function.

The initial state of our example task is sI = {pos-T 7→ A, pos-P 7→ B} and the goal
is s? = {pos-T 7→ B, pos-P 7→ A}. The operators are drive-A-B, drive-B-A, load-A,
load-B, unload-A, unload-B and all have a cost of 1.

We now turn to the semantics of a planning task. We say a state s is consistent with
a partial state p if p ⊆ s, i.e. if s[V] = p[V] for all V ∈ vars(p).

9

2. Classical Planning and Heuristic Search

Definition 2.5 (operator application). An operator o is applicable in a state s if s is
consistent with pre(o). If o is applicable in s then the result of applying o in s is the
state sJoK with

sJoK[V] =

{
eff (o)[V] if V ∈ vars(eff (o))

s[V] otherwise.

A sequence of operators π = 〈o1, . . . , on〉 is applicable in a state s if there are states
s0, . . . , sn with s = s0, oi is applicable in si−1 and si−1JoK = si for all 1 ≤ i ≤ n. The
result of this application is the state sJπK = sn.

The only applicable operator in the initial state of our example task is drive-A-B
and the state sIJdrive-A-BK is {pos-T 7→ B, pos-P 7→ B}. The operator sequence
π = 〈drive-A-B, load-B, drive-B-A〉 is also applicable in sI and ends in the state sIJπK =
{pos-T 7→ A, pos-P 7→ T}. The cost of applying an operator o is cost(o) and the cost
of applying an operator sequence π = 〈o1, . . . , on〉 is cost(π) =

∑
1≤i≤n cost(oi).

States that are consistent with the task’s goal condition are called goal states and we
are looking for operator sequences that reach a goal state:

Definition 2.6 (plan). Let Π = 〈V ,O, sI, s?, cost〉 be a planning task and s be one of its
states. An s-plan is an operator sequence π = 〈o1, . . . , on〉 that is applicable in s and
ends in a state that is consistent with s?. An sI-plan is just called a plan.

An optimal s-plan under cost function cost′ is a s-plan π where cost′(π) is minimal
among all s-plans. An optimal s-plan is an s-plan that is optimal under the cost function
of Π.

The only optimal plan in the running example task is 〈drive-A-B, load-B, drive-B-A,
unload-A, drive-A-B〉 with a cost of 5. Under an alternative cost function where loading
and unloading is free of cost (e.g. if we are interested in minimizing fuel consumption),
this still is an optimal plan but has a cost of 3 and is no longer the only optimal plan.

A task Π induces a weighted, labeled transition system TSΠ = 〈S, T , sI,SG〉 with
the set of states S, the initial state sI, the set of goal states SG that contain all states
consistent with s?, and the following set of transitions T : for each s ∈ S and each
o ∈ O that is applicable in s, there is a transition s o−→ sJoK ∈ T labeled with o and
weighted with cost(o). The sequence of labels from transitions along a shortest path in
TSΠ correspond to an optimal plan for Π. We define a state s ∈ S as alive in TS if there
is a path from sI to s and from s to a goal state in SG. Otherwise, we call the state dead.
The transition system of our example task is shown in Figure 2.2.

Optimal planning is the problem of finding an optimal plan for a planning task Π or
proving that no plan for Π exists. One commonly used approach to optimal planning is
heuristic search.

10

2.2. Heuristic Search

AB

AT

AA

BB

BT

BA

drive-A-B

drive-B-A

drive-A-B

drive-B-A

drive-A-B

drive-B-A

lo
a
d
-A

u
n
loa

d
-A

loa
d
-B

u
n
lo
a
d
-B

Figure 2.2: Transition system of our example task. A node XY represents the state
{pos-T 7→ X, pos-P 7→ Y }. The initial state is marked with an incoming
arrow, the goal state is marked with a double line.

2.2. Heuristic Search

In this section, we introduce the notion of a heuristic, and related concepts that are
relevant to this thesis. In the following section, we then introduce a family of heuristics
called abstraction heuristics, which are used throughout the rest of the thesis.

A heuristic estimates the cost of an optimal s-plan for some state s of a planning task
Π. Heuristics are often defined as functions h : S → N0∪{∞}, but here we consider the
term in a more general way. We allow heuristics to take any value from R ∪ {∞,−∞}
and also consider functions that depend on more parameters. We consider functions
that depend on a state and a cost function with the intuition that h(s, cost′) estimates
the cost of an optimal s-plan under cost function cost′. We omit cost′ if it is the cost
function of the task, i.e. h(s) = h(s, cost).

The optimal heuristic h∗ maps each state s ∈ S and cost function cost′ to the cost of
an optimal s-plan under cost′ or to∞ if no such plan exists.

Definition 2.7 (heuristic properties). A value c ∈ R ∪ {∞,−∞} is an admissible
heuristic estimate for state s and cost function cost′ if c ≤ h∗(s, cost′). A heuristic h
is admissible if h(s, cost′) is an admissible heuristic estimate for all states s and cost
functions cost′.

A heuristic function h is goal-aware if h(sG, cost′) ≤ 0 for every goal state sG and
every cost function cost′.

11

2. Classical Planning and Heuristic Search

A heuristic function h is consistent if h(s, cost′) ≤ cost′(o) + h(sJoK, cost′) for every
state s, operator o applicable in s and cost function cost′.

Heuristics that are goal-aware and consistent are admissible (Russell and Norvig,
1995), and admissible heuristics are goal-aware. A∗ search (Hart, Nilsson, and Raphael,
1968) with an admissible heuristic generates optimal plans. Admissible heuristics with
higher heuristic estimates produce estimates that are closer to the optimal heuristic.
They generally lead to less search effort, although this not guaranteed (Holte, 2010).
We say a heuristic h1 dominates another heuristic h2 if h1 ≥ h2. We say that the
dominance is strict, if the inequality is strict for at least one state. If h1 is admissible
and dominates h2, then obviously h2 is also admissible.

If multiple admissible heuristics are available, A∗ can always use their maximum:

Proposition 2.1. Let h1, . . . , hn be a set of admissible heuristics. Then the heuristic
h = max(h1, . . . , hn) is admissible and dominates each of h1, . . . , hn.

In Part I, we discuss alternative ways of combining heuristic information.
Until recently, all heuristics proposed in the literature derived their information from

one of four types of sources (Helmert and Domshlak, 2009):

• Landmark heuristics like hLM-cut (Helmert and Domshlak, 2009) or hLM of LAMA
(Richter and Westphal, 2010) compute sets of atoms or operators that have to be
encountered along every plan. We discuss landmark heuristics in more detail in
Section 9.1.

• Critical path heuristics hm (m ≥ 1) (Haslum and Geffner, 2000) estimate the
cost of reaching a state by recursively estimating the cost of subgoals with up to
m atoms. They re-occur in Section 10.5.

• Delete relaxation heuristics like h+ (Hoffmann, 2005), hmax (Bonet and Geffner,
2001), hadd (Bonet and Geffner, 2001), and hFF (Hoffmann and Nebel, 2001) relax
the task by assuming that variables accumulate their values, and atoms that are
made true by a plan, stay true. We talk about them in Section 9.2.

• Abstraction heuristics like pattern database heuristics (Culberson and Schaeffer,
1998; Edelkamp, 2001; Korf and Felner, 2002; Felner, Korf, and Hanan, 2004),
merge-and-shrink heuristics (Helmert et al., 2014; Sievers, Wehrle, and Helmert,
2014), structural abstractions (Katz and Domshlak, 2007b, 2008b, 2009) and
Cartesian abstractions (Seipp and Helmert, 2013, 2014) map the task to a sim-
pler abstract task and use optimal abstract costs as heuristic values for the orig-
inal task. Abstraction heuristics are used throughout this thesis. We formally
introduce them in the following section.

The recent exception to this classification seemed to be the state equation heuristic
(van den Briel et al., 2007; Bonet, 2013; Bonet and van den Briel, 2014), which we
discuss in detail in Chapters 9 and 10.

12

2.3. Abstraction Heuristics

2.3. Abstraction Heuristics
Abstraction heuristics relax a given planning task by mapping it to an abstract task that
is an over-approximation of the original task. Everything that is possible in the original
task is also possible in the abstract task, and so optimal plans for the abstract task cannot
be more expensive than an optimal plan for the original task. We now formalize these
definitions and statements, closely following Helmert, Haslum, and Hoffmann (2008).

Definition 2.8 (abstraction). Let Π be a planning task and TSΠ = 〈S, T , sI,SG〉 its
transition system. An abstraction mapping is a surjective function α : S → Sα that
maps states to abstract states. A transition system TSαΠ = 〈Sα, T α, sαI ,SαG〉 is an ab-
straction of Π for abstraction mapping α if

• the initial state is mapped to the abstract initial state
sαI = α(sI),

• goal states are mapped to abstract goal states
α(sG) ∈ SαG for all sG ∈ SG, and

• for every concrete transition, there is a corresponding abstract transition
α(s)

o−→ α(s′) ∈ T α for all s o−→ s′ ∈ T
Given an abstraction mapping, there is a unique abstraction that has no additional

goal states or transitions. The terms abstraction mapping and abstraction are therefore
often used synonymously.

A special case of abstractions are projections where α projects each state to a subset
of variables P ⊆ V , called a pattern. That is, the abstraction mapping is α(s) = s|P ,
and the set of abstract states for a projection to P contains exactly the partial states p
with vars(p) = P . Projections to a single variable are called atomic projections.

Figure 2.3 shows two examples for abstractions of our running example task (see
Section 2.1). Figures (a) and (b) show the abstraction mappings where each state is
mapped to the abstract state surrounding it. Figures (c) and (d) then show the corre-
sponding abstract transition systems. The first abstraction (Figure 2.3a) is the atomic
projection to the pattern {pos-P}.

Abstractions are over-approximating the original transition system: everything that is
possible in the original transition system is also possible in the abstraction. In particular,
this implies that an optimal plan of Π induces a path from the abstract initial state to an
abstract goal state, and since this path uses the same operators it has the same cost.

Proposition 2.2 (e.g. Helmert, Haslum, and Hoffmann, 2008). Let Π be a planning task
with transition system TSΠ and α an abstraction of Π with transition system TSα. For
every path in TSΠ there is a path in TSα with the same transition labels and weights.

The cost of the cheapest goal path in the abstraction can therefore not exceed the
optimal heuristic value and can be used as an admissible heuristic estimate.

13

2. Classical Planning and Heuristic Search

AB

AT

AA

BB

BT

BA

drive-A-B

drive-B-A

drive-A-B

drive-B-A

drive-A-B

drive-B-A

lo
a
d
-A

u
n
loa

d
-A

loa
d
-B

u
n
lo
a
d
-B

B

T

A

(a) Projection α1 of the example task.

AB

AT

AA

BB

BT

BA

drive-A-B

drive-B-A

drive-A-B

drive-B-A

drive-A-B

drive-B-A

lo
a
d
-A

u
n
loa

d
-A

loa
d
-B

u
n
lo
a
d
-B

1

2

3

(b) Abstraction α2 of the example task.

B

T

A

load-Bunload-B

unload-Aload-A

drive-A-B
drive-B-A

drive-A-B
drive-B-A

drive-A-B
drive-B-A

(c) Abstract transition system of α1.

1

2

3

drive-B-Adrive-A-B

drive-A-Bdrive-B-A

drive-A-B
drive-B-A
load-B

unload-B

load-A
unload-A

(d) Abstract transition system of α2.

Figure 2.3: Two examples of abstractions and their abstract transition systems.

14

2.4. Transition Normal Form

Definition 2.9 (abstraction heuristic). Let Π be a planning task and α an abstraction
of Π with transition system TSα. The abstraction heuristic hα maps each state s to the
cost of a shortest path from α(s) to any abstract goal state in TSα.

Proposition 2.2 shows that all abstraction heuristics are admissible (see also Pearl,
1984; Dräger, Finkbeiner, and Podelski, 2006).

Abstraction heuristics for projections are also called pattern database (PDB) heuris-
tics (Culberson and Schaeffer, 1998; Edelkamp, 2001). They are usually computed by
first explicitly generating the abstract transition system for the projection, then comput-
ing the abstract goal distances for all abstract states, and storing them in a table (the
eponymous pattern database). During the search the heuristic value is then looked up
in the pattern database.

2.4. Transition Normal Form
The discussion and theoretical analysis of many topics in this thesis is complicated for
general SAS+ tasks. Two major sources of difficulty are that there is no unique goal
state and that operators can change variables on which they have no precondition. For
example, we defined the value of an abstraction heuristic as the cost of the cheapest
path in the abstraction that leads to any abstract goal state. If there were just one goal
state, the qualification would no longer be necessary. Operators that mention different
variables in their precondition and effect lead to similar problems. If they are applied,
it is not clear how the values in a state change without knowing the state.

We now define syntactical restrictions and prove that every planning task can be ef-
ficiently converted into a task that satisfies them. Whenever an analysis is complicated
by the issues mentioned above we can then assume the task satisfies the restrictions to
simplify the presentation. For cases where we make this assumption, we then discuss
generalizations to unrestricted SAS+ tasks in Appendix B. In most cases the techniques
are invariant under the transformation, so the simpler form can be used on the trans-
formed tasks without a downside.

Definition 2.10 (transition normal form). A planning task Π is in transition normal
form (TNF) if vars(pre(o)) = vars(eff (o)) for all operators o of Π and the goal of Π is
a fully defined state.

For TNF to be generally useful, we need a way to transform general planning tasks to
ones in TNF that are equivalent in a formal sense. Ensuring that precondition variables
also occur as effect variables is trivial: whenever this is not the case for a given precon-
dition atom, we can add it as an effect without affecting the semantics of the planning
task (this is sufficient to bring our example task into TNF). Ensuring the opposite, that
effect variables V of an operator o are also precondition variables, is trickier.

A “folklore” transformation “multiplies out” variables, creating copies of owith each
possible atom for V as a precondition. However, this transformation increases task size

15

2. Classical Planning and Heuristic Search

exponentially in the worst case: if an operator has m variables occurring in the effect
but not the precondition and each of these can take on n different values, the conversion
produces nm copies. We now present an alternative conversion that can only lead to a
modest increase in task size.

Informally speaking, we add a new value u to every variable that represents that
we no longer know the value of this variable. We may always “forget” the value of a
variable at no cost by setting it to u. Operators o that have an effect but no precondition
on a variable V can be extended to also require 〈V, u〉. Whatever the value of V is in a
state where o can be applied, we can forget it to make 〈V, u〉 true. Likewise, the goal
can be padded to require the value u for all variables that previously had no goal value.

Definition 2.11 (transition normalization). Let Π = 〈V ,O, sI, s?, cost〉 be a planning
task. The transition normalization of Π is the task TNF(Π) = 〈V ′,O′, sI, s

′
?, cost′〉,

where

• we add a fresh value u to each variable domain:
V ′ = {V ′ | V ∈ V} with dom(V ′) = dom(V) ∪ {u},
• we require u for missing variables in the goal:
s′? = s? ∪ {〈V, u〉 | V ∈ V \ vars(s?)}, and

• we transform each operator and add a forgetting operator for each atom:
O′ = {o′ | o ∈ O} ∪ {forget〈V,v〉 | 〈V, v〉 ∈ A}.
Transformed operators

– keep their original cost:
cost′(o′) = cost(o),

– require u for variables missing in the precondition:
pre(o′) = pre(o) ∪ {〈V, u〉 | V ∈ vars(eff (o)) \ vars(pre(o))}, and

– duplicate the precondition for variables missing in the effect:
eff (o′) = eff (o) ∪ {〈V, pre(o)[V]〉 | V ∈ vars(pre(o)) \ vars(eff (o))}.

Forgetting operators

– are free of cost:
cost′(forget〈V,v〉) = 0 and

– change the value of V from v to u:
pre(forget〈V,v〉) = {〈V, v〉}
eff (forget〈V,v〉) = {〈V, u〉}.

It is easy to see that TNF(Π) is in transition normal form. Compared to Π, TNF(Π)
has |V| additional variable values, at most |V| additional goal entries, and |A| additional
operators. The total size of an operator’s preconditions and effects can at most double,
since we add at most |eff (o)| entries to the precondition of o and at most |pre(o)| entries
to its effect. With a reasonable encoding, the size of the task representation at most
doubles by transition normalization. We now show that TNF(Π) and Π are equivalent.

16

2.4. Transition Normal Form

Theorem 2.1. Let Π be a planning task. Every plan π for Π can be converted into a
plan π′ for TNF(Π) with the same cost in time O(k|π| + |V|), where k is the maximal
number of effects of an operator. Also, every plan π′ for TNF(Π) can be converted into
a plan π for Π with the same cost in time O(|π′|).

Proof: To convert π = 〈o1, . . . , on〉 into π′, we insert the necessary forgetting opera-
tors in front of each operator oi: if oi is executed in state s, insert operators to forget
〈V, s[V]〉 for all variables V on which o has an effect but no precondition. The forget-
ting operators are successively applicable, as at most one per variable is added. Their
application reaches the state s′ that is like s but has s′[V] = u for all variables V on
which o has an effect but no precondition. Since oi is applicable in s and has no pre-
condition on those variables, it is applicable in s′. It affects all of those variables, so no
variable has the value u after the application, and we have sJoiK = s′Jo′iK. At the end
of the plan, we append forgetting operators for each goal of the form 〈V, u〉 in TNF(π).
With the same argument as before, these operators are applicable and lead to s′?.

To convert a plan π′ for TNF(Π) into a plan for Π, simply drop all forgetting oper-
ators. A forgetting operator in π′ can only be required to satisfy a precondition of a
transformed operator or a goal in s′? \ s?. Both do not exist in Π, so the resulting plan is
applicable and leads to a goal state. �

17

3. Linear Programs and
Mixed Integer Programs

Linear programs (LPs) and mixed integer programs (MIP) play an important role in all
parts of this thesis. This chapter gives a short introduction of the most relevant concepts.
Mathematical programming is a vast area of research and we only cover the basics here.
For a more complete treatment of the subject we refer the reader to the literature (e.g.
Schrijver, 1998).

Linear programming is the task of maximizing or minimizing a linear function sub-
ject to a set of linear constraints. For example, consider the following problem:

Maximize X + 2Y subject to
X + 2Y ≤ 4

2X− Y ≤ 2

2Y ≤ 3X

X ≥ 0 and Y ≥ 0

Figure 3.1 visualizes this example. Each constraint splits the space of possible assign-
ments to X and Y into two half-spaces: one where the constraint is satisfied and one
where it is not. Among the assignments satisfying all constraints, we are looking for
one maximizing X + 2Y.

We start by introducing a standard form for linear programs and then show how more
general forms of LPs can be compiled into this standard form.

Definition 3.1 (standard form). A linear program in standard maximization form with
n constraints and m variables consists of a row vector c of objective coefficients, a
column vector b of bounds and an n×m matrix A of coefficients. It is written as

Maximize cx subject to
Ax ≤ b

x ≥ 0

The inequalities are called the constraints of the LP and the elements of x its variables.
The linear program in standard minimization form for c, A and b is

Minimize cy subject to
Ay ≥ b

y ≥ 0

18

0 0.5 1 1.5 2

0

0.5

1

1.5

2

X
≥

0

Y ≥ 0

X+ 2Y ≤ 4

2X
−
Y
≤
2

2Y
≤
3X

X

Y

Figure 3.1: Visualization of an example LP. The blue area is the set of LP solutions.
Red circles mark the MIP solutions. The dashed black arrow points in the
direction of better solutions according to the objective function. The filled
red circle is only optimal MIP solution. Every solution on the blue line is
an optimal LP solution.

Our example LP is not in standard form but rewriting 2Y ≤ 3X as 2Y − 3X ≤ 0
brings it into standard maximization form.

Definition 3.2 (solution). A column vector x ∈ Rm is a solution of a maximization
problem P with coefficient matrix A and bounds b if it satisfies its constraints, i.e. if
Ax ≤ b and x ≥ 0. The value of a solution x is cx. A solution is optimal if it has
maximal value among all solutions.

Analogously, solutions to minimization problems are column vectors y ∈ Rn with
Ay ≥ b and y ≥ 0. Their value is cy and solutions with minimal value are optimal.

An LP is feasible if it has at least one solution. A feasible LP is unbounded if it has
no optimal solution because for every solution, a better solution exists.

The optimal objective value of an LP is the value of an optimal solution.

Figure 3.1 shows the set of solutions of our example LP in blue and the optimal
solutions as a thick blue line.

In later chapters we mostly use named variables with no explicit order, which means
that solutions cannot easily be written as vectors. We thus use functions that map the
variable names to R to describe solutions. We also use SansSerifFont to distinguish
LP variables from planning task variables and other notation. In the definition of our
LPs we occasionally write indicator functions with Iverson brackets (Knuth, 1992) [P]
where [P] = 1 if the statement P is true and [P] = 0 otherwise.

Not all of the LPs we consider are in standard form but all of them can be transformed
into it. For example, an equation aX = b is equivalent to the two inequalities aX ≤ b

19

3. Linear Programs and Mixed Integer Programs

and aX ≥ b. Similarly, an inequality aX ≥ b is equivalent to −aX ≤ −b. Variables
X that are not restricted to be non-negative can be expressed as the difference of two
new (non-negative) variables X+ and X− by replacing every aX in a constraint with
(aX+ − aX−). As an example consider the following LP.

Maximize A− 5B subject to
B = 4A + 7

3A + 2B ≥ 3

B ≥ 0

This LP can be transformed into standard form by replacing A with (A+ − A−) and by
transforming all constraints to ≤-inequalities.

Maximize A+ − A− − 5B subject to
−4A+ + 4A− + B ≤ 7

4A+ − 4A− − B ≤ −7

−3A+ + 3A− − 2B ≤ −3

A+ ≥ 0,A− ≥ 0,B ≥ 0

The standard form LP consists of the following components:

A =

 −4 4 1
4 −4 −1
−3 3 −2

 x =

 A+

A−

B

 b =

 7
−7
−3

 c = (1,−1,−5)

An optimal solution of the LP is f with f(A+) = 1, f(A−) = 2, f(B) = 3, which
corresponds to the solution f ′ with f ′(A) = −1 and f ′(B) = 3 in the original problem.

An important concept in linear programming is the dual of an LP. Dualization offers
a new perspective on an LP where the role of variables and constraints is reversed. As
we will see, the dual and its original problem (called the primal) are closely linked.

Definition 3.3 (dual). The dual of the maximization LP with n constraints and m vari-
ables

Maximize cx subject to
Ax ≤ b

x ≥ 0

is the minimization LP with m constraints and n variables

Minimize b>y subject to
A>y ≥ c>

y ≥ 0

The dual of a minimization LP is defined analogously, so that the dual of the dual is the
primal again.

20

Linear programs with unrestricted variables and equations can be dualized by bring-
ing them into standard form first. This is slightly cumbersome and makes it hard to keep
track of the original variables, though. Since both unrestricted variables and equations
are used in this thesis, we show how to directly generate the dual of an LP containing
them. Consider the following maximization LP where the last m − k constraints are
equations and the last n− l variables are unrestricted:

Maximize cx subject to
n∑
j=1

aijxj ≤ bi for 1 ≤ i ≤ k

n∑
j=1

aijxj = bi for k < i ≤ m

xj ≥ 0 for 1 ≤ j ≤ l

In the dual, constraints that correspond to unrestricted primal variables are equations
and dual variables that correspond to primal equations are unrestricted:

Minimize b>y subject to
m∑
i=1

ajiyi ≥ cj for 1 ≤ j ≤ l

m∑
i=1

ajiyi = cj for l < j ≤ n

yi ≥ 0 for 1 ≤ i ≤ k

It is easy to prove that the LPs are each others dual by converting them to normal form,
generating the dual, and reintroducing unrestricted variables and equations.

A central theorem about linear programs states that a bounded feasible LP and its
dual have the same optimal objective value. This is called strong duality.

Theorem 3.1 (e.g. Schrijver, 1998). Let P be a linear program and P ′ its dual. If
P is bounded feasible then so is P ′ and the optimal objective values of P and P ′ are
equal. If P is unbounded then P ′ is infeasible. If P is infeasible then P ′ in unbounded
or infeasible.

In addition to LPs, we use mixed integer programs (MIPs) that restrict some of the
variables to take only integer values. If both variables in the example shown in Fig-
ure 3.1 are restricted to integers, only three solutions remain (shown in red) and only
one of them is optimal. The LP that is created by dropping all integer restrictions in a
MIP is called the LP relaxation of the MIP. Every solution of a MIP also is a solution of
its LP relaxation, so the optimal objective value can only go up if the MIP maximizes
or down if the MIP minimizes.

21

3. Linear Programs and Mixed Integer Programs

Finding the optimal solution of an LP is possible with polynomial methods (e.g.
Khachiyan, 1980; Karmarkar, 1984) but worst-case exponential algorithms based on
the simplex algorithm (Dantzig, 1951) are often better in practice. Solving MIPs on the
other hand is NP-complete (Schrijver, 1998). Highly efficient MIP solvers exist, but
solving a MIP is still significantly harder than solving an LP in practice. In fact, most
MIP solvers solve the LP relaxation of the MIP as a first step.

22

Part I.

Cost Partitioning

23

4. Introduction to Cost Partitioning
A set of admissible heuristics is called additive if their sum is admissible. A famous
early example of additive heuristics are disjoint pattern database heuristics for the
sliding-tile puzzle (Korf and Felner, 2002), which were later generalized to classical
planning by Edelkamp (2001). Disjoint pattern databases use a simple sufficient con-
dition for additivity: a set of patterns (a pattern collection) is additive if no operator
affects more than one pattern. In this case, operators have a non-empty effect in at
most one of the projections. An optimal plan can be seen as interleaved plans for all
projections. The total cost of cheapest plans for all projections is thus an admissible
estimate.

In our example task the two projections to the position of the truck and the position
of the package are additive since driving only affects the truck and (un)loading only
affects the packages.

Haslum et al. (2007) extend the idea of additive pattern databases by introducing
the canonical heuristic. A pattern collection C is only additive if all patterns in C are
pairwise disjoint. If this is not the case, then the sum over the respective projection
heuristics is not admissible. However, a subset of C could be additive, and it is pos-
sible to compute such subsets in advance. Let MAS(C) denote all maximal (w.r.t. set
inclusion) additive subsets of C. Then the canonical heuristic value hcanon

C is defined as

hcanon
C (s) = max

A∈MAS(C)

∑
P∈A

hP (s).

The computation of MAS(C) involves finding maximal cliques in the graph of heuristics
with edges between each pair of additive heuristics. This is an NP-complete problem,
but it only has to be solved once which makes this heuristic practical for sufficiently
small pattern collections. Haslum et al. also introduce the iPDB heuristic which com-
putes the canonical heuristic over a pattern collection discovered by a local search and
remains a state-of-the-art heuristic (Scherrer, Pommerening, and Wehrle, 2015).

Haslum, Bonet, and Geffner (2005) use a broader definition and generalize the notion
of additivity from PDB heuristics to arbitrary heuristics. They partition operators into
disjoint sets O1, . . . ,On and define hOi as computing heuristic h but ignoring the cost
of all operators not in Oi. The heuristics hOi for 1 ≤ i ≤ n are then additive because
the contribution of all operators in a plan can be partitioned into the same groups as the
operators. This opens up a way to make any set of heuristics admissible by assigning
each operator to one of the heuristics. Haslum, Bonet, and Geffner apply this to critical
path and PDB heuristics.

24

AB

AT

AA

BB

BT

BA

drive-A-B

drive-B-A

drive-A-B

drive-B-A

drive-A-B

drive-B-A

lo
a
d
-A

u
n
loa

d
-A

loa
d
-B

u
n
lo
a
d
-B

1

2

3 4

AB

AT

AA

BB

BT

BA

drive-A-B

drive-B-A

drive-A-B

drive-B-A

drive-A-B

drive-B-A

lo
a
d
-A

u
n
loa

d
-A

loa
d
-B

u
n
lo
a
d
-B

1 2

34

Figure 4.1: Partitioning the operators between two abstractions of the example task. If
only the contributions of unload-A and drive-A-B are counted in the first
abstraction and only the contributions of the remaining operators in the
second abstraction, the sum of heuristic values is admissible. Without par-
titioning, the sum would be inadmissible.

Consider our running example task together with the abstractions shown in Fig-
ure 4.1. Each abstraction heuristic has a heuristic value of 3 and the sum of both heuris-
tics is not admissible (the optimal plan cost is 5). The maximum of both heuristics is
admissible, but in this case, we can achieve a higher heuristic value by partitioning the
operators into two sets: If we only count the contributions of unload-A and drive-A-B in
the first abstraction and ignore them in the second abstraction, both heuristic values are
2. Their sum is an admissible estimate that exceeds the maximum of both heuristics.

All techniques discussed so far can be seen in the framework of Haslum, Bonet, and
Geffner (2005) as partitioning the operators into disjoint sets O1, . . . ,On and comput-
ing the heuristic value

∑
i hOi . Cost partitioning (Katz and Domshlak, 2007a, 2008a;

Yang et al., 2008; Katz and Domshlak, 2010b) generalizes this idea. Instead of letting
each operator contribute to one of the heuristics with its full cost, cost partitioning may
split the cost of an operator between heuristics so an operator may contribute fractions
of its actual cost to all heuristics. The total cost remains admissible if the costs are
correctly partitioned between the heuristics.

25

4. Introduction to Cost Partitioning

X = 0

X = 1

Y = 0

Y = 1

Z = 0

Z = 1

oXY /0.5oXZ/0.5

oY Z/0

oY Z/0
oXY /0.5
oXZ/0.5

oXY /0.5oY Z/0.5

oXZ/0

oXZ/0
oY Z/0.5
oXY /0.5

oXZ/0.5oY Z/0.5

oXY /0

oXY /0
oY Z/0.5
oXZ/0.5

Figure 4.2: Atomic projections of a task where assigning the full cost of each operator
to one of the abstractions is not optimal. The edge labels show an optimal
cost partitioning.

Definition 4.1 (non-negative operator cost partitioning). Let Π be a planning task with
operators O and cost function cost. A non-negative operator cost partitioning for Π is
a tuple 〈cost1, . . . , costn〉 where costi : O → R+

0 for 1 ≤ i ≤ n and
n∑
i=1

costi(o) ≤ cost(o) for all o ∈ O.

We call the condition
∑n

i=1 costi(o) ≤ cost(o) the cost partitioning property. It
ensures that admissible heuristics are additive under the cost functions costi.

Proposition 4.1 (Katz and Domshlak, 2010b). Let Π be a planning task, let h1, . . . , hn
be admissible heuristics for Π, and let P = 〈cost1, . . . , costn〉 be a non-negative opera-
tor cost partitioning for Π. Then hP (h1, . . . , hn, s) =

∑n
i=1 hi(s, costi) is an admissible

heuristic estimate for state s.

Consider the following example task over three binary variables X , Y , and Z (Bonet
and Helmert, 2010). All variables are initially 0 and should be 1 in the goal state. There
are three operators oXY , oXZ , and oY Z with cost 1. Operator oXY sets X and Y to 1
with no precondition, and the other operators are defined analogously. Figure 4.2 shows
the atomic projections of the task (ignore the numbers after the operators for now).

In the framework of Haslum, Bonet, and Geffner (2005), we compute the heuristic
hXOX +hYOY +hZOZ for some disjoint subsetsOX ,OY ,OZ of the operators. The heuristic
value of hXOX can only be positive if OX contains oXY and oXZ . Likewise, hYOY and
hZOZ can only become positive if OY and OZ contain at least two operators. Since the
sets have to be disjoint only one of the heuristics can have a non-zero heuristic value.
No matter how the operators are partitioned, the total heuristic value can not exceed the
maximum over the projection heuristics.

The edge labels in Figure 4.2 show a uniform cost partitioning (e.g. Karpas and
Domshlak, 2009) that partitions the cost of each operator into equal parts for each ab-
straction where the operator is relevant. In the example each operator is assigned a cost

26

of 0.5 in two of the abstractions. The heuristic value of all three abstraction heuristics
is 0.5 and their sum, 1.5, is admissible. There is no way to distribute the costs that leads
to a higher heuristic value, so uniform cost partitioning is optimal for the example, even
though this is not always the case.

Definition 4.2 (optimal non-negative operator cost partitioning). Let Π be a planning
task and let h1, . . . , hn be admissible heuristics for Π. Let P+ be the set of all non-
negative operator cost partitionings. A partitioning P ∗ ∈ P+ is optimal in state s
if

P ∗ ∈ arg max
P∈P+

hP (h1, . . . , hn, s).

The optimal non-negative operator cost partitioning heuristic hOCP+ for h1, . . . , hn is
the function

hOCP+
{hi|1≤i≤n}(s) = max

P∈P+
hP (h1, . . . , hn, s).

Maximization can be seen as an extreme case of cost partitioning, where the full
costs of all operators are attributed to one heuristic, and operator costs of 0 are used for
all other heuristics. The example above shows that maximization is not always optimal.
One aspect that is overlooked when combining heuristic estimates with maximization
is that some of them might be additive.

Like maximization, the canonical heuristic can also be seen as a case of cost parti-
tioning. Let Amax be the maximizing element of MAS(C). Then the full cost of each
operator is counted in the projection to the pattern in Amax that it affects. This can only
be one pattern inAmax because the elements ofAmax are additive. All other costs are set
to 0. In each projection, all operators that affect it have their full cost, so the projection
heuristics have the same value as under the original cost function.

Every pattern P occurs in at least one additive set of MAS(C) because {P} is an
additive set and adding more additive patterns from C can only make the set larger. In
particular, there is a set in MAS(C) that includes a pattern P for which hP is maximal,
so the canonical heuristic for a collection C dominates the maximum over the projection
heuristics for patterns in C.

However, combining the projections with the canonical heuristic is still not guaran-
teed to be optimal. The example in Figure 4.2 shows that cost partitioning can yield
higher heuristic values than the maximum, even if the component heuristics are not
additive.

Among other contributions, Katz and Domshlak (2010b) showed how to compute
an optimal operator cost partitioning for a given state and a wide class of abstraction
heuristics in polynomial time, and we repeat the main idea here for completeness.

The abstraction heuristic for an abstraction α under a cost function costα can be
described using linear constraints. Let TSα = 〈Sα, T α, sαI ,SαG〉 be the transition system
of α. We then use one LP variable Hαs for each abstract state s ∈ Sα to represent
the heuristic value of all original states that are mapped to s by α. The value of Hαs

27

4. Introduction to Cost Partitioning

is defined as the cost of a shortest path according to costα in TSα. There are well-
known linear programming models that express the shortest path problem as a set of
linear inequalities (Goldfarb, Hao, and Kai, 1990). For example, the heuristic value
hα(s, costα) is the optimal objective value of the following linear program.

Maximize Hαα(s) subject to

HαsG = 0 for all sG ∈ SαG (4.1)

Hαs′ ≤ Hαs′′ + costα(o)
for all s′ o−→ s′′ ∈ T α
if s′ and s′′ are alive

(4.2)

Hαs′ ≥ 0 for all s′ ∈ Sα (4.3)

The model only contains constraints for transitions between alive states, which are the
transitions relevant for the shortest path. This is important to note because other formal-
izations often have constraints for all transitions to simplify the model. If all operator
costs are non-negative, these additional constraints are redundant, i.e. they can always
be satisfied without influencing the optimal objective value. To see this, note that dead
states are either unreachable or cannot reach the goal. Assigning the true goal distance
to all states that can reach the goal and∞ to all other dead states satisfies the constraints
for transitions adjacent to them. We explicitly exclude these redundant constraints here
because they are no longer redundant under general cost functions, which we discuss in
the following chapter.

Katz and Domshlak (2010b) optimize the cost partitioning over a set of abstractions
A and introduce additional LP variables Cαo for each α ∈ A and each o ∈ O to represent
costα(o). The cost partitioning property is a linear constraint over these variables. To-
gether with constraints (4.1)–(4.3) for each abstraction α ∈ A we get a linear program
with the optimal objective value hOCP+(s).

Maximize
∑
α∈A

Hαα(s) subject to

HαsG = 0 for all α ∈ A and sG ∈ SαG

Hαs′ ≤ Hαs′′ + Cαo
for all α ∈ A and s′ o−→ s′′ ∈ T α

if α(s′) and α(s′′) are alive∑
α∈A

Cαo ≤ cost(o) for all o ∈ O

Hαs′ ≥ 0 for all α ∈ A and s′ ∈ Sα
Cαo ≥ 0 for all α ∈ A and o ∈ O

This LP contains |O||A| +∑α∈A |Sα| variables and O(
∑

α∈A |TSα|) constraints. If
the transition systems of all abstractions are small enough (i.e. if |TSα| is polynomial
in the size of Π) then hOCP+ can be computed by solving the above LP. However, for

28

reasons of efficiency, non-optimal cost partitioning such as uniform cost partitioning,
zero-one cost partitioning (e.g. Edelkamp, 2006), or saturated cost partitioning (Seipp
and Helmert, 2014) is also commonly used.

Planning tasks can be abstracted in a way that the abstraction is tractable but still
has exponentially many abstract states. One example are fork decompositions (Katz
and Domshlak, 2010a), which can be computed in polynomial time by representing the
abstraction implicitly. The LP we discussed requires an explicit transition system but
Katz and Domshlak show cases where hOCP+ can be computed in polynomial time for
implicit abstractions as well.

In the following chapter we introduce two extensions to non-negative operator cost
partitioning that can derive higher heuristic values from the same set of abstractions.
Both extensions are independent and can be combined for even higher heuristic values.
The extensions are also independent of the way abstractions are represented, but in our
experiments and Parts II and III we focus on explicit state abstractions.

29

5. Extensions to Cost Partitioning
In the following sections, we discuss two cases where non-negative operator cost par-
titioning misses information contained in the abstractions. In each case, we propose a
generalization of cost partitioning that can exploit this information to achieve higher
heuristic estimates. The two extensions are independent of each other, and using both
of them can lead to even higher heuristic values.

5.1. General Operator Cost Partitioning
Consider the two abstractions of our example task shown in Figure 5.1 (ignore the
numbers next to the operators for now). It is easy to see that the heuristic value of
the first abstraction is determined by the amount of cost(drive-A-B) assigned to this
abstraction. Likewise, the heuristic value of the second abstraction is determined by
the distribution of the cost of load-B. With non-negative operator cost partitioning,
both heuristic values can be at most 1. An optimal partitioning assigns the full cost of
drive-A-B to the first abstraction and the full cost of load-B to the second. The combined
heuristic value is hOCP+(sI) = 2.

However, there is more information contained in the abstractions: as we can see from
the second abstraction, the package has to be loaded at location B, i.e. the operator
load-B has to be used. The first abstraction shows that at least three drive operators
are necessary to load the package at B and reach the goal state afterwards, e.g. with
the abstract plan 〈drive-A-B, load-B, drive-B-A, drive-A-B〉. Under non-negative cost
partitioning this plan is only optimal in the first abstraction if its cost is zero. Otherwise,
the plan 〈drive-A-B〉 is always cheaper. We now show how cost partitioning can be
used to recognize that using load-B causes additional cost in the first abstraction and to
account for this cost in the combined heuristic value.

Up until now, all cost functions were restricted to non-negative values. Other than
the intuitive reason that the planning task’s cost function is non-negative, there is no
compelling reason to do so. We now remove this restriction and permit general (possi-
bly negative) cost functions cost : O → R. This means that we must generalize some
concepts and notations that relate to operator costs. Shortest paths in weighted digraphs
that permit negative weights are well-defined unless there is a cycle of negative overall
cost that is incident to a path from the source state to the goal. We can retain our defi-
nition of optimal plans except for this case, in which plans of arbitrarily low cost exist
and we set h∗(s, cost′) = −∞. Heuristic estimates may now necessarily take negative

30

5.1. General Operator Cost Partitioning

AB

AT

AA

BB

BT

BA

drive-A-B/1

drive-B-A/1

drive-A-B/1

drive-B-A/1

drive-A-B/1

drive-B-A/1

lo
a
d
-A

/
1

u
n
loa

d
-A

/
1

loa
d
-B

/−
2

u
n
lo
a
d
-B

/2

1 2

3

4

AB

AT

AA

BB

BT

BA

drive-A-B/0

drive-B-A/0

drive-A-B/0

drive-B-A/0

drive-A-B/0

drive-B-A/0

lo
a
d
-A

/0

u
n
loa

d
-A

/
0

loa
d
-B

/3

u
n
lo
a
d
-B

/
−
3

1

2

Figure 5.1: General operator cost partitioning over two abstractions of the example
task.

values or even−∞ to be admissible. The definition of operator cost partitioning can be
generalized in a straight-forward way:

Definition 5.1 (General operator cost partitioning). Let Π be a planning task with op-
erators O and cost function cost. A general operator cost partitioning for Π is a tuple
〈cost1, . . . , costn〉 where costi : O → R for 1 ≤ i ≤ n and

n∑
i=1

costi(o) ≤ cost(o) for all o ∈ O.

Heuristic estimates remain admissible when considering general cost partitionings
and we can show a theorem analogous to Proposition 4.1.

Theorem 5.1. Let Π be a planning task, let h1, . . . , hn be admissible heuristics for Π,
and let P = 〈cost1, . . . , costn〉 be a general operator cost partitioning for Π. Then
hP (h1, . . . , hn, s) =

∑n
i=1 hi(s, costi) is an admissible heuristic estimate for s. If any

term in the sum is∞, the sum is defined as∞, even if another term is −∞.

Proof: Consider an arbitrary state s. If Π has no s-plan then h∗(s) = ∞ and every
estimate is admissible.

31

5. Extensions to Cost Partitioning

We are left with the case where Π has an s-plan. Then all hi(s, costi) are finite or−∞
because an admissible heuristic can only produce∞ for states without plans, no matter
what the cost function is. Consider the case where h∗(s) > −∞. Let π = 〈o1, . . . , ok〉
be an optimal s-plan for Π. We get:

hP (h1, . . . , hn, s) =
n∑
i=1

hi(s, costi) (Definition of hP)

≤
n∑
i=1

h∗(s, costi) (Admissibility of hi)

≤
n∑
i=1

k∑
j=1

costi(oj) (Optimality of h∗)

=
k∑
j=1

n∑
i=1

costi(oj) (Basic arithmetic)

≤
k∑
j=1

cost(oj) (Cost partitioning property)

= h∗(s). (Definition of h∗)

In the case where h∗(s) = −∞, there exists a state s′ on a path from s to a goal
state with an incident negative-cost cycle π′, i.e. π′ with s′Jπ′K = s′ and cost(π′) < 0.
From the cost partitioning property, we get

∑n
i=1 costi(π′) ≤ cost(π′) < 0, and hence

costj(π′) < 0 for at least one j ∈ {1, . . . , n}. This implies h∗(s, costj) = −∞ and
hence hP (h1, . . . , hn, s) = −∞, concluding the proof. �

The notion of an optimal cost partitioning and the corresponding heuristic can be
extended in a straight-forward way:

Definition 5.2 (optimal general operator cost partitioning). Let Π be a planning task
and let h1, . . . , hn be admissible heuristics for Π. Let P be the set of all general oper-
ator cost partitionings. A partitioning P ∗ ∈ P is optimal in state s if

P ∗ ∈ arg max
P∈P

hP (h1, . . . , hn, s).

The optimal general operator cost partitioning heuristic hOCP for h1, . . . , hn is the
function

hOCP
{hi|1≤i≤n}(s) = max

P∈P
hP (h1, . . . , hn, s).

Since every non-negative operator cost partitioning is also a general partitioning,
hOCP dominates hOCP+. The example in Figure 5.1 demonstrates that the dominance

32

5.1. General Operator Cost Partitioning

is strict. The numbers next to the operators show an optimal general operator cost
partitioning. Assigning a cost of−2 to load-B in the first abstraction does not influence
the heuristic value as long as it is not part of a negative cost cycle. The cost of load-B
can then be set to 3 in the second abstraction because 3 − 2 ≤ 1. This raises the
heuristic value of the abstraction to 3. Note that the heuristic value remains admissible.
Setting the cost of load-B even higher in the second abstraction and lower in the first
creates a negative cost cycle in the first abstraction. This still is an admissible estimate
because the first abstraction then contributes a heuristic value of−∞, reducing the total
heuristic to −∞ as well.

Note that by allowing negative costs, heuristic values of individual heuristics can
become negative. However, we do not have to make special consideration for this in
the search algorithm. Since all operator costs in the planning task are non-negative,
the heuristic h0(s) = 0 is always admissible, and we can use the admissible heuristic
h′(s) = max(h(s), h0(s)) instead of any admissible heuristic h for the search. In the
context of a cost partitioning, though, a negative contribution of one of the component
heuristics may be necessary to ensure admissibility, so component heuristics may not
be individually maximized with h0 and may not be left out of the sum.

Let us consider cost partitioning over projections to demonstrate the benefits of gen-
eral cost partitioning. Not all projections are useful for non-negative cost partitioning.
A projection to a pattern that does not include a goal variable, for example, has a heuris-
tic value of 0 under every non-negative cost partitioning. Assigning non-zero operator
costs in such a projection can never be necessary for an optimal non-negative cost par-
titioning. Likewise, the projection to two causally unrelated variables does not contain
more information than the two atomic projections together. Formally, this can be de-
scribed with the notion of an interesting pattern (Pommerening, Röger, and Helmert,
2013). If a pattern is not interesting, there is a set of additive smaller patterns whose
projections provide the same heuristic values. Optimal non-negative cost partitioning
heuristics cannot benefit from projections to “uninteresting” patterns. This is no longer
the case if we consider general cost partitioning.

Figure 5.2 shows an example where considering an uninteresting pattern increases
the heuristic value with general cost partitioning. The projection to V2 is not interesting
in this example according to the definition of Pommerening, Röger, and Helmert be-
cause V2 is not a goal variable. However, an optimal general cost partitioning over both
projections, as the one shown in the figure, achieves the perfect heuristic value of 2,
whereas considering only the “interesting” abstraction would limit the heuristic value
to 1.

Projections to non-goal variables are not the only case where general costs increase
the heuristic value. Figure 5.3 shows a family of tasks similar to the previous example
but with a goal value for V2. The tasks model two-digit counters in base n + 1. One
type of operator can increase the last digit by one, another can increase the second
digit when the first has the value n (which resets the first digit to 0). The numbers in
the figure show a general cost partitioning between the two atomic projections. Using

33

5. Extensions to Cost Partitioning

00

01

10

11

0 1

0

1

ΠV1

ΠV2
Π = ΠV1 ⊗ ΠV2

o2 o 1 o2

o2/0

o1/2

o2/0

o2/1

o1/− 1

Figure 5.2: Example task Π with binary variables V1 and V2. Above and to the left of
the original task we show the projections to V1 and V2. General cost parti-
tioning benefits from the projection to V2 even though V2 is not mentioned
in the goal.

general costs we can make the “carry”-operator more expensive in the projection to
V1 and reach the perfect heuristic value of (n + 1)2 − 1. This is interesting because
both projections only have n + 1 states. In a projection with n + 1 abstract states any
non-negative cost partitioning can achieve a heuristic value of at most n if all operators
originally have cost 1. In such tasks the heuristic value of non-negative cost partitioning
over atomic projections is limited by the number of atoms (2n+ 2 in the example task).
With general costs it is possible to exceed this limit.

Korf (1997) conjectured that the time taken by an IDA∗ search is inversely related to
the memory used for a PDB heuristic in a given search space. Holte (2013) discusses
the implications for abstraction heuristics. Since search spaces scale exponentially,
Korf’s conjecture implies that exponentially larger PDBs are necessary to keep the time
constant. Holte suggest using multiple PDBs as a way around this limit. The previous
example can be extended from a two-digit counter to an n-digit counter to demonstrate
that n projections with n states each can accurately represent a search space with nn

states.
Consider the task Π in Figure 5.4 as a final example for the advantages of general

cost partitioning. The task is unsolvable even though an abstract goal state is reachable
in both abstractions. Non-negative cost partitioning can only return an infinite value
if no abstract goal state is reachable in one of the projections, so it would not detect
that Π is unsolvable. The labels next to the edges show a general cost partitioning for
any value of M . In the projection to V1 the cost of the only operator is M and the
operator is needed to reach the abstract goal. In the projection to V2 the cost is −M but

34

5.1. General Operator Cost Partitioning

00

01

. . .

0n

10

11

. . .

1n

. . .

. . .

. . .

. . .

n0

n1

. . .

nn

0 1 . . . n

0

1

. . .

n

ΠV1

ΠV2
Π = ΠV1 ⊗ ΠV2

n+ 1 n+ 1 n+ 1

0 0 0

1

1

1

−n

Figure 5.3: Family of planning tasks where general cost partitioning over two atomic
projections of a unit-cost task produces higher estimates than the number
of abstract states in the projections.

the operator is not part of any abstract plan. The heuristic value of this projection is 0
under all cost functions since the initial state of the projection to V2 is also an abstract
goal state. The cost-partitioned heuristic value is thus M + 0 = M . Since the value of
M can be arbitrarily large, the heuristic hOCP has the value∞. Thus, general operator
cost partitioning is able to detect that Π is unsolvable.

In Chapter 4 we introduced the LP by Katz and Domshlak (2010b) to compute an
optimal operator cost partitioning for abstractions. We explicitly avoided adding con-
straints for transitions adjacent to dead states. For non-negative cost functions this is
not necessary because every solution for the alive part of the transition system can be
extended to the dead states without violating the additional constraints. The previous
example demonstrates that such constraints are too restrictive in the context of general
cost functions. In the projection to V2, the only operator induces a self-loop on the state
1. The constraint for this transition is Cαo ≥ 0 and rules out the optimal cost partitioning.
However, we can ignore it because the state is unreachable.

35

5. Extensions to Cost Partitioning

00

01

10

11

0 1

0

1

ΠV1

ΠV2
Π = ΠV1 ⊗ ΠV2

M

−M

Figure 5.4: Example task Π with binary variables V1 and V2. Above and to the left
of the original task we show the projections to V1 and V2. General cost
partitioning detects that the task is unsolvable even though goal states are
reachable in both abstractions.

5.2. Non-negative Transition Cost Partitioning
We now turn to a different generalization of operator cost partitioning that is orthogonal
to using general cost functions. We introduce it in the context of non-negative cost
functions first and discuss the combination with general cost functions in the following
section. As an example, consider the two abstractions in Figure 5.5 and ignore the
numbers for now. Both abstractions have an optimal plan 〈drive-A-B〉 under any non-
negative cost function. We can split the cost of drive-A-B between the two abstractions
with operator cost partitioning but since the sum cannot exceed the original cost of 1,
optimal operator cost partitioning cannot produce a value higher than 1.

However, in this case we can see that the operator drive-A-B is used in different con-
texts in the two abstractions. We can replace the operator by three operators drive-A-BA,
drive-A-BT , and drive-A-BB, where drive-A-Bx is like drive-A-B but with the additional
precondition 〈pos-P, x〉. An optimal operator cost partitioning then assigns the full cost
of drive-A-BB to the first abstraction and the full cost of drive-A-BA to the second ab-
straction (and a cost of 0 in the other abstraction). This brings the total heuristic value
up to 2.

Replacing an operator with restricted copies for different situations is called context
splitting (Röger, Pommerening, and Helmert, 2014). Formally defining context splitting
is easier for the more general ADL planning tasks, where operator preconditions can be
arbitrary propositional formulas over atoms instead of partial states. We define context
splitting for such tasks and then show how a special case of it applies to SAS+ tasks.

Definition 5.3 (context splitting). Let Π be an ADL planning task and o one of its op-

36

5.2. Non-negative Transition Cost Partitioning

AB

AT

AA

BB

BT

BA

drive-A-B/1

drive-B-A/0

drive-A-B/0

drive-B-A/0

drive-A-B/0

drive-B-A/0

lo
a
d
-A

/0

u
n
loa

d
-A

/
0

loa
d
-B

/0

u
n
lo
a
d
-B

/0

1 2

AB

AT

AA

BB

BT

BA

drive-A-B/0

drive-B-A/0

drive-A-B/0

drive-B-A/0

drive-A-B/1

drive-B-A/0

lo
a
d
-A

/
0

u
n
loa

d
-A

/
0

loa
d
-B

/
0

u
n
lo
a
d
-B

/0

1

2

Figure 5.5: Transition cost partitioning over two abstractions of the example task.

erators. A context is a propositional formula over atoms of Π. Context-splitting o with
a context ϕ means replacing o with two new operators oϕ and o¬ϕ. The new opera-
tors have the same cost and the same effect as o. Their preconditions are pre(oϕ) =
pre(o) ∧ ϕ and pre(o¬ϕ) = pre(o) ∧ ¬ϕ.

Context splitting is a task transformation that does not affect the optimal goal distance
of any state:

Proposition 5.1. Let Π be an ADL planning task with operatorsO. For operator o ∈ O
and context ϕ, let oϕ and o¬ϕ be the two new operators resulting from context-splitting
o with ϕ. Let Π′ denote the task that only differs from Π in its operator set O′ =
(O \ {o}) ∪ {oϕ, o¬ϕ}.

For all states s of Π (and Π′) it holds that h∗Π(s) = h∗Π′(s).

Proof: We can associate every s-plan π in Π with an s-plan π′ in Π′ of the same cost
and vice versa.

From π′ to π, we simply replace every occurrence of an operator oϕ or o¬ϕ with the
original operator o. This is possible because these operators only differ in the precon-
dition and pre(oϕ) |= pre(o) and pre(o¬ϕ) |= pre(o).

From π to π′ we check for every occurrence of o if ϕ is true in the state s′ in which
operator o is applied. If yes, we replace o with oϕ, otherwise we replace it with o¬ϕ.

37

5. Extensions to Cost Partitioning

These operators are applicable and have the same effect and the same cost as the original
operator o. �

The theorem ensures that an admissible heuristic estimate for the transformed task is
also an admissible estimate for the original task.

For the purpose of this thesis, we only consider a special kind of context splitting
that is applicable to SAS+ planning tasks where operator preconditions are partial states
instead of arbitrary formulas over atoms. Instead of considering one context and distin-
guishing states where this context holds from those where it does not, we consider a set
of mutually exclusive and jointly exhaustive contexts.

Definition 5.4 (context splitting for SAS+). Let Π be a planning task and o one of its
operators. A set of partial states C is a set of contexts for o if for every state s in which
o is applicable there is exactly one c ∈ C such that s |= c. Context-splitting o with a
set of contexts C = {c1, . . . , cn} means replacing o with n new operators oc1 , . . . , ocn .
The new operators have the same cost and the same effect as o. Their preconditions are
pre(oci) = pre(o) ∪ ci.

When treating partial states as conjunctions of atoms, it is easy to see that context-
splitting an operator o with a set of contexts C = {c1, . . . , cn} is the same as first
splitting o with context c1 and then successively splitting o¬ci with ci+1 for 1 ≤ i < n.
Since contexts in C are mutually exclusive, terms of ¬ci ∧ cj are equivalent to cj .
Since they are jointly exhaustive, there is no state in which o¬cn with the precondition
pre(o) ∧ ∧n

i=1 ¬ci is applicable. Proposition 5.1 thus applies to context-splitting over
sets of contexts.

In the extreme case, each operator o of task Π is split with a set of contexts that
contains one context for each state in which o is applicable. This results in a “disam-
biguated” task ΠD with a new operator for each transition that was previously induced
by o. Operator cost partitioning over ΠD can thus distribute the cost of each transition
of Π independently.

The same idea can also be expressed with state-dependent operator costs (Ivankovic
et al., 2014). A state-dependent cost function or transition cost function assigns a cost
to each transition instead of each operator. All concepts involving operator cost func-
tions can be extended to transition cost functions in a straight-forward way. For ex-
ample, the cost of an s-plan π = 〈o1, . . . , on〉 under transition cost function cost′ is∑n

i=1 cost′(si−1
oi−→ si), where s = s0, . . . , sn = sJπK are the states visited by the

plan π. In the same way, operator cost partitioning can be extended to transition cost
partitioning (Keller et al., 2016).

Definition 5.5 (non-negative transition cost partitioning). Let Π be a planning task with
transitions T and cost function cost. A non-negative transition cost partitioning for Π
is a tuple 〈cost1, . . . , costn〉 where costi : T → R+

0 for 1 ≤ i ≤ n and
n∑
i=1

costi(s
o−→ s′) ≤ cost(o) for all s o−→ s′ ∈ T .

38

5.3. General Transition Cost Partitioning

It is easy to see that transition cost partitioning makes admissible heuristics additive
by interpreting transition cost functions as operator cost functions of the disambiguated
task ΠD. An alternative direct proof of this is shown by Keller et al. (2016).

Proposition 5.2. Let Π be a planning task, let h1, . . . , hn be admissible heuristics for
Π, and let P = 〈cost1, . . . , costn〉 be a non-negative transition cost partitioning for Π.
Then hP (h1, . . . , hn, s) =

∑n
i=1 hi(s, costi) is an admissible heuristic estimate for s.

Analogously to hOCP+ and hOCP, we define an optimal transition cost partitioning and
the corresponding heuristic.

Definition 5.6 (optimal non-negative transition cost partitioning). Let Π be a planning
task with transitions T and let h1, . . . , hn be admissible heuristics for Π. Let P+

T be the
set of all non-negative transition cost partitionings. A partitioning P ∗ ∈ P+

T is optimal
in state s if

P ∗ ∈ arg max
P∈P+

T

hP (h1, . . . , hn, s).

The optimal non-negative transition cost partitioning heuristic hTCP+ for h1, . . . , hn is
the function

hTCP+
{hi|1≤i≤n}(s) = max

P∈P+
T

hP (h1, . . . , hn, s).

Revisiting the example in Figure 5.5, we can now see that the transition cost par-
titioning shown next to the operators has a heuristic value of 1 in both abstractions.
As in the figure, we use XY to represent the state {pos-T 7→ X, pos-P 7→ Y }. The
transition cost partitioning assigns 1 to AB drive-A-B−−−−→ BB in the first abstraction and to
AA

drive-A-B−−−−→ BA in the second abstraction, while all other transitions have a cost of 0.
Every operator cost function cost can be seen as a transition cost function cost′ with

cost′(s o−→ s′) = cost(o), so each operator cost partitioning is a transition cost parti-
tioning. Therefore, hTCP+ dominates hOCP+. The example in Figure 5.5 shows that this
dominance can be strict.

5.3. General Transition Cost Partitioning

We have seen that non-negative operator cost partitioning can be generalized in two dif-
ferent ways. Allowing cost functions to take negative values makes it possible to raise
operator costs above their original costs in abstractions where they matter most. By par-
titioning transition costs instead of operator costs, we can distribute the costs differently
in different contexts in which an operator can be applied. These two generalizations are
orthogonal to each other and are easy to combine.

39

5. Extensions to Cost Partitioning

Definition 5.7 (general transition cost partitioning). Let Π be a planning task with tran-
sitions T and cost function cost. A general transition cost partitioning for Π is a tuple
〈cost1, . . . , costn〉 where costi : T → R for 1 ≤ i ≤ n and

n∑
i=1

costi(s
o−→ s′) ≤ cost(o) for all s o−→ s′ ∈ T .

As before, we can show that such partitionings make admissible heuristics additive:

Proposition 5.3. Let Π be a planning task, let h1, . . . , hn be admissible heuristics for
Π, and let P = 〈cost1, . . . , costn〉 be a general transition cost partitioning for Π. Then
hP (h1, . . . , hn, s) =

∑n
i=1 hi(s, costi) is an admissible heuristic estimate for s.

The proof is a direct extension of the proof for Theorem 5.1 to transition cost func-
tions. We do not repeat it here as it adds nothing new, but it is contained in the paper by
Keller et al. (2016). The heuristic hTCP can now be defined in the obvious way:

Definition 5.8 (optimal general transition cost partitioning). Let Π be a planning task
with transitions T and let h1, . . . , hn be admissible heuristics for Π. Let PT be the set
of all general transition cost partitionings. A partitioning P ∗ ∈ PT is optimal in state
s if

P ∗ ∈ arg max
P∈PT

hP (h1, . . . , hn, s).

The optimal general transition cost partitioning heuristic hTCP for h1, . . . , hn is the func-
tion

hTCP
{hi|1≤i≤n}(s) = max

P∈PT
hP (h1, . . . , hn, s).

We already know that hOCP+ ≤ hOCP, that hOCP+ ≤ hTCP+, and that both dominance
relations are strict. The examples in Figures 5.1 and 5.5 also show that hOCP and hTCP+

are incomparable. Every general operator cost function and every non-negative transi-
tion cost function is a general transition cost function, so hOCP ≤ hTCP and hTCP+ ≤ hTCP

hold as well. But are these dominance relations also strict?
Figure 5.6 shows an example of a general transition cost partitioning that yields a

higher heuristic value than both hOCP and hTCP+, showing that the dominance is indeed
strict in both cases. In the first abstraction, the initial state is also a goal state, so its
heuristic value cannot exceed 0 under any cost function. The heuristic value of the
second abstraction is determined by the cost of transition BT drive-B-A−−−−→ AT . Without
assigning a negative cost to this transition in the first abstraction, its cost in the second
abstraction cannot exceed 1, thus hTCP+(sI) = 0 + 1. The overall heuristic value can
be increased by assigning a higher cost to this transition in the second abstraction,
compensated by a negative cost in the first abstraction. However, since the operator
drive-B-A induces a self-loop in the first abstraction, its cost should not be negative
in all contexts. Otherwise, there would be a negative cost cycle which would make

40

5.3. General Transition Cost Partitioning

AB

AT

AA

BB

BT

BA

drive-A-B/0

drive-B-A/0

drive-A-B/1

drive-B-A/−1

drive-A-B/0

drive-B-A/0

lo
a
d
-A

/0

u
n
loa

d
-A

/
0

loa
d
-B

/1

u
n
lo
a
d
-B

/0

1

2

AB

AT

AA

BB

BT

BA

drive-A-B/0

drive-B-A/0

drive-A-B/0

drive-B-A/2

drive-A-B/0

drive-B-A/0

lo
a
d
-A

/0

u
n
loa

d
-A

/
0

loa
d
-B

/0

u
n
lo
a
d
-B

/0

1

2

Figure 5.6: General transition cost partitioning over two abstractions of the example
task. In the example hOCP(sI) and hTCP+(sI) are 1 but hTCP(sI) is 2.

the heuristic value of the first abstraction −∞. Therefore, hOCP(sI) = 0 + 1. With
the general transition cost partitioning shown in the figure, the cost of drive-B-A can
be decreased only in the context of state BT in the first abstraction and raised in the
second. The resulting heuristic value is hTCP(sI) = 0 + 2.

41

6. Experiments
The previous sections show that partitioning costs between abstraction heuristics can
lead to higher heuristic values than their maximum. But does this actually happen in
practice? To answer this question, we now compare different methods to combine a
collection of projection heuristics. For now, we mostly focus on the heuristic quality of
the combination, not on the time it takes to compute the heuristic value. Parts II and III
introduce faster alternatives to certain cost partitioning methods.

We use projections for all patterns up to a given size k and call this collection Allk.
For example, All1 is the set of all atomic projections while All2 additionally contains all
projections to two variables. Since the number of projections quickly grows with k, we
only consider values of k up to 3. Non-negative cost partitioning cannot benefit from
patterns in Allk that are not interesting according to the definition of Pommerening,
Röger, and Helmert (2013). We thus also consider the subset of interesting patterns in
Allk, which we call Intk.

6.1. Non-negative Operator Cost Partitioning
To measure the effectiveness of optimal cost partitioning as a heuristic combination
method, we compare it to two other methods of combining the same abstraction heuris-
tics: maximization and the canonical heuristic. Both of them can be seen as cost parti-
tioning methods that are not guaranteed to be optimal. However, we compute both max-
imization and the canonical heuristic according to their original definitions which does
not require involving an LP solver. Our implementation of optimal cost partitioning
explicitly generates the abstract transition systems and the linear program introduced
at the end of Chapter 4. Rather than re-creating the LP for every state, we keep the
constraints in memory and only update the objective coefficients that change from state
to state.

Figure 6.1 shows the heuristic values of the initial states from our benchmark suite.
The first plot compares non-negative operator cost partitioning (hOCP+) to maximization.
Maximization rarely achieves a heuristic value above 20. This is not surprising because
the heuristic value achievable by maximization is limited by the size of the largest
projection and the largest operator cost. Even projections to three variables usually
capture only a small aspect of the task, have few abstract states, and produce weak
heuristic estimates. Combining many of these weak estimates instead of selecting the
best one often leads to a much better heuristic estimate.

42

6.2. General Operator Cost Partitioning

10 20 30 40

10

20

30

40

≥ 50

≥ 50

max
P∈Intk

hP (sI)

h
O
C
P
+

In
t k

(s
I)

k = 1
k = 2
k = 3

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hcanon
Intk

(sI)

k = 1
k = 2
k = 3

Figure 6.1: Heuristic values of the initial state. Heuristic combination of hOCP+ on
the y-axis is compared to combining the same projection heuristics with
maximization (left) and the canonical heuristic (right).

As the canonical heuristic can be seen as a specific non-negative operator cost par-
titioning, the optimal operator cost partitioning dominates it. This can be seen in the
second plot in Figure 6.1, where all marks are above the diagonal. Compared to max-
imization there are more cases where optimal cost partitioning does not increase the
heuristic value, i.e. where the implicit cost partitioning found by the canonical heuris-
tic is already optimal among the non-negative operator cost partitionings. However,
there is also a significant number of tasks where optimal cost partitioning improves
the heuristic. Some of the improvements are remarkable, for example in the domain
FloorTile where the estimates are almost doubled. These instances fall on a line which
clearly stands out in the plot. Even small improvements in heuristic value can lead to
significant pruning, so large improvements like this demonstrate that high-quality esti-
mates can be extracted from simple heuristics with operator cost partitioning. Can the
extensions we proposed improve the heuristic even further?

6.2. General Operator Cost Partitioning

We first look at the extension to general operator costs, which just drops the non-
negativity constraints in our implementation. Figure 6.2 shows how the initial heuristic
values improve when allowing the use of general cost functions only on the “interest-
ing” projections. Allowing negative costs can significantly increase the heuristic values
even on the restricted sets of projections Intk.

As we discussed in Section 5.1, the definition of “interesting” is too strict for general
cost partitioning. Figure 6.3 thus shows how the heuristic values improve when all

43

6. Experiments

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hOCP+
Intk

(sI)

h
O
C
P

In
t k

(s
I)

k = 1
k = 2
k = 3

Figure 6.2: Heuristic values of the initial state. Heuristic combination with non-
negative (hOCP+) and general (hOCP) operator cost partitioning.

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hOCP
Intk

(sI)

h
O
C
P

A
ll

k
(s

I)

k = 1
k = 2
k = 3

Figure 6.3: Heuristic values of the initial state. Heuristic combination with general
operator cost partitioning (hOCP) with and without projections that are not
interesting for non-negative cost partitioning.

44

6.2. General Operator Cost Partitioning

projections up to size k are used. Note that Figure 6.3 shows the improvement of hOCP
Allk

over hOCP
Intk not over hOCP+

Intk as in Figure 6.2, so compared to hOCP+
Intk the improvement is

even higher. As we have seen before, instances from the same domain tend to behave
similarly and fall on a line in the plot. In this case the most prominent lines are caused
by the domains Freecell, Trucks, and Miconic.

We see that considering “uninteresting” patterns is critical for heuristic quality, es-
pecially when combining atomic projections. The gain from additional patterns is
strongest for atomic projections (k = 1), weaker for projections to two variables (k = 2)
and almost non-existent for larger patterns. This could be due to several reasons. When
considering only goal variables (i.e. Int1), other variables do not influence the heuristic
value. Interesting patterns of larger size (i.e. Int2 and Int3) can contain non-goal vari-
ables. With increasing pattern size it becomes more likely that all variables are part of
at least one pattern and can influence the heuristic value. Another factor could be that
heuristic quality generally increases with the size of the considered pattern collection.
Maybe most of the heuristic values of hOCP

Int3 are already perfect and we cannot expect an
additional improvement when using more patterns?

To answer this question, we obtained optimal heuristic values for 1220 tasks in our
benchmark set1 by running several state-of-the-art planners with LM-cut (Helmert and
Domshlak, 2009), iPDB (Haslum et al., 2007), merge-and-shrink (Helmert et al., 2014;
Sievers, Wehrle, and Helmert, 2014), cost-partitioned Cartesian abstractions (Seipp,
Keller, and Helmert, 2017b), potential heuristics (which we introduce in Part III) (Seipp,
Pommerening, and Helmert, 2015), the state equation heuristic (Bonet, 2013), and sym-
bolic search (Torralba, Linares López, and Borrajo, 2016).

With this data, we can evaluate how often a given heuristic is perfect on the initial
state. However, not all methods finished their computation on all tasks. For example,
computing all projections to three variables was not possible in 31 out of 50 tasks in the
domain Airport. The canonical heuristic involves a step with exponential complexity
in the number of projections so it also could not be computed on all tasks. And while
computing an optimal operator cost partitioning for a set of abstractions is polynomial,
it involves solving a linear program with one constraint for each abstract transition.

We thus have to restrict our evaluation to the subset of 182 tasks where the optimal
heuristic value and the initial heuristic value for all methods could be computed within
our resource limits of 30 minutes and 2 GB. Table 6.1 lists the number of times each
heuristic was perfect on these 182 tasks. Better heuristic combination methods and
larger sets of abstractions increase the number of tasks with a perfect heuristic estimate
as expected. Nevertheless, there is still some room for improvement for all collection
sizes. To answer our earlier question: the values of hOCP

Int3 are perfect in a lot of cases,
but this does not completely explain why we see no additional benefit when considering
more patterns with hOCP

All3 .

1We submitted most of the resulting values as upper and lower bounds to the planning task repository
http://api.planning.domains/ (Muise, 2016) to make them publicly available.

45

http://api.planning.domains/

6. Experiments

k

1 2 3

Intk Maximization maxP∈Intk h
P 2 7 22

Intk Canonical heuristic hcanon
Intk 7 47 73

Intk Non-negative operator cost partitioning hOCP+
Intk 37 73 127

Intk General operator cost partitioning hOCP
Intk 37 84 135

Allk General operator cost partitioning hOCP
Allk 43 123 136

Table 6.1: Number of times different heuristics produce perfect heuristic estimates in
the initial state in 182 commonly solved tasks.

6.3. Non-negative Transition Cost Partitioning

Transition cost partitioning is an orthogonal extension to using general cost functions.
So far, we have not discussed a method to compute an optimal transition cost parti-
tioning efficiently. We therefore implemented an exponential version based on context
splitting: we explicitly generate the full transition system of the task, then treat each
transition as a separate operator and compute an optimal operator cost partitioning on
the resulting task. Since this involves generating the full state space of the task as a
first step, this method is certainly not useful as a heuristic in practice. If the transition
system is small enough to be represented in memory, then Dijkstra’s algorithm (Dijk-
stra, 1959) can be used to answer shortest path queries much faster than an A∗ search
which computes an optimal transition cost partitioning for each state. The inefficient
computation is enough to get an idea of the heuristic quality, though. We circle back
to transition cost partitioning in Part III and show methods to compute it efficiently in
some cases.

The value of hTCP+(sI) was never higher than that of hOCP+(sI) for the tasks where
we could compute hTCP+(sI). In these tasks an optimal non-negative operator cost parti-
tioning also is optimal among the non-negative transition cost partitionings. This could
be an effect of only considering small tasks and relatively small projections. (Remem-
ber that since we are restricting costs to non-negative numbers, projections that do not
include a goal variable are uninteresting.)

Transition cost partitioning can only give higher heuristic values than operator cost
partitioning if it makes sense to distinguish different contexts in which an operator can
be applied. For example, this is the case if an operator is required more than once in
an optimal plan and the different uses are recognized by different abstractions. In the
introductory example of Section 5.2 (see Figure 5.5) drive-A-B was such an operator.
Such complex interactions do not seem to occur in small projections of simple tasks but
we do see evidence of it when we also consider general cost functions.

46

6.4. General Transition Cost Partitioning

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hOCP
Allk

(sI)

h
T
C
P

A
ll

k
(s

I)

k = 1
k = 2
k = 3

Figure 6.4: Heuristic values of the initial state. Heuristic combination with general
operator (hOCP) and transition (hTCP) cost partitioning.

6.4. General Transition Cost Partitioning

Figure 6.4 shows that there is some benefit in transition cost partitioning with general
cost functions. Heuristic values can exceed those of hOCP in projections to at least two
variables.

The resulting heuristic is highly accurate as we see by comparing it to optimal heuris-
tic values again. Table 6.2 shows the number of times different heuristics produced
optimal values. Compared to Table 6.1 the values are lower because we could only
compute all heuristics in 87 tasks. But comparing the number within each table shows
the same qualitative result: every row of the table shows at least as many task with
optimal heuristic values as the preceding row, confirming that the heuristic in that row
dominates the heuristics in the preceding rows. In most cases there are instances where
only the dominating heuristic produces the optimal value, so this dominance is fre-
quently strict. Using cost partitioning it is possible to combine many weak estimates
into high quality heuristics. We get the highest heuristic quality with both general costs
and context splitting. The resulting heuristic values for the collection All3 are perfect
in all tasks where we could compute them. But even for smaller patterns hTCP often
achieves perfect heuristic values.

6.5. Computation Time

So far we only considered the heuristic quality of cost partitioning. To be useful in
practice, a heuristic also should be computable in a reasonable time. We thus estimate
the expansion rate of the different approaches by measuring the number of expansions

47

6. Experiments

k

1 2 3

Intk Maximization maxP∈Intk h
P 2 2 11

Intk Canonical heuristic hcanon
Intk 4 34 44

Intk Non-negative operator cost partitioning hOCP+
Intk 34 37 72

Intk General operator cost partitioning hOCP
Intk 34 43 74

Allk General operator cost partitioning hOCP
Allk 35 67 74

Allk General transition cost partitioning hTCP
Allk 35 75 87

Table 6.2: Number of times different heuristics produce perfect heuristic estimates in
the initial state in 87 commonly solved tasks.

done in the first second after starting the search. This excludes the time for prepro-
cessing, such as finding the set of maximally additive sets for the canonical heuristic
or constructing the LP model for cost partitioning heuristics. If a method exceeded the
resource limits during preprocessing, we counted this as an evaluation rate of 0 states
per second. On the other hand, a good heuristic can solve many tasks in under a second.
In such cases, we extrapolated the evaluation rate from the observed performance as the
number of successful evaluations divided by the time spent in the search.

Figure 6.5 shows the estimated evaluation rates and the distribution over tasks. Each
line shows the number of tasks with at most a certain evaluation rate for one of the
heuristics. For example, the line for hcanon

Int1 goes through the point (105, 99) which means
that a search with this heuristic evaluates less than 105 states per second in only 99 out
of the 1667 tasks of our benchmark set. For hOCP

All1 this is true in 1577 tasks.
The evaluation rates of the operator cost partitioning heuristics show that allowing

general cost functions makes the LPs harder to solve, but the impact is relatively small.
The two LPs have the same amount of variables and constraints, and they only differ in
their variable bounds. The effect is thus caused by an increased structural difficulty and
not by a larger model. The difference is most visible with k = 2 and problems where
the heuristics have a low evaluation rate. This effect is no longer visible for k = 3. A
larger effect can be seen when comparing the heuristics for different pattern collections.
Restricting the set to interesting patterns (i.e. using Intk instead of Allk) significantly
increases the evaluation rate. The effect is similar for both hOCP+ and hOCP.

Our naive implementation of transition cost partitioning requires to make the full
state space of a task explicit. As this is only possible in a small fraction of the tasks,
most tasks fail before the first evaluation or do not manage to evaluate the initial state
within a second. In the cases where the model can be built, evaluation rates are rarely
higher than a thousand states per second while this is common for all other tested heuris-
tics with k = 1. Larger pattern collections (k = 2 and k = 3) decrease the computation

48

6.5. Computation Time

100 101 102 103 104 105 106
0

500

1,000

1,500
T
as
k
s

k = 1

100 101 102 103 104 105 106
0

500

1,000

1,500

T
a
sk
s

k = 2

100 101 102 103 104 105 106
0

500

1,000

1,500

Estimated evaluations per second

T
as
k
s

k = 3
hTCPAllk

hTCP+Intk

hOCP
Allk

hOCP
Intk

hOCP+
Allk

hOCP+
Intk

hcanonIntk

max
P∈Intk

hP

Figure 6.5: Evaluation rates estimated from the number of evaluations done in the first
second after starting the search. If a search finishes or runs out of memory
in t < 1 seconds after e evaluations, we estimate the evaluation rate as e/t.
If the preprocessing did not finish, we count the evaluation rate as 0. All
curves start at the origin and end in the upper right-hand corner. Faster
methods bend stronger towards the lower right-hand corner.

49

6. Experiments

k

1 2 3

Intk Maximization maxP∈Intk h
P 629 667 696

Intk Canonical heuristic hcanon
Intk 717 656 597

Intk Non-negative operator cost partitioning hOCP+
Intk 621 438 237

Allk Non-negative operator cost partitioning hOCP+
Allk 560 340 171

Intk General operator cost partitioning hOCP
Intk 622 475 248

Allk General operator cost partitioning hOCP
Allk 601 357 155

Intk Non-negative transition cost partitioning hTCP+
Intk 120 76 26

Allk General transition cost partitioning hTCP
Allk 115 87 74

Table 6.3: Number of solved tasks.

speed in general. The canonical heuristic suffers particularly from this because its pre-
processing step is exponential in the size of the pattern collection.

We can evaluate the trade-off between evaluation time and heuristic quality with the
number of tasks that can be solved within the resource limits. Table 6.3 shows an
overview of the heuristics considered here. None of the cost partitioning approaches
reaches the same performance as simple maximization.

We have seen that cost partitioning and its extensions can significantly improve
heuristic quality but this comes at a high cost in computation time. In most cases
extending the collection of projection heuristics (increasing k or using Allk instead of
Intk) did not improve the heuristic quality enough to offset the additional time spent
on its computation. This is different for maximization where projections of size 3 had
the best trade-off between computation time and heuristic quality. Allowing general
cost functions in hOCP+, on the other hand, pays off in almost all cases. For example,
coverage increases by 37 tasks between hOCP+

Int2 and hOCP
Int2 , and by 41 task between hOCP+

All1
and hOCP

All1 . The only two exceptions are the collections Int1 and All3. In the former
collection, the increased computation time almost perfectly balances the increase in
heuristic quality. In the latter, we have seen that hOCP can almost never draw additional
information from the uninteresting patterns, so it has no advantage over hOCP+.

If only non-negative costs are considered, using uninteresting patterns is useless and
reduces coverage. For example, 621 tasks are solved with hOCP+

Int1 and this drops to 560
if all patterns of size 1 are used (hOCP+

All1). Allowing negative costs recovers some but not
all of this loss: 601 tasks are solved with hOCP

All1 . The LPs for general cost partitioning
are harder to solve because more interactions with non-goal variables are possible. This
decreases coverage by 1 in two domains. On the other hand, general cost partitioning
results in fewer expansions before the last f -layer in 30 domains, which results in better
coverage in 18 of them. Compared to hOCP+

Int1 using general operator cost partitioning and

50

6.5. Computation Time

projections to all variables does not pay off overall because the resulting LPs get too
large. The picture is similar for k = 2 and k = 3. For transition cost partitioning, on
the other hand, the advantages of higher heuristic values outweigh the disadvantages of
longer computation time when comparing hTCP+

Int2 to hTCP
All2 and hTCP+

Int3 to hTCP
All3 .

Using general operator cost partitioning on just the interesting patterns (hOCP
Intk) seems

like a viable compromise which achieves higher heuristic values than hOCP+
Intk at little

additional cost. However, even the best hOCP+ configuration (hOCP
Int1) solves fewer tasks

than simple maximization. None of these heuristics can compete with the state of the
art. For example, the LM-cut heuristic solves 880 tasks of this benchmark set in the
same resource limits. In Parts II and III we discuss heuristics related to general cost
partitioning that close this gap.

51

7. Summary

In this part, we introduced two orthogonal extensions to non-negative operator cost par-
titioning. Allowing negative costs and partitioning the cost of transitions independently
both add more choices to the set of cost partitionings. Since optimal cost partitioning
heuristics are based on the best choice from this set, allowing more choices results in
significantly higher heuristic values. We have shown that hOCP and hTCP+ dominate
hOCP+ but are incomparable and that hTCP dominates all three heuristics. Figure 7.1
summarizes their relationship.

There already is a tractable method to compute hOCP+ for a set of explicit state ab-
straction heuristics. It computes a linear program that is easily adapted to compute hOCP

by dropping the constraint that costs have to be non-negative. Experiments show a sig-
nificant increase in heuristic quality when general costs are allowed, with only little
computational overhead. With general costs more inference is possible, for example
sometimes detecting unsolvability even if all abstractions are solvable.

General cost partitioning also can use abstractions to non-goal variables to increase
the heuristic value, which is impossible for non-negative cost partitioning. Pommeren-
ing, Röger, and Helmert (2013) define conditions under which a pattern provides no
additional power to hOCP+. Excluding such uninteresting patterns reduces the model
size without influencing heuristic accuracy. For hOCP no analogous definition of “inter-
esting” exists yet. We have seen that adding uninteresting patterns increases heuristic
quality but reduces coverage because of the high computation cost. Finding criteria
under which a pattern is interesting for hOCP is thus a promising direction for future
research.

We focused on optimal cost partitioning here, but general cost partitioning is also
beneficial for cost partitioning that is not guaranteed to be optimal. Seipp, Keller,

hOCP+

hOCP

hTCP+

hTCP

≤

≤

≤

≤

<>

Figure 7.1: Dominance relations between different cost partitionings. The symbol <>
is used to show that hOCP and hTCP+ are incomparable.

52

and Helmert (2017a) compare different operator cost partitioning algorithms and find
that the best-performing algorithm is based on saturated cost partitioning (Seipp and
Helmert, 2014). This algorithm processes heuristics in a fixed order and assigns each
exactly the part of the cost that is necessary to maintain all heuristic values. The remain-
ing costs are then used for the following heuristics. Using several diversified orders and
allowing general cost functions turns this into a state-of-the-art heuristic which closely
approximates optimal general operator cost partitioning (Seipp, Keller, and Helmert,
2017b).

While computing hOCP is tractable for explicit state abstractions, this is less clear for
hTCP+ or hTCP. The naive approach is to compute the optimal operator cost partitioning
on a disambiguated task, i.e. using context splitting so every operator induces exactly
one transition. The resulting LP contains one variable and one constraint for each com-
bination of abstraction and transition; a number which is typically exponential in the
size of the planning task. Keller et al. (2016) show how edge-valued decision diagrams
(Ciardo and Siminiceanu, 2002) can be used to compute a saturated transition cost par-
titioning for Cartesian abstractions (Seipp and Helmert, 2013). While this is useful in
practice, saturated cost partitioning is not guaranteed to be optimal and the size of the
decision diagrams can become exponential. We return to the issue of computing hTCP

in Part III, where we introduce a tractable way to compute it for some abstractions.

53

54

Part II.

Operator Counting

55

8. Introduction to Operator Counting
While optimal cost partitioning heuristics produce good heuristic values, they are often
too hard to compute to be useful in practice. However, existing heuristics have shown
that it is feasible and beneficial to compute a linear program in every state of the search
to obtain heuristic values (e.g. van den Briel et al., 2007; Karpas and Domshlak, 2009;
Bonet, 2013; Pommerening, Röger, and Helmert, 2013). These heuristics are based on
different sources of information: van den Briel et al. (2007) use network flows, Bonet
(2013) uses the state equation of a Petri net, Karpas and Domshlak (2009) use land-
marks and Pommerening, Röger, and Helmert (2013) use abstraction heuristics. In this
part of the thesis, we introduce a framework that unifies these heuristics. This has two
main advantages. Firstly, by bringing all heuristics into one common framework, it is
possible to combine their information in a better way than maximization. Secondly, rea-
soning about heuristics, comparing and analyzing them, is easier if all involved heuris-
tics “speak the same language”. In our case this common language is operator counting
which we introduce next. We then show how different heuristics can be expressed in
that language and show some interesting theoretical properties. In particular, we show
that operator counting has a strong connection to optimal cost partitioning.

The main idea of operator counting is to express properties that every plan has to
satisfy as a set of constraints over the number of times an operator is used in the plan.
Such constraints are called operator-counting constraints. Before we define them, we
need one more auxiliary definition. For a given operator sequence π = 〈o1, . . . , on〉, we
write the number of occurrences of operator o ∈ O in π as occurπ(o), i.e. occurπ(o) =
|{1 ≤ i ≤ n | oi = o}|.
Definition 8.1 (operator-counting constraints). Let Π be a planning task with operators
O, and let s be one of its states. Let Y be a set of real-valued and integer variables,
including a non-negative integer variable Counto for each operator o ∈ O along with
any number of additional variables. The variables Counto are called operator-counting
variables.

A set of linear inequalities over Y is called an operator-counting constraint for s if
for every s-plan π, there exists a feasible solution f with f(Counto) = occurπ(o) for
all o ∈ O.

A constraint set for s is a set of operator-counting constraints for s where the only
common variables between constraints are the operator-counting variables.

For example, consider the constraintC1 : Counto1+Counto2 ≥ 2 which describes that
at least two operators from every plan must be from {o1, o2}. The following inequalities

56

that use an additional variable X provide a slightly more complex example:

X ≥ Counto1 − Counto2 (8.1)
X ≤ Counto2 (8.2)

Together (8.1) and (8.2) form a constraint C2 that expresses (in a complicated way) that
Counto1 ≤ 2Counto2 , i.e. that o1 cannot be used more than twice as often as o2. If this
is true for every s-plan, the set of both inequalities is an operator-counting constraint.
If both C1 and C2 are operator-counting constraints, then {C1, C2} is a constraint set
since X only occurs in C2.

To explain the restriction on common variables in the definition of a constraint set,
consider equations (8.1) and (8.2) individually. Constraint (8.1) by itself forms a trivial
operator-counting constraint in every planning task because for every s-plan π it al-
ways has the solution f with f(Counto) = occurπ(o) for all operators o and f(X) =
f(Counto1)− f(Counto2). Constraint (8.2) also is a trivial operator-counting constraint
if it is considered individually: it always has a solution with f(X) = 0. However their
joint solutions are only those with f(Counto1) ≤ 2f(Counto2) which is not true in ev-
ery planning task. The set of both of these trivial operator-counting constraints is not a
constraint set because the constraints share and interact through the variable X. The def-
inition forbids this interaction of auxiliary variables with the same name, which could
stand for unrelated quantities in different constraints.

Operator-counting constraints are necessary properties of plans, so an optimal plan
satisfies all of them. We use this to define mathematical programs with optimal objec-
tive values that are admissible heuristic estimates:

Definition 8.2 (operator-counting integer/linear program). Let Π be a planning task
with operators O. The operator-counting mixed integer program MIPC for constraint
set C is:

Minimize
∑
o∈O

cost(o)Counto subject to C and Count ≥ 0.

The operator-counting linear program LPC is the LP-relaxation of MIPC .

Definition 8.3 (MIP and LP heuristic). Let Π be a planning task, and let C be a function
that maps states s of Π to constraint sets for s. The MIP heuristic hMIP

C (s) is the optimal
objective value of the mixed integer program MIPC(s). The LP heuristic hLP

C (s) is the
optimal objective value of the linear program LPC(s). Infeasible MIPs/LPs are treated
as having an optimal objective value of∞.

Theorem 8.1. The heuristics hMIP
C (s) and hLP

C (s) are admissible.

Proof: Let π = 〈o1, ..., on〉 be an optimal s-plan. According to Definition 8.1 all
constraints C ∈ C(s) have a solution fC with fC(Counto) = occurπ(o) for all operators
o ∈ O. Since the variables Counto are the only common variables of all Ci, the function

57

8. Introduction to Operator Counting

f =
⋃
C∈C(s) fC is well-defined, a solution of all C ∈ C(s) and therefore a solution of

both MIPC and LPC . The value of solution f is

∑
o∈O

cost(o)f(Counto) =
∑
o∈O

cost(o)occurπ(o) =
n∑
i=1

cost(oi) = cost(π).

The optimal objective values of MIPC and LPC cannot exceed the value of any specific
solution, so

hLP
C (s) ≤ hMIP

C (s) ≤ cost(π) = h∗(s).

�

The LP heuristic can be computed in time polynomial in the number and size of the
constraints, while computing the MIP heuristic is NP-equivalent. However, in practice
there are efficient MIP-solvers that can handle large problems and the MIP heuristic
can lead to better heuristic values than the LP heuristic.

Proposition 8.1. The heuristic hMIP
C (s) strictly dominates hLP

C (s).

Proof: Every solution of a MIP is a solution of its LP-relaxation, so the optimal objec-
tive value of LPC(s) is a lower bound for the optimal objective value of MIPC(s).

A simple example shows that the dominance is strict: in a task modelling a two-
digit binary counter (see Section 5.1) the only plan is 〈o1, o2, o1〉, so the constraints
Counto1 = 2Counto2 and Counto1 +Counto2 ≥ 1 are both operator-counting constraints.
The LP over these constraints has the solution fLP(Counto1) = 2/3, fLP(Counto2) = 1/3

which has an optimal objective value of 1 when all operators cost 1. The MIP does not
permit this fractional solution and has an optimal objective value of 3, achieved with
the solution fMIP(Counto1) = 2, fMIP(Counto2) = 1. �

If all operator costs of a planning task are integer, we can improve the LP heuristic
estimate without losing admissibility by rounding up to the nearest integer. However,
the previous example shows that the dominance between hMIP

C and hLP
C is strict even if

the heuristic value is rounded up. It might be tempting to round up individual operator
counts to get an integer solution, but this is not admissible and might even violate
constraints. For example, the constraint Counto1 = 2Counto2 is violated if the elements
of fLP are rounded up to 1.

Note that the requirement that an operator-counting constraint must have a feasi-
ble solution with Counto = occurπ(o) for every plan π is stricter than necessary for
admissibility. It is sufficient that whenever a solution exists, there is one optimal
plan π∗ such that all operator-counting constraints have a feasible solution f with
f(Counto) = occurπ∗(o). Similarly, we could allow operator-counting constraints to
share some variables X if they guarantee that solutions are compatible, i.e. that for ev-
ery choice of values for variables Counto and X either all constraints have a solution
with these values or none of them has one. We do not use such extensions here because

58

they complicate the definition and they are not necessary for the constraints we intro-
duce in the following chapter. Sharing additional information between constraints is
still an interesting idea which we discuss further in Chapter 12.

The compatibility of solutions is important as it guarantees that operator-counting
constraints can easily be combined. Since adding constraints can only reduce the set of
feasible solutions for an mixed integer/linear program, the resulting heuristic estimates
can only increase with more constraints.

Proposition 8.2. Let C, C ′ be functions that map states s of a planning task Π to con-
straint sets for s such that C(s) ⊆ C ′(s) for all states s. Then the MIP/LP heuristic for
C ′ dominates the respective heuristic for C: hMIP

C ≤ hMIP
C′ and hLP

C ≤ hLP
C′ .

In particular, this means that combining operator-counting constraints into one con-
straint set dominates considering them individually and computing their maximum. We
will later see examples where this dominance is strict.

Corollary 8.1. Let Π be a planning task Π and s one of its states. Let C = {C1, . . . , Cn}
be a constraint set for s. Then hMIP

C ≥ max
1≤i≤n

hMIP
{Ci} and hLP

C ≥ max
1≤i≤n

hLP
{Ci}.

59

9. Operator-Counting Constraints
We now discuss six types of operator-counting constraints that capture different state-
of-the-art heuristics for optimal planning. The constraints cover three of the four pre-
viously mentioned heuristic classes: landmarks, delete relaxation, and abstraction. We
will later discuss why critical path heuristics are missing from this list. Our last three
examples are related to the state equation heuristic (van den Briel et al., 2007; Bonet,
2013) that seems not to fit into any of the four heuristic classes.

9.1. Action Landmarks
A disjunctive action landmark (Zhu and Givan, 2003; Helmert and Domshlak, 2009)
for a state s is a set of operators of which at least one must be part of any s-plan. In
our running example task from Section 2.1, the set {load-B} is a simple landmark
for sI because every plan has to load the package at some point. If we duplicate
all drive operators, so there is a fast and a slow way to drive along any road, then
{drive-A-Bslow, drive-A-Bfast} is also a landmark.

There are other types of landmarks called fact landmarks that are also often used,
for example in the well-known LAMA (Richter and Westphal, 2010). Fact landmarks
can be transformed to action landmarks, i.e. the set of all operators that add an atom
from an unachieved fact landmark forms a disjunctive action landmark. For the rest
of the thesis, we only consider disjunctive action landmarks and just refer to them as
landmarks.

Using linear programming to derive heuristic estimates from landmarks was intro-
duced by Karpas and Domshlak (2009) as cost partitioning for landmarks. Their LP
assigns a value to each landmark and a (non-negative) cost to each combination of op-
erator and landmark. The value of a landmark L then is the minimum cost of any o ∈ L
in the context of L. By the cost partitioning property, the cost of o in the context L
summed over all L cannot exceed cost(o). The LP formulation was improved by Key-
der, Richter, and Helmert (2010). Bonet and Helmert (2010) introduced an alternative
LP representation that directly fits into the operator-counting constraint framework and
showed that it is the dual of the representation by Keyder et al.

Strengthening other heuristics with landmarks is not a new idea: Domshlak, Katz,
and Lefler (2012) propose it for abstraction heuristics and Bonet (2013) for the LP-
based state equation heuristic. He uses the same constraints as Bonet and Helmert
(2010):

60

9.2. Delete Relaxation

Definition 9.1 (landmark constraint). Let L ⊆ O be a disjunctive action landmark for
state s of task Π. The landmark constraint clm

s,L for L is∑
o∈L

Counto ≥ 1.

Since at least one operator of the landmark occurs in every s-plan, landmark con-
straints clearly meet the requirements of operator-counting constraints.

For an example of how such landmarks can be useful, consider our running exam-
ple task under a cost function where driving between A and B has a cost of 3 while
(un)loading the package costs 5. Assume we discovered that {drive-A-B, load-B} and
{drive-B-A, load-B} are landmarks for the initial state. From each individual land-
mark we can determine that every plan must cost at least 3 (the cost of the cheap-
est operator in the landmark). The landmark constraint for the given landmarks are
Countdrive-A-B + Countload-B ≥ 1 and Countdrive-B-A + Countload-B ≥ 1. Minimizing the
total plan cost 3Countdrive-A-B +3Countdrive-B-A +5Countload-B subject to these constraints
establishes a better heuristic estimate of 5.

9.2. Delete Relaxation
The next type of operator-counting constraint is based on the delete relaxation (McDer-
mott, 1999; Bonet and Geffner, 2001; Hoffmann and Nebel, 2001). Originally, delete
relaxation was introduced for the STRIPS framework, where all planning variables are
binary and (goal- and operator-) conditions are conjunctions of positive literals. In
STRIPS a state can be represented as the set of variables that are true and operator ef-
fects either add or delete variables from this set. The delete relaxation of a task ignores
all delete effects of operator. The resulting task is simpler and can be used to derive
admissible heuristic estimates. The concept was later generalized to SAS+ tasks (e.g.
Domshlak, Hoffmann, and Katz, 2015).1 In SAS+ the task is not changed by delete
relaxation, only its semantics are modified so variables accumulate their values.

Definition 9.2 (delete relaxation semantics). Let Π = 〈V ,O, sI, s?, cost〉 be a planning
task. A partial state in the delete relaxation of Π is a set of atoms over V . An operator
o ∈ O is applicable in state s if pre(o) ⊆ s and applying it results in the state sJoK+ =
s ∪ eff (o). A state s is a goal state if s? ⊆ s. A delete-relaxed s-plan is an operator
sequence that is successively applicable in s and ends in a goal state.

Note that states of Π can be seen as states of the delete relaxation but not necessary
the other way around because delete-relaxed states can contain more than one atom for
a variable. Figure 9.1 shows the reachable state space of the delete relaxation of our

1The origin of this generalization is not entirely clear and is discussed by Domshlak, Hoffmann, and
Katz.

61

9. Operator-Counting Constraints

A B

A B

A B

A B

drive-A-B

load-B

unload-A

drive-A-B, drive-B-A

drive-A-B, drive-B-A
load-B, unload-B

drive-A-B, drive-B-A
load-A, unload-A
load-B, unload-B

Figure 9.1: Reachable state space for the delete relaxation of our running example task.

example task. In the initial state, the only applicable operator is drive-A-B which adds
the atom that the truck is at location B. In the delete relaxation this does not exclude
that the truck is at location A at the same time. The resulting state contains both atoms
〈pos-T, A〉 and 〈pos-T, B〉. Driving between A and B again does not add additional
atoms to the state, but loading the package adds 〈pos-P, T 〉 and unloading it afterwards
adds 〈pos-P, A〉.

Since sJoK ⊆ sJoK+, an easy proof by induction shows that every s-plan also is a
delete-relaxed s-plan (this can also be verified in Figure 9.1). Therefore, the cost of
an optimal delete-relaxed plan cannot exceed the cost of an optimal plan and is an
admissible heuristic, called the delete-relaxation heuristic h+.

After an operator o is applied in the delete relaxation, applying it again does not add
additional atoms to the state, so every occurrence of o except the first can be removed
from a delete-relaxed s-plan. Because of s ⊆ sJoK, applying operators cannot make an
applicable operator inapplicable. Optimal delete-relaxed plans can thus be represented
as a subset of operators. A valid order for such a set can be constructed greedily by
repeatedly choosing, applying and removing an applicable operator from the set. Com-
puting h+ is thus in NP. In fact, the problem is NP-equivalent (Bylander, 1997) and can
not even be approximated within a constant factor in polynomial time unless P = NP
(Betz and Helmert, 2009).

Imai and Fukunaga (2014, 2015) show that h+ can be computed as the optimal objec-
tive value of a MIP that fits the operator-counting framework. The model uses the fol-

62

9.2. Delete Relaxation

lowing integer variables to express necessary and sufficient properties of delete-relaxed
s-plans π in a planning task with operators O and atoms A:2

• Usedo ∈ {0, 1} for every o ∈ O
indicating whether o is part of π

• Reacheda ∈ {0, 1} for every a ∈ A
indicating whether a is reached by π

• Achievero,a ∈ {0, 1} for every o ∈ O and every a ∈ A
indicating whether o is the first operator in π that adds a

• Timeo ∈ {0, . . . , |O|} for every o ∈ O
indicating the time operator o is applied in the plan. The first operator can be
applied at time point 0 and value |O| indicates that the operator is not used.

• Timea ∈ {0, . . . , |O|} for every a ∈ A
indicating the time atom a is true for the first time. Value 0 means that a is already
true in the state s.

Using these variables, Imai and Fukunaga define the following constraints:

Reacheda = 1 for all a ∈ s? (9.1)

[a ∈ s] +
∑
o∈O

a∈eff (o)

Achievero,a ≥ Reacheda for all a ∈ A (9.2)

Usedo ≥ Achievero,a for all o ∈ O, a ∈ eff (o) (9.3)
Reacheda ≥ Usedo for all o ∈ O, a ∈ pre(o) (9.4)
Timea ≤ Timeo for all o ∈ O, a ∈ pre(o) (9.5)
Timeo + 1 ≤ Timea +M(1− Achievero,a) for all o ∈ O, a ∈ eff (o) (9.6)
Reacheda,Usedo,Achievero,a ∈ {0, 1} for all o ∈ O, a ∈ A (9.7)
Timea,Timeo ∈ {0, . . . , |O|} for all o ∈ O, a ∈ A (9.8)

A delete-relaxed s-plan must reach every goal atom (9.1). An atom can only be
reached if it is true in s or there is an operator that adds the atom for the first time (9.2).
An operator can only be a first achiever for an atom if it is used (9.3). An operator can
only be used if all its preconditions are reached (9.4) before it is applied (9.5) Finally,
if an operator is the first achiever of an atom then this atom must be added for the first
time directly after the operator is used (9.6). In the last inequality M is a constant that
is large enough to satisfy the inequality if Achievero,a = 0. Since the time steps are
limited to the number of operators, M = |O|+ 1 is sufficient.

2We use different variable names than Imai and Fukunaga.

63

9. Operator-Counting Constraints

Theorem 9.1 (Imai and Fukunaga, 2015). Let Π = 〈V ,O, sI, s?, cost〉 be a planning
task with atoms A. The optimal objective value of the MIP

Minimize
∑
o∈O

cost(o)Usedo subject to (9.1)–(9.8)

is equal to the delete-relaxation heuristic h+(s).

The proof is based on the idea that every delete-relaxed plan π that mentions each op-
erator at most once corresponds to a solution f of the MIP with f(Usedo) = occurπ(o)
and vice versa. We refer to the original proof of Imai and Fukunaga for details.

To extend these constraints to an operator-counting constraint, we only have to link
the variables Usedo to the operator-counting variables as follows.

Definition 9.3 (delete relaxation constraint). Let Π be a planning task with operatorsO.
The delete-relaxation constraint c+

s consists of the constraints (9.1)–(9.8) for Π and the
constraint

Counto ≥ Usedo for all o ∈ O. (9.9)

To show that c+
s is indeed an operator-counting constraint, consider any s-plan π

and remove all except the first occurrence of each operator. The result is a delete-
relaxed plan π′ for which a solution to constraints (9.1)–(9.8) exists. The additional
constraint (9.9) is satisfied because occurπ(o) ≥ occurπ′(o) for all o ∈ O. The follow-
ing proposition then follows with Theorem 9.1.

Proposition 9.1. Let C be the function that maps every state s to {c+
s }. Then hMIP

C = h+.

Imai and Fukunaga also introduce several variations of the basic model, and most
of them can be expressed in the operator-counting framework. Firstly, they suggest
solving the LP-relaxation instead of the MIP. This corresponds to using hLP

C instead of
hMIP
C . Secondly, they relax the notion of time by removing the variables Timeo, Timea

and constraints (9.5), (9.6), and (9.8). Removing constraints cannot reduce the set of
solutions, so the resulting set of inequalities is still an operator-counting constraint.
Thirdly, they suggest variable elimination techniques that reduce the size of the model
without reducing the set of solutions. For example, if {o} is a landmark, then Usedo
can be replaced by 1 in all constraints. Finally, two extensions based on a relevance
analysis and on inverse operators can reduce the set of feasible solutions, but not the
set of solutions projected to the operator-counting variables. All such techniques can
be used in the context of operator counting as well.

However two of their extensions, immediate operator application and dominated
actions, are specific to the delete relaxation.

The first of these extensions forces the application of all 0-cost operators that are
applicable in the initial state. This is fine in the delete relaxation because the application
cannot increase the total cost or prevent any other operator application. In the context

64

9.3. Post-hoc Optimization

of operator counting, this is not allowed (i.e. the constraint with this extension is no
longer an operator-counting constraint). Consider our running example task with an
added 0-cost operator that destroys the package. In the delete relaxation, applying this
operator does not prevent achieving the goal afterwards, but there is no plan in the
original problem that uses this operator.

Dominated actions can be eliminated from the model, but it depends on the definition
of dominance whether this preserves the operator-counting constraint property. In the
delete relaxation it is possible to ignore delete effects. Imai and Fukunaga’s definition
uses this and is therefore only valid in the delete relaxation. They consider the combina-
tion of the delete-relaxation constraint with net change constraints, which we introduce
in Section 9.4. For this combination, they offer an alternative definition that consid-
ers delete effects for variables that occur in the operator’s precondition. This makes
excluding dominated actions in the delete-relaxation constraint compatible with net
change constraints but is still not sufficient for general operator-counting constraints.

9.3. Post-hoc Optimization
Our question in Chapter 1 was how to derive admissible and informative heuristics
from multiple admissible heuristics. We have already seen three methods to combine
abstraction heuristics: using the maximum of all component heuristics is cheap to com-
pute but can lead to weak heuristic estimates. The canonical heuristic dominates the
maximum but uses a preprocessing step that can take time exponential in the number
of component heuristics. Optimal cost partitioning dominates the canonical heuristic
and can be computed in polynomial time. In practice, it yields high quality heuristic
values but requires solving huge linear programs for every heuristic computation – up
to millions of variables and billions of constraints for realistic problem sizes.

We now introduce operator-counting constraints that offer a new way to combine
heuristic estimates. Post-hoc optimization is a middle-ground between the canonical
heuristic and optimal cost partitioning and can be computed in polynomial time.

We first focus on PDB heuristics and generalize the results afterwards. Since PDB
heuristics are admissible, we know that the PDB heuristic value cannot exceed the total
cost incurred by all operators:

hP (s) ≤
∑
o∈O

cost(o)Counto.

Operators which do not affect any variable in a pattern cannot contribute to the estimate
of the PDB since they do not induce state changes in the abstract task. Therefore we
can tighten the constraint for hP by omitting variables for such “irrelevant” operators:

hP (s) ≤
∑
o∈O

o affects P

cost(o)Counto. (9.10)

65

9. Operator-Counting Constraints

This approach is not limited to PDB heuristics. The only properties of PDB heuristics
that we exploited are that they are admissible and that certain operators do not contribute
to the heuristic value of certain PDBs. This concept can be generalized using notation
from cost partitioning. An operator o is irrelevant for a heuristic function h if the
estimates of h are also admissible in a task where cost(o) is set to 0.

Definition 9.4 (post-hoc optimization constraint). Let Π be a planning task with the
cost function cost and let s be one of its states. Let Π′ be like Π but with a non-negative
cost function cost′ ≤ cost. If h(s, cost) is an admissible heuristic estimate for state s in
Π′, then the post-hoc optimization constraint cpho

s,h,cost′ is∑
o∈O

cost′(o)>0

cost(o)Counto ≥ h(s, cost)

To prove that cpho
s,h,cost′ is an operator-counting constraint, consider any s-plan π. We

use cost ≥ cost′ and the admissibility of h to show that the assignment f(Counto) =
occurπ(o) satisfies the constraint:∑

o∈O
cost′(o)>0

cost(o)occurπ(o) ≥
∑
o∈O

cost′(o)>0

cost′(o)occurπ(o)

=
∑
o∈O

cost′(o)occurπ(o)

= cost′(π)

≥ h(s, cost)

The constraint (9.10) is a special case of a post-hoc optimization constraint. Due to
the importance of PDB heuristics, we give a separate definition for them:

Definition 9.5 (PDB constraint). Let P be a pattern for a planning task with cost func-
tion cost. Further, let costP be the cost function with costP (o) = 0 for all operators o
that do not affect P , and costP (o) = cost(o) for all other operators. The PDB constraint
cPDB
s,P is the post-hoc optimization constraint cpho

s,hP ,costP
.

The post-hoc optimization heuristic for a pattern collection C is hpho
C = hLP

{cPDB
s,P |P∈C}

.

Operator-counting heuristics with PDB constraints offer a new way of combining
heuristic estimates of a set of PDB heuristics. To analyze the connection to the canoni-
cal heuristic and optimal cost partitioning, we consider the dual of the operator-counting
LP with PDB constraints for a pattern collection C:

Minimize
∑
o∈O

cost(o)Counto subject to∑
o∈O

o affects P

cost(o)Counto ≥ hP (s) for all P ∈ C (9.11)

Counto ≥ 0 for all o ∈ O (9.12)

66

9.3. Post-hoc Optimization

The dual has a variable YP for each constraint of type (9.11) and one constraint for each
operator:

Maximize
∑
P∈C

YPh
P (s) subject to∑

P∈C
o affects P

cost(o)YP ≤ cost(o) for all o ∈ O (9.13)

YP ≥ 0 for all P ∈ C (9.14)

A solution f of this LP is a non-negative cost partitioning into cost functions costP for
each pattern P where costP (o) = 0 if o does not affect P and costP (o) = cost(o)f(YP)
otherwise. That is, the costs of all relevant operators are scaled down by a factor that
only depends on the pattern. The constraints (9.13) guarantee that the cost partitioning
property is satisfied. Since this is a non-negative cost partitioning the resulting heuristic
is dominated by hOCP+.

On the other hand, it is easy to see that the heuristic dominates the canonical heuristic
for the same pattern collection: let Amax be the additive set for which the canonical
heuristic achieves its maximum and let f be the assignment with f(YP) = [P ∈ Amax].
Since the patterns in Amax are additive, f satisfies all constraints and the value of f
is exactly hcanon

C =
∑

P∈Amax hP . The optimal objective value of the LP is at least as
high, so the post-hoc optimization heuristic dominates the canonical heuristic. If the
variables YP are restricted to be binary variables, the dual LP exactly describes the
canonical heuristic. An optimal solution f then selects a set of heuristics (those with
f(Yi) = 1) and adds their heuristic values. The cost partitioning constraint ensures
additivity in this case.

The following LP shows the differences between maximization, the canonical heuris-
tic, post-hoc optimization and cost partitioning:

Maximize
∑
P∈C

hP (s,CostP) subject to∑
P∈C

CostPo ≤ cost(o) for all o ∈ O (9.15)

CostPo ≥ 0 for all o ∈ O and P ∈ C (9.16)

CostPo =

{
cost(o)YP if o affects P
0 otherwise

for all o ∈ O and P ∈ C (9.17)

YP ∈ {0, 1} for all P ∈ C (9.18)∑
P∈C

YP = 1 (9.19)

The LP with just constraint (9.15) is the LP for optimal general operator cost partition-
ing over the projection heuristics (hOCP

C). Adding constraint (9.16) then requires the

67

9. Operator-Counting Constraints

cost functions to be non-negative (hOCP+
C). When constraint (9.17) is also added, the re-

sulting LP combines the estimate with post-hoc optimization (hpho
C). Constraint (9.18)

requires that the factors used by post-hoc optimization are binary, so the MIP for
constraints (9.15)–(9.18) computes the canonical heuristic (hcanon

C). Finally, with con-
straint (9.19) only one factor can be 1, so using all constraints amounts to maximiza-
tion.

9.4. Net Change
The next type of operator-counting constraint we want to introduce here is related to a
heuristic originally introduced as order-relaxed heuristic (van den Briel et al., 2007).
It was later independently derived by Bonet (2013) as the state equation of a Petri net
related to the planning task. He called it the state equation heuristic hSEQ. Here, we
present the general ideas behind hSEQ again by working on the planning task directly,
without the translation to Petri nets. This will not only lead us to a deeper understanding
but also to a wider class of constraints. In this section we assume planning tasks are in
transition normal form (see Section 2.4) to simplify the presentation. Our definitions
can be generalized to SAS+ tasks, but we show in Appendix B.1 that the constraint
for a general task Π are identical to the constraints introduced here for the transition
normalization of Π. Considering only tasks in TNF is therefore no restriction.

We define the net change of an atom 〈V, v〉 from a state s to a state s′ as the change
of its truth value, where 1 means that the atom becomes true, 0 that it is unchanged,
and −1 that it becomes false.

Definition 9.6 (net change). The net change of an atom 〈V, v〉 from a state s to a state
s′ is

netchanges→s
′

〈V,v〉 =

1 if s[V] 6= v and s′[V] = v

−1 if s[V] = v and s′[V] 6= v

0 otherwise

= [s′[V] = v]− [s[V] = v].

We say that an operator o applied in state s produces an atom 〈V, v〉 if s[V] 6= v and
sJoK[V] = v and that it consumes the atom if s[V] = v and sJoK[V] 6= v. For tasks in
TNF it is easy to decide whether an operator produces or consumes an atom and this is
independent of the state in which the operator is applied. Each operator o produces all
atoms in eff (o) \ pre(o) and consumes the atoms in pre(o) \ eff (o). All other atoms
(including the atoms in pre(o) ∩ eff (o)) are not modified by o. Obviously, the net
change of the atom from state s to the successor state sJoK is 1 if o produces the atom,
−1 if it consumes it and 0 otherwise. We would like to retain this more operator-centric
view:

68

9.4. Net Change

Definition 9.7 (induced net change). Let o be an operator and π = 〈o1, . . . , on〉 an
operator sequence such that o and π are applicable in a state s. The net change that o
induces for atom 〈V, v〉 is

netchange(o)〈V,v〉 =

1 if 〈V, v〉 ∈ eff (o) \ pre(o)

−1 if 〈V, v〉 ∈ pre(o) \ eff (o)

0 otherwise.

The accumulated net change induced by sequence π is

netchange(π)〈V,v〉 =
n∑
i=1

netchange(oi)〈V,v〉 .

It is obvious that we do not need to consider the intermediate states of the application
of an operator sequence π but can directly compare the initial and the resulting state:

Proposition 9.2. When executing an operator sequence π in a state s the net change
from s to the resulting state sJπK is the accumulated net change induced by π:

netchanges→sJπK
〈V,v〉 = netchange(π)〈V,v〉 .

We would like to use this information to derive operator-counting constraints. Since
there is a single goal state for tasks in TNF, Proposition 9.2 implies that every plan π
induces the accumulated net change netchangesI→s?

〈V,v〉 = [s?[V] = v]−[sI[V] = v]. Using
the definitions above, we can rewrite the left-hand side of this equation as follows:

netchangesI→s?
〈V,v〉 = netchange(π)〈V,v〉

=
n∑
i=1

netchange(oi)〈V,v〉

=
n∑
i=1

[〈V, v〉 ∈ eff (oi) \ pre(oi)]−
n∑
i=1

[〈V, v〉 ∈ pre(oi) \ eff (oi)]

=
n∑
i=1

[〈V, v〉 ∈ eff (oi)]−
n∑
i=1

[〈V, v〉 ∈ pre(oi)]

=
∑
o∈O

〈V,v〉∈eff (o)

occurπ(o) −
∑
o∈O

〈V,v〉∈pre(o)

occurπ(o)

We define two operator-counting constraints based on the derivation above. It might
be surprising that we treat the equation as two inequalities, but this allows us more
freedom in their combination which turns out to be useful in this case.

69

9. Operator-Counting Constraints

Definition 9.8 (net change constraint). Let Π = 〈V ,O, sI, s?, cost〉 be a planning task
in TNF and s one of its states. For an atom 〈V, v〉 over V the lower bound net change
constraint cncl

s,〈V,v〉 for atom 〈V, v〉 and state s is the constraint∑
o∈O

〈V,v〉∈eff (o)

Counto −
∑
o∈O

〈V,v〉∈pre(o)

Counto ≥ [s?[V] = v]− [sI[V] = v]

and the upper bound net change constraint cncu
s,〈V,v〉 is the constraint∑

o∈O
〈V,v〉∈eff (o)

Counto −
∑
o∈O

〈V,v〉∈pre(o)

Counto ≤ [s?[V] = v]− [sI[V] = v].

The state equation heuristic (Bonet, 2013) is defined via an LP that directly fits our
framework. It uses one variable Xo for each operator o and minimizes the same cost
function as an operator-counting heuristic.

Definition 9.9 (hSEQ, Bonet, 2013). Let Π = 〈V ,O, sI, s?, cost〉 be a planning task in
TNF with atoms A. The state equation heuristic hSEQ maps each state s to the optimal
objective value of the following LP or to∞ if the LP is infeasible.3

Minimize
∑
o∈O

cost(o)Xo subject to∑
o∈O

ao,〈V,v〉Xo ≥ ms?,〈V,v〉 −ms,〈V,v〉 for all 〈V, v〉 ∈ A

where ms,〈V,v〉 = [s[V] = v] and ao,〈V,v〉 = [〈V, v〉 ∈ eff (o)] − [〈V, v〉 ∈ pre(o)] are
derived from the state markings and the incidence matrix of the Petri net associated
with Π.

A close look at the constraints reveals they are lower bound net change constraints.
The variable Xo for operator o occurs in the constraint for atom 〈V, v〉 with the coeffi-
cient −netchange(o)〈V,v〉.

Proposition 9.3. For state s, let C(s) denote the set of lower bound net change con-
straints for s and all atoms. Then the state equation heuristic hSEQ equals the LP
heuristic hLP

C .

Bonet also suggests a safety-based improvement and a landmark-based improvement
of hSEQ. A variable V is called safe if all operators that affect V also have a precondition
on V . For tasks in TNF, all variables are safe. For atoms of safe variables the constraints
in the LP of hSEQ can be tightened to equations.

3Bonet’s definition includes rounding up the optimal objective value. Since operator costs are natural
numbers, this can be done with any admissible heuristic function (just like maximizing with 0). Here,
we view rounding as an optimization, not as part of the definition because this simplifies reasoning
about the heuristic. In our implementation, we use h′ = max(dhe, 0) for all heuristics h.

70

9.5. Prevail Conditions

Proposition 9.4. The safety-based improvement of hSEQ corresponds to extending each
set C(s) with the upper bound net change constraints for s and all atoms of safe vari-
ables. The landmark-based improvement of hSEQ corresponds to extending C(s) with
the landmark constraints for the given landmarks.

9.5. Prevail Conditions
Net change constraints ignore atoms that are required but not modified by an opera-
tor. The coefficients of these so-called prevail conditions cancel out in the constraints.
Van den Briel et al. (2007) suggest handling prevail conditions with constraints that fit
the operator-counting framework. They require that a used prevail condition must be
initially true or be made true by some operator application:

Definition 9.10 (positive prevail constraint). Let Π be a planning task and s one of its
states. Let o be an operator of Π with a prevail condition on atom 〈V, v〉. The positive
prevail constraint for o, 〈V, v〉, and s is∑

o′∈O\{o}
〈V,v〉∈eff (o′)

Counto′ ≥ 1/M Counto − [s[V] = v].

where M is a constant large enough to guarantee 0 < 1/M Counto ≤ 1 if Counto > 0.

Note that the constraint is trivially satisfied if s[V] = v, so one could in practice
simply omit it from the linear program if the prevail condition is already satisfied in s.
The constraint is also trivially satisfied if o is not used. In other cases the constraint
implies that at least one operator o′ that adds the prevail condition has a positive count.
Since using o is only possible if the prevail condition is added by some operator, positive
prevail constraints are operator-counting constraints.

In a MIP positive prevail constraints imply that an operator that adds the prevail
condition has a count of at least 1. However, constraints that are disabled by a large
constant in some situations (so-called big-M constraints) are notoriously weak in the
LP-relaxation (Camm, Raturi, and Tsubakitani, 1990).

We can additionally define constraints that require that if a prevail condition is used
in a plan but the atom must be false in the goal then it must be consumed at some point:

Definition 9.11 (negative prevail constraint). Let Π be a planning task with goal s?.
Let o be an operator of Π with a prevail condition on atom 〈V, v〉. The negative prevail
constraint for o and 〈V, v〉 is∑

o′∈O
〈V,v′〉∈eff (o′)

v′ 6=v

Counto′ ≥ 1/M Counto − [s?[V] = v′ 6= v]

where M is a constant large enough to guarantee 0 < 1/M Counto ≤ 1 if Counto > 0.

71

9. Operator-Counting Constraints

9.6. Network Flow
The final type of operator-counting constraints we introduce here is based on network
flow in abstract transition systems. The state equation heuristic has the same model as
the order-relaxed heuristic suggested by van den Briel et al. (2007). The latter is derived
from network flows in domain transition graphs (DTGs) which are closely related to
atomic projections. The network flow constraints we introduce here can thus be seen
as a generalization of net change constraints and the state equation heuristic. We will
explore this connection in more detail in Section 10.4, but first we introduce network
flow and the constraints formally. For this analysis, we again assume that the tasks are
in TNF. In Appendix B.2 we discuss flow constraints for general SAS+ tasks.

Consider a transition system TS = 〈S, T , sI, {s?}〉 with a single goal state and tran-
sition labelsO. For a state s ∈ S we write inTS(s) and outTS(s) for the set of transitions
that end and start in s, and write transTS(o) to denote the set of transitions labeled
with o. A flow in TS maps each transition t to a non-negative real number called the
flow along t, such that the total flow along incoming transitions matches the total flow
along outgoing transitions in each node, except at the initial and goal nodes. The cost
of a flow is the summed cost of each transition multiplied by its flow. As we want to use
the cost of a flow in the context of general cost partitioning, we allow the cost function
to take all real values.

The following LP is the standard formulation of a minimum-cost flow problem that
“moves” one unit of flow from the source node sI to the sink node s? in TS:

Minimize
∑
o∈O

∑
t∈transTS(o)

cost(o)Countt subject to∑
t∈inTS(s)

Countt −
∑

t∈outTS(s)

Countt = [s = s?]− [s = sI] for all s ∈ S (9.20)

Countt ≥ 0 for all t ∈ T (9.21)

where [s = s?]− [s = sI] represents the amount of flow “consumed” at state s; i.e. one
unit produced at sI, one unit consumed at s?, and zero units at other states. In this LP,
the flow along a transition t is denoted by Countt.

We call this LP the flow model for TS and sI, and call the constraint (9.20) the flow
balance equation for s. Flow balance equations are very similar to net change con-
straints, but there are two important differences: firstly, flow balance equations consider
abstract states and transitions, whereas net change constraints consider atoms and oper-
ators. Secondly, and more fundamentally, flow balance equations use one LP variable
for each abstract transition, while net change constraints only use one LP variable for
each operator. We analyze the differences between the two constraints in Section 10.4.

It can be shown that the flow model is feasible iff there is a path from sI to s? in
TS (Korte and Vygen, 2001). If costs are non-negative, feasible solutions always have
bounded cost, but if the LP is feasible and there is a cycle of transitions in TS with

72

9.6. Network Flow

negative total cost (not necessarily connected to the initial or goal state), the LP is
unbounded and its value is −∞ because an unbounded amount of flow may circulate
through the negative cost cycle.

Definition 9.12 (flow heuristic). Let α be an abstraction of a TNF planning task Π.
The flow heuristic fα maps each state s of Π to the optimal objective value of the flow
model for the transition system TSα of α and s, or to∞ if the model is infeasible.

The flow heuristic fα is closely related to the abstraction heuristic hα:

Proposition 9.5. Let α be an abstraction of a TNF planning task Π and costα : O → R
a general cost function. Then, fα(s, costα) ≤ hα(s, costα) for all states s with equality
if there are no dead states in TSα.

Proof: As mentioned before, hα(s, costα) =∞ iff there is no path in TSα from α(s) to
α(s?) iff fα(s, costα) =∞.

Assume now that hα(s, costα) <∞. For a path in TSα from α(s) to α(s?) with cost c,
there is a flow with the same cost. Therefore, fα(s, costα) ≤ hα(s, costα) (this includes
the case where a negative cost cycle occurs on an alive state and hα = fα = −∞).

If hα(s, costα) is finite and there are no dead states in TSα, no negative cost cycles
exist in TSα and thus fα(s, costα) is also finite. The flow along all transitions may be
assumed to be integral (Korte and Vygen, 2001). This flow moves one unit from α(s)
to α(s?) along a single minimum cost path. Therefore, hα(s, costα) = fα(s, costα). �

The flow heuristic can be seen as an operator-counting heuristic. Indeed, it is enough
to modify the flow model by adding the operator-counting variables Counto for each
operator o, replacing the objective function by

∑
o∈O cost(o)Counto, and adding con-

straints
∑

t∈transTS(o) Countt = Counto for each operator o. We call each such constraint
the strong linking constraint for o. Together, flow balance equations and strong linking
constraints form an operator-counting constraint.

Definition 9.13 (flow constraint). Let α be an abstraction of a TNF planning task Π
and let TSα = 〈Sα, T α, sαI , {sα?}〉 be its abstract transition system. For a state s of
Π, the flow constraint cflow

s,α for α and s uses non-negative transition-counting variables
Countt for every abstract transition t ∈ T α as auxiliary variables. It consists of the
flow balance equation for each abstract state s′ ∈ Sα:∑

t∈inTSα (s′)

Countt −
∑

t∈outTSα (s′)

Countt = [s′ = sα?]− [s′ = α(s)]

and a strong linking constraint for each operator o ∈ O:∑
t∈transTSα (o)

Countt = Counto.

73

9. Operator-Counting Constraints

Every s-plan of Π induces a path from α(s) to sα? in TSα, which in turn induces a
valid flow in TSα with the same number of operator occurrences. Thus, cflow

s,α is indeed
an operator-counting constraint. The LP heuristic for these constraints corresponds to
the flow heuristic fα:

Proposition 9.6. Let α be an abstraction of a TNF planning task Π and s one of its
states. Then,

hLP
cflow
s,α

(s) = fα(s).

Proof: The model of the operator-counting LP heuristic hLP
cflow
s,α

is just a slight reformu-
lation of the flow model for TSα and s as mentioned above. Both models have the same
optimal objective value and their solutions are in 1:1 correspondence. �

74

10. Theoretical Analysis
In the previous chapter we introduced several types of operator-counting constraints,
demonstrating that heuristics of different origins fit the framework. On the one hand
this offers a way to combine heuristics in a smarter way than using their maximum. On
the other hand, it allows us to reason about heuristics in a common language. In this
chapter, we provide examples of such reasoning and analyze the heuristic combination
in more detail.

We first look deeper into the combination of multiple operator-counting constraints
and prove an interesting connection to cost partitioning. This connection offers new
perspectives on known heuristics, which we discuss next. We then show that certain
inequalities of hSEQ are redundant and how flow heuristics are connected to this. Finally,
we explore the limits of operator counting and prove that critical path heuristics can
not be expressed with operator-counting constraints in a useful way. This answers the
question why we did not introduce an operator-counting constraint based on them in
Chapter 9.

10.1. Connection to General Cost Partitioning
In Part I we saw that cost partitioning can be used to admissibly combine heuristic
functions. Operator-counting heuristics also allow such a heuristic combination, as we
saw in Chapter 8. Both techniques can have synergy effects, where the combination
results in a higher heuristic value than the maximum of its components, but how are
they related to each other? We now answer that question for operator-counting LP
heuristics and general operator cost partitioning.

For a given constraint set, the value of an operator-counting heuristic depends only
on the operator costs. We make this explicit by writing hLP

C (cost). Given a constraint
set of operator-counting constraints, its LP heuristic estimate equals the optimal general
operator cost partitioning over the LP heuristics for each individual constraint:

Theorem 10.1. Let C be a constraint set for a state s. Then

hLP
C (cost) = hOCP

{hLP
{C}|C∈C}

(s).

Proof sketch: Operator-counting constraints may use auxiliary variables. While these
do not make the proof much harder, they require more complex notation and generally

75

10. Theoretical Analysis

distract from the core idea of the proof. We thus ignore them here and defer the full
proof to Appendix A.

The linear program solved by hLP
C (cost) can be written in matrix notation as follows.

Minimize
∑
o∈O

cost(o)Counto subject to

count-coeffsCCount ≥ boundsC for C ∈ C
Count ≥ 0

Here, count-coeffsC is the matrix of coefficients and boundsC is the column vector of
bounds used by operator-counting constraint C.

In this linear program, we introduce local copies of the operator-counting variables,
as new non-negative variables LCountCo and new equations LCountCo = Counto for
every C ∈ C and o ∈ O. Replacing every occurrence of Counto in the remaining
inequalities by LCountCo does not influence the optimal objective value.

Minimize
∑
o∈O

cost(o)Counto subject to

count-coeffsCLCount ≥ boundsC for C ∈ C (10.1)

Count− LCountC = 0 for C ∈ C (10.2)

LCountC ≥ 0 for C ∈ C (10.3)
Count ≥ 0 (10.4)

The dual of this LP has dual variables for each constraint 10.1 which we call DualC

and dual variables for each constraint 10.2 which we call CostC :

Maximize
∑
C∈C

boundsC
>
DualC subject to

count-coeffsC
>
DualC ≤ CostC for C ∈ C∑

C∈C

CostCo ≤ cost(o) for o ∈ O

DualC ≥ 0 for C ∈ C

This is an optimal general operator cost partitioning over the heuristics hC where hC

under a cost function costC is defined as the optimal objective value of the following
LP:

Maximize boundsC
>
DualC subject to

count-coeffsC
>
DualC ≤ costC

DualC ≥ 0

76

10.1. Connection to General Cost Partitioning

The dual of this LP is exactly the LP solved by hLP
{C}(costC). Therefore, hC = hLP

{C}
and hLP

C (cost) = hOCP
{hC |C∈C}(s) = hOCP

{hLP
{C}|C∈C}

(s). �

The proof is constructive in the sense that it shows a way to compute an optimal cost
partitioning for the given state from a dual solution of the operator-counting LP.

Theorem 10.2. Let C be a constraint set for a state s. Let d be a dual solution of
LPC(cost). Then the general cost partitioning

costC(o) = count-coeffsC
>
d(DualC) for C ∈ C

is optimal for the heuristics hLP
{C} for C ∈ C in state s.

Proof: Every optimal solution of the LP in the proof for Theorem 10.1 contains an
optimal cost partition in the variables CostCo . If we take an optimal solution and replace
the value of CostCo with count-coeffsC

>
d(DualC), no value of CostCo can increase. All

inequalities are still satisfied and the optimal objective value does not change. �

Theorems 10.1 and 10.2 establish a connection between cost partitioning and opera-
tor counting. This connection can be used in two ways. First, it gives an interpretation
of operator-counting heuristics that use constraints from different sources. For exam-
ple, an operator-counting LP heuristic using lower bound net change constraints for
all atoms and delete-relaxation constraints can be seen as combining hSEQ and the LP
relaxation of h+ with optimal operator cost partitioning. A second way to use the the-
orem is to analyze existing heuristics that can be expressed in the operator-counting
framework and gain new insight by interpreting them as a cost partitioning of several
component heuristics. For such an analysis, we consider a constraint set C for some
state and find an interpretation of the heuristics hLP

{C}(cost′) for all C ∈ C, i.e. the
operator-counting LP heuristics for individual constraints under a general cost function
cost′. Theorem 10.1 then allows us to interpret hLP

C as the optimal cost partitioning of
the component heuristics.

An analysis with Theorem 10.1 gives a new perspective on heuristics that are equiv-
alent to an operator-counting LP heuristic over multiple operator-counting constraints,
such as the state equation heuristic. It does not help if the heuristic is based on a single
operator-counting constraint. The delete-relaxation heuristic h+, for example, can be
expressed as the operator-counting MIP heuristic over the delete-relaxation constraint.
The LP relaxation could be interpreted with Theorem 10.1 but the heuristic only uses
a single operator-counting constraint. Even though it consists of several inequalities,
the constraint cannot be easily split into more than one operator-counting constraint
because such constraints may not share auxiliary variables. For the same reason, flow
constraints cannot be split into smaller parts.

77

10. Theoretical Analysis

10.2. Analyzing Landmark Heuristics
Let us first consider landmark constraints. If L is a landmark for state s, the operator-
counting LP for the landmark constraint clm

s,L under a cost function cost′ is:

Minimize
∑
o∈O

cost′(o)Counto subject to∑
o∈L

Counto ≥ 1

For every choice of L and cost′ this LP has the optimal objective value mino∈L cost′(o).
Since this is the cost of L under cost′, we can use Theorem 10.1 to show the following
proposition.

Proposition 10.1. Let L be a set of landmarks for a state s and let C be the constraint
set {clm

s,L | L ∈ L}. Then hLP
C is the optimal general operator cost partitioning over the

landmarks in L.

We already mentioned a similar result by Bonet and Helmert (2010) for non-negative
cost partitioning. Together with the proposition above, this implies the following corol-
lary.

Corollary 10.1. Allowing negative costs in the cost partitioning of landmarks cannot
increase the heuristic value.

An alternative way to see this is to observe that all coefficients in the operator-
counting LP are non-negative. According to Theorem 10.2 an optimal cost partitioning
can be computed as the matrix product of a dual solution and the coefficients. The dual
variables can only take non-negative values, so if all coefficients are also non-negative,
there has to be a non-negative cost partitioning that is also optimal among general cost
partitionings. For the same reason, general costs cannot increase the heuristic value if
only post-hoc optimization constraints are used.

10.3. Analyzing the State Equation Heuristic as a
Net Change Heuristic

We now turn to the state equation heuristic hSEQ, which can be approached from two
directions. As shown in Proposition 9.3, the state equation heuristic is the operator-
counting LP heuristic for the set of lower bound net change constraints for all atoms.
We use this connection to analyze the safety-based improvement next. Afterwards, we
explore an alternative view on hSEQ via flow heuristics.

In the paper that introduced the state equation heuristic, Bonet (2013) also suggested
the previously-mentioned extension exploiting safe state variables and reported a (mod-
est) improvement in performance when using it. From Proposition 9.4 we know that

78

10.3. Analyzing the State Equation Heuristic as a Net Change Heuristic

the safety-based extension corresponds to adding upper bound net change constraints
to the LP. We now show that these constraints cannot improve the heuristic beyond the
basic hSEQ estimate.

The proof is limited to tasks in TNF but the results also hold for unrestricted SAS+

tasks, where the definitions of net change constraints have to be suitably extended.
As this generalization complicates the presentation without adding much insight, we
discuss it in Appendix B.1. To simplify notation, we introduce functions for both sides
of a net change constraint. For a planning task Π = 〈V ,O, sI, s?, cost〉 in TNF, we
define:

lhs〈V,v〉(Count) =
∑
o∈O

〈V,v〉∈eff (o)

Counto −
∑
o∈O

〈V,v〉∈pre(o)

Counto

rhs〈V,v〉 = [s?[V] = v]− [sI[V] = v].

The the lower bound net change constraints for 〈V, v〉 is lhs〈V,v〉(Count) ≥ rhs〈V,v〉 and
the upper bound net change constraint is lhs〈V,v〉(Count) ≤ rhs〈V,v〉.

We first consider the left-hand side of a net change constraint and show that the total
net change induced by a plan over all values of a variable is 0. Intuitively, this is the
case because, whenever one value is produced, another value of the same variable is
consumed.

Operators in TNF mention the same variables in their preconditions and effects, and
since pre(o) and eff (o) are partial states, they cannot contain two atoms with variable
V . We thus have∑

v∈dom(V)

∑
o∈O

〈V,v〉∈eff (o)

Counto =
∑
o∈O

V ∈vars(o)

Counto =
∑

v∈dom(V)

∑
o∈O

〈V,v〉∈pre(o)

Counto.

This implies for all variables V and all values of Count∑
v∈dom(V)

lhs〈V,v〉(Count) = 0. (10.5)

Now consider the right-hand side of the constraint. In TNF there is exactly one initial
and one goal state, so ∑

v∈dom(V)

[s?[V] = v] = 1 =
∑

v∈dom(V)

[sI[V] = v].

This implies ∑
v∈dom(V)

rhs〈V,v〉 = 0. (10.6)

79

10. Theoretical Analysis

Proposition 10.2. Let Π be a TNF planning task and 〈V, v〉 one of its atoms. Then∑
v′∈dom(V)
v′ 6=v

lhs〈V,v′〉(Count) ≥
∑

v′∈dom(V)
v′ 6=v

rhs〈V,v′〉 iff lhs〈V,v〉(Count) ≤ rhs〈V,v〉.

Proof: The statement follows from (10.5) and (10.6) with basic arithmetic. �

Theorem 10.3. Let Π be a TNF planning task and V one of its variables. Every feasible
solution of the set of all lower bound net change constraints for atoms of V is also
feasible for the set of all upper bound net change constraints for atoms of V .

Proof: In general, any solution of a set of constraints cix ≥ bi for i ∈ I also satisfies
the constraint (

∑
i∈I ci)x ≥

∑
i∈I bi. Summing up all lower bound net change con-

straints for variable V and values dom(V) \ {v} in this way is equivalent to the upper
bound net change constraint for 〈V, v〉 according to Proposition 10.2. �

This result challenges the safety-based improvement of the state equation heuristic.
The experimental benefit reported for the safety-based improvement must hence have a
different cause, such as faster heuristic computation or noise.

Corollary 10.2. The safety-based improvement of the state equation heuristic cannot
improve the heuristic estimates.

10.4. Analyzing the State Equation Heuristic as a
Flow Heuristic

The state equation heuristic hSEQ can be defined over flows in domain transition graphs
(DTGs) (van den Briel et al., 2007; Bonet and van den Briel, 2014). A DTG for a
variable V in a TNF task is a directed graph with one node for every value of V and an
edge v o−→ v′ for every operator o with pre(o)[V] = v and eff (o)[V] = v′. The DTG
constraint for atom 〈V, v〉 is∑

v′
o−→v∈inDTG(v)

Counto −
∑

v
o−→v′∈outDTG(v)

Counto = [s?[V] = v]− [sI[V] = v].

It is easy to see that the DTG constraint for an atom is equivalent to the upper and
lower bound net change constraints for the atom. According to Proposition 9.3, the
state equation heuristic can then be seen as the operator-counting LP heuristic with
DTG constraints for all atoms. The definition by Bonet and van den Briel (2014) uses
inequalities, but with safety-based improvement all of them turn into equations in TNF
tasks.

80

10.4. Analyzing the State Equation Heuristic as a Flow Heuristic

An operator-counting constraint can consist of any number of linear inequalities. For
our purposes, it is useful to group the DTG constraint for all atoms that belong to the
same state variable V into one constraint CV . We prefer the representation based on
DTGs and with the safety-based improvement here because it is closer to flow con-
straints. Extensions to hSEQ consider additional constraints, which we will describe as
they become relevant.

As a reminder, cflow
s,α , the flow constraint for an abstraction α and state s consists of

the flow balance equation for each abstract state s′ ∈ Sα of the transition system TSα:∑
t∈inTSα (s′)

Countt −
∑

t∈outTSα (s′)

Countt = [s′ = sα?]− [s′ = α(s)]

and a strong linking constraint for each operator o ∈ O:∑
t∈transTSα (o)

Countt = Counto.

We will show that all extensions of the state equation heuristic can be understood as
simplified versions of this model. This is interesting because it shows a connection to
cost-partitioned abstractions.

Proposition 10.3. Let A be a set of abstractions of a planning task and for every ab-
straction α ∈ A let Cα be the function that maps every state s to {cflow

s,α } . Then,

hLP
{Cα|α∈A} = hOCP

{fα|α∈A} ≤ hOCP
{hα|α∈A}

with equality if, for all α ∈ A, TSα contains no dead state.

Proof: With Proposition 9.6 we can interpret hLP
{Cα} as fα and Theorem 10.1 then shows

that the LP heuristic computes an optimal cost partitioning over such flow heuristics.
With Proposition 9.5 we get the connection to cost-partitioned abstraction heuristics. �

To see that hOCP
{fα|α∈A} may indeed lead to a lower value in the presence of dead states,

consider the task in Figure 10.1 (repeated from Section 5.1). The task has a single
operator o and two projections α1 and α2 to V1 and V2. In TSα1 o induces a transition
from the initial state to the goal. In TSα2 the initial and goal state are the same, and o
induces a self-loop on an unreachable state. For an arbitrarily large M , let cost1(o) =
M and cost2(o) = −M . The shortest paths under these cost functions have cost M and
0, so hOCP

{hα|α∈A} = ∞. The minimal flows have cost M and −∞, which is not optimal.
The best cost partitioning for the flows uses costs of 1 in α1 and 0 in α2 for a total value
of hOCP

{fα|α∈A} = 1.

10.4.1. Improving the Flow Constraint
We now show how the flow constraint cflow

s,α can be simplified and strengthened by in-
troducing a set of transformation rules. Using them, we show how the state equation
heuristic relates to an optimal cost partitioning over certain abstractions.

81

10. Theoretical Analysis

00

01

10

11

0 1

0

1

ΠV1

ΠV2
Π = ΠV1 ⊗ ΠV2

M

−M

Figure 10.1: Example task Π with binary variables V1 and V2. Above and to the left
of the original task we show the projections α1 and α2 to V1 and V2. An
optimal cost partitioning over flow heuristics has a lower value than an
optimal cost partitioning over abstraction heuristics for the same abstrac-
tions: hOCP

{fα|α∈A} = 1 <∞ = hOCP
{hα|α∈A}.

Dead States

Dead states cannot be part of a shortest path in any abstraction. Removing such states
is an obvious step.

Rule 1. Remove the flow balance equations for all dead states and all transition-
counting variables for transitions adjacent to a dead state. This may strengthen the
flow constraint.

In the context of operator counting, a flow constraint strengthened in this way be-
haves like a shortest path model. To show this, we have to consider it under general
cost functions.

Proposition 10.4. Let α be an abstraction of a TNF planning task Π. For a state s let
C(s) be the constraint cflow

s,α strengthened with Rule 1. Then hLP
C (s, cost′) = hα(s, cost′)

for cost functions cost′ : O → R.

Proof: Let TS′ be the transition system TSα without transitions adjacent to dead states.
Let f ′ and h′ be the cost of a minimal flow and a shortest path from α(s) to α(s?) in TS′

under cost function cost′. Proposition 9.6 shows hLP
C (s, cost′) = f ′. Because TSα and

TS′ have the same goal paths, h′ = hα(s, cost′). Proposition 9.5 establishes the missing
link f ′ = h′. �

82

10.4. Analyzing the State Equation Heuristic as a Flow Heuristic

Operators Inducing a Single Transition

A common situation when considering small projections is that an operator only induces
a single transition. In this case the linking constraint

∑
t∈transTS(o) Countt = Counto

trivializes to Countto = Counto for some transition to. We can reduce the size of the
model by using Counto directly:

Rule 2. If an operator o only induces a single transition to in an abstraction, replace
Countto with Counto in all constraints. Then remove the linking constraint for o and
the variable Countto . This does not affect the solutions of operator-counting variables
in the flow constraint.

Self Loops

Self-looping transitions cancel out in flow balance equations because they are incoming
and outgoing transitions of the same state. Thus, their transition-counting variables
only occur in linking constraints. We can use different simplifications depending on
how many self-loops and state-changing transitions an operator o induces.

If o induces no state-changing transitions, its transition-counting variables only occur
in the linking constraint. But for every value of Counto the constraint can always be
satisfied by setting Countt to Counto for some transition t of o and to 0 for all others.

Rule 3. If an operator o induces at least one self-loop and no state-changing transition,
remove the linking constraint for o and all transition-counting variables for transitions
labeled with o. This does not affect the solutions of operator-counting variables in the
flow constraint.

DTG constraints for a variable V are based on the DTG of V , which only contains
transitions for operators that affect V . All other operators induce a self-loop on all
abstract states in the projection to V . Except for these self-loops the transition system
of the DTG matches that of a projection to V , so the following proposition is easy to
verify.

Proposition 10.5. The set CV of DTG constraints for all atoms of a variable V is
identical to cflow

s,α for the projection α on V simplified using Rules 2 and 3.

We can now interpret the operator-counting heuristic hLP
{Cv} that uses DTG constraints

for all atoms of only one variable.

Corollary 10.3. Let Π be a planning task and let V be one of its state variables. Let
hV denote the atomic abstraction heuristic for the projection α on {V }. If TSα contains
no dead states (i.e. every value is reachable in the projection to V and a goal value can
be reached from every value in the projection), then

hLP
{CV }(cost′) = hV (s, cost′)

83

10. Theoretical Analysis

The restriction to reachable and relevant values is no issue in practice, as unreachable
and irrelevant values can always be removed from a variable domain in a preprocessing
step without affecting plan existence.

We can now specify the connection between the state equation heuristic and abstrac-
tion heuristics more precisely:

Theorem 10.4. The state equation heuristic is the optimal general operator cost parti-
tioning of all atomic projections as long as no atomic projection contains a dead state,

hSEQ(s) = hOCP
{hV |V ∈V}(s).

Proof: We apply Theorem 10.1 with the set of constraints C = {CV | V ∈ V}.
Corollary 10.3 establishes the connection to projections and Proposition 9.3 shows that
hSEQ(s) = hLP

C (cost). �

This answers a question raised by Bonet (2013): how does hSEQ relate to the four
families of heuristics identified by Helmert and Domshlak (2009)? We now see that
it is a general operator cost partitioning over abstraction heuristics if dead values are
removed from variable domains. Without removing such values, it is a cost partitioning
over flow heuristics which are slightly weaker. We also note that with Theorem 10.2
we can extract an optimal cost partitioning from the dual solution of the LP for hSEQ.

With Rules 2 and 3 we can remove the flow constraint if an operator induces only
state-changing transitions or only self-loops. If o induces both self-loops and state-
changing transitions, then the linking constraint cannot be removed but it can be sim-
plified. We can think of the linking constraint as two inequalities

∑
t∈transTS(o) Countt ≤

Counto and
∑

t∈transTS(o) Countt ≥ Counto, where only one of them can be unsatisfied
at a time. The latter can always be satisfied if a transition to only occurs in the linking
constraint (i.e. if to is a self-loop) by setting Countto high enough. In the other inequal-
ity, there is no need to mention the counting variables for self-loops. Any solution that
assigns a positive flow to them still is a solution if their flow is reduced to 0.

Rule 4. If an operator o induces at least one self-loop and at least one state-changing
transition, replace the strong linking constraint for o with the weak linking constraint
for o: ∑

t∈transTS(o)
t is no self-loop

Countt ≤ Counto

and remove all transition-counting variables for self-loops labeled with o. This does
not affect the solutions of operator-counting variables in the flow constraint.

Bonet and van den Briel (2014) consider merging two variables X and Y into a new
variable Z (called the merge ofX and Y) and introducing constraints for the DTG of Z.
The DTG of Z is defined as the parallel composition (Dräger, Finkbeiner, and Podelski,
2006) of the DTGs of X and Y where states violating mutexes are removed. We want

84

10.4. Analyzing the State Equation Heuristic as a Flow Heuristic

to consider mutexes separately, so for now we assume that such states are not removed,
i.e. the nodes in the DTG of Z are dom(X) × dom(Y). Since both X and Y have a
goal value and are safe, Z also has a goal value and is safe, so the constraints have
the same bounds as in the single-variable case. The only difference is that an operator
can induce more than one transition in the DTG of Z. To accurately represent this in
the constraints, Bonet and van den Briel introduce an action copy for each transition
in the DTG and add a constraint to link them to the operator-counting variables. We
write the LP variable that counts occurrences of the action copy for transition t as the
transition-counting variable Countt. The constraint that links them to the operator-
counting variables then is the weak linking constraint and the constraints introduced for
the values of Z are the flow balance equations for the projection on {X, Y }.

We can see from Rules 3 and 4 that self-loops can be ignored or used to weaken
the linking constraint in some cases. However, the constraints generated by the state
equation heuristic when merging variables still differ from the flow constraints after
using these two rules. Operators inducing only state-changing transitions use a strong
linking constraint in the flow constraints and a weak linking constraint in the model
of the state equation heuristic. Obviously, a strong linking constraint implies the weak
linking constraint. We have equivalence if we minimize

∑
o∈O cost(o)Counto, all costs

are non-negative, and we consider a single abstraction. However, in the context of
general cost partitioning, using the strong linking constraint can make a difference for
operators that cannot induce self-loops. The constraints for the merge of X and Y
in hSEQ can be strengthened by using strong linking constraints for such operators.
(Whether an operator only induces state-changing transitions in a projection can be
checked syntactically: an operator o should use a strong linking constraint iff there is
an affected variable V in the projection with pre(o)[V] 6= eff (o)[V].)

For example, consider a task with two operators {o1, o2} both with cost 1. Say a
merge of two variables implies that o1 has to be used exactly two times: Counto1 = 2.
Now consider a second merge where the DTG contains two paths from the initial state
to the goal: π1 = 〈o1〉 and π2 = 〈o1, o2, o1〉. With a weak linking constraint for o1

counting only the transitions of π1 satisfies all constraints for a total heuristic value
of 2. With a strong linking constraint, we are forced to consider only plans with two
transitions labeled with o1, e.g. π2. In this example, this implies that o2 is used as well,
which results in a heuristic value of at least 3.

Proposition 10.6. Let CX,Y be the constraints generated by hSEQ when merging vari-
ables X and Y , where weak linking constraints are replaced by strong linking con-
straints for operators that only induce state-changing transitions in the projection to
{X, Y }. Then CX,Y is cflow

s,α for the projection to {X, Y } simplified with Rules 3 and 4.

Mutex Information

Removing nodes that violate mutexes (Helmert, 2009; Alcázar and Torralba, 2015)
from abstractions is a well-known technique called constrained abstraction (Haslum,

85

10. Theoretical Analysis

Bonet, and Geffner, 2005). States violating a mutex condition are similar to unreach-
able states. While they can lie on a path in the abstraction, no concrete plan visits a
state that is abstracted to them. Removing them and their adjacent transitions cannot
decrease the heuristic value. The example after Proposition 10.3 can be adapted to show
that removing such states can strengthen the flow constraint by making the unreachable
state in the example reachable in the abstraction but mutex violating.

Rule 5. Remove the flow balance equations for all states that violate mutex conditions
and all transition-counting variables for adjacent transitions. This may strengthen the
flow constraint.

The result from Proposition 10.6 can be extended to using mutex information. After
merging variables X and Y into Z, the DTG of Z with mutexes removed is equal to the
constrained projection to {X, Y } except for self-loops of operators that do not mention
X and Y .

Proposition 10.7. Let CX,Ymutex be defined like CX,Y in Proposition 10.6 but with the state
equation heuristic’s extension to mutexes. Then CX,Ymutex is cflow

s,α for the constrained pro-
jection to {X, Y } simplified with Rules 3, 4, and 5.

Ignoring a Single Abstract State

In the flow constraint of any transition system TS, the flow balance equation for a single
state can be removed without affecting the set of solutions. In contrast to previous
rules, where states are removed from the transition system including all of their adjacent
transitions, here we only consider removing one of the flow balance equations. This
is a minor modification of the LP, and the simplification is not likely to result in a
performance boost in practice. However, on the theoretical side it allows us to ignore
certain parts of an abstraction, which is useful for the analysis of the final extension of
hSEQ, partial merges.

We show that the flow balance equation for a state d is redundant in the presence of
flow balance equations for all other states. The proof can be seen as a generalization of
the proof in Section 10.3 and follows a similar argument. Since every transition has to
start and end in some state we have

⋃
s∈S inTS(s) =

⋃
s∈S outTS(s). Thus, the sum over

the left-hand side of all flow balance equations except the one for d is:∑
s∈S\{d}

∑
t∈inTS(s)

Countt −
∑

s∈S\{d}

∑
t∈outTS(s)

Countt

=−
∑

t∈inTS(d)

Countt +
∑

t∈outTS(d)

Countt

Since flow balance is expressed with equations, the sum over their left-hand sides has

86

10.4. Analyzing the State Equation Heuristic as a Flow Heuristic

to equal the sum over their right-hand sides, which is:∑
s∈S\{d}

[s = s?]−
∑

s∈S\{d}

[s = sI] = −[d = s?] + [d = sI]

Multiplying both sides by −1 results in the flow balance equation for d.

Rule 6. Removing the flow balance equation for a single state from cflow
s,α does not influ-

ence the set of solutions.

We use this rule to analyze partial merges of variables X and Y , where only the flow
balance equations for a subset of values M ⊆ dom(X)×dom(Y) are part of the model.

Proposition 10.8. Let αX,YM be the abstraction with abstract states M ∪ {d} that maps
every state s to z = 〈s[X], s[Y]〉 if z ∈ M and to d otherwise. Let CX,YM be defined
like CX,Y in Proposition 10.6 but only considering merged values in M . Then CX,YM is
the constraint that results from simplifying cflow

s,αX,YM

with Rules 3 and 4, and then using
Rule 6 to remove the flow balance equation for d.

10.4.2. Strengthening the State Equation Heuristic
Proposition 10.8 suggests a clean way for generalizing partial merges beyond two vari-
ables: project the task to all involved variables, then abstract the projection further by
mapping all unrepresented abstract states to a new state d. The partial merge then is the
flow constraint for the resulting abstraction simplified with Rules 3 and 4, then using
Rule 6 to remove the constraint for d. Using Rules 1, 2, and 5 as well can strengthen
the model and reduce its size. Applying all rules results in the following improved
constraint:

Definition 10.1 (improved flow constraint). Let P ⊆ V be a set of variables and M a
set of partial states over P , i.e. vars(m) = P for m ∈ M . Let αPM be the abstraction
with abstract states M ∪ {d} that maps every state s to s|P if s|P ∈ M and to d
otherwise. Let TS be the abstract transition system of αPM with transitions adjacent to
dead and mutex violating states removed. The improved flow constraint for M , cflow+

s,M

consists of an improved flow balance equations and linking constraints.
For every m ∈M it contains the improved flow balance equation∑

t∈inTS(m)

var(t) −
∑

t∈outTS(m)

var(t) = [m = s
αPM
?]− [m = αPM(s)]

where var(t) = Counto if |transTS(o)| = 1 and Countt otherwise.
For each operator o ∈ O that has |transTS(o)| 6= 1 and induces no self-loops in TS it

contains a strong linking constraint∑
t∈transTS(o)

Countt = Counto.

87

10. Theoretical Analysis

For each operator o ∈ O that induces self-loops and state changing transitions in
TS it contains a weak linking constraint∑

t∈transTS(o)
t is no self-loop

Countt ≤ Counto.

An operator-counting LP heuristic over several improved flow constraints computes
the optimal general operator cost partitioning over the abstraction heuristics for the ab-
stractions αPM . If we use improved flow constraints with M = dom(V) for all variables
V , the resulting heuristic dominates the state equation heuristic. If we add improved
flow constraints for larger partial states, the resulting heuristic dominates the state equa-
tion heuristic where these partial states are represented as a partially merged value. In
both cases the model has the same size as that of the state equation heuristic and the
dominance is strict because of the strengthened linking constraints and removed dead
states.

10.5. Limits of Operator Counting

Every heuristic can be written as an operator-counting heuristic with the trivial con-
straint

∑
o∈O Countocost(o) ≥ h(s). However, this constraint does not add any addi-

tional information besides the heuristic value of h, i.e. the operator-counting LP heuris-
tic over several such constraints only computes their maximum. To take full advantage
of the operator-counting framework, we are interested in heuristics that can be rep-
resented with operator-counting constraints and are independent of the operator cost.
Here, we show that not all heuristics can be represented this way.

Definition 10.2 (expressible as operator-counting heuristics). Let Π be a planning task
and s one of its states. A function h that maps states and cost functions of Π to heuristic
estimates h(s, cost) ∈ R ∪ {−∞,∞} can be expressed with an LP operator-counting
heuristic in s if there is an operator-counting constraint C for s such that hLP

{C}(cost) =

h(s, cost) holds for all cost functions. It can be expressed with a MIP operator-counting
heuristic if hMIP

{C}(cost) = h(s, cost) holds for all cost functions.
The function h can be expressed as an LP/MIP operator-counting heuristic if it can

be expressed in this way in every state s.

The heuristics discussed earlier provide examples for heuristics that can be expressed
as LP and MIP operator-counting heuristics. For example, abstraction heuristics can be
expressed with improved flow constraints and landmark heuristics can be expressed
with landmark constraints. To show that not every heuristic can be expressed this way,
we prove a necessary property of such heuristics.

88

10.5. Limits of Operator Counting

Proposition 10.9. A function h that can be expressed as an LP or MIP operator-
counting heuristic in a state s is superadditive, i.e. for all cost functions cost1 and
cost2:

h(s, cost1 + cost2) ≥ h(s, cost1) + h(s, cost2).

(As before, we define sums involving ∞ as ∞, even if they also include −∞ but this
case can not occur here.)

Proof: Let h be a function that can be expressed as an LP or MIP operator-counting
heuristic in a state s with an operator-counting constraint C. Let SC be the set of
solutions of the operator-counting LP or MIP. We write the value of a solution f ∈ SC
under cost function cost as val(f, cost) =

∑
o∈O f(Counto)cost(o).

All three heuristic values are ∞ iff SC is empty and in this case the inequality is
satisfied. So assume no heuristic value is∞.

If h(s, cost1) = −∞ or h(s, cost2) = −∞, the inequality is trivially satisfied because
the right-hand side is −∞.

If h(s, cost1+cost2) = −∞, then there have to be solutions in SC with arbitrarily low
val(cost1 + cost2). As the value under the summed cost functions is the sum of values
under the individual cost functions val(f, cost1 + cost2) = val(f, cost1) + val(f, cost2),
this implies that val(f, cost1) or val(f, cost2) must achieve arbitrarily low values as
well. Thus, h(s, cost1) or h(s, cost2) must be −∞.

In case all heuristic values are finite, we use that the minimum over a sum is at least
as high as the sum over minima:

h(s, cost1 + cost2) = min
f∈SC

val(f, cost1 + cost2)

= min
f∈SC

(val(f, cost1) + val(f, cost2))

≥ min
f∈SC

val(f, cost1) + min
f∈SC

val(f, cost2)

= h(s, cost1) + h(s, cost2)

�

Landmark heuristics, abstraction heuristics and delete-relaxation heuristics can be
expressed with operator-counting constraints and cover three out of the four common
heuristic classes. The fourth class consists of critical path heuristics (Haslum and
Geffner, 2000), and they have been notably absent in the discussion so far. In par-
ticular this class includes the well-known heuristic hmax (Bonet and Geffner, 2001).
Unfortunately, they cannot be represented with operator counting.

The critical path heuristics hm are defined for tasks in the STRIPS formalism (Fikes
and Nilsson, 1971) instead of SAS+ tasks. For our purposes, the difference is not
important as the task used in the proof can be seen as a SAS+ and as a STRIPS task.
They estimate the cost to reach a set of atoms by the cost of the most expensive-to-reach
subset of size m. The cost of such subsets is defined by a system of equations. If all

89

10. Theoretical Analysis

atoms in the set are already true in the initial state, their cost is 0. Otherwise, their cost
is the cheapest way of reaching the regression of the set through an operator o plus the
cost of o.

Proposition 10.10. Critical path heuristics hm cannot be expressed as LP or MIP
operator-counting heuristics.

Proof: Consider a task with 2m binary variables that all have the value 0 in the initial
state and the value 1 in the goal state. For each variable, there exists one operator with
cost 1 that sets the variable from 0 to 1 without additional preconditions. Let cost1
be the functions that assigns a cost of 1 to the first m operators and a cost of 0 to the
other operators. Analogously, cost2 assigns a cost of 1 to the other m operators, so
cost1 + cost2 assigns a cost of 1 to all operators.

Now we have hm(sI, cost1) = hm(sI, cost2) = m but also hm(sI, cost1 + cost2) = m
because under all three cost functions, reaching the most expensive subset of m goal
conditions requires m operators with cost 1. This means that hm is not superadditive:

hm(sI, cost1 + cost2) = m < 2m = hm(sI, cost1) + hm(sI, cost2).

�

Intuitively, the necessary condition of superadditivity means that if a heuristic can
benefit from cost partitioning with itself then it cannot be expressed as an operator-
counting heuristic. We have already seen heuristics that can benefit from cost partition-
ing with other heuristics and can be expressed.

90

11. Experiments
We evaluate the different types of operator-counting techniques in two steps: first we
consider constraint groups of a single type, like landmark constraints, individually. Op-
erator counting offers an interesting way to combine different heuristics, so we next
investigate combinations of such constraint groups. For these experiments, we define
the following following groups for the different types of operator-counting constraints:

LMC Landmark constraints for all landmarks found by the LM-cut heuristic.

DEL, DELTR The delete-relaxation constraint and its time relaxation. The heuristic
hMIP

DEL is the delete-relaxation heuristic h+.

PHOk PDB constraints for all interesting patterns with up to k variables. The heuristic
hLP

PHOk is the post-hoc optimization heuristic hpho
Intk .

SEQ Lower bound net change constraints for all atoms. The heuristic hLP
SEQ is the

state equation heuristic hSEQ. We also consider extending this set with prevail
constraints and upper bound net change constraints.

FLOWk,FLOW+
k All (improved) flow constraints for projections to patterns of up to

k variables (Allk). Improved flow constraints are flow constraints simplified with
all our simplification rules. We also evaluate using only some of the rules to
measure their effect. The heuristic hLP

FLOW1
computes an optimal general operator

cost partitioning over atomic flow heuristics, and hLP
FLOW+

1

computes such a cost
partitioning over constrained atomic projections.

11.1. Individual Constraint Groups
To get an idea of the quality of the different constraint groups, we ran an A∗ search
with operator-counting MIP and LP heuristics using one of the above configurations at
a time. Experiments for flow constraints use the transition normalization of all tasks.
The results for FLOWC and FLOW+

C are therefore not directly comparable to the other
results and we discuss them separately. The resulting coverage for the remaining con-
straint groups is reported in Tables 11.1 and 11.2. Table 11.1 also shows the state-of-
the-art heuristic hLM-cut for comparison.

Optimal cost partitioning on LM-cut landmarks (hLP
LMC) leads to the highest coverage

of operator-counting LP heuristics with a clear lead over the state equation heuristic

91

11. Experiments

hLP

Year Domian hLM-cut LMC SEQ PHO1 PHO2 PHO3 DEL DELTR

2004 Airport (50) 28 28 21 23 26 14 11 11
2011 Barman (20) 4 4 4 4 4 0 0 0
2014 Barman (14) 0 0 0 0 0 0 0 0
2000 Blocks (35) 28 28 28 28 26 19 19 19
2014 ChildSnack (20) 0 0 0 0 0 0 0 0
2002 Depot (22) 7 7 7 7 7 4 2 2
2002 DriverLog (20) 13 13 12 12 13 12 10 10
2008 Elevators (30) 22 20 9 11 18 20 3 4
2011 Elevators (20) 18 16 7 9 15 16 1 1
2011 FloorTile (20) 7 6 4 2 2 2 2 2
2014 FloorTile (20) 6 5 2 0 0 0 0 0
2000/2 Freecell (80) 15 15 38 14 14 7 6 6
2014 GED (20) 15 15 13 15 15 15 7 7
2014 Grid (5) 2 2 1 1 2 2 1 1
1998 Gripper (20) 7 7 7 7 7 6 5 5
2014 Hiking (20) 9 9 9 11 11 9 5 5
2000 Logistics (28) 20 20 16 16 21 21 10 10
1998 Logistics (35) 6 6 3 4 5 5 2 2
2000 Miconic (150) 141 141 51 50 52 50 116 119
1998 Movie (30) 30 30 30 30 30 30 30 30
1998 Mprime (35) 22 22 20 22 21 19 8 8
1998 Mystery (30) 17 16 14 15 15 13 8 8
1998 NoMystery (20) 14 14 10 10 16 17 6 6
2006 Openstacks (30) 7 7 7 7 7 7 5 5
2008 Openstacks (30) 21 19 16 20 19 17 6 7
2011 Openstacks (20) 16 13 10 15 15 12 1 4
2014 Openstacks (20) 3 3 1 3 3 1 0 0
2008 ParcPrinter (30) 18 18 28 15 16 23 17 17
2011 ParcPrinter (20) 13 13 20 11 13 18 13 13
2011 Parking (20) 3 2 3 5 1 0 0 0
2014 Parking (20) 3 3 3 5 0 0 0 0
2006 Pathways (30) 5 5 4 4 4 4 4 4
2008 PegSolitaire (30) 28 27 28 27 27 26 18 20
2011 PegSolitaire (20) 18 17 18 17 17 16 5 8
2004 PipesWorld notankage (50) 17 17 15 17 15 11 8 8
2004 PipesWorld tankage (50) 12 11 11 10 9 6 5 5
2004 PSR small (50) 49 49 50 49 49 48 44 44
2002/4 Rovers (40) 8 7 6 6 7 7 4 5
2002 Satellite (36) 7 7 6 6 6 6 8 8
2008 Scanalyzer (30) 15 15 14 12 7 7 8 8
2011 Scanalyzer (20) 12 12 11 9 4 4 5 5
2008 Sokoban (30) 29 28 19 23 28 17 7 7
2011 Sokoban (20) 20 20 16 19 20 14 4 4
2006 Storage (30) 15 15 15 15 15 14 11 11
2014 Tetris (17) 6 5 12 5 3 1 1 1
2011 Tidybot (20) 14 14 6 12 13 13 1 1
2014 Tidybot (20) 8 8 0 4 6 7 0 0
2004 TPP (30) 7 6 8 6 6 6 5 5
2008 Transport (30) 11 11 11 11 11 11 6 6
2011 Transport (20) 6 6 6 6 6 7 1 2
2014 Transport (20) 6 6 4 4 4 6 1 1
2004 Trucks (30) 10 10 9 6 7 7 3 3
2011 VisitAll (20) 11 10 17 16 16 15 15 15
2014 VisitAll (20) 5 5 13 12 11 9 10 10
2008 WoodWorking (30) 17 16 13 10 15 15 7 7
2011 WoodWorking (20) 12 11 8 5 10 10 2 2
2002 Zenotravel (20) 13 13 9 9 11 11 8 8

Sum (1667) 876 853 723 692 721 657 485 500

Table 11.1: Coverage of LP heuristics with individual constraint sets.

92

11.1. Individual Constraint Groups

hMIP

Year Domain LMC SEQ PHO1 PHO2 PHO3 DEL DELTR

2004 Airport (50) 28 17 20 23 13 9 11
2011 Barman (20) 4 0 0 0 0 0 0
2014 Barman (14) 0 0 0 0 0 0 0
2000 Blocks (35) 28 22 25 21 17 13 17
2014 ChildSnack (20) 0 0 0 0 0 0 0
2002 Depot (22) 7 4 4 5 2 2 2
2002 DriverLog (20) 13 9 10 10 10 4 7
2008 Elevators (30) 17 3 9 8 9 0 0
2011 Elevators (20) 14 1 7 6 7 0 0
2011 FloorTile (20) 6 2 0 0 0 0 0
2014 FloorTile (20) 3 0 0 0 0 0 0
2000/2 Freecell (80) 12 27 9 8 6 2 2
2014 GED (20) 13 7 13 13 9 3 5
2014 Grid (5) 2 1 1 1 2 0 0
1998 Gripper (20) 6 5 6 6 5 2 4
2014 Hiking (20) 8 7 8 7 7 0 4
2000 Logistics (28) 20 12 14 20 20 10 10
1998 Logistics (35) 6 2 2 4 4 2 2
2000 Miconic (150) 140 40 45 43 40 50 77
1998 Movie (30) 30 30 30 30 30 30 30
1998 Mprime (35) 20 15 18 17 14 1 4
1998 Mystery (30) 16 12 13 13 11 4 7
1998 NoMystery (20) 14 8 8 14 16 3 5
2006 Openstacks (30) 7 6 7 7 5 0 5
2008 Openstacks (30) 16 9 17 16 14 1 6
2011 Openstacks (20) 11 3 12 11 8 0 1
2014 Openstacks (20) 1 0 1 1 1 0 0
2008 ParcPrinter (30) 18 28 12 7 12 15 19
2011 ParcPrinter (20) 13 20 7 3 8 11 14
2011 Parking (20) 1 1 1 0 0 0 0
2014 Parking (20) 2 0 2 0 0 0 0
2006 Pathways (30) 5 4 4 4 4 4 4
2008 PegSolitaire (30) 26 26 27 24 18 2 10
2011 PegSolitaire (20) 16 16 17 14 7 0 1
2004 PipesWorld notankage (50) 16 11 13 11 8 1 6
2004 PipesWorld tankage (50) 9 7 6 6 4 1 4
2004 PSR small (50) 48 49 48 47 46 40 41
2002/4 Rovers (40) 7 4 4 6 6 4 4
2002 Satellite (36) 7 4 5 4 4 4 6
2008 Scanalyzer (30) 13 9 7 9 7 4 5
2011 Scanalyzer (20) 10 6 4 6 4 1 2
2008 Sokoban (30) 27 9 16 22 12 2 5
2011 Sokoban (20) 20 7 13 19 9 0 2
2006 Storage (30) 15 12 14 14 11 7 7
2014 Tetris (17) 4 11 3 1 0 0 0
2011 Tidybot (20) 13 3 5 6 7 0 1
2014 Tidybot (20) 7 0 0 0 0 0 0
2004 TPP (30) 6 6 5 5 6 5 5
2008 Transport (30) 11 7 9 8 10 2 5
2011 Transport (20) 6 2 4 3 5 0 0
2014 Transport (20) 6 1 4 1 3 0 1
2004 Trucks (30) 9 6 3 5 5 1 2
2011 VisitAll (20) 10 16 16 15 15 8 15
2014 VisitAll (20) 5 12 10 10 9 1 9
2008 WoodWorking (30) 16 10 7 13 11 7 10
2011 WoodWorking (20) 11 6 2 8 6 2 5
2002 Zenotravel (20) 11 8 8 9 8 6 6

Sum (1667) 810 543 555 564 495 264 388

Table 11.2: Coverage of MIP heuristics with individual constraint sets.

93

11. Experiments

and the post-hoc optimization heuristics. However, the heuristics have strengths and
weaknesses in different domains: using hLP

LMC instead of hLP
SEQ solves more tasks in 32

domains while the opposite is true in 11 domains. The picture is similar but less pro-
nounced for the post-hoc optimization heuristics. For example, there are 6 domains
where hLP

PHO2
solves more tasks than hLP

LMC and 28 domains where it solves fewer. Even
the two delete-relaxation configurations are better in 3 domains (two VisitAll domains
and Satellite) while they are worse in 50. We now discuss the results in more detail for
each of the constraint types.

11.1.1. Landmarks
The standard LM-cut heuristic computes a greedy cost partitioning over the discovered
landmarks (Helmert and Domshlak, 2009). Comparing its coverage to the LP heuristic
for LMC reveals that the additional effort of computing the optimal cost partitioning for
the same landmarks does not pay off in terms of providing sufficiently better guidance.
The initial heuristic value is only increased by cost partitioning in 7 domains. In 5
additional domains the number of expansions needed to reach the last f -layer decreases
slightly because other heuristic values improved. However, in none of the domains
does the increase in heuristic quality speed up the search enough to solve more tasks.
Because of the additional overhead of solving an LP for every state, coverage decreases
by 1 in 14 domains and by up to 3 in 4 domains. A possible reason for this is that
the LM-cut heuristic already approximates h+ very closely, and the corresponding LP
heuristic is also bounded by h+.

Computing the MIP instead of the LP over LMC only rarely raises the heuristic
estimate. The initial state has a higher estimate with hMIP

LMC in one task of the domain
Elevator and in 30 tasks of the three Transport domains. The number of expansions
necessary to reach the last f -layer is only reduced in these domains and in the domain
FloorTile. The number of expansions is never reduced enough to justify the additional
overhead of computing a MIP instead of an LP. In fact, the geometric mean of runtimes
roughly increases by a factor of 3.

11.1.2. Delete Relaxation
The MIP heuristic hMIP

DEL is the delete-relaxation heuristic h+, while hMIP
DELTR

, hLP
DEL, and

hLP
DELTR

relax the restriction of time steps, the restriction to integer variables, or both.
All versions are expensive to compute and solve significantly fewer tasks than the other
operator-counting heuristics.

The effect of the time relaxation is different for the LP and the MIP. In the LP heuris-
tic removing the time steps has very little effect on the initial heuristic values. The
heuristic value is only reduced by 1 in 43 tasks from 5 domains. All other initial heuris-
tic values are unchanged. In MIP heuristics on the other hand, time relaxation can
significantly reduce heuristic value as shown in the left plot of Figure 11.1.

94

11.1. Individual Constraint Groups

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hMIP
DELTR

(sI)

h
M
IP

D
E
L
(s

I)
=

h
+
(s

I)

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hLPDEL(sI)

Figure 11.1: Heuristic values of the initial state for the delete-relaxation heuristic
(y-axis), its time relaxation (left), and its LP relaxation (right).

The LP relaxation also significantly reduces the heuristic quality of h+, as shown in
the right plot of Figure 11.1. Compared to this loss, the LP heuristic for LMC loses
much less information when we see it as a relaxation of h+. Figure 11.2 compares
the heuristic values of hLP

LMC with its theoretical optimum h+ and with the relaxation
hLP

DELTR
. Optimal cost partitioning of LM-cut landmarks leads to higher heuristic values

than hLP
DELTR

in a vast majority of cases. Combined with the fact that hLP
LMC only uses

one constraint for each landmark while hLP
DELTR

has at least |O| + |A| constraints, this
explains the poor performance of hLP

DELTR
.

11.1.3. Post-hoc Optimization
Post-hoc optimization constraints form a compromise between maximizing a set of ad-
missible heuristics and computing an optimal cost partitioning for them. In the special
case where the component heuristics are PDBs, post-hoc optimization also dominates
the canonical heuristic. Their performance depends on the set of heuristics they com-
bine. Here, we run them with projections to up to 1, 2, and 3 variables. Increasing
the number and size of projections generally increases heuristic quality but makes the
heuristic harder to compute. The collection Int2 is the best trade-off in our case, both
when computing LPs and MIPs. The coverage of hLP

PHO2
= hpho

Int2 is almost exactly on par
with that of hLP

SEQ = hSEQ but has strengths in different domains.
As with the previous constraints, computing a MIP instead of an LP does not pay

off for post-hoc optimization constraints even though it increases heuristic quality in
some domains. The difference in quality is most notable in the domain Tetris, where
initial heuristic values almost double for most tasks. The increase is much smaller in
the other 8 domains where the initial heuristic values differ. But even on the Tetris tasks

95

11. Experiments

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hMIP
DEL(sI) = h+(sI)

h
L
P

L
M
C
(s

I)

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hLPDELTR
(sI)

Figure 11.2: Heuristic values of the initial state for cost-partitioned LM-cut landmarks
(y-axis), the delete-relaxation heuristic (left), and its time-relaxed LP-
relaxation (right).

the overhead in runtime is too high and coverage drops when switching from LP to MIP
heuristics.

Table 11.3 repeats the coverage obtained with different cost partitioning methods
from Part I. Post-hoc optimization is shown between the canonical heuristic which it
dominates and non-negative operator cost partitioning which dominates it. The canon-
ical heuristic performs best for projections to goal variables (k = 1) but falls behind
the other two methods for larger patterns. Post-hoc optimization solves 63 tasks more
than maximization on these patterns but 25 fewer than the canonical heuristic. Post-hoc
optimization performs better than both maximization and the canonical heuristic for
k = 2. While the behavior is not consistent over all domains, the post-hoc optimization
heuristic solves significantly more instances in many domains, overall outperforming
the canonical heuristic by 65 and maximization by 54 tasks. For even larger patterns
(k = 3), both the canonical heuristic and the post-hoc optimization heuristic are less
effective. Maximization, on the other hand, improves coverage by 29 solved tasks when
changing from k = 2 and k = 3. The performance of post-hoc optimization for Int3 is
between those of the other two methods again. Overall, post-hoc optimization for Int2
achieves the highest performance of these methods to combine PDB heuristics.

To understand the difference between the canonical heuristic and post-hoc optimiza-
tion, Figure 11.3 compares their expansions, evaluation rate and setup time. There
are only a few instances where the theoretical dominance of the post-hoc optimization
heuristic translates into better guidance. The difference in coverage thus must be due to
the time spent on the two heuristics. The canonical heuristic only evaluates a maximum
over sums instead of solving an LP in each state so its evaluation rate typically is orders
of magnitude faster. However, the set of considered subsets that the heuristic maximizes

96

11.1. Individual Constraint Groups

100 101 102 103 104 105 106

100
101
102
103
104
105
106
107

unsolved

unsolved

h
c
a
n
o
n

In
t k

Expansions

k = 1
k = 2
k = 3

100 101 102 103 104

100

101

102

103

104

105

unsolved

uns.

h
c
a
n
o
n

In
t k

Evaluation rate

k = 1
k = 2
k = 3

100 101 102 103

100

101

102

103

failed

failed

hpho

Intk

h
c
a
n
o
n

In
t k

Setup time

k = 1
k = 2
k = 3

Figure 11.3: Difference between post-hoc optimization and the canonical heuristic. We
compare their number of expansions in an A∗ search (top); their evaluation
rate in states per second (middle); and setup time in seconds (bottom).

97

11. Experiments

k

1 2 3

Intk Maximization maxP∈Intk h
P 629 667 696

Intk Canonical heuristic hcanon
Intk 717 656 597

Intk Post-hoc optimization heuristic hpho
Intk 692 721 657

Intk Non-negative operator cost partitioning hOCP+
Intk 621 438 237

Allk Non-negative operator cost partitioning hOCP+
Allk 560 340 171

Intk General operator cost partitioning hOCP
Intk 622 475 248

Allk General operator cost partitioning hOCP
Allk 601 357 155

Intk Non-negative transition cost partitioning hTCP+
Intk 120 76 26

Allk General transition cost partitioning hTCP
Allk 115 87 74

Table 11.3: Number of solved tasks. Best result in each column in bold.

over can become exponentially large, so we see some cases below the diagonal where
post-hoc optimization evaluates more states per second. Even though post-hoc opti-
mization only rarely decreases the necessary number of expansions and expands fewer
states per second on average, it still outperforms the canonical heuristic in many cases.
The reason can be seen in the last plot of Figure 11.3: the canonical heuristic computes
maximal additive subsets of the pattern collection in a preprocessing step. This involves
finding all maximal cliques in the graph of patterns where two patterns are connected
iff they are additive. This step is NP-equivalent and takes time exponential in the num-
ber of patterns. When only projections to goal variables are considered, the pattern
collections are small, and the maximal cliques can be found quickly. However, even
collections of patterns with two variables can become so big that their maximal cliques
cannot be determined within the resource limits. Post-hoc optimization is a polynomial
algorithm that dominates the canonical heuristic. While its per-state overhead is higher,
its polynomial scaling makes it useful for pattern collections that are so large that their
maximal additive subsets cannot be computed in reasonable time.

11.1.4. Net Change

The operator-counting LP heuristic for the net change constraints SEQ is the state equa-
tion heuristic hSEQ. It achieves the second highest coverage after the landmark con-
straints.

To measure the impact of the safety-based improvement of the state equation heuris-
tic, we conducted an additional experiment where we extended SEQ with the corre-
sponding upper bound net change constraints. This is implemented as changing con-

98

11.1. Individual Constraint Groups

10 20 30 40

10

20

30

40

≥ 50

≥ 50

hLPSEQ(sI)

h
M
IP

S
E
Q
(s

I)

Figure 11.4: Initial heuristic values produced by operator-counting LP and MIP heuris-
tics with lower bound net change constraints.

straints for safe variables into equations. As expected from Corollary 10.2, this has no
effect on the number of expanded nodes. However, with the additional constraints we
solve 30 fewer tasks across 18 domains, which can be attributed to slower evaluations
of the LP solver.

We do not have a theoretical result that the upper bound net change constraints are
strictly weaker than the lower bound net change constraints. However, if we solely use
all upper bound net change constraints, the LP heuristic returns very poor estimates. In
26 domains the search expands more states resulting in a coverage of only 661 tasks.
So these constraints are indeed strictly weaker.

We also tried adding all positive and negative prevail constraints to the set of con-
straints, but this never influences the heuristic value. Coverage is mostly unaffected by
this and only shows differences of one or two tasks in some domains. Overall, coverage
reduces by 3 when using prevail constraints; both with LPs and MIPs.

Restricting operator-counting variables to the integers has a small positive effect on
heuristic quality. Figure 11.4 shows initial heuristic values for the LP and the MIP
heuristic. Switching to the MIP reduces the number of expansions by roughly an order
of magnitude in the two PegSolitaire domains but did not lead to more solved tasks.
In fact, the LP heuristic solves 2 tasks more than the MIP heuristic in each of the
two domains. There are 7 more domains where the restriction to integers reduced the
number of expansions but in all of them the number of expansions stays in the same
order of magnitude. Only one task in the domain Woodworking is solved with a MIP
and not solved with an LP.

We have also seen that hSEQ is closely related to general operator cost partitioning
over atomic projections (hOCP

All1). If the abstractions contain no dead states the two heuris-
tics are the same. The states of atomic projections are variable values, so the heuristics

99

11. Experiments

Non-negative costs General costs

Singleton goal patterns hOCP+
Int1 : 621 hOCP

Int1 : 622

All singleton patterns hOCP+
All1 : 560

hOCP
All1 : 601
hSEQ: 723

Table 11.4: Coverage for different variants of optimal operator cost partitioning for
atomic projections.

are the same iff no variable contains values that are unreachable or from which the goal
value cannot be reached in the projection. This is the case for most planning tasks in
our benchmark set. Though there are some exceptions: in the domain Airport planes
navigate on runways, can take off and land. Planes that take off are assumed to leave
for another airport, so they cannot land again. If a plane is initially on the ground and
its goal is to move to another position on the ground, then taking off sets the position
of the plane to “in the air”, and the goal value of this variable can no longer be reached.
Another example is in the domain Parking that models cars maneuvering in a car park.
Due to a modeling error it is possible for a car to park behind itself, which means it
then blocks itself and can never move again. In both of these cases a variable domain
contains a dead value and hSEQ is not guaranteed to be the same as hOCP

All1 . This situation
also occurs in the domains ParcPrinter, TPP, and one task in the domain Trucks. In
all cases hSEQ and hOCP

All1 use the same number of expansions, so the dead values never
influence the heuristic value on our benchmarks.

Table 11.4 compares the coverage of hSEQ to that of other methods to combine atomic
projections. We have already seen in Part I that using projections to non-goal variables
slows down non-negative cost partitioning without improving the heuristic value, and
that this loss can be recovered to some degree by allowing negative costs. Just using
general cost functions was not enough to improve coverage above that of hOCP+

Int1 or hOCP
Int1 .

The state equation heuristic exceeds the coverage of both by over 100 tasks. It has the
heuristic accuracy of hOCP

All1 but it can be computed much faster. Due to the smaller
LP size hSEQ solves more tasks than hOCP

All1 in 38 domains, an overall coverage increase
of 122. This shows that the main reason for hSEQ’s superior performance is the more
compact representation, though the general cost partitioning also plays an important
role, as the comparison of hOCP+

All1 and hOCP
All1 shows.

11.1.5. Network Flow

The state equation heuristic hSEQ and its extensions can be thought of as certain cost-
partitioned flow heuristics. In Section 10.4 we introduced several rules that improve a
naive implementation of cost-partitioned flow heuristics and used them to show their

100

11.1. Individual Constraint Groups

Reduces Can
model improve

Rule Description size heuristic

1 Remove dead abstract states. X X

2 Use operator-counting variables instead of
transition-counting variables where possible.

X

3 Remove linking constraints for operators
inducing only self-loops.

X

4 Use weak instead of strong linking constraints
where possible.

(X)

5 Remove mutex-violating abstract states. X X

6 Remove constraint for a single abstract state. (X)

Table 11.5: Overview of simplification rules introduced in Section 10.4. Rule 4 cannot
reduce the model size for projections of TNF tasks, and Rule 6 can only
reduce the size of the model by a negligible amount.

relation to extensions of the state equation heuristic. Table 11.5 shows an overview of
the rules and how they influence the heuristic model. The flow constraints in FLOWk

are not simplified at all, while the improved flow constraints in FLOW+
k are simplified

with all rules. The rules assume TNF tasks, so we use the transition normalization of
all tasks for this experiment. This slightly reduces the coverage of hSEQ by 5 tasks to
718.

Table 11.6 lists the coverage obtained using FLOWk and FLOW+
k . We observe that

the performance for k = 1 is far worse than that of hOCP
All1 when no simplifications are

used and almost reaches the performance of hSEQ if all rules are used. The remaining
difference to hSEQ is caused by the overhead of generating the model. While using all
simplification rules does not lead to a heuristic stronger than hSEQ, the rules allow us
to explain the advantage that hSEQ has over hOCP

All1 in more detail. To do that, we now
evaluate the effect of all individual rules, except for Rules 4 and 6.

The conditions of Rule 4 never apply in our benchmark. The rule only simplifies the
model if an operator induces both self-loops and state-changing transitions. This can
happen in general abstractions of TNF tasks and in projections of unrestricted SAS+

tasks but not in projections of TNF tasks. A TNF operator either induces only state-
changing transitions or only self-loops in a projection.

Rule 6 has almost no effect on the model and was just introduced as a theoretical tool
to show the connection of partial merges to cost-partitioned abstractions.

For each other rule r and each collection size k, Table 11.6 lists the change in cov-
erage between using unchanged flow constraints (FLOWk) and using flow constraints
improved by rule r. We also measure the change in coverage between a version im-

101

11. Experiments

hLP

FLOWk FLOW+
k

All1 511 716
All2 304 377
All3 142 149

Effect of rule

1 2 3 5

All1 −6/3 13/83 120/191 −2/±0
All2 17/21 1/7 43/53 1/1
All3 4/4 ±0/1 6/3 −1/1

Table 11.6: Total coverage when using no/all simplification rules (left) and effect on
coverage of different simplification rules (right). An entry of x/y for rule r
represents that coverage increased by x when using r over using no simpli-
fication rules, and that coverage increased by y going from using all rules
except r to using all rules.

proved with all five rules (FLOW+
k) and one improved with all rules except r.

Dead States As mentioned before, there are only few domains where the atomic pro-
jections contain dead states and in these domains removing the dead states never in-
creases heuristic values. In the largest task of the domain Airport the atomic projections
contain a total of 142 dead abstract states. For all other domains this number is much
lower. The effect of this rule on atomic projections is therefore minimal. The overhead
of identifying and removing dead states slightly reduces coverage when this is the only
rule used. For larger projections, the effect is more noticeable because there are more
dead states to remove. In all generated models for All1 only 0.5% of all states are dead.
This number increases to 1.9% for All2 and to 6.8% for All3. With the exception of the
domains Blocksworld, FloorTile, Movie, and Scanalyzer, all domains have dead states
in the projections to 2 variables in TNF.1 However, removing the dead states never
leads to an increased heuristic value on our benchmarks. The increase in performance
is solely based on faster LP evaluations.

The unsimplified flow constraints can become quite large and exceed memory lim-
its. For example, 10 tasks in the domain Airport run out of memory while creating
FLOW1. After applying Rules 2 and 3 the constraint is small enough to be represented.
Removing dead states afterwards is sufficient to increase coverage by 2 in this domain.

Operators Inducing a Single Transition In atomic projections of TNF tasks all op-
erators induce either a single transition (if the operator mentions the variable) or self-
loops on all abstract states (if it does not). As expected, Rule 2 thus has the largest
effect for atomic projections. In projections to at least one variable mentioned by the
operator and one not mentioned by it, an operator induces more than one transition.

1Note that transition normalization can introduce dead states even if the original domain has a strongly
connected state space. For example, forgetting the position of a truck in the domain Logistics leads
to a dead state if that truck is still needed to deliver a package.

102

11.1. Individual Constraint Groups

100 101 102 103 104 105 106

100
101
102
103
104
105
106
107

unsolved

uns.

FLOWk

F
L

O
W

k
si

m
p

li
fi

ed
w

it
h

R
u

le
3

k = 1
k = 2
k = 3

100 101 102 103 104 105 106

100
101
102
103
104
105
106
107

unsolved

uns.

FLOWk

k = 1
k = 2
k = 3

Figure 11.5: Number of LP variables (left) and constraints (right) of flow constraints
FLOWk before and after applying Rule 3 to ignore operators that only
induce self-loops.

The rule triggers in smaller percentage of the abstractions of larger collections and thus
its effect is reduced there. The effect is significantly stronger if the other rules are used
as well. We will discuss the reason for this after considering self-loops.

Operators Inducing Only Self-Loops Rule 3 triggers for operators that are not rele-
vant for a projection because they mention none of the variables. Removing constraints
and transition-counting variables for transitions of such operators drastically decreases
the model size as shown in Figure 11.5. In some cases the size of the model is reduced
by several orders of magnitude which makes the heuristic much faster to compute. The
proportion of irrelevant operators decreases as the patterns become larger, so the effect
is smaller in those cases.

The operator-counting heuristic hLP
FLOWk

computes hOCP
Allk if the abstractions contain no

dead states. We have seen that dead states have little influence on the heuristic but the
performance of hOCP

Allk is still far better than that of hLP
FLOWk

. The coverage of hOCP
Allk is

slightly reduced by transforming the tasks to TNF compared to the results from part I:
on the transition normalization, hOCP

Allk solves 602, 345, and 132 tasks for k ∈ {1, 2, 3}.
However, this does not explain the difference to flow constraints. In the dual view of
cost partitioning a self-loop introduces the constraint that the cost of its operator in
this abstraction cannot be negative. Our implementation handles such constraints by
changing the bounds of the LP variable instead of adding an LP constraint. Therefore,
our implementation of hOCP

Allk considers Rule 3 in a way. Indeed, the coverage achieved
with hOCP

Allk is much closer to that achieved with flow constraints simplified with Rule 3
(631, 347, and 148).

The effect of using Rule 3 is also stronger in the presence of the other rules, as

103

11. Experiments

100 101 102 103 104 105 106

100
101
102
103
104
105
106

unsolved

unsolved

No partial merges

P
a
rt
ia
l
m
er
ge
s
si
ze
d
≤

2

Figure 11.6: Number of expansions excluding the last f -layer for hLP
FLOW+

1

with and
without partial merges of size 2.

we have seen for Rule 2. To analyze this effect, we computed geometric means over
the percentage of LP constraints removed by different rules in the models of FLOW1,
excluding the 43 problems where the naive models could not be represented. Rule 2 re-
moved 5.03% of the constraints and Rule 3 removed 90.70%. The picture is similar for
LP variables (4.89%, 88.23%). Removing 5% of the original variables and constraints
alone does not have a big effect, but if 90% are already removed, it removes half of the
remaining constraints. The other rules amplify this effect.

Mutex Information An abstract state can only violate a mutex if it contains two mu-
tually exclusive atoms, so Rule 5 cannot have an effect for atomic projections. Mutex
information is used by Fast Downward’s translator to group atoms into finite domain
variables (Helmert, 2009). Additional mutex information is discovered in 24 domains.
Removing abstract states that violate this mutex information can increase heuristic val-
ues if there is a “shortcut” over such a state in an abstraction. Unfortunately, this seems
to be rare with our benchmarks: the initial heuristic value is only increased for FLOW2

in 27 tasks of the Blocksworld domain and in 11 tasks across 4 other domains. None
of the 11 tasks is solved and in Blocksworld the coverage only increases by 1 with a
modest decrease in expanded states. The situation is similar for FLOW3.

Partial Merges We implemented the partial merge strategy suggested by Bonet and
van den Briel (2014) for the state equation heuristic starting from improved flow con-
straints for all atomic projections (FLOW+

1). This basic heuristic dominates hSEQ but as
the previous sections showed, there is no difference on our benchmarks. The strategy
then iteratively adds abstract states of larger projections. In each iteration, the cur-
rent model is solved and all operators that occur with non-zero count in the solution

104

11.1. Individual Constraint Groups

10 20 30 40

10

20

30

40

≥ 50

≥ 50

Partial merges sized ≤ 2

P
a
rt
ia
l
m
er
ge
s
si
ze
d
≤

3

Figure 11.7: Heuristic values for the initial state for hLP
FLOW+

1

with partial merges of size
2 and 3.

are collected. For every such operator, we partition the set of preconditions into the
prevail conditions and remaining preconditions. For every combination of a prevail
condition {X = x} and a non-prevail precondition {Y = y}, we add abstract state
{X = x, Y = y} to the set of explicitly represented abstract states. If all such pairs
are already represented in the model, the process stops. Finally, we partially merge all
pairs of variables X and Y for which an abstract state should be explicitly represented
and add the resulting constraints to the current model. The model is then solved again
and the process is repeated with the new solution.

As Bonet and van den Briel (2014) noted, this strategy improves the quality of the
basic heuristic significantly. In our experiments, coverage increased from 716 to 783
with this strategy. Figure 11.6 shows the effect on the number of expansions.

The interpretation of partial merges as flow constraints allows us to generalize the
strategy and consider larger abstract states as partial merges. We therefore extend the
strategy in the following way: when there are no more abstract states with 2 variables
that should be considered, we start the iteration again but now consider merges of 3
variables. Once no more merges of 3 variables are added, we look for merges of 4
variables, and so on. For such larger partial merges, we consider abstract states that
contain at least one prevail condition, at least one non-prevail precondition, and take the
remaining atoms from all preconditions of the operator. This process is stopped when
a limit on the number of variables in a partial merge is reached, or when a solution is
found where all combinations of preconditions are already represented.

Figure 11.7 compares initial heuristic values for this partial merge strategy when
limited to abstract states of size 2 and 3. With larger merges much higher heuristic
values can be reached but this occurs mostly in three domains (Depot, Hiking, and
Storage). The number of expansions decreases in these and in nine other domains, but

105

11. Experiments

the reduction in the other domains is very modest. The increased heuristic quality never
translates to a better coverage and the overall coverage decreases to 726.

Interestingly, there is almost no additional benefit for limits larger than 3. Without
a limit, the preprocessing runs until it exhausts resources or until the limit exceeds the
number of preconditions of an operator in the solution. In this case, the search still
solves 695 tasks. And while many abstract states with more than 3 variables are added
in 25 domains, only two tasks in the domain Depot require fewer expansions compared
to a size limit of 3.

11.2. Combination of Constraint Groups
A major advantage of operator-counting heuristics is that they are easy to combine.
The operator-counting LP heuristic for constraints from several component heuristic
computes their optimal cost partitioning. The MIP heuristic can combine the heuristics
in an even stronger way. So far, we only looked at operator-counting heuristics for
constraints of the same type. We now explore how different types of constraints interact,
whether they can strengthen each other, and whether their combination is worth the
additional time spent on solving a larger LP or MIP.

We restrict our attention to the three best-performing individual constraints groups:
SEQ,PHO2, and LMC. Tables 11.7 and 11.8 show the coverage of all their combina-
tions. For a given group of constraints the column hLP in Table 11.7 lists the result for
combining all constraints in one LP while the column max lists results for solving one
LP per constraint group and maximizing the optimal objective values. Table 11.8 has
similar columns for the MIP.

A combination of SEQ and PHO2 looks promising because they have their strengths
and weaknesses in different domains. For example, using the LP heuristic for PHO2

solves 13 tasks in the TidyBot domain of 2011, while only 6 can be solved with SEQ.
In the 2011 ParcPrinter domain the picture is reversed: using SEQ, we solve 20 tasks
in contrast to only 13 with PHO2. Indeed, the combination solves 745 instances, a clear
improvement on each individual heuristic solving 723 (hLP

SEQ) and 721 (hLP
PHO2

) tasks,
respectively.

The combination of PHO2 and LMC does not pay off, solving 852 task instead of
721 and 853, respectively. Even though the total coverage achieved by using both con-
straints is almost the same as using just the LMC constraint, the two heuristics solve
different tasks. In 15 domains the additional overhead of using both constraints slows
down the search enough so that 1–3 fewer tasks are solved. On the other hand, there are
8 domains where coverage increases due to the more accurate heuristic. For example,
13 tasks are solved with the combination in VisitAll 2014, while only 5 are solved with
LMC and only 11 with PHO2.

The best combination of two of our constraint groups consists of SEQ and LMC:
with 886 task, it solves 33 more tasks than its best component, LMC, alone. This com-

106

11.2. Combination of Constraint Groups

bination also outperforms the standard LM-cut heuristic (with 876 tasks), which was
previously the best performer among the heuristics discussed in this thesis. There are
7 domains where the combination solves more tasks than both constraints individually.
For example, in the domain WoodWorking 2008, 16 tasks are solved with LMC, 13
with SEQ, and 21 with their combination.

So far, LPs for more constraints achieved at least the same level of overall cover-
age as their components. However, adding more constraints does not always have a
positive effect. While the combination of all three components is still better than the
combination of SEQ and PHO2, searching with it solves 41 fewer instances than with
the combination of SEQ and LMC.

Constraint interactions

Can we explain the better performance of the combinations with the better guidance of
more individual components, or is there an additional positive effect through interac-
tions of the different constraints in the LP? Figure 11.8 plots the number of expansions
using one LP heuristic with two constraint groups against the expansions using the
maximum of the two individual LP heuristics.

In all three cases, we see clear synergy effects: combining two sets of constraints in
a single LP indeed leads to stronger heuristic estimates than maximizing the heuristic
estimates from two separate LPs. These synergy effects are much more pronounced in
the combinations of SEQ and PHO2 and of SEQ and LMC than in the combination of
PHO2 and LMC. In all three cases, there is a solid number of tasks (10–16) that are
solved with perfect heuristic estimates by the combination into one LP, but not by the
maximum of two LP heuristics.

Considering coverage, however, the picture is somewhat more mixed: some tasks can
only be solved by the approaches using a single large LP, others only by the maximum
over two LP heuristics, and both approaches end up too close to tell apart in terms of
overall coverage. Interestingly, this is different when solving the operator-counting MIP
heuristic instead of the LP heuristic. Table 11.8 shows the coverage of these heuristics.
In all three constraint groups, the combination in one MIP solves more tasks than the
maximum over the respective MIP heuristics, but all combinations still solve fewer
tasks than their strongest component.

107

11. Experiments

LMC, SEQ LMC,PHO2 SEQ,PHO2 LMC, SEQ,PHO2

Year Domain hLM-cut hLP max hLP max hLP max hLP max

2004 Airport (50) 28 29 28 27 26 26 25 25 27
2011 Barman (20) 4 4 4 4 4 4 4 4 4
2014 Barman (14) 0 0 0 0 0 0 0 0 0
2000 Blocks (35) 28 29 28 28 28 28 26 28 28
2014 ChildSnack (20) 0 0 0 0 0 0 0 0 0
2002 Depot (22) 7 7 7 7 7 7 7 5 7
2002 DriverLog (20) 13 13 13 13 13 12 12 13 13
2008 Elevators (30) 22 19 19 20 19 16 16 18 18
2011 Elevators (20) 18 16 16 16 16 12 13 16 15
2011 FloorTile (20) 7 6 6 6 6 3 3 6 6
2014 FloorTile (20) 6 5 5 5 4 2 1 5 4
2000/2 Freecell (80) 15 30 30 15 15 34 35 29 29
2014 GED (20) 15 12 13 15 15 11 13 10 13
2014 Grid (5) 2 1 2 2 2 2 2 1 2
1998 Gripper (20) 7 6 6 6 6 6 7 6 6
2014 Hiking (20) 9 8 8 9 9 9 9 8 8
2000 Logistics (28) 20 20 20 21 20 20 20 21 20
1998 Logistics (35) 6 6 6 6 6 5 5 6 6
2000 Miconic (150) 141 141 141 141 141 50 50 140 141
1998 Movie (30) 30 30 30 30 30 30 30 30 30
1998 Mprime (35) 22 21 22 22 22 19 18 21 22
1998 Mystery (30) 17 16 16 16 16 13 13 15 16
1998 NoMystery (20) 14 12 14 15 16 14 16 14 15
2006 Openstacks (30) 7 7 7 7 7 8 7 7 7
2008 Openstacks (30) 21 15 15 17 17 16 16 14 15
2011 Openstacks (20) 16 11 11 13 12 11 11 11 10
2014 Openstacks (20) 3 1 1 2 1 1 1 1 1
2008 ParcPrinter (30) 18 29 28 19 18 29 28 29 28
2011 ParcPrinter (20) 13 20 20 14 13 20 20 20 20
2011 Parking (20) 3 2 1 1 1 1 1 1 1
2014 Parking (20) 3 3 3 0 1 1 0 0 1
2006 Pathways (30) 5 5 5 5 5 4 4 5 5
2008 PegSolitaire (30) 28 28 27 27 27 27 27 26 28
2011 PegSolitaire (20) 18 17 18 17 17 16 17 16 16
2004 PipesWorld notankage (50) 17 14 17 16 16 15 15 13 17
2004 PipesWorld tankage (50) 12 10 10 8 9 9 10 7 10
2004 PSR small (50) 49 50 50 48 49 50 50 50 50
2002/4 Rovers (40) 8 7 7 7 7 6 6 7 7
2002 Satellite (36) 7 7 7 7 7 6 6 7 7
2008 Scanalyzer (30) 15 12 14 13 13 12 13 11 12
2011 Scanalyzer (20) 12 9 11 10 10 9 10 8 10
2008 Sokoban (30) 29 28 28 27 28 26 27 21 27
2011 Sokoban (20) 20 20 20 20 20 20 20 18 20
2006 Storage (30) 15 15 15 15 15 15 15 15 15
2014 Tetris (17) 6 11 11 3 3 10 11 6 11
2011 Tidybot (20) 14 10 13 13 13 8 7 10 13
2014 Tidybot (20) 8 0 7 8 8 0 0 0 7
2004 TPP (30) 7 8 7 6 6 8 8 8 7
2008 Transport (30) 11 11 11 11 11 10 10 11 11
2011 Transport (20) 6 6 6 6 6 5 5 6 6
2014 Transport (20) 6 6 6 6 6 4 4 5 6
2004 Trucks (30) 10 10 10 10 9 9 9 10 9
2011 VisitAll (20) 11 19 17 16 16 17 17 18 17
2014 VisitAll (20) 5 15 13 13 13 13 13 15 13
2008 WoodWorking (30) 17 21 16 18 18 15 15 21 17
2011 WoodWorking (20) 12 16 11 13 13 10 10 15 12
2002 Zenotravel (20) 13 12 12 12 12 11 9 12 12

Sum (1667) 876 886 889 852 848 745 747 845 878

Table 11.7: Coverage of LP heuristics with multiple constraint sets.

108

11.2. Combination of Constraint Groups

LMC, SEQ LMC,PHO2 SEQ,PHO2 LMC, SEQ,PHO2

Year Domain hMIP max hMIP max hMIP max hMIP max

2004 Airport (50) 28 28 25 25 19 23 24 25
2011 Barman (20) 0 0 0 0 0 0 0 0
2014 Barman (14) 0 0 0 0 0 0 0 0
2000 Blocks (35) 28 25 27 25 23 20 28 25
2014 ChildSnack (20) 0 0 0 0 0 0 0 0
2002 Depot (22) 5 5 5 5 2 4 4 5
2002 DriverLog (20) 11 11 13 12 10 10 10 10
2008 Elevators (30) 12 12 16 15 5 6 13 10
2011 Elevators (20) 9 10 13 12 4 4 10 9
2011 FloorTile (20) 6 4 4 2 2 2 4 2
2014 FloorTile (20) 2 2 2 0 0 0 2 0
2000/2 Freecell (80) 24 24 10 8 21 23 20 23
2014 GED (20) 7 7 13 13 7 7 7 7
2014 Grid (5) 1 1 2 1 1 1 1 1
1998 Gripper (20) 5 5 5 5 5 5 5 5
2014 Hiking (20) 6 7 8 7 5 7 6 7
2000 Logistics (28) 18 16 20 20 16 17 20 16
1998 Logistics (35) 6 5 6 6 2 2 6 5
2000 Miconic (150) 140 140 140 140 40 40 139 139
1998 Movie (30) 30 30 30 30 30 30 30 30
1998 Mprime (35) 18 18 20 19 13 14 17 18
1998 Mystery (30) 13 15 16 15 11 11 13 14
1998 NoMystery (20) 11 12 14 14 8 10 10 14
2006 Openstacks (30) 6 5 7 7 7 5 7 5
2008 Openstacks (30) 9 9 15 14 8 7 8 8
2011 Openstacks (20) 3 3 10 9 2 3 2 3
2014 Openstacks (20) 0 0 1 1 0 0 0 0
2008 ParcPrinter (30) 29 28 19 10 29 17 29 17
2011 ParcPrinter (20) 20 20 14 5 20 11 20 11
2011 Parking (20) 1 1 1 1 0 0 0 0
2014 Parking (20) 0 0 0 0 0 0 0 0
2006 Pathways (30) 5 4 5 5 4 4 5 4
2008 PegSolitaire (30) 26 26 26 26 26 26 26 26
2011 PegSolitaire (20) 16 16 16 16 16 16 16 16
2004 PipesWorld notankage (50) 11 11 14 12 11 11 11 11
2004 PipesWorld tankage (50) 7 7 6 6 7 7 7 7
2004 PSR small (50) 50 50 48 48 48 48 50 50
2002/4 Rovers (40) 7 7 7 7 6 4 7 7
2002 Satellite (36) 6 6 6 6 4 4 6 6
2008 Scanalyzer (30) 9 9 10 9 9 9 8 9
2011 Scanalyzer (20) 6 6 6 6 6 6 6 6
2008 Sokoban (30) 22 18 23 22 13 17 16 18
2011 Sokoban (20) 19 15 19 17 10 13 13 15
2006 Storage (30) 14 13 14 14 12 12 13 13
2014 Tetris (17) 11 11 2 2 7 7 4 7
2011 Tidybot (20) 6 12 13 13 4 5 6 11
2014 Tidybot (20) 0 3 7 7 0 0 0 2
2004 TPP (30) 8 6 6 6 6 6 7 6
2008 Transport (30) 11 11 11 11 6 6 10 11
2011 Transport (20) 6 6 6 6 1 2 4 6
2014 Transport (20) 3 3 4 4 1 1 3 3
2004 Trucks (30) 7 7 9 7 6 6 7 7
2011 VisitAll (20) 18 16 16 16 16 16 18 16
2014 VisitAll (20) 15 13 13 10 11 11 15 13
2008 WoodWorking (30) 17 14 16 15 14 12 17 14
2011 WoodWorking (20) 12 9 11 10 9 7 12 9
2002 Zenotravel (20) 10 10 11 11 8 8 9 10

Sum (1667) 770 752 781 733 551 543 731 712

Table 11.8: Coverage of MIP heuristics with multiple constraint sets.

109

11. Experiments

100 101 102 103 104 105

100

101

102

103

104

105

106

unsolved

uns.

hLPLMC∪PHO2
(257/852)

m
a
x
(h
L
P

L
M
C
,h

L
P

P
H
O

2
)
(2
4
1/
84
8
)

100 101 102 103 104 105

100

101

102

103

104

105

106

unsolved

uns.

hLPLMC∪SEQ (297/886)

m
ax

(h
L
P

L
M
C
,h

L
P

S
E
Q
)
(2
85
/8
8
9)

100 101 102 103 104 105

100

101

102

103

104

105

106

unsolved

uns.

hLPSEQ∪PHO2
(208/745)

m
ax

(h
L
P

S
E
Q
,h

L
P

P
H
O

2
)
(1
98
/
74
7)

Figure 11.8: Number of expansions (excluding nodes on the final f -layer). The num-
bers (x/y) behind the configurations express that among the y solved
tasks, x have been solved with perfect heuristic estimates.

110

12. Related and Future Work
In this chapter, we briefly discuss some applications of operator-counting heuristics and
possible extensions of the framework to handle more general forms of planning tasks.

12.1. Under-Approximation Refinement
Heusner et al. (2014) observe that a typical planning task has significantly more op-
erators than necessary to find a plan. Averaged over a large number of benchmarks,
4.3% of the available operators were sufficient. Restricting the set of operators of a
planning task under-approximates the original task, i.e. every plan of the restricted task
is also a plan for the original task, while the inverse is not necessarily true. Search in
an under-approximation can be much faster because the branching factor and the size
of the reachable state space is reduced. Heusner et al. use this for satisficing search, i.e.
while searching for a plan of a planning task that does not have to be optimal. In their
under-approximation refinement framework, the set of operators is restricted to a subset
that is iteratively refined until a plan is discovered. The framework leaves open how to
search in an under-approximation, how often to refine the set of operators, and how to
select the operators added to the set during refinement. Operator-counting heuristics
can be used for operator selection.

The solution of an operator-counting LP/MIP can be seen as an assignment of opera-
tors to the number of times they should be used. Intutively, we think about this solution
as an encoded plan without its operator order. There are two problems with this view.
Firstly, the solution of an LP can be fractional, in which case it does not encode a multi-
set of operators. Secondly, even if the solution encodes an operator multi-set, the only
guarantee about it is that its cost is a lower bound for the cost of an optimal plan. A so-
lution could encode an inapplicable operator sequence that uses a completely different
set of operators than any solution as long as the cost of these operators is admissible.
As an example, consider the state equation heuristic in our example logistic task. We
add an operator to “beam” the package to its destination at no cost with the prevail
condition that we have a transporter (which we do not). The “beam” operator is never
applicable but the state equation heuristic ignores prevail conditions and considers it an
optimal solution.

But in spite of these theoretical problems, operators that have a non-negative count in
a solution often appear in a plan in practice. To measure this effect, we consider an op-
erator predicted if it occurs with a non-zero count in the LP solution of hLP

{SEQ,LMC}(sI).

111

12. Related and Future Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Estimated prediction quality

Figure 12.1: Histogram of estimated prediction quality of hLP
{SEQ,LMC}(sI). For each

task, we measure length l and cost c of optimal plans for a cost func-
tion that maps each operator to 0 if it was predicted and to 1 otherwise.
We use 1− c/l as an estimate of prediction quality.

We find optimal plans under a cost function that assigns 0 to an operator if it was pre-
dicted and 1 if it was not. Such plans minimize the use of unpredicted operators.1 The
ratio of their length and their cost gives some indication of how good the prediction
is. Figure 12.1 shows that the predicted operators often account for more than half of
the operators required to find a plan. There are also 47 cases where all operators were
predicted and 79 cases where all but one where predicted, but only 18 cases were no
predicted operator was useful.

In an under-approximation refinement framework prediction by an operator-counting
heuristic can be used to select operators to add. The operator selection method sug-
gested by Heusner et al. uses operators from relaxed plans instead. The two approaches
can be combined by adding landmark constraints for each operator in a relaxed plan.
Since the operators from a relaxed plan are not guaranteed to be landmarks, these con-
straints are no longer operator-counting constraints and can make the LP/MIP infeasi-
ble. If the model is feasible, the predicted operators are superset of operators from the
relaxed plan, which additionally can be used to satisfy all operator-counting constraints.
If the model is infeasible, the given relaxed plan cannot be extended to a plan for the
original problem by inserting operators. Analyzing the infeasibility could give valuable
insight into the heuristic error of the relaxed plan in this situation.

This idea could also be used in connection with red-black planning (Domshlak, Hoff-
mann, and Katz, 2015). Red-black planning tasks partially relax the task by changing
the semantics of some variables so they accumulate values (as in the delete relaxation).

1This may overestimate the number of necessary unpredicted operators since an unpredicted operator
can be used more than once.

112

12.2. Operator Sequencing

Operator-counting heuristics could be used to check if a given delete-relaxed plan could
potentially be extended to a real plan. If this is not the case (i.e. if the LP becomes in-
feasible) then delete effects of operators in the given plan should be considered by
changing their variables from relaxed to non-relaxed semantics.

12.2. Operator Sequencing
Davies et al. (2015) use operator-counting heuristics in a logic-based Benders decompo-
sition (Hooker and Ottosson, 2003) for optimal planning. Logic-based Benders decom-
position is problem decomposition technique that generalizes the main ideas of Benders
decomposition for solving MIPs (Benders, 1962). A given problem is partitioned into
a master problem and a number of independent subproblems in a way that the master
problem is a relaxation of the original problem. Every solution of the master problem
that is consistent with all subproblems is a solution to the original problem. The original
problem can thus be solved by the following iterative process: first the master problem
is solved (ignoring the subproblems). The discovered solution then fixes some parts
of the subproblems (e.g. shared variables). If a subproblem is inconsistent with these
values, a constraint is added to the master problem to prevent solutions that lead to this
type of inconsistency. This constraint is called a feasibility cut. In case all subproblems
can be satisfied consistently with the master solution, an optimality cut is added to the
master problem to guarantee that only solutions with a better overall value are discov-
ered in the next iteration. This process is repeated until the master problem is no longer
solvable. Once this happens, the last consistent solution is globally optimal (if no such
solution exists, the original problem is infeasible).

Davies et al. split the problem of finding optimal plans into computing an operator-
counting MIP heuristic (master problem) and finding an applicable sequence of the
resulting multiset of operators (subproblem). The master problem is a relaxation of the
original planning task, and every master solution consistent with the subproblem is a
plan. The master problem can be solved with a MIP solver and the sequencing subprob-
lem can be encoded as a SAT problem. If the SAT problem is not satisfiable, modern
SAT solvers generate a conflict clause that offers an explanation for the unsatisfiability.
This conflict clause can be translated back into an operator-counting constraint (simi-
lar to a landmark constraint) that acts as a feasibility cut. The first consistent solution
discovered this way is optimal, so no optimality cuts are necessary.

MIP solvers usually solve the LP relaxation as a first step of their search. Davies
et al. speed up their approach by using the rounded-up LP solution before solving the
MIP. If the subproblem is consistent and the cost of the discovered plan matches the
rounded-up optimal objective value of the LP, the solution is guaranteed to be globally
optimal. In case the discovered plan has a higher cost, it can be used to prune the search
for a MIP solution. If there is no consistent solution for the subproblem, the generated
feasibility cut excludes this LP solution in the next iteration.

113

12. Related and Future Work

12.3. Extension to Conditional Effects
In SAS+ tasks, all effects of an operator are considered when it is applied in a state.
More general tasks in finite domain representation (FDR) (Helmert, 2009) associate
each effect with a partial variable assignment called the effect condition. When applying
an FDR operator in a state s, only effects with an effect condition that is consistent with
s are used.

Conditional effects can be compiled away (Nebel, 2000) but only with severe dis-
advantages: any plan-preserving transformation leads to an exponential blow-up of the
task description size. An alternative compact compilation does not preserve the delete
relaxation, which many heuristics are based on. Heuristics that handle conditional ef-
fects natively are therefore more interesting.

The operator-counting framework itself does not have to be changed to work with
conditional effects. The LP and MIP heuristics are admissible, as long as all con-
straints are operator-counting constraints, i.e. they have a solution for every plan π
where operator-counting variables are assigned to operator occurrences in π. To main-
tain this property in the context of conditional effects, the definitions of all operator-
counting constraints introduced so far have to be generalized to cover them.

A landmark constraint for a set of operators L is an operator-counting constraint
in a task with conditional effects if L is a landmark in this task. In the presence of
conditional effects, an operator may be required more than once, even in the delete
relaxation. Keyder, Hoffmann, and Haslum (2012) point out that obvious extensions of
the LM-cut heuristic either render the heuristic inadmissible or lose the dominance over
the maximum heuristic hmax. Context splitting offers a middle ground by considering
conditional effects during the landmark computation and splitting actions as necessary
(Röger, Pommerening, and Helmert, 2014). The resulting context-split task can be
used together with landmark constraints for the discovered landmarks in an operator-
counting framework.

A post-hoc optimization constraint for a heuristic h can be extended to handle con-
ditional effects by extending its heuristic to handle them but this can lead to further
issues. For example, FDR operators can have more than one effect on the same vari-
able, so projecting a task to a pattern can make the projection non-deterministic.

A suitably defined extension of the delete-relaxation heuristic to FDR tasks can be
encoded with similar constraints as the ones introduced by Imai and Fukunaga. Instead
of deciding which operator first achieves an atom, this model decides which conditional
effect first adds the atom. A conditional effect can only be a first achiever if its operator
is used. The time an effect can first achieve an atom must be after the first time all of the
operator’s preconditions and the effect conditions are achieved. All of these constraints
can be encoded as linear inequalities, analogous to the model by Imai and Fukunaga.

For net change constraints, we can add variables Counto,e for each effect e of each
operator o that represent the number of times effect e triggers when applying operator
o. These auxiliary variables can be connected to the operator-counting variables with

114

12.4. Extension to Other Planning Formalisms

the constraint Counto ≥ Counto,e, which ensures that the operator is used at least as
often as the constraints trigger. If some effect conditions are mutually exclusive, this
constraint can be strengthened further. Say the conditions of e1 and e2 are mutually ex-
clusive, then we can add the constraint Counto ≥ Counto,e1 +Counto,e2 . The net change
induced by an operator on an atom is more complex with conditional effects, though. A
normal form comparable to TNF does not exist for tasks with conditional effects and as
mentioned above, an operator can induce multiple (non-deterministic) transitions in the
projection to a single variable. In Appendix B.1, we show how net change constraints
can be defined for tasks that are not in TNF by distinguishing operators that always
produce/consume an atom from those that sometimes produce/consume it. The same
technique, applied on the level of conditional effects, can be used to extend net change
constraints to conditional effects.

As a side note, we remark that variables like Counto,e may be useful in other con-
straints as well. While the operator-counting framework restricts the set of shared vari-
ables to operator-counting variables, this could be extended to include other variables
as long as all constraints share the same interpretation of these variables. Given a plan,
the value of all shared variables has to be determined and every constraint has to have
a solution consistent with these values. In a similar way, the variables Timeo from
delete-relaxation constraints could be shared by interpreting them as an order of the
first occurrence of each operator in a given plan. Variables that count the number of
times an axiom (Helmert, 2009) triggers would also be interesting for general FDR
tasks, but it is less clear how the semantics of axioms could be encoded.

12.4. Extension to Other Planning Formalisms
There are many extensions of classical planning. Level 2 of PDDL 2.1 (Fox and Long,
2003) adds numeric state variables to the finite domain variables in level 1. Numeric
planning is often combined with temporal planning (levels 3 and 4 of PDDL 2.1), where
executing actions takes time and not all effects are instantaneous. In probabilistic plan-
ning the effect of an action is selected according to a probability distribution (Bellman,
1957; Bertsekas, 1995; Mausam and Kolobov, 2012). The problem of over-subscription
planning is to find a path with a limited cost budget that maximizes a utility function
over states (Smith, 2004; Aghighi and Jonsson, 2014). Heuristic search has been used
in all of these formalisms (e.g. Hoffmann, 2003; Bonet and Geffner, 2003; Coles et al.,
2012; Domshlak and Mirkis, 2015).

One option of coming up with admissible heuristic estimates for an extension of
classical planning is to ignore the extension and compute an admissible heuristic for
the “classical core” of the task. For example, this means projecting away the numeric
variables (e.g. Do and Kambhampati, 2001), ignoring time (e.g. Eyerich, Mattmüller,
and Röger, 2009) or transforming a non-deterministic task into a deterministic one via
determinization (e.g. Yoon, Fern, and Givan, 2007; Teichteil-Königsbuch, Kuter, and

115

12. Related and Future Work

Infantes, 2010). Such heuristics ignore the aspect of the problem that distinguishes
it from classical planning and are therefore usually not that informative. Heuristics
that only take the distinguishing part into account (e.g. only reason about the values of
numerical variables) would suffer from the same problem. Heuristics that combine both
parts are often very specific to the particular planning formalism and cannot directly
benefit from new ideas in classical planning.

Operator-counting heuristics might offer a general way to connect other planning
formalisms with classical planning heuristics. If aspects of the problem that go beyond
classical planning can be represented in terms of linear constraints and connected to the
number of times an action is executed, operator-counting constraints can be combined
with these constraints. Each set of constraints then focuses on one aspect of the problem
but since they mention the same variables, they can interact and strengthen each other.
New results for operator-counting heuristics in classical planning can then be easily
used in other planning formalisms.

For example, in numeric planning, if a numeric variable is only incremented and
decremented by one with operators, is 0 in the initial state and must be at least 5 in
the goal, then the number of times an increment operator is used minus the number of
times a decrement operator is used must be at least 5. The LPRPG heuristic (Coles et
al., 2008) uses reasoning like this in an LP to derive a heuristic value. In contrast to
operator-counting heuristics, their LP reasons about time steps in a relaxed planning
graph (Hoffmann, 2003) but the same idea could be easily combined with operator
counting. Constraints of this kind could then be combined with, say, landmarks and the
state equation heuristic on the classical part.

In over-subscription planning, adding constraints that limit the cost of a plan to the
given budget is straight-forward. If the utility can also be expressed in terms of operator-
counting variables, it can be maximized subject to operator-counting constraints and the
budget constraint to get an upper bound for the achievable utility.

One recent example of extending operator-counting heuristics to other planning for-
malisms is from the area of probabilistic planning. Trevizan, Thiébaux, and Haslum
(2017) use occupation measures instead of operator-counting variables. The occupa-
tion measure of a policy π for an operator o and a state s is the expected number of
times o is executed in s following policy π. They use LP variables for the occupation
measures to express the expected number of times atoms are produced and consumed
in atomic projections. Their heuristic is directly analogous to the state equation heuris-
tic for classical planning. They also show how arbitrary operator-counting constraints
can be translated into their framework, so any advances on classical operator-counting
heuristics can be directly used for probabilistic planning.

We believe that a similar approach could work for many other planning formalisms as
well and plan to work on extensions to numeric planning and over-subscription planning
in the future.

116

13. Summary
We introduced a class of MIP/LP heuristics based on operator-counting constraints that
subsumes many existing heuristics, including the state equation, post-hoc optimiza-
tion and admissible landmark heuristics as well as the delete-relaxation heuristic. With
an analysis of flow heuristics, we also showed that general (explicit-state) abstraction
heuristics can be represented in this framework. While operator counting is very gen-
eral, not every heuristic can be represented in this framework. Critical path heuristics
are not superadditive (i.e. they can benefit from cost partitioning with themselves) and
thus cannot be represented as operator-counting heuristics.

There are two main advantages of representing heuristics in a common language like
that of operator-counting constraints:

Firstly, operator-counting constraints can be combined arbitrarily. As the main con-
tribution in this area, we showed that operator-counting LP heuristics compute an op-
timal general operator cost partitioning of their component heuristics. In our exper-
iments, the best configuration combines constraints from the state equation heuristic
and from optimal cost partitioning for LM-cut landmarks. This configuration solves 13
more tasks on the IPC benchmark set than the state-of-the-art LM-cut heuristic. We
saw synergy effects between most constraint types where the combination with an LP
produced better heuristic estimates than the maximum. Computing the MIP heuristic
for the same constraints offers an even stronger method to combine the heuristics. In
practice, the combination with an LP already produces high quality heuristic estimates
and the additional effort to solve an (NP-hard) MIP does not pay off in most cases.

Secondly, the relationship of different heuristics expressed in a common language is
easier to analyze. For example, we show that the state equation heuristic can be seen
as cost-partitioned atomic abstractions when isolated values are removed from variable
domains. The proof simply compares the generated constraints, instead of having to
reason about Petri nets, abstractions and shortest paths at the same time. By further
analyzing the constraints, we show that extensions of the heuristic like partial merges
or using mutex information correspond to other abstractions and that the safety-based
extension of the state equation heuristic cannot improve heuristic accuracy. Similarly,
we use the operator-counting representation to show dominance results, for example
that hSEQ dominates the post-hoc optimization heuristic for atomic projections if there
are no dead values.

Operator counting in general makes it easy to express declarative knowledge about
plans and use off-the-shelf LP solvers to combine this knowledge in an optimal way.
We saw that such declarative knowledge can be extracted from a number of different

117

13. Summary

sources like landmarks or abstractions. For other planning formalism such as numeric
planning, oversubscription planning, or probabilistic planning, additional information
about the task could be added to encode the specific mechanics of the formalism.

118

Part III.

Potential Heuristics

119

14. Introduction to
Potential Heuristics

In this part of the thesis, we introduce a new family of heuristics called potential heuris-
tics. Like operator-counting heuristics, potential heuristics are declarative: they fix the
mathematical form of the heuristic and allow us to declare properties that restrict the
heuristic function. While operator-counting heuristics use properties of plans to restrict
the heuristic value, potential heuristics use properties of the heuristic function itself,
like consistency and admissibility.

A potential heuristic associates a numerical weight with a set of state features and
computes the potential of a state as the sum of all weights of features that are present
in the state. A well-known example are evaluation functions in chess (e.g. Lolli, 1763;
Shannon, 1950): an approximate value of a position in chess can be computed as

200(K −K ′) + 9(Q−Q′) + 5(R−R′) + 3(B −B′ +N −N ′) + (P − P ′)

where K, Q, R, B, N , and P are the number of kings, queens, rooks, bishops, knights,
and pawns owned by the player, and K ′, . . . , P ′ are the number of pieces owned by the
opponent. The evaluation function assigns a (positive or negative) value to each piece
and includes this value in the sum if the piece is still on the board.

For now, we focus on features that can be expressed as conjunctions of atoms. More
general features are conceivable (e.g. disjunctions or general formulas over atoms), and
we explore a slightly broader definition in Section 16.2.

Definition 14.1 (feature). Let Π be a planning task with atoms A. A feature of Π is a
conjunction of atoms fromA and the number of conjuncts is its size. A feature f is true
in a state s (written as s |= f) if all atoms of f are true in s.

Definition 14.2 (potential function). Let Π be a planning task and F a set of features
of Π. A weight function is a function w : F → R. The potential function for a weight
function w maps each state s to its potential:

ϕw(s) =
∑
f∈F

w(f)[s |= f].

The dimension of a potential function is the maximal size of one of its features.

We call features of size 1 and 2 atomic and binary, and likewise for potential func-
tions of dimension 1 and 2. Potential functions can be used to estimate goal distances,

120

in which case we call them potential heuristics. They also have other uses, which we
discuss in Chapter 18.

Every finite heuristic h for a task with n variables can be described as a potential
function with at most n-dimensional features: in the worst case, we can define an n-
dimensional feature with weight h(s) for every state s. But there are interesting poten-
tial heuristics with lower dimension as well. The STRIPS heuristic (Fikes and Nilsson,
1971) counts the number of unsatisfied goals. It can be seen as an atomic potential
heuristic with features 〈V, v〉 of weight 1 where V is a goal variable and v is not its
goal value. The Manhattan distance for the sliding tile puzzle (Korf, 1985) sums up
the Manhattan distance of every tile to its goal location and can be also be seen as an
atomic potential function. In this puzzle, a linear conflict (Hansson, Mayer, and Yung,
1992) exists if two tiles have to pass each other in the same row or column. This can
be expressed with binary potential heuristics. As a final example, note that the PDB
heuristic for a pattern P is a potential heuristic of dimension |P | where the features
directly correspond to the abstract states in projection to P and the weights are their
abstract goal distances.

121

15. Admissible and Consistent
Potential Heuristics

The main advantage of potential functions is that their fixed mathematical structure
makes it possible to analyze and reason about the heuristics. In this chapter we will
show how linear constraints over feature weights can be used to express interesting
properties like admissibility and consistency of potential heuristics. The constraints that
we introduce characterize admissible and consistent potential heuristics for certain sets
of features. This means that every weight function satisfying the constraints induces
an admissible potential heuristic. Maximizing a formula that measures how “good”
a heuristic is subject to these constraints gives the best admissible potential heuristic
according to this criterion. If the criterion can be expressed as linear functions over
the weights, an off-the-shelf LP solver can be used to automatically derive the heuristic
function. In Section 15.4 we discuss different objective functions.

15.1. Atomic Potential Heuristics
We first restrict our attention to potential heuristics over feature sets with only atomic
features and show that admissible and consistent atomic potential heuristics can be
characterized by a compact set of linear constraints over the weights. It is again useful to
restrict tasks to transition normal form (see Section 2.4) and we show in Appendix B.3
that this is not limiting generality. A generalization of the results to unrestricted SAS+

is possible and the constraints for it are identical to the ones for the task’s transition
normalization.

Consider a planning task Π = 〈V ,O, sI, s?, cost〉 in TNF and recall from Section 2.2
that a consistent heuristic is goal-aware iff it is admissible. A potential heuristic hw for
features F is goal-aware if and only if

hw(s?) =
∑
f∈F

w(f)[s? |= f] ≤ 0. (15.1)

It is consistent if and only if

hw(s) ≤ cost(o) + hw(sJoK) (15.2)

holds for every state s and every operator o applicable in s. Both conditions are linear
inequalities over feature weights, but the number of constraints (15.2) is exponential

122

15.1. Atomic Potential Heuristics

in the task’s size. We now show how to represent an equivalent condition in a more
compact form.

We say an operator o affects a feature f in a state s if applying o in s changes the
truth value of f , i.e. if [s |= f] 6= [sJoK |= f]. Rewriting condition (15.2) shows that
features unaffected by the applied operator cancel out.

cost(o) ≥ hw(s)− hw(sJoK)

=
∑
f∈F

w(f)[s |= f]−
∑
f∈F

w(f)[sJoK |= f]

=
∑
f∈F

w(f)([s |= f]− [sJoK |= f])

If all features are atomic, the only features affected by o are atoms that are produced or
consumed by o. In TNF an operator o produces the atoms eff (o)\pre(o) and consumes
the atoms pre(o) \ eff (o). All other features can be removed because their coefficients
cancel out. However, we keep all atoms in pre(o) ∪ eff (o) to simplify the formula.

cost(o) ≥
∑
f∈F

f∈pre(o)∪eff (o)

w(f)([s |= f]− [sJoK |= f])

=
∑

f∈pre(o)∩F

w(f) −
∑

f∈eff (o)∩F

w(f)

This constraint no longer depends on the state s and still characterizes consistent
potential heuristics with atomic features.

Theorem 15.1. Let Π = 〈V ,O, sI, s?, cost〉 be a planning task in TNF and F a set
of atomic features for Π. Let CF be the following set of linear constraints over the
variables {Wf | f ∈ F}.∑

f∈F

Wf [s? |= f] ≤ 0∑
f∈pre(o)∩F

Wf −
∑

f∈eff (o)∩F

Wf ≤ cost(o) for all o ∈ O

The set of solutions for CF is the set of weight functions of admissible and consistent
potential heuristics for Π over F .

If A is the set of atoms of Π, then the characterization requires at most |A| variables
and only |O| + 1 constraints. Both numbers are linear in the description size of Π.
Since consistent heuristics are admissible iff they are goal-aware, we directly have the
following corollary.

123

15. Admissible and Consistent Potential Heuristics

Corollary 15.1. The set of admissible and consistent atomic potential heuristics can be
characterized by a compact set of linear constraints.

If F is the set of all atomic features, the weights can be normalized to simplify an
implementation. Given a weight function w that satisfies the constraints, we define w′

as
w′(〈V, v〉) = w(〈V, v〉)− w(〈V, s?[V]〉)

This fixes the weight of all features that are true in s? to 0. The goal state thus has a value
of exactly 0 (satisfying the goal-awareness constraint). The heuristic values of hw′ are
the same as those of hw after subtracting a constant value of

∑
V ∈V w(〈V, s?[V]〉). If a

heuristic is consistent, then it remains consistent after subtracting a constant from every
heuristic value. The normalized weight function w′ thus also satisfies the consistency
constraints. We can restrict the set of solutions to normalized weight functions by
replacing the goal-awareness constraint with W〈V,s?[V]〉 = 0 for all variables V or by
just removing all features true in s? from F .

15.2. Binary Potential Heuristics
Two-dimensional potential heuristics only consider atomic and binary features. As we
discussed in the previous section, a potential heuristic is goal-aware if it satisfies

hw(s?) =
∑
f∈F

w(f)[s? |= f] ≤ 0,

and consistent if it satisfies

cost(o) ≥ hw(s)− hw(sJoK) =
∑
f∈F

w(f)([s |= f]− [sJoK |= f])

for all states s and all operators o applicable in s. The goal-awareness constraint is a
single linear constraint no matter what the set of features is. The consistency constraint,
however, consists of an exponential number of inequalities (one for each transition). In
the following we consider the inequalities for a specific operator o and abbreviate the
change of a feature’s truth value ([s |= f]− [sJoK |= f]) as ∆o(f, s).

In the atomic case, the coefficient ∆o(f, s) is independent of the context in which o
is applied and only dependent on o itself. For binary features, this is not the case. For
example, consider the feature f = 〈pos-T, A〉∧ 〈pos-P, A〉 in our running example task
from Section 2.1. The feature expresses that the truck and the package are in position
A. The operator drive-B-A that moves the truck from B to A produces f if it is applied
in a state s1 where the package already is at A and we have ∆o(f, s1) = −1. However,
if the same operator is applied in a state s2 where the package is at location B, then f
is false before and after applying the operator and ∆o(f, s2) = 0.

124

15.2. Binary Potential Heuristics

We partition the set of features into three subsets for the operator o: irrelevant fea-
tures F irr

o have no variables in common with vars(o), context-independent features F ind
o

mention only variables in vars(o), and the remaining context-dependent features F ctx
o

mention one variable from vars(o) and one from V \ vars(o).
The truth value of an irrelevant feature never changes by applying o in some state.

Thus, ∆o(firr, s) = 0 for all firr ∈ F irr
o and states s in which o is applicable, and∑

f∈F irr
o

w(f)∆o(f, s) = 0. (15.3)

For a context-independent feature find, the effect of applying o in s is completely
determined by o: find holds in s iff find is entailed by the precondition, and in sJoK iff it
is entailed by the effect. Thus, ∆o(find, s) = [pre(o) |= find]− [eff (o) |= find] for every
state s in which o is applicable. To emphasize that ∆o(find, s) does not depend on the
state s for find ∈ F ind

o , we abbreviate the notation to ∆o(find) and get∑
f∈F ind

o

w(f)∆o(f, s) =
∑
f∈F ind

o

w(f)∆o(f). (15.4)

A context-dependent feature fctx ∈ F ctx
o is a conjunction fctx = ao ∧ aō where ao is

an atom over a variable in vars(o) and aō is an atom over a variable in Vō = V \vars(o).
Applying o cannot change the truth value of aō. If o is applied in a state s with s 6|= aō,
then s 6|= fctx and sJoK 6|= fctx, so ∆o(fctx, s) = 0. For the remaining situations, we
know that aō is present in both s and sJoK and the truth value of ao is solely determined
by o. Thus ∆o(fctx, s) = ∆o(ao)[s |= aō]. If o is applicable in s,∑

f∈F ctx
o

w(f)∆o(f, s) =
∑
f∈F ctx

o
f=ao∧aō

∑
V ∈Vō

vars(aō)={V }

w(f)∆o(f, s) (15.5)

=
∑
f∈F ctx

o
f=ao∧aō

∑
V ∈Vō

w(f)∆o(ao)[aō = 〈V, s[V]〉] (15.6)

=
∑
V ∈Vō

∑
f∈F ctx

o
f=ao∧aō

w(f)∆o(ao)[aō = 〈V, s[V]〉] (15.7)

≤
∑
V ∈Vō

∑
f∈F ctx

o
f=ao∧aō

w(f)∆o(ao)[aō = 〈V, vmax
V]〉] (15.8)

where vmax
V is a value in dom(V) for which the inner sum is maximal, i.e.

vmax
V ∈ arg max

v∈dom(V)

∑
f∈F ctx

o
f=ao∧aō

w(f)∆o(ao)[aō = 〈V, v〉].

125

15. Admissible and Consistent Potential Heuristics

Let boV be the inner sum in (15.8). Combining what we know about irrelevant features
(15.3), context-independent features (15.4), and context-dependent features (15.8), we
get

hw(s)− hw(s′) =
∑
f∈F

w(f)∆o(f, s) ≤
∑
f∈F ind

o

w(f)∆o(f) +
∑
V ∈Vō

boV (15.9)

for all states s and all operators o applicable in s. Therefore, if the weight function
satisfies

∑
f∈F ind

o
w(f)∆o(f) +

∑
V ∈Vō b

o
V ≤ cost(o) for all operators o, then hw is con-

sistent. Conversely, if hw is consistent, then hw(s)− hw(sJoK) ≤ cost(o) for operator o
and the states s in which o is applicable. In particular, it is consistent for state smax with
smax[V] = pre(o)[V] for V ∈ vars(o), and smax[V] = vmax

V otherwise. It is then not
difficult to check that the inequality in (15.9) is tight for such states smax. Hence, hw is
consistent iff∑

f∈F ind
o

w(f)∆o(f) +
∑
V ∈Vō

boV ≤ cost(o) for all o ∈ O

boV = max
v∈dom(V)

∑
f∈F ctx

o
f=ao∧〈V,v〉

w(f)∆o(ao) for all o ∈ O and V ∈ Vō.

Since boV only occurs on the left-hand side of a single ≤-constraint, we can replace it
with a new variable zoV and the constraints

zoV ≥
∑
f∈F ctx

o
f=ao∧〈V,v〉

w(f)∆o(ao) for all v ∈ dom(V).

it is easy to see that a valid value for boV is also valid for zoV . A valid solution for zoV
cannot be smaller than the maximum defining boV . If it is larger, reducing it to be equal
cannot make a previously satisfied constraint unsatisfied. The models including boV and
zoV thus have the same set of solutions projected to w. The resulting constraints are all
linear, and we can put the different parts together:

Theorem 15.2. Let F be a set of features of size at most 2 for a TNF planning task
Π = 〈V ,O, sI, s?, cost〉. Let CF be the following set of linear constraints over the
variables {Wf | f ∈ F} ∪ {ZoV | o ∈ O, V ∈ Vō}.∑

f∈F

Wf [s? |= f] ≤ 0∑
f∈F ind

o

Wf∆o(f) +
∑
V ∈Vō

ZoV ≤ cost(o) for all o ∈ O

∑
f∈F ctx

o
f=ao∧〈V,v〉

Wf∆o(ao) ≤ ZoV for all V ∈ Vō, v ∈ dom(V), and o ∈ O

126

15.3. Higher-Dimensional Potential Heuristics

where ∆o(f) = [pre(o) |= f] − [eff (o) |= f]. The set of solutions for CF projected to
W is the set of weight functions of admissible and consistent potential heuristics for Π
over F .

The model CF has O(|F| + |O||V|) variables and O(|O||V|d) constraints where d
bounds the size of the variable domains, and each constraint has O(|F| + |V|) coeffi-
cients.

Corollary 15.2. The set of admissible and consistent binary potential heuristics can be
characterized by a compact set of linear constraints.

Analogously to the atomic case, weight functions can be normalized so the weight of
every feature that is true in the goal state is 0. For potential heuristics over the set of all
binary features, this only excludes solutions that match a normalized solution shifted
by an additive constant.

15.3. Higher-Dimensional Potential Heuristics
We now prove that a general result like Corollary 15.2 is not possible for sets of features
of dimension 3 or more, unless NP equals P. However, we identify classes of problems
on which linear constraints can compactly characterize higher-dimensional potential
heuristics.

15.3.1. Intractability

Corollary 15.2 allows one to answer many interesting questions about binary potential
heuristics in polynomial time. In particular, by solving a single LP one can test whether
a given potential function is consistent and/or goal-aware. We use this idea to show that
no general result like Corollary 15.2 is possible for potential heuristics of dimension
3 or more. The proof is a reduction of non-3-colorability, a decision problem that is
complete for co-NP (Garey and Johnson, 1979), to the problem of testing whether a
potential function of dimension 3 is consistent.

Let G = 〈V,E〉 be an undirected graph. We first construct, in polynomial time, a
planning task Π = 〈V ,O, sI, s?, cost〉 in TNF and a potential function ϕ of dimension
3 such that G is not 3-colorable iff ϕ is consistent. The task Π has |V | + 1 variables:
one variable Cv for the color of each vertex v ∈ V that can be either red, blue or green,
and one “master” binary variable denoted by M .

For every vertex v ∈ V and pair of different colors c, c′ ∈ dom(Cv), there is a unique
operator ov,c,c′ of zero cost that changes Cv from c to c′ when M = 0. For the variable
M , there is a unique operator oM , also of zero cost, that changes M from 0 to 1. These
are all the operators in the task Π.

127

15. Admissible and Consistent Potential Heuristics

Each state s ∈ S encodes a coloring of G, where the color of vertex v is the value
s[Cv] of the state variable Cv. The initial state sI is set to an arbitrary coloring but with
the master variable set to 0; e.g. sI[M] = 0 and sI[Cv] = red for every vertex v ∈ V .
The goal state s? is also set to an arbitrary coloring but with s?[M] = 1; e.g. s?[M] = 1
and s?[Cv] = red for every vertex v ∈ V .

The potential function ϕ of dimension 3 is constructed as follows. For features f
with vars(f) = {M,Cu, Cv} such that {u, v} ∈ E is an edge in the graph, let its
weight w(f) = −1 when f [M] = 1 and f [Cu] 6= f [Cv], and w(f) = 0 otherwise. For
the feature fM = 〈M, 1〉 of dimension 1, let w(fM) = |E| − 1. The weight w(f) for
all other features f is set to 0.

Let us now reason about the states of the task Π and the values assigned to them
by the potential function ϕ. Let s be a state for Π. If s[M] = 0, then ϕ(s) = 0. If
s[M] = 1, then no operator is applicable at s, and ϕ(s) ≥ −1. For such states, the
feature fM contributes a value of |E| − 1 to ϕ(s), while the features corresponding to
edges contribute a value of −|E| when s encodes a coloring. Therefore, ϕ(s) = −1 iff
s encodes a 3-coloring of G .

Let us consider a transition s
o−→ s′ ∈ T . Clearly, s[M] = 0 as no operator is

applicable in states with s[M] = 1. If s[M] = s′[M] = 0, then ϕ(s) = ϕ(s′) = 0. All
operator costs are equal to zero, so ϕ is always consistent for transitions like this. If
s[M] = 0 and s′[M] = 1, then ϕ(s) ≤ ϕ(s′) iff s′ does not encode a 3-coloring of G.
Therefore, ϕ is consistent iff there is no transition s o−→ s′ with s[M] = 0, s′[M] = 1 and
s′ encoding a 3-coloring of G. Thus, ϕ is consistent iff the graph G is not 3-colorable.

Finally, observe that testing whether ϕ is inconsistent is possible in non-deterministic
polynomial time: guess a state s and an operator o, and check whether ϕ(s) > ϕ(sJoK).

Theorem 15.3. LetF be a set of features for a planning task Π, and let ϕ be a potential
function over F . Testing whether ϕ is consistent is co-NP-complete.

Looking at the derivation of constraints for the binary case in Section 15.2, we notice
that only part of the proof relies on the features being binary. Intutively, the constraints
for a context-dependent feature split the effect of an operator into the part completely
determined by the operator and the part that depends on the state. The state-dependent
part is then replaced by the maximum over all possible states. In the binary case, the
maximum can be represented by a compact set of linear constraints. Theorem 15.3
implies that this is not possible in general. But there is a silver lining: we now prove a
parametrized tractability result for higher-dimensional potentials heuristics.

15.3.2. Parametrized Tractability
Of the two conditions that characterize goal-aware and consistent potential heuristics,
goal-awareness is always easy to specify as a linear constraint.

hw(s?) =
∑
f∈F

w(f)[s? |= f] ≤ 0,

128

15.3. Higher-Dimensional Potential Heuristics

Consistency is more challenging to test as it consists of an exponential number of
inequalities, one per state. The constraint is equivalent to

cost(o) ≥ max
s|=pre(o)

(hw(s)− hw(sJoK)) = max
s|=pre(o)

∑
f∈F

w(f)∆o(f, s) (15.10)

for all operators o ∈ O.
As done before, we partitionF asF = F irr

o ∪F ind
o ∪F ctx

o for a fixed operator o, where
F irr
o contains the features that have no variable in common with vars(o), F ind

o contains
the features that use only variables from vars(o), and F ctx

o contains the remaining fea-
tures.

As for binary features, ∆o(firr, s) = 0 for all firr ∈ F irr
o and states s in which o is

applicable. The value of ∆o also does not depend on s for features in F ind
o and we

write ∆o(find, s) as ∆o(find) = [pre(o) |= find] − [eff (o) |= find] for all find ∈ F ind
o

and states s in which o is applicable. We can thus rewrite constraint (15.10) by taking
state-independent parts out of the maximum:

cost(o) ≥
∑
f∈F ind

o

w(f)∆o(f) + max
s|=pre(o)

∑
f∈F ctx

o

w(f)∆o(f, s) (15.11)

In the remaining state-dependent part, state s is partly determined by pre(o). For a
given feature f , the value of ∆o(f, s) therefore only depends on variables in Vf\o =
vars(f) \ vars(o). The feature is true in s iff s|vars(f) |= f iff (pre(o) ∪ s|Vf\o) |= f .
Analogously, sJoK |= f iff (eff (o) ∪ s|Vf\o) |= f . The coefficient of w(f) thus only
depends on the values of the variables Vf\o. Unfortunately, these sets can overlap for
different features in the sum. We call this a function maximization problem: given a set
of scoped functions Ψ, where the scope of each function is a subset of a common set of
finite domain variables, we are looking for an assignment to these variables such that
the sum of all functions is maximal. The solution of this problem is denoted Max(Ψ)
with

Max(Ψ) = max
ν∈dom(V)

∑
〈S,ψ〉∈Ψ

ψ(ν|S).

Computing Max(Ψ) is the goal of constraint optimization for extensional constraints,
an important problem in AI. It is challenging because the number of valuations over the
variables is exponential in the number of variables. Usually, the functions in Ψ map to
numbers but in Appendix C we show that a generalized version of the bucket elimina-
tion algorithm (Dechter, 2003) can handle functions that map to linear expressions.

We use LP variables {Wf | f ∈ F} to represent the weights and define the fol-
lowing function for each feature f that maps partial variable assignments over Vf\o to
{Wf ,−Wf , 0}:

ψfo (p) = Wf ([pre(o) ∪ p |= f]− [eff (o) ∪ p |= f])

129

15. Admissible and Consistent Potential Heuristics

The state-dependent part of constraint 15.11 is then equivalent to the function maxi-
mization problem Ψo = {〈Vf\o, ψfo 〉 | f ∈ F ctx

o }. Constraint 15.11 can be written as
the combination of Max(Ψo) and linear constraints:

cost(o) ≥
∑
f∈F ind

o

Wf∆o(f) + Zo (15.12)

Zo = Max(Ψo) (15.13)

As we prove in Appendix C (Corollary C.1 and Theorems C.1 and C.2), the bucket
elimination algorithm can be used to generate a set of linear constraints PLP(o) which is
equivalent to Zo ≥ Max(Ψo). Since Zo only occurs in constraint (15.13) and with a pos-
itive coefficient on the right-hand side of constraint (15.12), the inequality is sufficient
for our purpose.

Theorem 15.4. Let F be a set of features for a planning task Π = 〈V ,O, sI, s?, cost〉
in TNF. For each operator o ∈ O, let PLP(o) be the set of constraints generated by the
bucket elimination algorithm which is equivalent to Zo ≥ Max(Ψo).

Let CF be the following set of linear constraints over the auxiliary variables in PLP(o)

for all operators o and variables {Wf | f ∈ F}.∑
f∈F

Wf [s? |= f] ≤ 0∑
f∈F ind

o

Wf∆o(f) + Zo ≤ cost(o) for all o ∈ O

PLP(o) for all o ∈ O

where ∆o(f) = [pre(o) |= f] − [eff (o) |= f]. The set of solutions for CF projected to
W is the set of weight functions of admissible and consistent potential heuristics for Π
over F .

We finish the section by bounding the number and size of the constraints inCF which
is mostly determined by the variables Wf for every feature and the combined size of
all PLP(o). For an operator o, the size of PLP(o) depends on how interconnected the
features in F ctx

o are and on the order in which variables are eliminated in the bucket
elimination algorithm for Max(Ψo). To quantify this, we define the context-dependency
graph G(Π,F , o) for a task Π, features F , and operator o as follows: the vertices are
the variables of Π. Edges connect vertices V and V ′ when there is a feature f ∈ F
such that {V, V ′} ⊆ vars(f) \ vars(o). For each variable elimination order σ, the
size of the resulting constraints PLP(o) can be expressed in terms of a parameter called
induced width w(σ). The width induced by the best elimination order is the treewidth
of G(Π,F , o) (Dechter, 2003). In Theorem C.3 of Appendix C we show that PLP(o) has
O(|V|dw(σ)) auxiliary variables and O(|V|dw(σ)+1) constraints, where d bounds the size
of the variable domains and w(σ) is the induced width of G(Ψo) and a variable order σ.

130

15.4. Objective Functions

Proposition 15.1. Let F be a set of features for a TNF planning task Π with operators
O and variables V . Let {σo}o∈O be an indexed collection of orderings on V .

The set of admissible and consistent potential heuristics over featuresF can be char-
acterized by a set of O(|O||V|dw+1) linear constraints over O(|F| + |O||V|dw) vari-
ables, where d bounds the size of the variable domains, and w is the maximal induced
width of G(Π,F , o) along σo for any o ∈ O.

Since the optimal induced width of a graph is its treewidth, we can conclude the
following fixed-parameter tractability result.

Corollary 15.3. Constructing linear constraints that characterize the set of admissible
and consistent potential heuristics for a set of features F is fixed-parameter tractable
with the parameter max(d, w), where d bounds the size of the variable domains, and w
is the the maximal treewidth of the context-dependency graph for an operator.

If we restrict the set of features in a way that the treewidth of context-dependency
graphs is limited by a constant, there always is a polynomial-sized set of linear con-
straints characterizing admissible and consistent potential heuristics. However, finding
this set depends on using a good variable order in the bucket elimination algorithms,
and finding a variable order that minimizes the induced width of a graph is an NP-hard
problem in itself (Dechter, 2003).

Let us apply Proposition 15.1 when F is a set of binary features. In this case,
G(Π,F , o) has no edges for all o ∈ O and thus its induced width along any order
is 0. Proposition 15.1 asserts that the number of constraints is O(|O||V|dw+1) =
O(|O||V|d), while their size is O(|F| + |V|dw) = O(|F| + |V|) agreeing with Corol-
lary 15.2.

15.4. Objective Functions
For certain sets of features F , we can characterize admissible and consistent potential
functions over F with a compact set of linear constraints CF . Given any objective
function obj, the weights that maximize obj subject to CF describe a “best” heuristic
function according to obj. If obj is a linear combination of feature weights, we can use
an LP solver to come up with such weights. But how do we define “best”?

We now explore different ways to measure heuristic quality. Most of them rely on
the observation that the heuristic value of a state s is a linear combination of feature
weights:

h(s) =
∑
f∈F

w(f)[s |= f]

For admissible heuristics, higher heuristic values are generally better. We can eas-
ily find a potential heuristic with the highest possible value for the initial state sI by

131

15. Admissible and Consistent Potential Heuristics

maximizing h(sI) subject to CF . The resulting heuristic, which we call hpot
F ,sI

has some
interesting theoretical properties, which we discuss in Chapter 16.

One obvious disadvantage of maximizing the heuristic value of only one state is that
there is no incentive to optimize potentials of features that do not occur in the state. We
therefore introduce alternative objective functions that consider more than one state.

Instead of maximizing the heuristic value of a single state, we can maximize the
average heuristic value of multiple states. In general, the average heuristic value for
any set of states S is a weighted sum over potentials:

1

|S|
∑
s∈S

h(s) =
1

|S|
∑
s∈S

∑
f∈F

w(f)[s |= f]

Note that we can generally eliminate any linear transformation of the objective func-
tion since we are not interested in the optimal objective value itself. It makes no differ-
ence if we optimize the average heuristic value, or the sum of heuristic values, in S. For
example, if S is a reasonably small set of sampled states, the coefficient of w(f) can
be set to number of states in which f is true to maintain the fact that all coefficients are
integers. If we consider the set of all states S, the number of states in which a feature
is true can become very large. To avoid numeric problems, we can use the proportion
of states in which the feature is true, instead. If dom(vars(f)) is the product of dom(V)
for all V ∈ vars(f), then for every partial variable assignment of variables V \ vars(f),
there is one state in which f is true and |dom(vars(f))|−1 states in which it is not. The
proportion of states where f is true is thus 1

dom(vars(f))
and we get:

1

|S|
∑
s∈S

h(s) =
1

|S|
∑
s∈S

∑
f∈F

w(f)[s |= f]

=
∑
f∈F

∑
s∈S [s |= f]

|S| w(f)

=
∑
f∈F

|{s ∈ S | s |= f}|
|S| w(f)

=
∑
f∈F

1

|dom(vars(f))|w(f)

Maximizing this function subject to CF yields an admissible potential heuristic over
F with the highest possible average heuristic value, but there are two problems in prac-
tice.

First, if S contains dead ends, heuristic values can become arbitrarily large and the
linear program can become unbounded. This can even happen if all dead ends are
unreachable. When the linear program is unbounded, we usually cannot extract a useful
heuristic function. Unfortunately, the LP is not always unbounded if S contains a dead

132

15.4. Objective Functions

s0,0

s0,1

s1,0

s1,1

Figure 15.1: Example for a task where the set of all states S contains dead ends, but
the LP maximizing the average heuristic value over all atomic features
is bounded. There are two variables X and Y , each with the domain
{0, 1}. A state sx,y assigns x to X and y to Y . Independently of the
dead ends’ reachability, the average heuristic value is bounded by finite
heuristic values.

end so we cannot use this to test for dead ends in a set of states. Figure 15.1 shows an
example of a task where the LP is bounded even though there are dead ends. In this task
the sum of heuristic values is two times the weight of each atomic feature since every
atom occurs in exactly two states. On the other hand, the heuristic values of s0,0 and
s1,1 also add up to the sum over all feature weights, and those states must have a finite
value if the heuristic is admissible. Thus, the optimal objective value must be bounded
by ∑

s∈S

hw(s) = 2
∑
f∈F

w(f) = 2(hw(s0,0) + hw(s1,1)) <∞.

Second, the heuristic values of unreachable states influence the solution. This is
problematic since unreachable states are never encountered during the search. Thus
it is pointless to optimize their heuristic value. Moreover, they can be fundamentally
different from reachable states. For example, an invariant analysis can detect atoms that
can never occur together in a reachable state, i.e. they are mutex. The set of all states
S also includes states that violate such mutex information, and maximizing its average
heuristic value requires considering them. We would like to only consider reachable
states, but we cannot characterize this set of states concisely. (If this could be done
efficiently, it would also present an efficient test for plan existence as we could use it to
check if the goal is reachable.) While we could exclude all states that violate a single
mutex, excluding multiple (potentially overlapping) mutexes is more complicated.

The negative influence of dead ends can be handled to some extent by introducing
an upper bound M on each potential. If w(f) ≤ M for all f ∈ F , then the heuristic
value of each state is also limited by |F|M . When optimizing for an individual state
s, unlimited weights may identify s as a dead end (if the LP is unbounded). While this
is no longer the case when weights are limited, it has the benefit that we can maximize
the average heuristic value of any set of states and are always able to extract a heuristic
function. If M is large enough, “recognized” dead ends have heuristic values higher
than h∗(sI) and are never expanded.

133

15. Admissible and Consistent Potential Heuristics

Ignoring unreachable states is a tougher problem. Ideally, we would like to maximize
the heuristic values of reachable state and completely ignore all unreachable states,
but even detecting whether a state is unreachable is as hard as planning itself. As an
approximation, it is possible to randomly sample states from the reachable part of the
state space and maximize the average heuristic value of these samples. If the sampled
states accurately represent the reachable state space, a potential function that maximizes
their average heuristic value can generalize to other states.

Seipp, Pommerening, and Helmert (2015) also experiment with functions that ap-
proximate search effort. Assume there is a function effort(h) that correctly predicts
the number of nodes that have to be expanded with an A∗ search using heuristic h.
Minimizing effort(h) subject to CF would yield the admissible potential heuristic over
F that is best suited to the particular search space. The problem, of course, is that
effort(h) is not known in practice and is hard to approximate accurately. There are ap-
proximations for IDA∗ search (Korf, Reid, and Edelkamp, 2001) but they are based on
assumptions that do not necessarily hold for A∗ search. A reasonably good approxi-
mation of effort(h) is also not likely to be a linear function of the feature weights of h.
Seipp, Pommerening, and Helmert (2015) consider an approximation that is quadratic
in the weights and find weights for atomic potential heuristics with quadratic program-
ming. We will later see that simpler methods already achieve a heuristic quality very
close to the theoretical limit for atomic potential heuristics. The additional time spent
on solving a quadratic program thus does not pay off. However, on a theoretical level
this remains an interesting question for future research.

134

16. Theoretical Analysis
We now connect potential heuristics to the two previous parts by analyzing their rela-
tionship to operator counting and to cost partitioning. It turns out that the three ideas
are very closely related.

16.1. Connection to Operator Counting
We first look at a special case for atomic potential heuristics and their connection to op-
erator counting. This connection can be generalized, but we will do so in the following
section using the connection between operator counting and cost partitioning.

Consider the set of all atomic featuresF = A, i.e. all atoms. Optimal solutions of the
following model are weight functions of consistent and admissible potential heuristics
over F that maximize the potential of the initial state sI.

Maximize
∑
f∈F

Wf [sI |= f] subject to∑
f∈F

Wf [s? |= f] ≤ 0∑
f∈pre(o)∩F

Wf −
∑

f∈eff (o)∩F

Wf ≤ cost(o) for all o ∈ O

Because F is exactly the set of atoms, we can write the model in terms of atoms 〈V, v〉:

Maximize
∑

〈V,v〉∈sI

W〈V,v〉 subject to∑
〈V,v〉∈s?

W〈V,v〉 ≤ 0

∑
〈V,v〉∈pre(o)

W〈V,v〉 −
∑

〈V,v〉∈eff (o)

W〈V,v〉 ≤ cost(o) for all o ∈ O

As we remarked in Section 15.1, we can restrict our attention to normalized potential
heuristic where w(f) = 0 if s? |= f when F = A. If w is the weight function of a non-
normalized potential heuristic hw, then w′ with w′(〈V, v〉) = w(〈V, v〉)−w(〈V, s?[V]〉)
is a weight function of a normalized potential heuristic hw′(s) = hw(s) − hw(s?).

135

16. Theoretical Analysis

If hw is consistent and admissible, then so is hw′ . Since goal-awareness means that
hw(s?) ≤ 0, this also implies that hw′ dominates hw. If we maximize the potential
of a single state, as we do here, we can thus restrict attention to normalized potential
heuristics:

Maximize
∑

〈V,v〉∈sI

W〈V,v〉 subject to

W〈V,v〉 = 0 for all 〈V, v〉 ∈ s?∑
〈V,v〉∈pre(o)

W〈V,v〉 −
∑

〈V,v〉∈eff (o)

W〈V,v〉 ≤ cost(o) for all o ∈ O

Consider the dual of the resulting LP where Counto is the dual variable for the con-
straint of operator o and G〈V,v〉 is the dual variable corresponding to the goal-awareness
constraint for 〈V, v〉:

Minimize
∑
o∈O

Countocost(o) subject to∑
o∈O

〈V,v〉∈pre(o)

Counto −
∑
o∈O

〈V,v〉∈eff (o)

Counto + G〈V,v〉[s?[V] = v] = [sI[V] = v] for all 〈V, v〉 ∈ A

Counto ≥ 0 for all o ∈ O
The variables G〈V,v〉 are unrestricted and each occurs only in a single constraint,

which makes those constraints redundant. We can therefore remove the constraints
for 〈V, v〉 ∈ s? from the LP without affecting its solutions projected to the operator-
counting variables. Note that this is the same as removing features that are true in the
goal from the potential heuristic instead of forcing their value to zero during normal-
ization. The remaining constraints are exactly the net change constraints for all atoms
that do not occur in the goal. We have already seen in Section 10.3 that net change con-
straints for all values of a variable except one, imply the missing one. We can thus write
the LP in the equivalent form that includes the implied constraint for each variable:

Minimize
∑
o∈O

Countocost(o) subject to∑
o∈O

〈V,v〉∈pre(o)

Counto −
∑
o∈O

〈V,v〉∈eff (o)

Counto = [sI[V] = v]− [s?[V] = v] for all 〈V, v〉 ∈ A

Counto ≥ 0 for all o ∈ O
We have also shown in Section 10.3 that upper bound net change constraints are

redundant in the presence of all lower bound net change constraints for a variable.
Changing = to ≥ in the constraints above thus does not affect the set of solutions.
The resulting LP is an operator-counting LP that minimizes the total cost of operators
subject to lower bound net change constraints for all atoms. We already know it as the
model of the state equation heuristic.

136

16.2. Connection to Cost Partitioning

Theorem 16.1. Let Π be a planning task with atoms A and s one of its states. Let
hw be a consistent and admissible potential heuristic over the features A with maximal
hw(s). Then hw(s) = hSEQ(s).

There are several interesting consequences of this result. For one, it shows that there
is a close relation between operator-counting and potential heuristics. In the next sec-
tion, we will see that this connection is not restricted to atomic features. The theorem
also implies an important dominance result. The potential heuristic hw achieves the best
possible value for the state s mentioned in the theorem. Every other atomic potential
heuristic hw′ has hw′(s) ≤ hw(s) = hSEQ(s). The state equation heuristic thus achieves
the best value that can be achieved by any admissible and consistent potential heuristic
over features A in each state.

Corollary 16.1. Let Π be a planning task with atoms A and hw a consistent and ad-
missible potential heuristic over the features A. Then hSEQ dominates hw.

The main difference between hSEQ and a potential heuristic over A is that the poten-
tial heuristic is computed by maximizing an objective once while hSEQ maximizes its
objective for every state. We can interpret the state equation heuristic as optimizing a
new potential heuristic in each state, but using the weights only to compute the heuristic
value of this state.

Corollary 16.2. Let Π be a planning task with atomsA and for each state s ∈ S let hws
be a consistent and admissible potential heuristic over the features A that maximizes
the potential of s. Then hSEQ is the maximum over hws for all s ∈ S.

This corollary gives an interpretation of using multiple potential heuristics where
each is optimized to maximize the potential of a sampled state. This method approx-
imates hSEQ = maxs∈S h

w
s by replacing S in the maximization with a smaller set of

sampled states Ŝ. The more closely Ŝ represents S, the closer the resulting heuristic is
to the upper bound given by hSEQ.

The relation of potential heuristics and hSEQ already gives us some insight on the
connection to cost partitioning, as we know that hSEQ computes an optimal general cost
partitioning over atomic flow heuristics. We will now see how this relation generalizes
to other potential heuristics.

16.2. Connection to Cost Partitioning
We have seen that an admissible and consistent potential heuristic over all atomic fea-
tures that achieves the maximal initial heuristic value computes an optimal operator
cost partitioning over atomic flow heuristics. We now extend this result to all potential
heuristics that use the abstract states of a set of abstractions as features and show that
they correspond to an optimal transition cost partitioning over the flow heuristics. For

137

16. Theoretical Analysis

abstractions without dead states flow and abstraction heuristics are identical, so this
result also shows the relationship to cost-partitioned abstractions.

In Chapter 4 we discussed the LP model by Katz and Domshlak (2010b) to compute
the optimal operator cost partitioning over a collection of abstractions A. It is easy to
adapt this model to compute an optimal transition cost partitioning instead: instead of
variables Cαo that represent the cost of operator o attributed to abstraction α, we use
variables Cα

s
o−→s′

that represent the cost of transition s o−→ s′ attributed to α. We are
interested in cost-partitioned flow heuristic, not abstraction heuristics, so we have to
include constraints on dead states.

Definition 16.1 (TCP heuristics). Let Π = 〈V ,O, sI, s?cost〉 be a planning task with
transitions T , and let A be a set of abstractions for Π. Then hTCP

f,A is the heuristic
mapping a state s to the optimal objective value of the following LP or to∞ if the LP
is unbounded.

Maximize
∑
α∈A

Hαα(s) subject to

Hαα(s?) = 0 for all α ∈ A (16.1)

Hαα(s′) ≤ Hαα(s′′) + Cα
s′

o−→s′′
for all α ∈ A and s′ o−→ s′′ ∈ T α (16.2)∑

α∈A

Cα
s
o−→s′
≤ cost(o) for all s o−→ s′ ∈ T (16.3)

The heuristic hTCP
h,A maps each state to the optimal objective value of an LP with the same

constraints except that (16.2) only occurs if α(s′) and α(s′′) are alive in the abstract
transition system TSα.

Proposition 16.1. For a set of abstractions A the heuristic hTCP
h,A is the optimal general

transition cost partitioning heuristic for the abstraction heuristics hα for α ∈ A, and
hTCP
f,A is the optimal general transition cost partitioning heuristic for the flow heuristics
fα for α ∈ A.

Proof sketch: In both cases, constraint (16.3) ensures that the transition cost functions
costα encoded in Cα respect the cost partitioning property. The cost-partitioned heuris-
tics map to the optimal objective value of the following LP for every α ∈ A, to∞ if it
is unbounded, and to −∞ if it is infeasible:

Maximize Hαα(s) subject to

Hαα(s?) = 0 (16.4)

Hαα(s′) ≤ Hαα(s′′) + costα(s′
o−→ s′′)

for all s′ o−→ s′′ ∈ T α
(if α(s′) and α(s′′) are alive)

(16.5)

The proof for abstraction heuristics then is analogous to the one for the optimal oper-
ator cost partitioning. Constraints (16.4) and (16.5) ensure that the variable Hαα(s) does

138

16.2. Connection to Cost Partitioning

not exceed the true goal distance in the abstract transition system for α under the tran-
sition cost function costα. By dualizing the LP without the restriction to alive states in
(16.5), we see the connection to flow heuristics. �

On the potential heuristic side, we use abstract states as features with the interpreta-
tion that a state s has the feature s′ ∈ Sα iff α(s) = s′. In the special case where α is
a projection to k variables, the features Sα correspond to conjunctions of k atoms. A
potential heuristic for a collection of abstractions A then is a consistent and admissible
potential heuristic that uses all abstract states of all abstractions in A as features.

Proposition 16.2. Let Π be a planning task with transitions T , and let A be a set of
abstractions for Π with abstract states Sα for α ∈ A. Let FA =

⋃
α∈A Sα be the set of

features for A. Let CFA be the following set of constraints.∑
α∈A

Wα(s?) ≤ 0, (16.6)∑
α∈A

Wα(s′) −
∑
α∈A

Wα(s′′) ≤ cost(o) for all s′ o−→ s′′ ∈ T . (16.7)

The set of solutions of CFA is the set of weight functions of admissible and consistent
potential heuristic over FA.

Proof: The important observation for this proof is that we can write the heuristic value
of a state hw(s) =

∑
f∈FA w(f)[s |= f] as

∑
α∈Aw(α(s)). The constraints then match

the definition for goal-awareness (16.6) and consistency (16.7). �

We want to show that hTCP
f,A and an admissible and consistent potential heuristic over

features FA maximizing the initial heuristic value have the same heuristic value.

Proposition 16.3. Let s be a state of a planning task Π and A be a set of abstractions
of Π. The set of solutions for constraints (16.1)–(16.3) (without the restriction to alive
states in (16.2)) projected to H is equal to the set of solutions f for constraints (16.6)–
(16.7) with f(Wα(s?)) = 0 for α ∈ A.

Proof: Assume f is a solution for constraints (16.1)–(16.3). We show that f ′ with
f ′(Wα(s)) = f(Hαα(s)) is a solution to (16.6)–(16.7) with f ′(Wα(s?)) = 0 for α ∈ A.
Obviously, constraint (16.1) implies constraint (16.6): if all features that are present in
the goal state have a weight of 0, then the total weight of the goal state is 0.

Summing constraint (16.2) over all abstractions for a given transition s′ o−→ s′′ ∈ T
shows constraint (16.7):∑

α∈A

f ′(Wα(s′))−
∑
α∈A

f ′(Wα(s′′)) =
∑
α∈A

f(Hαα(s′))−
∑
α∈A

f(Hαα(s′′))

(16.2)
≤
∑
α∈A

f(Cα
s′

o−→s′′
)

(16.3)
≤ cost(o).

139

16. Theoretical Analysis

For the other direction, let f ′ be a solution of constraints (16.6)–(16.7) that has
f ′(Wα(s?)) = 0 for all α ∈ A, i.e. the weight function of a normalized admissible
and consistent potential heuristic. We show that f with f(Hαα(s)) = f ′(Wα(s)) and
f(Cα

s′
o−→s′′

) = f ′(Wα(s′))− f ′(Wα(s′′)) is a solution for constraints (16.1)–(16.3).
Constraints (16.1) and (16.2) are trivially satisfied for f . Constraint (16.3) is also

satisfied, which can be seen by replacing f(Cα
s′

o−→s′′
) by its definition:

∑
α∈A

f(Cα
s
o−→s′

) =
∑
α∈A

f ′(Wα(s′))−
∑
α∈A

f ′(Wα(s′′))
(16.7)
≤ cost(o).

�

The proposition shows that normalized admissible and consistent potential heuristics
correspond to general transition cost partitionings of flow heuristics. Potential heuristics
that maximize the value of hw(s) then have the same value as a general transition cost
partitioning that is optimal for s. The normalization (i.e. requiring w(α(s?)) = 0 for
α ∈ A) is not a serious restriction for this argument. As we have seen before for a
special case, we can assume that the weight function w is normalized. If this is not the
case, consider the normalized weight function w′ with w′(α(s)) = w(α(s))−w(α(s?))
for all α ∈ A and s ∈ S . Let hw′ be the induced potential heuristic with hw′(s) =∑

α∈Aw
′(α(s)) = hw(s)−hw(s?). As hw is goal-aware, hw(s?) ≤ 0, so hw′ dominates

hw. The heuristic hw′ is still goal-aware and consistent. So, while the restriction to
normalized potential functions does exclude some heuristics, these heuristics can never
be optimal when we maximize the heuristic value of a single state s.

Theorem 16.2. Let Π be a planning task and A a set of abstractions for Π. For ev-
ery state s of Π, let hpot

FA,max s be an admissible and consistent potential heuristic over
features FA with maximal value for s. Then hpot

FA,max s(s) = hTCP
f,A (s).

If all abstract states of all transition systems are alive, then hpot
FA,max s(s) = hTCP

h,A (s).

Proof: The statement follows directly from Proposition 16.3 and the fact that the re-
striction to normalized potential heuristics does not influence the optimal objective
value if the heuristic value of a state is maximized. �

The theorem explains the relationship between potential heuristics and general tran-
sition cost partitioning for a single state s (the state for which the potential heuristic was
optimized). For other states s′, we know that hpot

FA,max s(s
′) ≤ hpot

FA,max s′(s
′) = hTCP

f,A (s′)

because hTCP
f,A (s′) is the value of a potential heuristic that maximizes the heuristic value

of s′ and hpot
FA,max s thus cannot have a higher value for s′. The heuristic hTCP

f,A finds a
new optimal partitioning for each state, whereas the potential heuristic uses a weight
function that is optimal for a single state s for every heuristic value. What else can we
say about hpot

FA,max s(s
′)?

The proof of Proposition 16.3 shows that for a given weight function w, there is
a solution f to constraints (16.1)–(16.3) with f(Hαα(s)) = w(α(s)) and f(Cα

s
o−→s′

) =

140

16.2. Connection to Cost Partitioning

w(α(s))− w(α(s′)). The constraints ensure that the transition cost functions costα en-
coded by Cα form a transition cost partitioning and that f(Hαα(s)) is the abstract goal
distance of α(s) in the transition system of α under the cost function costα. The heuris-
tic value of a state s′ then is

hpot
FA,max s(s

′) =
∑
α∈A

w(α(s′)) =
∑
α∈A

f(Hαα(s′)) =
∑
α∈A

hα(s′, costα).

Theorem 16.3. Let Π be a planning task and A = 〈α1, . . . , αn〉 a set of abstractions
for Π. Let hpot

FA,max s be an admissible and consistent potential heuristic over features
FA with maximal value for a state s. Then there is a general transition cost partitioning
P = 〈cost1, . . . , costn〉 for the flow heuristics fα1 , . . . , fαn that is optimal for s and has

hpot
FA,max s(s

′) = fP (hα1 , . . . , fαn , s′)

for all states s′.
If all abstract states of all transition systems are alive, then the analogous result

holds for the abstraction heuristics hα1 , . . . , hαn .

This answers a question about the relationship of potential heuristics and cost parti-
tioning: admissible and consistent potential heuristics that use abstract states as features
compute a general transition cost partitioning of the flow heuristics for the same abstrac-
tions. The cost partitioning maximizes the same objective as the potential heuristic (e.g.
the heuristic value of the initial state). If no abstraction contains a dead state, the flow
heuristics are regular abstraction heuristics. While the heuristics hTCP

f,A and hTCP
h,A would

use a separate cost partitioning for every state, potential heuristics optimize the cost
partitioning only once and then use this partitioning for all states.

141

17. Experiments
We now evaluate atomic and binary potential heuristics and compare them to related
cost partitioning and operator-counting heuristics from Parts I and II. Our implemen-
tation converts the input task to TNF, which does not affect atomic potential heuristics
(see Appendix B.3) but can affect binary potential heuristics.

17.1. Atomic Potential Heuristics
We first investigate how much room for improvement there is for atomic potential
heuristics with any optimization function. As a baseline for this comparison we use
the potential heuristic hpot

A,sI
which optimizes the heuristic value for the initial state. We

compare this to the best heuristic that we can aim for, i.e. one that optimizes the po-
tential function for the given state in every evaluation. As shown in Corollary 16.2 this
heuristic is equal to the state equation heuristic hSEQ. To measure the relative heuristic
quality of hpot

A,sI
and hSEQ, we compare the number of expansions for commonly solved

tasks in the first plot of Figure 17.1. We can see that for many tasks the number of ex-
pansions for hSEQ is orders of magnitude lower than the one for hpot

A,sI
, which shows that

there is still room for improvement for other optimization functions. In total, 747 tasks
are solved with hpot

A,sI
, exceeding the coverage of hSEQ by 21. Table 17.1 summarizes the

coverage of all considered potential heuristics.
While hpot

A,sI
is guaranteed to match hSEQ on the initial state, it can be arbitrarily off

on all other states. In fact, even two instances of hpot
A,sI

can differ on other states because
there are usually infinitely many optimal weight functions. The heuristic hpot

A,S maxi-
mizes the average heuristic value of all states (including unreachable states and dead
ends) to achieve higher heuristic quality in the state space in general, while possibly
sacrificing the high value for the initial state. We deal with dead ends by limiting each
feature weight to 108. This limit is high enough so dead ends can have heuristic values
different from regular states (the ParcPrinter domain has operator costs on the order of
106) and also low enough to avoid numerical problems in the LP solver. Overall, this
approach solves 32 more tasks than hpot

A,sI
(see Table 17.1). It also has a higher coverage

in 24 out of 57 domains, while the opposite is true in only 6 domains. The second plot
in Figure 17.1 compares the number of expanded states needed with hpot

A,S and hSEQ. The
overall heuristic quality is better than for hpot

A,sI
but there are also 38 tasks on the y-axis.

For such tasks the hSEQ heuristic is perfect in the initial state and needs no expansions
to reach the last f -layer, while hpot

A,S can require up to 106 expansions.

142

17.1. Atomic Potential Heuristics

100 101 102 103 104 105 106

100
101
102
103
104
105
106

unsolved

unsolved

h
p
o
t

A
,s
I

100 101 102 103 104 105 106

100
101
102
103
104
105
106

unsolved

unsolved

h
p
o
t

A
,S

100 101 102 103 104 105 106

100
101
102
103
104
105
106

unsolved

unsolved

hSEQ

h
p
ot

A
,Ŝ

Figure 17.1: Number of expanded states with hSEQ and three potential heuristics.

143

17. Experiments

100 101 102 103 104 105 106

100
101
102
103
104
105
106

unsolved

unsolved

m
a
x
(h
p
o
t

A
,S
,h

p
o
t

A
,s
I
)

100 101 102 103 104 105 106

100
101
102
103
104
105
106

unsolved

unsolved

hSEQ

m
ax

(h
p
ot

A
,S
,h

p
ot

A
,s
I
,h

p
ot

A
,Ŝ
)

Figure 17.2: Number of expanded states with hSEQ and maxima over several potential
heuristics.

Heuristic Objective Coverage

hpot
A,sI

Maximize initial heuristic value 747
hpot
A,S Maximize heuristic average on all states 779
hpot
A,Ŝ Maximize heuristic average on sampled states 746

max(hpot
A,sI

, hpot
A,S) 806

max(hpot
A,sI

, hpot
A,S , h

pot
A,Ŝ) 815

hSEQ Maximize heuristic value in every state 726

Table 17.1: Number of solved tasks for atomic potential heuristics.

144

17.1. Atomic Potential Heuristics

10−1 100 101 102

0

200

400

600

800

Time limit

Time (s)

N
u
m
b
er

of
so
lv
ed

ta
sk
s

max(h
pot
A,S , h

pot
A,sI

, h
pot
A,Ŝ)

max(h
pot
A,S , h

pot
A,sI

)

h
pot
A,S

h
pot
A,sI

h
pot
A,Ŝ

hSEQ

Figure 17.3: Number of solved tasks per time with different potential heuristics.

In addition to focusing the heuristic quality on the initial state (hpot
A,sI

) or distributing
it over all states (hpot

A,S), we also try to focus it on the reachable part of the search space.
The heuristic hpot

A,Ŝ maximizes the average heuristic value of 104 reachable states. We
collect these samples using random walks with a binomially distributed length centered
around the solution depth estimated with hpot

A,sI
. If a random walk gets stuck in a state

without successors, it is restarted in the initial state. We limit the weights to 108 as in
hpot
A,S to handle the case that some samples are dead ends. The third plot of Figure 17.1

compares the number of expanded states with this heuristic to those needed with hSEQ.
The distribution shows similarities with both previous plots. Overall, 746 tasks are
solved with hpot

A,Ŝ , coincidentally almost exactly the number solved with hpot
A,sI

.
Since potential heuristics are fast to compute, we can exploit their complementary

strengths by evaluating the maximum of all three heuristics, which solves all tasks
solved by at least one of the components. This results in a coverage of 815 tasks, a large
improvement over the state equation heuristic which optimizes the cost partitioning for
every state and achieves a coverage of 726 (see Table 17.1). Only 11 tasks are solved by
hSEQ and not solved by maximizing over the three potential heuristics, while 100 tasks
are only solved by the potential heuristics. On the commonly solved tasks the number
of states expanded with the maximum over potential heuristics usually is within a factor
of 10 of that for hSEQ with 5 exceptions.

The sampling done for hpot
A,Ŝ can take a couple of seconds, so we also evaluate the

maximum of just hpot
A,sI

and hpot
A,S . This heuristic also solves every task solved by one

of its components and achieves a total coverage of 806 tasks. Figure 17.2 shows the

145

17. Experiments

number of expansions for both combined heuristics and compares them to hSEQ. In
both cases, we see how the maximization combines the strengths of its components and
brings the heuristic quality closer to that of hSEQ.

The main advantage of potential heuristics is that they are extremely fast to evaluate.
This can be seen in Figure 17.3, which compares the number of tasks that could be
solved within a given time by the state equation heuristic, optimal cost partitioning
heuristics, and the potential heuristics. With the maximum of three potential heuristics
715 tasks are solved in the first minute, compared to 22 minutes to solve 715 tasks for
hSEQ. The plot also shows how the sampling process of hpot

A,Ŝ makes it less effective in

the first seconds of the search. The maximum over hpot
A,sI

and hpot
A,S is a good alternative

for most time limits.

17.2. Binary Potential Heuristics

Binary admissible and consistent potential heuristics correspond to general transition
cost partitionings over flow heuristics. The heuristic hpot

A2,sI
that maximizes the heuristic

value of the initial state among such heuristics computes an optimal general transition
cost partitioning in the initial state. Compared to hTCP this cost partitioning is not
computed in every state, but one that is optimal for the initial state is used for all states.

We have already seen in Part I that hTCP
All2 produces excellent heuristic values, but so

far our method of computing them was exponential in the task’s description size. With
hpot
A2,sI

we have an alternative that partitions the cost over heuristics that minimize flow
instead of the the cost of the shortest path. Figure 17.4a compares initial heuristic values
of these two heuristics. There are only few domains where the difference between
minimizing flow and path cost makes a difference. Most notable is the domain PSR
which is highlighted in the plot.

We can compute the weights of hpot
A2,sI

in polynomial time, even though this is still
expensive. With this cheaper method of computation we can now see the heuristic
accuracy in the initial state for a wider range of tasks. In 346 out of 529 cases (53%)
where we could determine both hpot

A2,sI
(sI) and h∗(sI), the hpot

A2,sI
value is perfect. These

perfect values occur in 39 of the 57 domains. The difference between hpot
A2,sI

and h∗

is shown in Figure 17.4b. There are still some heuristic values that are far from the
optimum. In the domain PSR the heuristic is inaccurate because it minimizes flow
instead of path cost but there are suboptimal values in other domains as well, suggesting
that using features of size three or larger might be necessary in some domains.

Figure 17.4c compares initial heuristic values of hpot
A,sI

and hpot
A2,sI

. As expected, larger
features frequently achieve higher heuristic values. The initial heuristic value also is
perfect less frequently. Out of the 529 tasks mentioned above, only 104 (20%) have
a perfect hpot

A,sI
value. There are also several cases in which hpot

A,sI
(sI) is 0, while hpot

A2,sI

reports values as high as 66.

146

17.2. Binary Potential Heuristics

10 20 30 40

10

20

30

40

≥ 50

≥ 50

h
pot
A2,sI

(sI)

h
T
C
P

A
ll

2
(s

I)

(a) Initial heuristic values of hpot
A2,sI

and hTCP
All2 .

The domain PSR is highlighted.

10 20 30 40

10

20

30

40

≥ 50

≥ 50

h
pot
A2,sI

(sI)
h
∗ (
s I
)

(b) Initial heuristic values of hpot
A2,sI

and h∗.
The domain PSR is highlighted.

10 20 30 40

10

20

30

40

≥ 50

≥ 50

h
pot
A,sI

(sI)

h
p
ot

A
2
,s
I
(s

I)

(c) Initial heuristic values of hpot
A,sI

and hpot
A2,sI

.

100 101 102 103 104 105

100
101
102
103
104
105
106

unsolved

unsolved

h
pot
A,sI

h
p
ot

A
2
,s
I

(d) Expansions of hpot
A,sI

and hpot
A2,sI

. The do-
main Blocksworld is highlighted.

Figure 17.4: Heuristic quality binary potential heuristics compared to atomic potential
heuristics, optimal transition cost partitioned abstraction heuristics, and
the optimal heuristic.

147

17. Experiments

If atomic and binary potential heuristics are optimized for a maximal initial heuristic
value, the value for the binary potential heuristic is at least as high as the one for the
atomic one. The heuristic values of other states, however, can be arbitrarily different.
To compare the overall quality of the two heuristics, Figure 17.4d shows the number of
expansions in an A∗ search. Using hpot

A2,sI
almost always leads to fewer expansions than

hpot
A,sI

. The exceptions are mostly from the domain Blocksworld. The tasks on the x-axis
of the plot are those where hpot

A2,sI
is perfect.

148

18. Related and Future Work
We finish the topic of potential functions by discussing two applications where they are
not used as admissible heuristics. We also discuss related work in multi-agent planning
and the problem of finding good feature sets.

18.1. Correlation Complexity
So far, we have considered optimal planning, where discovered plans must have min-
imal cost. In satisficing planning we only care about finding any plan independent of
its cost. The problem of deciding whether any plan exists is still PSPACE-complete in
general, but many planning domains are known to admit polynomial domain-specific
solution algorithms (e.g. Helmert, 2003). Perhaps “simple” potential heuristics only
considering conjunctions of 2 or 3 atoms are already highly accurate in these “simple”
domains?

Unfortunately, there is bad news in the literature: Helmert and Mattmüller (2008)
showed that hm and (single) PDB heuristics based on conjunctions of bounded size give
rise to arbitrarily bad heuristics in all domains they studied. However, they also showed
that additive heuristics based on multiple PDBs can be significantly more accurate.
This is not just good news for PDBs but also for potential heuristics, which are additive
combinations of simpler heuristics by definition.

So just how complex does a potential heuristic have to be so that solving a planning
task becomes simple? Following in Hoffmann’s (2005) footsteps, we formalize this
question by considering per-domain results for the state space topology of planning
tasks. Hoffmann studied the search space topology of a fixed heuristic, namely the
optimal delete relaxation heuristic h+. Delete relaxation heuristics are rarely perfect
but frequently good: to quantify this, Hoffmann focused on the size of local minima in
the state space to distinguish “easy” from “difficult” domains for h+.

In contrast, potential heuristics can be as accurate as we wish, at a cost in heuristic
complexity. To reflect this degree of control, in our theoretical analysis we are more
demanding with state space topology, looking for heuristics that exhibit no local minima
at all. The question, then, is how complex a potential heuristic needs to be in order to
have no local minima.1 We measure this complexity in the size of the conjunctions
required, i.e. in the dimension of the potential heuristic.

1By “local minimum” we mean any state which does not have a successor with lower heuristic value.
This includes states within heuristic plateaus.

149

18. Related and Future Work

To formalize heuristics that exhibit no local minima, we must first clarify what we
mean by that. A tentative definition might be: “every non-goal state has a successor
with lower heuristic value”. However, this is too strict: in a finite state space, such a
definition implies that there is a strictly descending path towards a goal state from every
state, which is impossible to satisfy if the task has any unsolvable states.

Hence, we only require that solvable states have successors with lower heuristic
value. To stop a heuristic search algorithm from getting trapped in an unsolvable region
of the state space, we also require that unsolvable successors s′ of a solvable state s
never have a lower heuristic value than s.

A second problem is that planning tasks often include “impossible” states that vio-
late physical constraints, such as two blocks being stacked on top of each other in the
Blocksworld domain. It would be unnecessarily restrictive to require that the state space
topology is also well-behaved for such impossible states. However, there is in general
no simple way to distinguish possible from impossible states without complicating the
definition of planning tasks. A simple remedy is to restrict attention to reachable states.

The solvable and reachable states are exactly the states that are alive. With the re-
striction to such states, we can now introduce two criteria that together imply absence
of local minima.

Definition 18.1 (descending). A heuristic h is descending if all alive, non-goal states
have an improving successor, i.e. for every such state s there is an applicable operator
o with h(sJoK) < h(s).

Definition 18.2 (avoiding dead ends). A heuristic avoids dead ends if all improving
successors of alive, non-goal states are solvable.

Given these two properties typical heuristic search algorithms for satisficing planning
are guided directly towards the goal. Seipp et al. (2016a) give a formal proof for simple
hill-climbing. The main idea is that the heuristic value of the currently considered state
must decrease in every expansion.

Theorem 18.1. Let h be a descending, dead-end avoiding heuristic for a planning task
Π with state S . Further let d = mins,s′∈S,h(s)6=h(s′) |h(s) − h(s′)| be the smallest non-
zero heuristic difference between two states and let L = (h(sI)−mins∈S h(s))/d.

Then simple hill-climbing with h solves Π after at most L state expansions if Π is
solvable and returns with failure after at most L state expansions if Π is unsolvable.

Note that in the common case where heuristic values are non-negative integers, the
bound L simplifies to at most h(sI). Any descending dead-end avoiding potential func-
tion with rational weights can be turned into a heuristic function with non-negative
integer values by multiplying all weights with their lowest common denominator and
then adding a constant.

We can now formally define a complexity measure for a planning task: correlation
complexity measures how complex a potential heuristic must be to obtain a favorable
state space topology.

150

18.1. Correlation Complexity

Definition 18.3 (correlation complexity of a planning task). The correlation complexity
of a planning task Π is the minimum dimension d of all descending, dead-end avoiding
potential heuristics for Π.

The correlation complexity of a planning task is bounded from above by the number
of state variables. To see this, consider the heuristic d∗ that maps every state to the
smallest number of operators in any s-plan or to ∞ is no s-plan exists. Let D be the
largest finite value of d∗ and let h be the heuristic d∗ with all infinite values replaced by
D + 1. The heuristic h is descending since every alive non-goal state has a successor
along a shortest s-plan which has a lower value. It is also dead-end avoiding since all
unsolvable states have the value D + 1, so they cannot be improving successors of any
other state. As mentioned in Chapter 14, a finite heuristic function like h can be seen as
a potential function of dimension |V|, so h demonstrates that the correlation complexity
of the given task cannot exceed |V|. In particular, this guarantees that the correlation
complexity of planning tasks is well-defined.

The definition can be extended to planning domains, which for the purposes of this
thesis are simply (usually infinite) sets of planning tasks.

Definition 18.4 (correlation complexity of a planning domain). The correlation com-
plexity of a planning domain is the maximal correlation complexity of all planning tasks
in the domain, or∞ if no maximum exists.

If a domain has low correlation complexity, this is a sign that no complex interactions
between variables need to be considered in order to solve planning tasks in this domain.
Hence, low correlation complexity is an indication that a planning domain is “easy”.

A formal tractability result for planning in such a domain does not immediately fol-
low because Definition 18.4 does not guarantee that a low-dimension potential heuristic
for a given planning task is easy to construct – it only guarantees that such a potential
heuristic exists. Moreover, planning domains with low correlation complexity can have
exponentially long plans. For example, it is easy to construct “binary counter” tasks
(Θi)i≥1 (as we did in Section 5.1) with correlation complexity 1 where Θi requires
plans of length 2i to solve. In the absence of such complications, low correlation com-
plexity indeed implies tractability.

Theorem 18.2. Let D be a planning domain with correlation complexity d < ∞, and
let p be a polynomial such that given Π ∈ D with encoding size n,

1. a descending, dead-end avoiding potential heuristic ϕΠ of dimension d can be
computed in time p(n), and

2. feature weights are integers and polynomially bounded:
|w(F)| ≤ p(n) for all features F of ϕΠ.

Then plan generation in D can be solved in polynomial time.

151

18. Related and Future Work

Proof: A task with encoding size n has at most n state variables, and hence ϕΠ has
no more than O(nd) features. Together with the bound on the individual weights, it
follows that |ϕΠ(s)| ≤ O(nd)p(n) for all states s, and hence the difference between the
heuristic values of any two states is bounded by a polynomial in n.

The result follows with Theorem 18.1, as heuristic values are integers, L is thus
bounded by a polynomial in n, and each heuristic evaluation can be performed in time
O(nd), which is also polynomial in n. �

Seipp et al. (2016a) study the correlation complexity for a number of well-known
planning domains. It turns out that most domains they investigated (Spanner, Gripper,
VisitAll and Blocksworld) have a low correlation complexity of 2. Given that potential
heuristics with low dimension can be evaluated very efficiently, these results motivate
further research on how to find good features and weights for low-dimensional potential
heuristics automatically. For optimal planning, we have also seen that finding good
weights for binary potential heuristics is fundamentally easier then finding them for
ternary features. While this result does not necessarily carry over to satisficing planning,
it is encouraging to see that binary features are often sufficient.

At its core, correlation complexity describes how tightly interrelated different aspects
of a planning task are, and to what extent these aspects can be considered separately.
The general idea of measuring the degree of interrelatedness between state variables of
a planning task is not new. In a line of research with very similar motivations, Chen and
Giménez (2007; 2009) studied several notions of width for planning tasks, where low
width implies low complexity of planning. In the same spirit, Lipovetzky and Geffner
(2012) also introduced a notion of width (different from those of Chen and Giménez)
and exploited it to efficiently solve a large number of standard planning benchmarks.
All definitions of width are incomparable to correlation complexity, meaning that there
exist task with high correlation complexity and low width, and vice versa (Seipp et
al., 2016a). This is to be expected: in both cases, the intuition is that low complexity
means that solutions can be found efficiently. For example, a solution to a task with
low width can be found efficiently with the iterated width algorithm (Lipovetzky and
Geffner, 2012). In a problem with low correlation complexity, there exists a potential
function with which a solution can be found without backtracking (with the added dif-
ficulty that low complexity only means that such a function exist, but does not tell us
how to construct it). The converse is not necessarily true: if a domain has high width
(for example), this does not imply that planning is hard in this domain, only that an
algorithm based on exploiting low width might not be suitable for it.

18.2. Dead-end Detection
We start this section with a puzzle called “Pebbling the chessboard” (Kontsevitch, 1981;
Chung et al., 1995) or “Freeing the clones” (Numberphile, 2013). Consider the infinite
grid shown in Figure 18.1a. The three marked cells in the corner are called the prison

152

18.2. Dead-end Detection

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

... . .
.

(a) Initial situation

⇓

(b) Movement rule

Figure 18.1: Clone escape puzzle

and initially it contains three imprisoned clones. A clone can only move if the cell
above it and to its right are both empty. If this is the case, the clone can duplicate,
moving one copy up and the other to the right as shown in Figure 18.1b. The goal is to
find a sequence of moves that allows all clones to escape the prison, i.e. one that ends
in a situation where all three prison cells are empty. We invite the reader to take some
time to try and find a solution. We will discuss it later in this section.

In the above puzzle it is important to recognize dead ends, states from which no goal
state is reachable. This is useful for planning tasks in general for two reasons: when a
search is used to solve a task, all recognized dead ends can be pruned, which can signif-
icantly reduce the size of the search space. Additionally, the initial state is a dead end
iff the task is unsolvable. The problem of deciding whether a task is solvable recently
gained a lot of attention (e.g. Bäckström, Jonsson, and Ståhlberg, 2013; Hoffmann,
Kissmann, and Torralba, 2014; Lipovetzky, Muise, and Geffner, 2016). Here, we show
how potential functions can be used to identify a state as a dead end. We assume that
planning tasks have a unique goal state (as for example in TNF) but the technique can
easily be extended to unrestricted SAS+ tasks.

An important concept for recognizing dead ends are invariants (e.g. Rintanen, 2000;
Gerevini and Schubert, 2001; Helmert, 2009; Alcázar and Torralba, 2015; Rintanen,
2017), properties that are maintained through operator application.

Definition 18.5 (invariant). Let Π be a planning task with transitions T . A property P
of states of Π is an invariant if P (s) implies P (s′) for all transitions s o−→ s′ ∈ T .

If an invariant holds in a state s, it also must hold in all states reachable from s. If it
additionally does not hold in s?, then there can be no path from s to s?. In the following,
we use the initial state in definitions and results instead of an arbitrary state s. This is no

153

18. Related and Future Work

limitation because all techniques can be used for any state s by treating s as the initial
state.

Proposition 18.1. Let Π be a planning task with initial state sI and unique goal state
s?. Let P be an invariant of Π. If P holds in sI but not in s?, then Π is unsolvable.

Proof: If Π were solvable, then P would have to hold in all states visited by a plan,
including s?. �

We can use potential functions to describe invariants. This is not a restriction, as
any function that maps states to numbers can be expressed with a potential function
over sufficiently high-dimensional features. For a given potential function ϕ, a state s
has the property Pϕ,c iff ϕ(s) ≥ c. This property is an invariant if ϕ(s) ≥ c implies
ϕ(s′) ≥ c for all transitions s o−→ s′ ∈ T . If the potential of a state can never decrease
(ϕ(s) ≤ ϕ(s′)), then this potential function defines an invariant. If additionally the
initial state has a higher potential than the goal state (i.e. ϕ(sI) ≥ c > ϕ(s?)), the task
cannot be solvable. Every operator application can only further increase the potential,
so there is no way to reach the goal state where the potential must be lower than in
the initial state. We call functions with this property separating functions because they
separate the goal state from the set of reachable states.

Definition 18.6 (separating function). Let Π be a planning task in TNF with initial
state sI, goal state s? and transitions T . A separating function is a function ϕ that maps
states of Π to numbers and satisfies

ϕ(sI) > ϕ(s?) and

ϕ(s) ≤ ϕ(s′) for all s o−→ s′ ∈ T .

Proposition 18.2. A planning task in TNF has a separating function iff it is unsolvable.

Proof: For the “if” part consider the function ϕ for an unsolvable task Π that maps
every reachable state to 1 and every unreachable state to 0. There are no transitions from
reachable to unreachable state, so the potential can never decrease along a transition.
The initial state is always reachable, and since Π is unsolvable, the goal state is not
reachable, so ϕ(s?) = 0 < 1 = ϕ(sI). Therefore, ϕ is a separating function if Π is
unsolvable.

For the “only if” part it is easy to see that Pϕ,ϕ(sI) is an invariant that holds in the
initial state but not in the goal state. Proposition 18.1 then shows the statement. �

A separating function can be used in the example from the beginning of the section
to show that there is no way for the clones to escape the prison. Figure 18.2 assigns a
number to each cell, which can be interpreted as the weightsw of a potential function ϕ.
The potential of a given state is the sum of weights for all occupied cells. The weight
of cell 〈i, j〉 is w(〈i, j〉) = 2−(i+j). A move from cell 〈i, j〉 makes the occupied cell
〈i, j〉 empty and the two empty cells 〈i + 1, j〉 and 〈i, j + 1〉 occupied. The potential

154

18.2. Dead-end Detection

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

... . .
.

2 1 1/2 1/4 1/8 1/16

1 1/2 1/4 1/8 1/16 1/32

1/2 1/4 1/8 1/16 1/32 1/64

1/4 1/8 1/16 1/32 1/64 1/128

1/8 1/16 1/32 1/64 1/128 1/256

+ + + + +=

+ + + + +=

+ + + + +=

+ + + + +=

+ + + + +=

+

+

+

+

+

=

...

4

Figure 18.2: Weight function for clone escape puzzle

thus does not change because −2−(i+j) + 2−(i+1+j) + 2−(i+j+1) = 0. In the initial state,
the three prison cells are occupied for a total potential of ϕ(sI) = 1 + 1/2 + 1/2 = 2.
To see the maximal possible potential of a goal state, we first compute the sum of all
cell weights. As shown next to the board in Figure 18.2, the sum of all weights in row
j is

∑
i≥0 2−(i+j) = 2−j

∑
i≥0 2−i = 21−j and the sum over all rows is

∑
j≥0 21−j =

2
∑

j≥0 2−j = 4. Since the prison cells have a total weight of 2, all remaining cell
weights also sum up to 2. In a finite number of moves it is not possible to cover an
infinite number of cells, so all goal states s? have ϕ(s?) < 2 = ϕ(sI). As the potential
of all reachable states is 2, no goal state can be reachable.

Many other tasks can be shown to be unsolvable with a similar argument. For exam-
ple, the “mutilated chessboard problem” (Black, 1946) asks if there is a way to place
31 2×1 dominoes on a chess board that has two opposing corners broken off. Mc-
Carthy (1964) conjectured that this problem is particularly difficult for automated proof
procedures even though an informal proof is simple: each domino covers a black and
a white square, and since the two missing corners had the same color, there are more
squares of one color than of the other. Separating functions mirror this argument di-
rectly: counting 1 for each covered black square and −1 for each covered white square
(see Figure 18.3). The potential is initially 0 and not changed by any transition (placing
a domino covers a black and a white square for a total change of 1 − 1 = 0). In the
goal state, all squares are covered, so the potential is −2. This potential function has
the property of a separating function and thus shows unsolvability.

Proposition 18.2 guarantees that there is a separating function for unsolvable ev-

155

18. Related and Future Work

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

-1

1

-1

1

-1

1

-1

1

1

-1

1

-1

1

-1

1

-1

-1

1

-1

1

-1

1

-1

1

1

-1

1

-1

1

-1

1

-1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

Figure 18.3: Weight function for mutilated chessboard puzzle

ery task. However, this function might require high-dimensional features. Ideally, we
would like to use an LP solver to synthesize a separating function for a given set of
features F . If a solution to the constraints in Definition 18.6 exists, then the task is
unsolvable. There are two problems with this: the number of constraints is exponential
in the task description size because there is one constraint for each transition, and the
constraints contain a strict inequality. LPs with strict inequalities are not guaranteed to
have a well-defined optimal objective value, as for example maximizing x subject to
x < 1. In the case of separating functions, there are several ways to deal with this. We
can require a separation of at least 1 (with ϕ(sI) ≥ 1 + ϕ(s?)), but there is an option
that that is more useful for the following discussion. The constraint ϕ(sI) > ϕ(s?) is
satisfied iff there is a number c such that ϕ(sI) > c and c ≥ ϕ(s?). Instead of testing
whether a solution of these constraints exists, we can ignore the>-constraint, maximize
ϕ(sI) subject to the remaining constraints, and check whether the resulting optimal ob-
jective value is larger than c. It is sufficient to limit our attention to the case c = 0
if F contains the empty feature > because in this case every separation function can
be “shifted” by −ϕ(s?) to satisfy the constraints. In general, such a shift is possible
whenever F contains a set of features of which exactly one is true in every state, e.g. a
feature for every atom of a variable. The resulting LP then is:

Maximize ϕ(sI) subject to

ϕ(s?) ≤ 0

ϕ(s)− ϕ(s′) ≤ 0 for all s o−→ s′ ∈ T .

156

18.2. Dead-end Detection

Note that the constraints of the above LP encode exactly goal-awareness and consis-
tency of ϕ in the task Π with the cost function cost(o) = 0 for all operators o. Ignoring
the operator costs in this way makes sense because they do not influence whether the
task is solvable. This offers a new view on the argument for unsolvability: if there is an
admissible heuristic function for the task that ignores all costs and this heuristic func-
tion has a positive (non-zero) value for the initial state, then the task cannot be solvable.
Under such a cost function, all plans are free of cost, so a positive heuristic value for sI

can only be admissible if there is no plan.
The LP still contains an exponential number of constraints, but we already discussed

how and when admissible and consistent potential functions can be characterized com-
pactly (see Chapter 15).

Aidos, the winner of the unsolvability IPC (Muise and Lipovetzky, 2014), is a port-
folio of planning techniques including one based on separating functions (Seipp et al.,
2016b). It uses binary features but weaker constraints compared to ones described in
Section 15.2. Seipp et al. omit features f with s? |= f , which normalizes the potential
of the goal state to 0 and makes the constraint ϕ(s?) ≤ 0 redundant. They also restrict
all weights to non-negative numbers. This excludes some solutions, which means that
there might be fewer tasks for which the planner finds a separating function. Tasks
where a separating function with non-negative weights exists are still provably unsolv-
able, though.

Considering only non-negative weights leads to the following lower bound estimation
that weakens the method further but reduces the number of necessary constraints in the
LP. We extend the notation from Section 9.4 and say that an operator o consumes a
feature f in a state s if s |= f and sJoK 6|= f . We say o can consume f if there is
a state s in which o is applicable and consumes f . Analogously, o produces f in a
state s if s 6|= f and sJoK |= f and we say that o always produces f if o produces f
in all states in which it is applicable. Whether an operator can (or is guaranteed to)
consume or produce a feature can easily be checked syntactically. Since all weights
are non-negative, we can then bound the potential difference along a specific transition
s

o−→ s′ ∈ T as follows:

ϕ(s)− ϕ(s′) =
∑
f∈F

w(f)[s |= f]−
∑
f∈F

w(f)[s′ |= f]

=
∑
f∈F

o consumes f in s

w(f) −
∑
f∈F

o produces f in s

w(f)

≤
∑
f∈F

o can consume f

w(f) −
∑
f∈F

o always produces f

w(f) = ∆o(f)

The expression ∆o(f) no longer depends on the state s and since it is an upper bound
for ϕ(s)− ϕ(s′), ∆o(f) ≤ 0 implies ϕ(s)− ϕ(s′) ≤ 0.

157

18. Related and Future Work

Putting things together, a task is unsolvable if the set of featuresF contains no feature
that is present in the goal state, and the following LP has an optimal objective value
higher than 0:

Maximize
∑
f∈F

Wf [s |= f] subject to∑
f∈F

o can consume f

Wf −
∑
f∈F

o always produces f

Wf ≤ 0 for all o ∈ O

Wf ≥ 0 for all f ∈ F

As another optimization, note that if a feature is not always produced by at least
one operator, then its weight only occurs with a coefficient of 1 and setting it to 0
cannot make a satisfied constraint unsatisfied. Aidos therefore does not consider such
features. In an evaluation after the IPC, Seipp et al. identified this technique as the most
influential component of their portfolio in 7 out of 15 domains.

Aidos also has a second component that can be understood as a separating potential
function (Pommerening and Seipp, 2016). It iteratively creates larger and larger PDBs
and extracts their reachable, dead states as partial states. Any state consistent with one
of these partial states must be dead and can be pruned in a search.

To view this as a separating function, we have to generalize the definition slightly: we
say a function ϕ is a separating function for a state s if ϕ(s) > ϕ(s?) and ϕ(s′) ≤ ϕ(s′′)
holds for all transitions s′ o−→ s′′ between alive states. There is a separating function for
a state s iff there is no s-plan. (The restriction to transitions between alive states does
not affect Proposition 18.2 because plans can only use such transitions.) Consider a
set of features FD, where every feature corresponds to a reachable, dead state in an
abstraction and a weight function w that assigns a positive value to all of them. The
potential function ϕ for FD and w only has a positive value for reachable, dead states.
This implies ϕ(s?) = 0 and ϕ(s′) = 0 = ϕ(s′′) for all transitions s′ o−→ s′′ between alive
states. If ϕ(s) > 0, then ϕ is a separating function for s and there is no s-plan.

If FD contains all reachable, dead states from the projections in Intk, it can be used to
test if one of the projections would detect a given state as unsolvable without storing all
pattern databases. This corresponds to testing for k-consistency (Bäckström, Jonsson,
and Ståhlberg, 2013) in every state.

18.3. Multi-Agent Planning
Multi-Agent Planning (Brafman and Domshlak, 2008) differs from classical planning
by considering multiple cooperating agents. Each agent has private and public capa-
bilities, represented by private and public state variables and operators. The public
capabilities of all agents are shared while the private ones should only be known to the

158

18.4. Finding Good Feature Sets

agent. Distributed planning algorithms such as MAD-A∗ (Nissim and Brafman, 2012)
are able to find globally optimal solutions while preserving the privacy of the agents un-
der certain additional assumptions. Each agent plans locally with its private operators
and the set of all global operators. Coming up with admissible heuristics is complicated
in this framework as no agent knows the full planning task. Each agent can compute
an admissible heuristic for its view of the task, but these estimates are not necessarily
additive.

Štolba, Fišer, and Komenda (2016) use potential heuristics to derive admissible esti-
mates for each agent such that the heuristics computed by each agent are additive. They
use the set of all atoms as features and partition it into one set for all public atoms and
one set for each agent. Admissible potential heuristics then can be seen as a collection
of additive potential heuristics for each agent. (The public part can be handled by one
of the agents.) Such heuristics can be evaluated fast and in a distributed way.

Štolba, Fišer, and Komenda discuss three ways of computing the weights for the po-
tential functions. All of them aim to optimize the weights subject to the constraints for
admissibility and consistency. The easiest option is to designate one agent to collect the
complete task and solve the LP but this does not preserve privacy. A second option uses
Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) as suggested by Holmgren,
Persson, and Davidsson (2009) to split up the LP among the agents. This also has no
formal privacy guarantees but avoids openly sharing the definitions of private operators.
The third option they suggest keeps the information of the agents’ parts in the LP pri-
vate by computing the LP with privacy-preserving distributed methods (Mangasarian,
2011; Dreier and Kerschbaum, 2011).

Using the potential heuristic in MAD-A∗ achieves state-of-the-art performance and
outperforms a distributed version of the LM-cut heuristic (Fišer, Štolba, and Komenda,
2015).

18.4. Finding Good Feature Sets
To close the part on potential heuristics, we discuss a possible future research direction.
In Chapter 15 we introduced methods to find good weights for admissible potential
heuristics over a given set of features but we left open how to select a good sets of
features. Using all atomic and/or binary features is a good starting point and finding
admissible potential heuristics for them remains polynomial. Empirically, using binary
features often leads to significantly stronger heuristics than just using atomic features
but their weight functions can take a long time to compute. But not all features are
needed to achieve this heuristic quality.

Figure 18.4 shows that often many features have a zero weight in a weight func-
tion where the initial heuristic value is maximal. (The distribution is similar for other
objective functions.) Every feature with a weight of zero could be removed without
affecting the heuristic value. For atomic features, there are even a few cases where all

159

18. Related and Future Work

100 101 102 103 104 105

100

101

102

103

104

105

Atomic features

N
o
n
-z
er
o
w
ei
gh

ts

100 101 102 103 104 105

100

101

102

103

104

105

Atomic and binary features

Figure 18.4: Number of features compared to the number of features with a non-zero
weight in a potential heuristic with maximal value for the initial state.

weights are zero because no admissible and consistent potential heuristic is better than
the blind heuristic, which is possible in the presence of zero-cost operators. With binary
features, there is always at least one feature with a positive weight but the majority of
weight functions still use only a fraction of the features. This demonstrates that there
is a lot of room for improvement: by selecting the right features high quality heuristics
could be synthesized in a reasonable time.

There are different approaches to selecting features. Bonet and van den Briel (2014)
describe an iterative procedure to add values of partially merged variables to the state
equation heuristic which we discussed in Section 11.1.5. As we have seen, the state
equation heuristic and its extension for partial merges are cost-partitioned flow heuris-
tics, which in turn correspond to a potential heuristic. The iterative procedure can thus
be seen as a technique to find feature sets. Bonet and van den Briel add new features if
an operator has a non-zero count in a solution. To interpret this in the context of poten-
tial heuristics, we remark that an LP variable is non-zero in an optimal solution iff the
corresponding dual constraint is tight, i.e. its left and right hand sides are equal. This
is called complementary slackness and is a consequence of the duality theorem (Schrij-
ver, 1998). Looking for operators with a non-zero count in an optimal state equation
heuristic solution is thus equivalent to looking for tight constraints in an optimal poten-
tial heuristic solution. Such a tight constraint represents an operator o with at least one
transition where the heuristic difference exactly matches the operator costs. Following
the partial merge strategy, the newly created feature mentions at least one prevail and
one non-prevail precondition. Such a feature is guaranteed to be consumed by o and
thus occurs in the tight constraint. Like the partial merge strategy, this strategy could
be run once before starting the search until a fixed point is reached.

An alternative would be to learn features during the search. The weight function of a
potential heuristic can be updated during a search, either by re-optimizing the weights

160

18.4. Finding Good Feature Sets

for a different objective or by adding new features and finding good weights for them.
Since potential functions are fast to evaluate, it might also be useful to add new poten-
tial functions instead of replacing the existing one. An interesting direction for future
research would be to identify heuristic errors during the search and add features or po-
tential functions that prevent errors of this kind in the rest of the search. The approach
by Bonet and van den Briel can be seen as a step in this direction as it prevents the
errors caused by the ignored prevail conditions to some degree. The work by Steinmetz
and Hoffmann (2016) on clause learning is also related. They compute the critical path
heuristic hC for a collection of atom conjunctions C (Keyder, Hoffmann, and Haslum,
2014) and add conjunctions to C during the search. In a potential heuristic, such con-
junctions could be added as new features.

161

19. Summary
We introduced potential heuristics as an interesting new class of heuristics. They fix
the mathematical structure of the heuristic function to a simple weighted sum over
state features. Every heuristic function can be expressed in this way if the features
are complex enough, but even simple atomic features are sufficient to express useful
heuristic functions.

Having a fixed mathematical structure for the whole class of heuristics makes it pos-
sible to express desired properties of the heuristic in a declarative way. For example,
the conditions under which a potential heuristic is admissible and consistent can be ex-
pressed with linear constraints over the feature weights. The constraints are necessary
and sufficient, so they characterize the subset of all potential heuristics that are admis-
sible and consistent. This is different from most other heuristics, which are usually
derived from some insight into the planning tasks and then shown to have properties
like admissibility (or not). In contrast, with potential heuristics we declaratively state
the properties we want the heuristic to have and then use an LP solver to find such
a heuristic. Every weight function that satisfies the constraints has the desired prop-
erty (in this case admissibility and consistency). With a definition of what makes a
heuristic function “good” we can select the best heuristic from this set. We only con-
sidered potential heuristics for optimal search here. For inadmissible heuristics, higher
heuristic values are not necessarily better and even the heuristic error should not be
used to define the quality of a heuristic. For example, multiplying all heuristic values
with a large constant greatly changes the heuristic error but has no effect on the order of
node expansions in a greedy best-first search (GBFS). Wilt and Ruml (2015) investigate
quality measures of heuristics for GBFS based on rank correlation. Using such quality
measures to synthesize potential heuristics is an interesting topic for future research.

There are compact characterizations of admissible and consistent potential heuris-
tics as a set of linear constraints if features are atomic or binary. For larger features
this is no longer true. Testing whether a general potential function is consistent is al-
ready co-NP-hard, even if it only uses ternary features. This implies that there can be
no compact characterization for ternary or larger features in general unless P = NP.
However, we also presented a fixed-parameter tractable method to find admissible and
consistent potential heuristics that is only exponential in a parameter that measures how
interdependent the features are.

Admissible and consistent atomic potential functions can be seen as a dual view on
the state equation heuristic. The main difference is that hSEQ is optimized in every state
while potential heuristics are optimized only once to find weights. Re-optimizing an

162

atomic potential heuristic in every state would make it identical to hSEQ. This becomes
clearer in the context of cost partitioning. A potential heuristic that uses abstract states
of a set of abstractions as its features computes a general transition cost partitioning over
the flow heuristics on the abstractions. If the potential heuristic maximizes the heuristic
value of a state, then the cost partitioning is optimal for this state. Since the weights
are not changed during the search, potential heuristics can be seen as computing a cost
partitioning that is optimal for a certain situation (the initial state, sampled states, etc.)
and then using this cost partitioning throughout the search.

Since potential functions are so quick to evaluate, using several heuristics that are
optimized for different parts of the search space works very well. The maximum of
several potential heuristics combines their strengths without a large impact on the eval-
uation time. From the perspective of cost partitioning, this corresponds to computing
multiple cost partitionings, optimizing them for different parts of the search space and
using all of them during the search.

Potential functions can also be used for other purposes besides heuristic functions.
They naturally group heuristic functions into equivalence classes according to the size
of features required to represent them. We used this to define the correlation complexity
of planning domains, which measures how complex a heuristic has to be so a hill-
climbing search can solve tasks without backtracking.

Finally, we used potential functions to detect unsolvability. Similar to admissible
potential heuristics, the desired property of the heuristic can be specified declaratively
and a solver can be used to test if a function with this property exists. In this case, the
desired property is that the function separates the search space into two regions, one
including all reachable states and one including the goal state. If such a function exists,
the task is unsolvable.

The potential heuristics we evaluated here only used two sets of features: all atomic
features or all binary and atomic features. We found that a maximum over three atomic
potential heuristics already quite closely approximates hSEQ, which is an upper bound
on any atomic potential heuristic. Using more atomic potential functions, this gap can
be closed even more (Seipp, Pommerening, and Helmert, 2015). Beyond that, there
is little room for improvement for atomic potential functions and larger features are
required to achieve higher heuristic values. With the full set of binary and atomic fea-
tures, heuristic values are higher but the optimization is often prohibitively expensive.
Finding a good middle ground here is an interesting area for future research. There
are many ways good feature sets could be discovered. For example, features could be
derived from the task’s causal graph, learned from smaller tasks, or detected during the
search similar to clause learning in SAT.

163

164

Part IV.

Conclusion

165

20. Conclusion
We started with the question how admissible heuristic estimates can be combined. Pre-
viously, maximization, the canonical heuristic, and non-negative operator cost partition-
ing were the well-known answers to this question. In Part I we offered two new answers
by extending cost partitioning to general cost functions and to transition cost functions.
The extensions are orthogonal and both make the heuristic combination more powerful.
For example, general cost partitioning can be used to show that a task is unsolvable,
even in cases where all component heuristics have a finite value under the original cost
function. It also benefits from heuristics that have a heuristic value of 0 under the origi-
nal cost function (such as projections to non-goal variables) and can derive exponential
heuristic values from polynomially sized abstractions. All of this is not possible with
non-negative cost partitioning. An optimal general operator cost partitioning of explicit
state abstraction heuristics can be computed in polynomial time. The effort is compara-
ble to computing an optimal non-negative operator cost partitioning, which uses more
constraints but has less complex interactions. Finding an optimal transition cost parti-
tioning on the other hand, takes exponential time in the task description size in general
but can also increase the resulting heuristic value.

Operator counting was introduced in Part II and offers a new perspective on gen-
eral operator cost partitioning. An operator-counting LP heuristic for a set of operator-
counting constraints computes an optimal general operator cost partitioning over the LP
heuristics for individual operator-counting constraints. The corresponding MIP heuris-
tic can achieve even higher values. This means that all heuristics that can be expressed
in this framework can be combined with each other. We have seen that the cost parti-
tioning between different types of constraints often gives better estimates than the max-
imization between them. For example, combining the constraints for the state equation
heuristic and LM-cut landmarks can be interpreted as a cost partitioning over atomic
flow heuristics and the landmarks. This combination is a state-of-the-art heuristic and
solves more tasks than either LM-cut or the state equation heuristic alone.

In addition to giving a new view on cost partitioning, the operator-counting frame-
work is interesting as a way of reasoning about heuristics. We showed that many ex-
isting heuristics can be expressed as operator-counting heuristics, which enabled us to
analyze and compare the generated LP constraints. For example, we showed that the
safety-based improvement cannot increase the basic state equation heuristic estimate.
We also analyzed the constraints of flow heuristics and showed how they can be sim-
plified. This relates flow heuristics like the state equation heuristic and its extensions to
cost-partitioned abstraction heuristics and explains their superior performance.

166

Part III introduced potential heuristics, which offer a new perspective on general tran-
sition cost partitioning. Admissible and consistent potential heuristics can be thought
of as computing such a cost partitioning once and then re-using it for every state. This
makes them extremely fast to evaluate during the search but less accurate in areas of
the search space they are not optimized for. Using more than one potential heuristic
mitigates this effect by combining the strengths of all of them. We introduced compact
sets of linear constraints that characterize admissible and consistent potential heuristics
for atomic and binary features. Having such a characterization means that it is possi-
ble to select the best admissible and consistent potential function for a given definition
of “best”. Solving a single LP is sufficient to select the best heuristic if the quality
measure can be defined as a linear expression over feature weights, such as maximiz-
ing the initial heuristic value, or the average heuristic value of all or some sampled
states. We further showed that such compact characterizations do not exist for larger
features in general (even when just using ternary features) but they can be found with a
fixed-parameter tractable method if features are not too interdependent.

Both operator-counting and potential heuristics are declarative in a way. In contrast to
heuristics that require the deep insight of an expert to develop, their heuristic estimates
are derived by specifying simple properties of the problem and delegating the hard task
of combining this knowledge to an LP or MIP solver.

In case of operator-counting heuristics, the declared properties are necessary proper-
ties of plans expressed in terms of linear constraints over operator-counting variables.
We have already seen extensions of the framework where other properties are consid-
ered. For example, Imai and Fukunaga (2014) used necessary properties of delete-
relaxed plans, and Trevizan, Thiébaux, and Haslum (2017) used necessary properties
of optimal strategies for probabilistic planning tasks. Extensions like these are con-
ceivable for many other planning formalisms and could also be used to connect them
to each other. Such heuristics could reason about classical, numerical, temporal and
probabilistic aspects of a planning task at the same time.

In case of potential heuristics, the declared properties are requirements on the form
of the heuristic function, such as admissibility and consistency. We also discussed
requirements for separating functions instead, which use invariants to prove that a task
is unsolvable.

Potential and operator-counting heuristics offer many interesting question for future
research. This is particularly true when considering abstractions, where operator count-
ing with flow constraints corresponds to general operator cost partitioning, and admis-
sible and consistent potential heuristics correspond to general transition cost partition-
ings. Finding a good collection of abstractions for those heuristics is a challenging prob-
lem. There has been much research on finding good sets of abstractions (e.g. Haslum,
Bonet, and Geffner, 2005; Edelkamp, 2006; Haslum et al., 2007; Pommerening, Röger,
and Helmert, 2013; Fan, Müller, and Holte, 2014; Seipp and Helmert, 2014; Sievers,
Wehrle, and Helmert, 2016). However, how useful a set of abstractions is also depends
on the way heuristic estimates are combined (for an example, see Table 6.3). The set of

167

20. Conclusion

all atomic projections already provided good heuristics estimates for both potential and
operator-counting heuristics, but we also saw that extending this set (e.g. with partial
merges of hSEQ) can be very beneficial. Finding abstraction collections that specifically
work well in the context of general operator of transition cost partitioning is thus an
interesting topic.

As we have often seen a trade-off between heuristic accuracy and computation time,
dynamically finding a good balance also is an interesting research question. Operator-
counting constraints are well suited for this because an operator-counting heuristic al-
ways returns admissible estimates, while every added constraint makes the heuristic
potentially more accurate but also more expensive to compute. For potential heuristics,
a similar trade-off can be made be either adding more features to the heuristics and
re-optimizing their weights or by computing a new potential function and adding it to
a set of heuristic functions. This could also be done during the search, for example by
detecting and analyzing heuristic errors to identify promising new features for areas of
the search space where heuristic quality can be improved.

168

Appendix A.

Proof of Theorem 10.1
In Section 10.1 we showed that operator-counting LP heuristics compute an optimal
general operator cost partitioning. Specifically, if C is a constraint set for a state s, then

hLP
C (cost) = hOCP

{hLP
{C}|C∈C}

(s).

We ignored the fact that operator-counting constraints may contain auxiliary vari-
ables in the proof sketch of Theorem 10.1 and glossed over some details. We now
repeat the proof in more detail to demonstrate that these are unproblematic.

In the following, we assume that there are n non-negative operator-counting vari-
ables Count = (Counto1 , . . . ,Counton)>. We further assume that each constraint
C ∈ C consists of kC inequalities over Count and mC non-negative auxiliary vari-
ables AuxC = (AuxC1 , . . . ,Aux

C
mC

)>. If the constraint requires unrestricted auxiliary
variables, they can be replaced by two non-negative variables as shown in Chapter 3.
We write count-coeffsC for the (n × kC) matrix of coefficients that determine the in-
fluence on the operator-counting variables, aux-coeffsC for the (mC × kC) matrix of
coefficients that determine the influence on the auxiliary variables, and boundsC for the
kC-vector of bounds. Then C is the constraint

count-coeffsCCount + aux-coeffsCAuxC ≥ boundsC .

We now consider a constraint set C of operator-counting constraints for a state s. The
linear program LPC(cost) computed by hLP

C is:

Minimize
∑
o∈O

cost(o)Counto subject to

count-coeffsCCount + aux-coeffsCAuxC ≥ boundsC for all C ∈ C
AuxC ≥ 0 for all C ∈ C
Count ≥ 0

In this linear program, we introduce new non-negative variables LCountCo and new
equations LCountCo = Counto for every C ∈ C and o ∈ O. Replacing every occurrence
of Counto in the remaining inequalities by LCountCo does not influence the optimal
objective value:

169

Appendix A. Proof of Theorem 10.1

Minimize
∑
o∈O

cost(o)Counto subject to

count-coeffsCLCountC + aux-coeffsCAuxC ≥ boundsC for all C ∈ C
Count− LCountC = 0 for all C ∈ C

AuxC ≥ 0,LCountC ≥ 0 for all C ∈ C
Count ≥ 0

For each constraint C, the dual of this LP contains one non-negative variable DualCi
for each of its inequalities 1 ≤ i ≤ kC and one unbounded variable CostCo for each of its
equations. The bounds vector and the objective function change their role, so objective
coefficients are boundsC for DualC and 0 for CostC . The primal variables AuxC only
occur in the inequalities for constraint C and correspond to the dual constraints

aux-coeffsC
>
DualC ≤ 0.

The primal variables LCountC only occur in the inequalities and equations for con-
straint C and correspond to the dual constraints

count-coeffsC
>
DualC − CostC ≤ 0.

Each primal variable Counto occurs in exactly one equation for each constraint C and
corresponds to the dual constraints∑

C∈C

CostCo ≤ cost(o).

Together, these constraints make up the dual of LPC(cost):

Maximize
∑
C∈C

boundsC
>
DualC subject to

count-coeffsC
>
DualC ≤ CostC for all C ∈ C (A.1)

aux-coeffsC
>
DualC ≤ 0 for all C ∈ C (A.2)∑

C∈C

CostCo ≤ cost(o) for all o ∈ O (A.3)

DualC ≥ 0 for all C ∈ C (A.4)

This is a cost partitioning because the components are independent of each other
given fixed values for the variables Cost. To show this formally, we introduce some ab-
breviating notation. For a constraint C ∈ C, we define objC(DualC) = boundsCDualC

and constrC(DualC ,CostC) as the set of all constraints (A.1) and (A.2) for C. We also

170

define CP(CostC) as the set of all constraints (A.3), i.e. the cost partitioning property.
The problem then can be rewritten as follows.

max
CostC∈R
DualC∈R+

{∑
C∈C

objC(DualC)

∣∣∣∣ constrC(DualC ,CostC) for C ∈ C and CP(CostC)

}

= max
CostC∈R

{∑
C∈C

max
DualC∈R+

{
objC(DualC) | constrC(DualC ,CostC)

} ∣∣∣∣ CP(CostC)

}

= max
CostC∈R

{∑
C∈C

hC(CostC)

∣∣∣∣ CP(CostC)

}

where hC(costC) is defined as the optimal objective value of the following LP.

Maximize boundsCDualC subject to

count-coeffsC
>
DualC ≤ costC

aux-coeffsC
>
DualC ≤ 0

DualC ≥ 0

The dual of the LP defining hC(costC) is exactly the model of the operator-counting
heuristic for C under cost function costC , i.e. hLP

{C}(costC).

Minimize
∑
o∈O

costC(o)Counto subject to

count-coeffsCCount + aux-coeffsCAuxC ≥ boundsC

Count ≥ 0 and AuxC ≥ 0

We conclude that hC = hLP
{C}. Therefore, the model of hLP

C is equivalent to

max
CostC∈R

{∑
C∈C

hLP
{C}(Cost

C)

∣∣∣∣ CP(CostC)

}
.

The constraint CP is the cost partitioning property, so we can conclude

hLP
C (cost) = hOCP

{hLP
{C}|C∈C}

(s).

171

Appendix B.

From TNF to Unrestricted SAS+

We sometimes required tasks to be in transition normal form to simplify presentation.
We now show how ideas using this restriction can be generalized to unrestricted SAS+.

B.1. Net Change Constraints
Without knowing the state in which an operator o is applied, it is in general not pos-
sible to tell if it produces (or consumes) a given atom. An operator with precondition
〈V, v〉 and effect 〈V, v′〉 (with v 6= v′) always consumes 〈V, v〉 and always produces
〈V, v′〉. However, if an operator only has the effect on V but not the precondition, it
may produce 〈V, v′〉, but only if s[V] 6= v′ in the state s in which the operator is ap-
plied. Similarly, it may consume the current value of V , but we cannot know what
this value is from the operator description alone. Similar vagaries arise from variables
whose value is unspecified in the goal. However, we can give upper and lower bounds
on the induced net change for arbitrary plans depending on their operator counts. To do
so, we distinguish four disjoint classes of operators for each atom:

• Operators that always produce atom 〈V, v〉:
AP〈V,v〉 = {o ∈ O | eff (o)[V] = v and pre(o)[V] = v′ with v′ 6= v}

• Operators that sometimes produce atom 〈V, v〉:
SP〈V,v〉 = {o ∈ O | eff (o)[V] = v and V /∈ vars(pre(o))}

• Operators that always consume atom 〈V, v〉:
AC〈V,v〉 = {o ∈ O | eff (o)[V] = v′ with v 6= v′ and pre(o)[V] = v}

• Operators that sometimes consume atom 〈V, v〉:
SC〈V,v〉 = {o ∈ O | eff (o)[V] = v′ with v 6= v′ and V /∈ vars(pre(o))}

Operators that fall into none of these classes never change the truth value of the atom.
We can extend the definitions of the net change induced by an operator or operator

sequence for an atom 〈V, v〉. The definitions now depend on the state as well.

172

B.1. Net Change Constraints

Definition B.1 (induced net change). Let o be an operator and π = 〈o1, . . . , on〉 an
operator sequence such that o and π are applicable in a state s. The net change that o
induces for atom 〈V, v〉 in s is

netchange(o)s〈V,v〉 =

1 if o applied in s produces 〈V, v〉
−1 if o applied in s consumes 〈V, v〉
0 otherwise.

The accumulated net change induced by sequence π is

netchange(π)s〈V,v〉 =
n∑
i=1

netchange(oi)
sJ〈o1,...,oi−1〉K
〈V,v〉 .

With the classification of operators into AP〈V,v〉, SP〈V,v〉, AC〈V,v〉 and SC〈V,v〉, we can
give bounds to the possible net change induced by an operator (sequence).

netchange(o)s〈V,v〉 ∈

{1} if o ∈ AP〈V,v〉
{0, 1} if o ∈ SP〈V,v〉
{−1} if o ∈ AC〈V,v〉
{−1, 0} if o ∈ SC〈V,v〉
{0} otherwise

This justifies the following proposition:

Proposition B.1. The accumulated net change induced by the application of operator
sequence π in s can be bounded from above and below as follows:∑
o∈AP〈V,v〉

occurπ(o) +
∑

o∈SP〈V,v〉

occurπ(o) −
∑

o∈AC〈V,v〉

occurπ(o) ≥ netchange(π)s〈V,v〉

≥
∑

o∈AP〈V,v〉

occurπ(o) −
∑

o∈AC〈V,v〉

occurπ(o) −
∑

o∈SC〈V,v〉

occurπ(o) .

Likewise, we can give bounds on the total net change between a given state s and
any goal state: the set of possible net change values between such states is

pncs→?〈V,v〉 =

{0, 1} if V /∈ vars(s?) and s[V] 6= v

{−1, 0} if V /∈ vars(s?) and s[V] = v

{1} if s?[V] = v and s[V] 6= v

{−1} if s?[V] = v′ and s[V] = v 6= v′

{0} otherwise.

Combined with the bounds from Proposition B.1, we can finally define a general
version of lower and upper bound net change constraints:

173

Appendix B. From TNF to Unrestricted SAS+

Definition B.2 (net change constraint). Let Π = 〈V ,O, sI, s?, cost〉 be a planning task
and s one of its states. For an atom 〈V, v〉 over V the lower bound net change constraint
cncl
s,〈V,v〉 for atom 〈V, v〉 and state s is the constraint∑

o∈AP〈V,v〉

Counto +
∑

o∈SP〈V,v〉

Counto −
∑

o∈AC〈V,v〉

Counto ≥ min(pncs→?〈V,v〉)

and the upper bound net change constraint cncu
s,〈V,v〉 is the constraint

max(pncs→?〈V,v〉) ≥
∑

o∈AP〈V,v〉

Counto −
∑

o∈AC〈V,v〉

Counto −
∑

o∈SC〈V,v〉

Counto

Close inspection of these constraints again shows that the set of lower bound net
change constraints for all atoms exactly matches the constraints of hSEQ for unrestricted
SAS+ tasks.

The definition for TNF tasks is much simpler, and every task can be transformed into
TNF by transition normalization. Is any information lost during the transformation?
It turns out that the state equation heuristic value for the unrestricted SAS+ task Π is
identical to the heuristic estimate in TNF(Π) for which we can use the simpler and
cleaner constraint system.

Proposition B.2. Let Π be a general SAS+ task. Let CΠ be the set of lower bound net
change constraints for all atoms of Π and a state s of Π according to Definition B.2. Let
CTNF(Π) be the same set of constraints for TNF(Π) according to Definition 9.8. Then,

hLP
CΠ(s) = hLP

CTNF(Π)
.

Proof: Consider the lower bound net change constraint for an atom 〈V, v〉. Operators
that always produce or consume 〈V, v〉 in Π have a precondition and an effect on V
which is not changed by transition normalization. In TNF(Π) they induce the same
coefficients in the constraint for 〈V, v〉.

Operators that sometimes produce 〈V, v〉 in Π have an additional precondition 〈V, u〉
and thus always produce 〈V, v〉 in TNF(Π). Since operators that always produce a atom
are treated the same as operators that sometimes produce it, this does not affect the
equation.

Operators that sometimes consume 〈V, v〉 in Π also have an additional precondition
〈V, u〉 in TNF(Π). This precondition guarantees that they cannot consume 〈V, v〉 in
TNF(Π) so they are irrelevant for this atom. In both Π and TNF(Π) they do not occur
in the constraint.

Operators that have a prevail condition on 〈V, v〉 have the matching effect in TNF(Π).
They can be either left out of the constraint completely or they can be seen as both
consumers and producers, in which case their terms cancel out.

Operators that are irrelevant in Π because they do not mention V are still irrelevant
in TNF(Π).

174

B.2. Flow Constraints

Finally, the operators forget〈V,v〉 in TNF(Π) occur in two constraints: they always
consume 〈V, v〉 and always produce 〈V, u〉. As a result, the linear programs solved for
Π and TNF(Π) differ in only two aspects. Every constraint for 〈V, v〉 is extended by
− Countforget〈V,v〉 and one additional constraint for 〈V, u〉 is added:∑

v∈dom(V)

Countforget〈V,v〉 ≥ [s?[V] = u].

This constraint is redundant for goal variables. For non-goal variables it states that the
slack from all inequalities must sum up to at least one. As the constraints describe a
network flow, starting with an activation of one at the initial value of V , this is always
satisfied. Without redundant constraints, each variable Countforget〈V,v〉 occurs only once
and setting them to non-zero values can only make the constraints harder to satisfy. �

Analogously to Theorem 10.3, we can also show that all upper bound net change con-
straints for atoms are redundant in the presence of lower bound net change constraints
for all atoms. The proof is analogous to the one for TNF: summing up the lower bound
constraints for all atoms of a variable V with values in dom(V)\{v} results in the upper
bound constraint for 〈V, v〉.

B.2. Flow Constraints
In Sections 9.6 and 10.4 we analyzed flow heuristics based on abstract transition sys-
tems with a unique goal state. If an SAS+ planning task does not mention every variable
in its goal, an abstract transition system can have more than one goal state. It is easy
to generalize the minimum-cost flow problem to handle more than one sink: we add an
artificial sink and 0-cost edges from every original sink to the artificial one. In a plan-
ning task, this corresponds to generating a unique goal state and operators to reach it
from the original goal states. The resulting flow model then changes as follows, where
TS = 〈S, T , sI,SG〉 is the original transition system and Gs is a new transition-counting
variable for the transition from original goal state s to the artificial goal:

Minimize
∑
o∈O

∑
t∈transTS(o)

cost(o)Countt subject to∑
t∈inTS(s)

Countt −
∑

t∈outTS(s)

Countt = −[s = sI] for all s ∈ S \ SG (B.1)

∑
t∈inTS(s)

Countt −
∑

t∈outTS(s)

Countt − Gs = −[s = sI] for all s ∈ SG (B.2)

∑
s∈SG

Gs = 1 (B.3)

Countt ≥ 0 for all t ∈ T (B.4)
Gs ≥ 0 for all s ∈ SG (B.5)

175

Appendix B. From TNF to Unrestricted SAS+

All simplification rules refer only to the structure of the abstract transition system
and therefore are also applicable to unrestricted SAS+ tasks. In particular, Rule 6 can
be used to remove the artificial goal state. Rule 6 may still only be used once, but
we can consider abstractions that map all states we want to remove to the same abstract
state first, and then remove this abstract state. Once constraint (B.3) is removed from the
above LP, the artificial transitions Gs can be removed as well, by turning equations (B.2)
into inequalities:

Minimize
∑
o∈O

∑
t∈transTS(o)

cost(o)Countt subject to∑
t∈inTS(s)

Countt −
∑

t∈outTS(s)

Countt = −[s = sI] for all s ∈ S \ SG (B.6)

∑
t∈inTS(s)

Countt −
∑

t∈outTS(s)

Countt ≥ −[s = sI] for all s ∈ SG (B.7)

Countt ≥ 0 for all t ∈ T (B.8)

Proposition 10.5 points out how the constraints of the state equation heuristic can
be seen as simplified flow constraints for atomic projections. The mentioned simplifi-
cation rules 2 and 3 are not sufficient to achieve the same model as the state equation
heuristic for unrestricted SAS+ tasks. We know from Proposition B.2 that the heuristic
values of the two models must be the same, but the simplified constraints introduce
more LP constraints and LP variables. Operators that have an effect but no precondi-
tion on a variable V introduce several state-changing transitions and one self-loop in
the projection on V . While the flow constraints have transition-counting variables and
linking constraints for such operators, the state equation heuristic treats them as some-
times producing their effect and sometimes consuming every other value of V . The
lower bound net change constraints then only mention the operator-counting variable
in the constraint for the effect and contain no transition-counting variables or linking
constraints. This structure could be used to derive another simplification rule.

Handling operators that sometimes produce or consume values in larger projections
is even more complicated, e.g. when considering (partial) merges of values in Proposi-
tions 10.6, 10.7 and 10.8. In larger projections, non-TNF operators induce a mixture of
self-loops and state changing transitions that do not necessarily all end in one abstract
state. Investigating such transitions could lead to interesting further simplification rules.

B.3. Atomic Potential Heuristics
In Section 15.1 we derived a set of constraints characterizing admissible and consistent
potential functions for atomic features in TNF tasks. We now show that such constraints
can be derived for unrestricted SAS+ tasks and that they match the constraints derived
from the transition normalization of the task. This means that the simpler definition

176

B.3. Atomic Potential Heuristics

for tasks in TNF is sufficient and can be used for general tasks by means of transition
normalization.

For a partial variable assignment p, we introduce the notation wmax(V, p) for the
maximal weight that an atom of variable V can contribute to the value of a state consis-
tent with p:

wmax(V, p) = max
s|=p

w(〈V, s[V]〉)

=

{
w(〈V, p[V]〉) if V ∈ vars(p)
maxv∈dom(V) w(〈V, v〉) otherwise

A potential heuristic hw with weights w is goal-aware if and only if hw(sG) ≤ 0 for
all states sG consistent with s?. It is sufficient to require this condition only for a state
that is consistent with s? and has maximal potential among all goal states:

max
sG|=s?

hw(sG) =
∑
V ∈V

wmax(V, s?) ≤ 0

The resulting inequality is not state-dependent and is necessary and sufficient for hw to
be goal-aware.

A potential heuristic hw is consistent if and only if hw(s) ≤ cost(o) + hw(sJoK) for
every state s and every operator o applicable in s. This condition can be simplified as
follows because all weights of atoms that are not changed by an effect cancel out:

cost(o) ≥
∑
V ∈V

w(〈V, s[V]〉)−
∑
V ∈V

w(〈V, sJoK[V]〉)

=
∑

V ∈vars(eff (o))

(w(〈V, s[V]〉)− w(〈V, eff (o)[V]〉))

=
∑

〈V,v〉∈eff (o)

(w(〈V, s[V]〉)− w(〈V, v〉))

Again, it is sufficient to require the inequality only for a state that is consistent with the
operator’s precondition and that has maximal potential:

cost(o) ≥
∑

〈V,v〉∈eff (o)

(wmax(V, pre(o))− w(〈V, v〉))

The resulting inequality is no longer state-dependent and is necessary and sufficient for
consistency. Goal-aware and consistent potential heuristics for atomic features can thus

177

Appendix B. From TNF to Unrestricted SAS+

be compactly characterized as a set of linear equations.

W〈V,v〉 ≤ MaxV for all 〈V, v〉 ∈ A (B.9)∑
V ∈V

wmax(V, s?) ≤ 0 (B.10)∑
〈V,v〉∈eff (o)

(
wmax(V, pre(o))−W〈V,v〉

)
≤ cost(o) for all o ∈ O (B.11)

where wmax(V, p) =

{
W〈V,p[V]〉 if V ∈ vars(p)
MaxV otherwise

Proposition B.3. The solutions of constraints (B.9)–(B.11) projected to the variables
W are exactly the weight functions of admissible and consistent atomic potential func-
tions.

As a reminder, the constraints that we used to characterize admissible and consistent
potential functions for TNF tasks are:∑

〈V,v〉∈s?

W〈V,v〉 ≤ 0 (B.12)

∑
〈V,v〉∈pre(o)

W〈V,v〉 −
∑

〈V,v〉∈eff (o)

W〈V,v〉 ≤ cost(o) for all o ∈ O (B.13)

Proposition B.4. Let Π be a SAS+ planning task. The constraints (B.9)–(B.11) for Π
are isomorphic to the constraints (B.12)–(B.13) for TNF(Π).

Proof: Transition normalization introduces a new value u for every variable V and
an operator forget〈V,v〉 for every atom 〈V, v〉. The new operator leads to the constraint
W〈V,v〉 −W〈V,u〉 ≤ cost(forget〈V,v〉) = 0, or equivalently W〈V,v〉 ≤ W〈V,u〉. Replacing
W〈V,u〉 with MaxV shows the theorem. �

B.4. Binary and Higher-Dimensional
Potential Heuristics

With higher-dimensional potential heuristics, we grouped the set of features into three
sets: irrelevant, context-independent, and context-dependent features. We can do the
same for unrestricted SAS+ tasks. However, in the general case, we also have to con-
sider a feature f context-dependent for an operator o if o sometimes produces or some-
times consumes f , i.e. if o has an effect but no precondition on a variable mentioned in
f . With this extended definition, irrelevant features and context-independent features
behave just like in the TNF case.

178

B.4. Binary and Higher-Dimensional Potential Heuristics

Context-dependent features are harder to handle in general. For them, we have to find
a compact characterization of solutions to the following equation (see Section 15.3.2).

Zo ≥ max
s|=pre(o)

∑
f∈F ctx

o

w(f)∆o(f, s)

In Section 15.3.2 we did this by transforming the maximum into a function maximiza-
tion problem over the functions

ψfo (p) = Wf ([pre(o) ∪ p |= f]− [eff (o) ∪ p |= f])

where p is a partial variable assignment over variables mentioned by f but not by o.
Since the context can now depend on variables mentioned in the effect of o but not in
the precondition, we have to extend this definition.

Let Vf\o be the variables mentioned by f but not by o, and let Vf\pre(o) be the vari-
ables mentioned by f and o, but not in the precondition of o. Further, let post(o) be
the partial state with post(o)[V] = eff (o)[V] if V ∈ vars(eff (o)) and post(o)[V] =
pre(o)[V] if V ∈ vars(pre(o)) \ vars(eff (o)), i.e. the effect of o together with all
prevail conditions of o. We can then change the definition of ψ to a function from
Vf\o ∪ Vf\pre(o) to {Wf ,−Wf , 0}:

ψ′
f
o(p) = Wf ([pre(o) ∪ p |= f]− [post(o) ∪ p|Vf\o |= f])

The function maximization problem over those functions can be combined with
the remaining constraint as in Section 15.3.2 to get a general definition of higher-
dimensional potential heuristics.

179

Appendix C.

Maximizing a Sum of Functions
We now leave the planning formalism and consider a technique from constraint op-
timization called bucket elimination (Dechter, 1999, 2003). We will generalize the
technique and show how linear programming can be used to solve the generalization.

First, we need some basic notation. Let X be a set of finite-domain variables and
dom(X) the domain of each X ∈ X . We extend the definition of dom to sets S ⊆ X
such that dom(S) is the set of variable assignments that map each variable in S to a value
in its domain. Let V be a set of values. For now, think of V as the set of real numbers
R. We will consider more general sets later. We only require that maximization and
addition is defined on values in V, that both operations are commutative and associative,
and that max {a + c, b + c} ≡ c + max {a, b} for all a, b, c ∈ V. We use the common
extensions of sums and maxima from binary functions to functions of arbitrary arity and
use common mathematical abbreviations like

∑
x∈{1,...,n} f(x) = f(1)+ · · ·+f(n) and

maxx∈{1,...,n} f(x) = max{f(1), . . . , f(n)}. As corner cases, the sum and maximum
over the singleton set {x} are x.

Let Ψ be a set of scoped functions, i.e. tuples 〈S, f〉 containing a scope S ⊆ X and a
function f : S → V. For a scope S and a variable assignment ν ∈ dom(X) we use ν|S
to denote the projection of ν to the variables in S.

We are interested in a maximal object that the sum of all functions in Ψ can take
under a common variable assignment:

Max(Ψ) = max
ν∈dom(X)

∑
〈S,f〉∈Ψ

f(ν|S).

Example Consider the set X = {x, y} of two binary variables and the scoped func-
tions Ψ = {〈{x}, f〉, 〈{x, y}, g〉} of the two functions f and g with:

f(x) x = 0 x = 1

3 2

g(x, y) x = 0 x = 1

y = 0 2 −5
y = 1 0 4

In this case, the variable assignment ν = {x 7→ 1, y 7→ 1} achieves the highest value
and Max(Ψ) = 2 + 4 = 6.

180

C.1. Bucket Elimination

Computing Max(Ψ) is the goal of constraint optimization for extensional constraints
(Dechter, 2003), an important problem in AI. It is challenging because the number of
variable assignments in dom(X) is exponential in the number of variables. Bucket elim-
ination (Dechter, 2003) is a well-known algorithm to calculate Max(Ψ). For reasons
that will become clear later, we describe the bucket elimination algorithm in a slightly
unusual way: in our formulation, the algorithm generates a system of equations, and
its output can be extracted from the (uniquely defined) solution to these equations. The
system of equations makes use of auxiliary variables Aux1, . . . ,Auxm that take values
from V. The generated equations have the form Auxi = maxj∈{1,...,ki} ei,j , where ei,j is
a sum that contains only values from V or the variables Aux1, . . . ,Auxi−1. Solutions to
the system of equations guarantee that Auxm ≡ Max(Ψ).

C.1. Bucket Elimination
We now describe the general algorithm and prove its correctness. Its execution depends
on an order σ = 〈X1, . . . , Xn〉 of the variables in X . The algorithm maintains a set
of |X | + 1 buckets B0, . . . , Bn. Bucket Bi for 1 ≤ i ≤ n contains scoped functions
〈S, f〉 such that Xi is the largest variable in S according to σ. Bucket B0 contains
functions with an empty scope. The algorithm operates in stages which are enumerated
in a decreasing manner, starting at stage n+ 1 and ending at stage 0:

• Stage n+ 1 (Initialization). Start with a set {Bi}ni=0 of empty buckets. Place each
〈S, ψ〉 ∈ Ψ into the bucket Bi if Xi is the largest variable in S, according to σ, or
into the bucket B0 if S = ∅. The resulting system of equations is initialized to an
empty system.

• Stages i = n, . . . , 1 (Elimination). Stage i eliminates variable Xi from the func-
tions in bucket Bi.

Let 〈Sj, ψj〉 for j ∈ {1, . . . , ki} be the scoped functions currently in bucket Bi.
Construct the scope SXi = (

⋃
j∈{1,...,ki} Sj) \ {Xi} that contains all variables

relevant to Xi. Then construct the new function ψXi : SXi → V that represents
the contribution of all functions that depend onXi. The definition of ψXi is added
to the generated system of equations by adding one auxiliary variable AuxXi,ν for
every ν ∈ dom(SXi) which represents the value ψXi(ν):

AuxXi,ν = max
xi∈dom(Xi)

∑
j∈{1,...,ki}

ψj(νxi|Sj)

where νxi = ν ∪ {Xi 7→ xi} extends the variable assignment ν with Xi 7→ xi.
If ψj is a function in Ψ, then ψj(νxi |Sj) is an element of V. Otherwise ψj is
a previously defined function ψXi′ for i′ > i and its value for ν ′ = νxi |Sj is
represented by AuxXi′ ,ν′ .

181

Appendix C. Maximizing a Sum of Functions

The newly defined function ψXi no longer depends on Xi but depends on all
variables in SXi , so 〈SXi , ψXi〉 is added to bucket Bj if Xj is the largest variable
in SXi according to σ or to B0 if SXi = ∅. Observe that j < i because SXi only
contains variables from scopes where Xi is the largest variable and SXi does not
contain Xi.

Finally, clear bucket Bi.

• Stage 0 (Termination). Let 〈Sj, ψj〉 for j ∈ {1, . . . , k} be the scoped functions
that currently are in bucket B0. Add the auxiliary variable AuxΨ and the equation
AuxΨ =

∑
j∈{1,...,k} ψj , then clear bucketB0. This is analogous to the elimination

step. (All Sj are empty and the maximum is over dom(∅) = {∅}.)

Example Consider the functions f and g from the previous example again. Bucket
elimination generates the following equations for the variable order σ = 〈X, Y 〉.

Aux1 = AuxY,{X 7→0} = max
y∈{0,1}

g(0, y)

= max {g(0, 0), g(0, 1)}
Aux2 = AuxY,{X 7→1} = max

y∈{0,1}
g(1, y)

= max {g(1, 0), g(1, 1)}
Aux3 = AuxX,∅ = max

x∈{0,1}
(f(x) + AuxY,{X 7→x})

= max {f(0) + Aux1, f(1) + Aux2}
Aux4 = AuxΨ = AuxX,∅ = Aux3

Plugging in the values of f and g gives the system of equations

Aux1 = max {2, 0}
Aux2 = max {−5, 4}
Aux3 = max {3 + Aux1, 2 + Aux2}
AuxΨ = Aux3

which has a unique solution with AuxΨ = 6.

Let us convince ourselves that the output of the algorithm always has the desired
form:

Proposition C.1. Let Ψ be a set of scoped functions with codomain V. The system of
equations generated by bucket elimination on the problem Ψ has the form

Auxi = max
j∈{1,...,ki}

ei,j for all i ∈ {1, . . . ,m},

where ei,j is a sum that contains only values from V or the variables Aux1, . . . ,Auxi−1.

182

C.1. Bucket Elimination

Proof: It is easy to see that all generated equations are maxima over sums (the definition
in the termination phase can be seen as a maximum over all variables assignments for
the empty scope, i.e. {∅}).

The elements of ei,j are values of functions ψj that are in the bucket Bi when Xi is
eliminated. If ψj was added to the bucket in the initialization stage, then it is a function
from Ψ and its values are from V. Otherwise the function was added by a previous
elimination stage i′ > i and its definition is already part of the generated system of
equations. Its value for evaluation ν is represented by Auxj,ν which was added to the
system in stage i′. �

To show that the algorithm is correct, we first show that the function introduced when
eliminating a bucket is equivalent to the functions contained in the bucket.

Proposition C.2. Let Ψ be a set of scoped functions and 〈S1, f1〉, . . . , 〈Sn, fn〉 be the
subset of functions whose scope includes a variable X . Let SX = (

⋃n
j=1 Sj)\{X} and

ψX(ν) = maxx∈dom(X)

∑
j∈{1,...,n} fj(νx|Sj) for all variable assignments ν ∈ dom(SX).

Then
Max(Ψ) ≡ Max((Ψ \ {〈S1, f1〉, . . . , 〈Sn, fn〉}) ∪ {〈SX , ψX〉}).

Proof: For the maximization over values of X all functions that do not depend on X
are constant and can be moved out of the maximum. Evaluations of all other variables
can be restricted to the scope SX if only functions f1, . . . , fn are considered.

Max(Ψ) = max
ν∈dom(X)

∑
〈S,f〉∈Ψ

f(ν|S)

= max
ν′∈dom(X\{X})

max
x∈dom(X)

∑
〈S,f〉∈Ψ

f(ν ′x|S)

≡ max
ν′∈dom(X\{X})

 ∑
〈S,f〉∈Ψ

f /∈{f1,...,fn}

f(ν ′|S) + max
x∈dom(X)

n∑
j=1

fj(ν
′
x|Sj)

= max
ν′∈dom(X\{X})

 ∑
〈S,f〉∈Ψ

f /∈{f1,...,fn}

f(ν ′|S) + ψX(ν ′|SX)

= Max((Ψ \ {〈S1, f1〉, . . . , 〈Sn, fn〉}) ∪ {〈SX , ψX〉})

�

With Proposition C.2 we can show the correctness of a single elimination stage.

Proposition C.3. Let Ψ1 be the set of scoped functions in all buckets just before elimi-
nating bucket Bi, where the value of ψXj(ν) is defined as equivalent to AuxXj ,ν in the
system of equations generated so far for j > i. Let Ψ2 be the analogous set after the
elimination step. Then Max(Ψ1) ≡ Max(Ψ2).

183

Appendix C. Maximizing a Sum of Functions

Proof: The functions in Ψ1 \ Ψ2 are exactly the functions whose scope includes Xi.
Only one function is added and the generated equations together with Proposition C.1
guarantee that its definition is equivalent to

ψXi(ν) = max
xi∈dom(Xi)

∑
〈S,f〉∈Ψ1\Ψ2

f(νxi |S).

Proposition C.2 then shows the equivalence. �

We can now show correctness of the bucket elimination algorithm:

Theorem C.1. In the system of equations generated by the bucket elimination algorithm
for a set of scoped functions Ψ the final variable generated (AuxΨ) is equivalent to
Max(Ψ).

Proof: For i ∈ {n, . . . , 1} let Ψi be the set of scoped functions in all buckets before
eliminating Xi, where functions ψXj for j > i are defined as equivalent to AuxXj ,ν in
the system of equations so far. Let Ψ0 be the analogous set after eliminating X1, i.e. the
set of functions left in B0 after the elimination stage.

The initialization stage adds all elements of Ψ to the buckets, so Ψn = Ψ. An
inductive proof using Proposition C.3 shows Max(Ψ) = Max(Ψn) ≡ Max(Ψ0). Since
those functions all have the empty scope, the maximum over their sum is just their sum,
which is the definition of AuxΨ generated in the termination stage. �

C.2. Bucket Elimination for Linear Expressions

As a generalization of the bucket elimination algorithm, consider V to be the following
set E of mathematical expressions over a set of variable symbols Y . For every Y ∈ Y
and r ∈ R, the expressions Y, r, and rY are in E. If a and b are elements of E, then the
expressions (a+ b) and max {a, b} are elements of E. There are no additional elements
in E. An assignment f : Y → R that maps variables to values can be extended to E in
the straight-forward way. Two expressions a, b ∈ E are equivalent if f(a) = f(b) for
all assignments f . An expression is linear if it does not mention max.

Clearly, maximization and addition are commutative, associative and all expressions
a, b, c ∈ E satisfy max {a + c, b + c} ≡ c + max {a, b}. Bucket elimination there-
fore generates a system of equations Auxi = maxj∈{1,...,ki} ei,j , where all ei,j are sums
over expressions and variables Auxi′ with i′ < i. Since a variable is a mathemati-
cal expression, the whole result can be seen as a system of equations over the vari-
ables Y ∪ {Aux1, . . . ,Auxm}. If additionally all functions in Ψ only produce linear
expressions over Y , then in the resulting system all ei,j are linear expressions over
Y ∪ {Aux1, . . . ,Auxm}.

184

C.2. Bucket Elimination for Linear Expressions

Example Consider the example problem from the previous section again but with
different definitions for f and g. We define f and g so they map to linear expressions
over Y = {A,B}:

f(x) x = 0 x = 1

3A− 2B 4A+ 2B

g(x, y) x = 0 x = 1

y = 0 8A −3B
y = 1 7B 0

In the resulting system of equations all elements in the maxima are linear expressions
over the variables {A,B,Aux1,Aux2,Aux3,Aux4}:

Aux1 = max {8A, 7B}
Aux2 = max {−3B, 0}
Aux3 = max {3A− 2B + Aux1, 4A + 2B + Aux2}
Aux4 = Aux3

Bucket elimination guarantees that Aux4 ≡ Max(Ψ) for any value of A and B.

We argue that the system of equations generated by bucket elimination of a function
maximization problem where all functions produce linear expressions can be solved by
an LP solver, i.e. we can get rid of the (non-linear) maximization.

Theorem C.2. Let Y and {Aux1, . . .Auxm} be disjoint sets of variables. Let Pmax be a
system of equations

Auxi = max
j∈{1,...,ki}

ei,j for all i ∈ {1, . . . ,m},

where ei,j is a linear expression over variables Y ∪{Aux1, . . . ,Auxi−1}. Let PLP be the
set of linear constraints

Auxi ≥ ei,j for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}.

Every solution of Pmax is a solution of PLP and for every solution f of PLP there is
a solution f ′ of Pmax with f ′(Y) = f(Y) for all Y ∈ Y and f ′(Aux) ≤ f(Aux) for all
Aux /∈ Y .

Proof: Solutions of Pmax have to satisfy the constraints of PLP because the maximum
over a set is at least as large as any element in the set.

Consider a solution f of PLP. If at least one constraint Auxi ≥ ei,j for every Auxi is
tight, then f is also a solution for Pmax. Otherwise, let i be the smallest index of a vari-
able for which no constraint is tight. Reducing f ′(Auxi) to max{f ′(ei,1), . . . , f ′(ei,ki)}
still satisfies the constraints where Auxi occurs on the left-hand side. This is well-
defined because no ei,j can depend on Auxi. In all other constraints Auxi can only occur
on the right-hand side and only with a positive coefficient. Reducing the value of Auxi

185

Appendix C. Maximizing a Sum of Functions

cannot make such a constraint unsatisfied if it was previously satisfied. Since Auxi does
not occur in constraints for variables Auxi′ with i′ < i, reducing Auxi does not affect
such constraints. Therefore, after the reduction, the smallest index of a variable with
loose constraints must be larger than i, and we can continue reducing values of vari-
ables Auxi until every variable has at least one tight constraint. The modified solution
is a solution of Pmax and satisfies f ′(Y) = f(Y) for all Y ∈ Y and f ′(Aux) ≤ f(Aux)
for all Aux /∈ Y . �

As a corollary, we can use this result to represent a “symbolic” version of the bucket
elimination algorithm with unknowns Y as an LP. (Note that the constraints generated
by the bucket elimination algorithm have exactly the form required by the theorem if
functions in Ψ produce linear expressions.) This LP has the property that for every
assignment to the unknowns Y there exists a feasible solution, and the values of Auxm
in these feasible solutions are exactly the set of numbers greater or equal to Max(Ψ)
for the given assignment to Y . (For simplicity, it would be preferable if only Max(Ψ)
itself resulted in a feasible assignment to Auxm, but we will see that the weaker property
where Auxm may overestimate Max(Ψ) is sufficient for our purposes.) We write the set
of constraints for this LP as PLP(Ψ,σ).

Corollary C.1. The constraints in PLP(Ψ,σ) are equivalent to Auxm ≥ Max(Ψ).

An LP can be solved in time that is polynomial in its size, so to bound the complexity,
we have to consider the number and size of the constraints in PLP(Ψ,σ). Dechter (2003)
defines the dependency graph of a problem Ψ over variables X as the undirected graph
G(Ψ) = 〈X , E〉 with set of vertices given by the variables X and an edge 〈X,X ′〉 ∈ E
iff X 6= X ′ and there is a scoped function 〈S, ψ〉 in Ψ with {X,X ′} ⊆ S. Given an
undirected graph G and an order of its nodes σ, a parent of a node n is a neighbor of n
that precedes n in σ. Dechter defines the induced graph of G along σ as the result of
processing each node of G in descending order of σ and for each node connecting each
pair of its parents if they are not already connected. The induced width of G along σ
then is the maximal number of parents of a node in the induced graph of G along σ.

If there are n variables in X and each of their domains is bounded by d, then elim-
inating variable Xi adds one equation AuxXi,ν = maxj∈dom(Xi) ei,j for each valuation
ν of the scope SXi (variables relevant for Xi). The size of this scope is limited by the
induced width w(σ), so the number of valuations is limited by dw(σ). As there are n
buckets to eliminate, the number of auxiliary variables in the LP can thus be bounded
by O(ndw(σ)). Each such variable occurs in |dom(Xi)| ≤ d constraints of the form
AuxXi,ν ≥ ei,j in PLP(Ψ,σ), so there are O(ndw(σ)+1) constraints.

Theorem C.3. Let Ψ be a set of scoped functions over the variables in X that map to
linear expressions over Y . Let σ be an ordering for X .

Then PLP(Ψ,σ) hasO(|Y|+|X |dw(σ)) variables andO(|X |dw(σ)+1) constraints, where
d = maxX∈X |dom(X)| and w(σ) is the induced width of G(Ψ).

186

C.2. Bucket Elimination for Linear Expressions

The smallest possible induced width of G(Ψ) along any order σ is called the induced
width of G(Ψ) and equals the treewidth of G(Ψ) (Dechter, 2003). Unfortunately, find-
ing the induced width or a minimizing order is NP-hard. However, it is fixed-parameter
tractable (Downey and Fellows, 1999) with the treewidth as the parameter (Bodlaender,
1996).

187

188

Bibliography
Aghighi, M., and Jonsson, P. 2014. Oversubscription planning: Complexity and com-

pilability. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence (AAAI 2014), 2221–2227. AAAI Press.

Alcázar, V., and Torralba, Á. 2015. A reminder about the importance of computing
and exploiting invariants in planning. In Brafman, R.; Domshlak, C.; Haslum, P.;
and Zilberstein, S., eds., Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling (ICAPS 2015), 2–6. AAAI Press.

Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+ planning. Computa-
tional Intelligence 11(4):625–655.

Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast detection of unsolvable
planning instances using local consistency. In Helmert, M., and Röger, G., eds.,
Proceedings of the Sixth Annual Symposium on Combinatorial Search (SoCS 2013),
29–37. AAAI Press.

Bellman, R. E. 1957. Dynamic Programming. Princeton University Press.

Benders, J. F. 1962. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4(1):238–252.

Bertsekas, D. P. 1995. Dynamic Programming and Optimal Control. Athena Scientific.

Betz, C., and Helmert, M. 2009. Planning with h+ in theory and practice. In
Mertsching, B.; Hund, M.; and Aziz, Z., eds., Proceedings of the 32nd Annual Ger-
man Conference on Artificial Intelligence (KI 2009), volume 5803 of Lecture Notes
in Artificial Intelligence, 9–16. Springer-Verlag.

Black, M. 1946. Critical Thinking: An Introduction to Logic and the Scientific Method.
Prentice Hall.

Bodlaender, H. L. 1996. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing 25(6):1305–1317.

Bonet, B., and Geffner, H. 2001. Planning as heuristic search. Artificial Intelligence
129(1):5–33.

189

Bibliography

Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the convergence of real-
time dynamic programming. In Giunchiglia, E.; Muscettola, N.; and Nau, D., eds.,
Proceedings of the Thirteenth International Conference on Automated Planning and
Scheduling (ICAPS 2003), 12–21. AAAI Press.

Bonet, B., and Helmert, M. 2010. Strengthening landmark heuristics via hitting sets. In
Coelho, H.; Studer, R.; and Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334. IOS Press.

Bonet, B., and van den Briel, M. 2014. Flow-based heuristics for optimal planning:
Landmarks and merges. In Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds., Pro-
ceedings of the Twenty-Fourth International Conference on Automated Planning and
Scheduling (ICAPS 2014), 47–55. AAAI Press.

Bonet, B. 2013. An admissible heuristic for SAS+ planning obtained from the state
equation. In Rossi, F., ed., Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013), 2268–2274. AAAI Press.

Brafman, R. I., and Domshlak, C. 2008. From one to many: Planning for loosely
coupled multi-agent systems. In Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E.,
eds., Proceedings of the Eighteenth International Conference on Automated Planning
and Scheduling (ICAPS 2008), 28–35. AAAI Press.

Bylander, T. 1997. A linear programming heuristic for optimal planning. In Proceed-
ings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997),
694–699. AAAI Press.

Camm, J. D.; Raturi, A. S.; and Tsubakitani, S. 1990. Cutting big M down to size.
Interfaces 20(5):61–66.

Chen, H., and Giménez, O. 2007. Act local, think global: Width notions for tractable
planning. In Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings of the Sev-
enteenth International Conference on Automated Planning and Scheduling (ICAPS
2007), 73–80. AAAI Press.

Chen, H., and Giménez, O. 2009. On-the-fly macros. In Logic, Language, Information
and Computation, volume 5514 of Lecture Notes in Computer Science, 155–169.
Springer-Verlag.

Chung, F.; Graham, R.; Morrison, J.; and Odlyzko, A. 1995. Pebbling a chessboard.
The American Mathematical Monthly 102(2):113–123.

Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued decision diagrams for sym-
bolic generation of shortest paths. In Aagaard, M., and O’Leary, J. W., eds., Proceed-
ings of the Fourth International Conference on Formal Methods in Computer-Aided

190

Bibliography

Design (FMCAD 2002), volume 2517 of Lecture Notes in Computer Science, 256–
273. Springer-Verlag.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid relaxed planning graph-
LP heuristic for numeric planning domains. In Rintanen, J.; Nebel, B.; Beck, J. C.;
and Hansen, E., eds., Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 2008), 52–59. AAAI Press.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. COLIN: Planning with contin-
uous linear numeric change. Journal of Artificial Intelligence Research 44:1–96.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Computational Intelligence
14(3):318–334.

Dantzig, G. B., and Wolfe, P. 1960. Decomposition principle for linear programs.
Operations Research 8(1):101–111.

Dantzig, G. B. 1951. Maximization of a linear function of variables subject to linear
inequalities. In Activity Analysis of Production and Allocation, 339–347. John Wiley
& Sons.

Davies, T. O.; Pearce, A. R.; Stuckey, P.; and Lipovetzky, N. 2015. Sequencing op-
erator counts. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., eds.,
Proceedings of the Twenty-Fifth International Conference on Automated Planning
and Scheduling (ICAPS 2015), 61–69. AAAI Press.

Dechter, R. 1999. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113(1):41–85.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1:269–271.

Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-independent heuristic met-
ric temporal planner. In Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth
European Conference on Planning (ECP 2001), 57–68. AAAI Press.

Domshlak, C., and Mirkis, V. 2015. Deterministic oversubscription planning as heuris-
tic search: Abstractions and reformulations. Journal of Artificial Intelligence Re-
search 52:97–169.

Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black planning: A new system-
atic approach to partial delete relaxation. Artificial Intelligence 221:73–114.

191

Bibliography

Domshlak, C.; Katz, M.; and Lefler, S. 2012. Landmark-enhanced abstraction heuris-
tics. Artificial Intelligence 189:48–68.

Downey, R. G., and Fellows, M. R. 1999. Parameterized Complexity. Springer.

Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed model checking with
distance-preserving abstractions. In Valmari, A., ed., Proceedings of the 13th Inter-
national SPIN Workshop (SPIN 2006), volume 3925 of Lecture Notes in Computer
Science, 19–34. Springer-Verlag.

Dreier, J., and Kerschbaum, F. 2011. Practical privacy-preserving multiparty linear pro-
gramming based on problem transformation. In Proceedings of the 2011 IEEE Third
International Conference on Privacy, Security, Risk and Trust and the 2011 IEEE
Third International Conference on Social Computing (PASSAT/SocialCom 2011),
916–924. IEEE.

Edelkamp, S. 2001. Planning with pattern databases. In Cesta, A., and Borrajo, D.,
eds., Proceedings of the Sixth European Conference on Planning (ECP 2001), 84–90.
AAAI Press.

Edelkamp, S. 2006. Automated creation of pattern database search heuristics. In
Edelkamp, S., and Lomuscio, A., eds., Proceedings of the 4th Workshop on Model
Checking and Artificial Intelligence (MoChArt 2006), 35–50.

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the context-enhanced additive
heuristic for temporal and numeric planning. In Gerevini, A.; Howe, A.; Cesta, A.;
and Refanidis, I., eds., Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 130–137. AAAI Press.

Fan, G.; Müller, M.; and Holte, R. 2014. Non-linear merging strategies for merge-and-
shrink based on variable interactions. In Edelkamp, S., and Barták, R., eds., Pro-
ceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014),
53–61. AAAI Press.

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pattern database heuristics. Journal
of Artificial Intelligence Research 22:279–318.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2:189–208.

Fišer, D.; Štolba, M.; and Komenda, A. 2015. MAPlan. In Proceedings of the
First Competition of Distributed and Multi-Agent Planners (CoDMAP), 8–10. AAAI
Press.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research 20:61–124.

192

Bibliography

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman.

Gerevini, A., and Schubert, L. 2001. DISCOPLAN: an efficient on-line system for
computing planning domain invariants. In Cesta, A., and Borrajo, D., eds., Proceed-
ings of the Sixth European Conference on Planning (ECP 2001), 284–288. AAAI
Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning: Theory and Prac-
tice. Morgan Kaufmann.

Goldfarb, D.; Hao, J.; and Kai, S.-R. 1990. Efficient shortest path simplex algorithms.
Operations Research 38(4):624–628.

Hansson, O.; Mayer, A.; and Yung, M. 1992. Criticizing solutions to relaxed models
yields powerful admissible heuristics. Information Sciences 63(3):207–227.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics 4(2):100–107.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for optimal planning. In
Chien, S.; Kambhampati, S.; and Knoblock, C. A., eds., Proceedings of the Fifth
International Conference on Artificial Intelligence Planning and Scheduling (AIPS
2000), 140–149. AAAI Press.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S. 2007. Domain-
independent construction of pattern database heuristics for cost-optimal planning. In
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI
2007), 1007–1012. AAAI Press.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible heuristics for domain-
independent planning. In Proceedings of the Twentieth National Conference on Ar-
tificial Intelligence (AAAI 2005), 1163–1168. AAAI Press.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Gerevini, A.; Howe, A.; Cesta, A.; and Refani-
dis, I., eds., Proceedings of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 162–169. AAAI Press.

Helmert, M., and Mattmüller, R. 2008. Accuracy of admissible heuristic functions in
selected planning domains. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI 2008), 938–943. AAAI Press.

193

Bibliography

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014. Merge-and-shrink
abstraction: A method for generating lower bounds in factored state spaces. Journal
of the ACM 61(3):16:1–63.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-state abstraction: A new
method for generating heuristic functions. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 1547–1550. AAAI Press.

Helmert, M. 2003. Complexity results for standard benchmark domains in planning.
Artificial Intelligence 143(2):219–262.

Helmert, M. 2006. The Fast Downward planning system. Journal of Artificial Intelli-
gence Research 26:191–246.

Helmert, M. 2009. Concise finite-domain representations for PDDL planning tasks.
Artificial Intelligence 173:503–535.

Heusner, M.; Wehrle, M.; Pommerening, F.; and Helmert, M. 2014. Under-
approximation refinement for classical planning. In Chien, S.; Fern, A.; Ruml, W.;
and Do, M., eds., Proceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 365–369. AAAI Press.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Distance”? Who cares? Tailoring
merge-and-shrink heuristics to detect unsolvability. In Schaub, T.; Friedrich, G.;
and O’Sullivan, B., eds., Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI 2014), 441–446. IOS Press.

Hoffmann, J. 2003. The Metric-FF planning system: Translating “ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research 20:291–341.

Hoffmann, J. 2005. Where ‘ignoring delete lists’ works: Local search topology in
planning benchmarks. Journal of Artificial Intelligence Research 24:685–758.

Holmgren, J.; Persson, J. A.; and Davidsson, P. 2009. Agent-based Dantzig-Wolfe
decomposition. In Hakansson, A., and Hartung, R., eds., Proceedings of the Third
KES International Symposium (KES-AMSTA 2009), 754–763. Springer-Verlag.

Holte, R. C. 2010. Common misconceptions concerning heuristic search. In Felner,
A., and Sturtevant, N., eds., Proceedings of the Third Annual Symposium on Combi-
natorial Search (SoCS 2010), 46–51. AAAI Press.

194

Bibliography

Holte, R. C. 2013. Korf’s conjecture and the future of abstraction-based heuristics.
In Frisch, A. M., and Gregory, P., eds., Proceedings of the Tenth Symposium on Ab-
straction, Reformulation, and Approximation (SARA 2013), 128–131. AAAI Press.

Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders decomposition. Mathe-
matical Programming 96(1):33–60.

IBM. 2017. IBM R© ILOG R© CPLEX R© Optimization Studio, v12.5.1. http://
www-03.ibm.com/software/products/en/ibmilogcpleoptistud.

Imai, T., and Fukunaga, A. 2014. A practical, integer-linear programming model for
the delete-relaxation in cost-optimal planning. In Schaub, T.; Friedrich, G.; and
O’Sullivan, B., eds., Proceedings of the 21st European Conference on Artificial In-
telligence (ECAI 2014), 459–464. IOS Press.

Imai, T., and Fukunaga, A. 2015. On a practical, integer-linear programming model
for delete-free tasks and its use as a heuristic for cost-optimal planning. Journal of
Artificial Intelligence Research 54:631–677.

Ivankovic, F.; Haslum, P.; Thiébaux, S.; Shivashankar, V.; and Nau, D. S. 2014. Optimal
planning with global numerical state constraints. In Chien, S.; Fern, A.; Ruml, W.;
and Do, M., eds., Proceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 145–153. AAAI Press.

Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4):373–395.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning with landmarks. In
Boutilier, C., ed., Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI 2009), 1728–1733. AAAI Press.

Katz, M., and Domshlak, C. 2007a. Structural patterns heuristics: Basic idea and
concrete instance. In ICAPS 2007 Workshop on Heuristics for Domain-Independent
Planning: Progress, Ideas, Limitations, Challenges.

Katz, M., and Domshlak, C. 2007b. Structural patterns of tractable sequentially-optimal
planning. In Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings of the Sev-
enteenth International Conference on Automated Planning and Scheduling (ICAPS
2007), 200–207. AAAI Press.

Katz, M., and Domshlak, C. 2008a. Optimal additive composition of abstraction-based
admissible heuristics. In Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds.,
Proceedings of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 174–181. AAAI Press.

195

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

Bibliography

Katz, M., and Domshlak, C. 2008b. Structural patterns heuristics via fork decompo-
sition. In Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Proceedings
of the Eighteenth International Conference on Automated Planning and Scheduling
(ICAPS 2008), 182–189. AAAI Press.

Katz, M., and Domshlak, C. 2009. Structural-pattern databases. In Gerevini, A.; Howe,
A.; Cesta, A.; and Refanidis, I., eds., Proceedings of the Nineteenth International
Conference on Automated Planning and Scheduling (ICAPS 2009), 186–193. AAAI
Press.

Katz, M., and Domshlak, C. 2010a. Implicit abstraction heuristics. Journal of Artificial
Intelligence Research 39:51–126.

Katz, M., and Domshlak, C. 2010b. Optimal admissible composition of abstraction
heuristics. Artificial Intelligence 174(12–13):767–798.

Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and Mattmüller, R. 2016. State-
dependent cost partitionings for Cartesian abstractions in classical planning. In
Kambhampati, S., ed., Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI 2016), 3161–3169. AAAI Press.

Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-relaxed plan heuristics. In
McCluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B., eds., Proceedings of the
Twenty-Second International Conference on Automated Planning and Scheduling
(ICAPS 2012), 128–136. AAAI Press.

Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving delete relaxation heuris-
tics through explicitly represented conjunctions. Journal of Artificial Intelligence
Research 50:487–533.

Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and complete landmarks for
and/or graphs. In Coelho, H.; Studer, R.; and Wooldridge, M., eds., Proceedings of
the 19th European Conference on Artificial Intelligence (ECAI 2010), 335–340. IOS
Press.

Khachiyan, L. G. 1980. Polynomial algorithms in linear programming. USSR Compu-
tational Mathematics and Mathematical Physics 20(1):53–72.

Knuth, D. E. 1992. Two notes on notation. American Mathematical Monthly 99(5):403–
422.

Kontsevitch, M. 1981. Problem M715. Kvant 12(11):21–22. (In Russian).

Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuristics. Artificial Intelli-
gence 134(1–2):9–22.

196

Bibliography

Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time complexity of iterative-deepening
A∗. Artificial Intelligence 129:199–218.

Korf, R. E. 1985. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence 27(1):97–109.

Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube using pattern databases. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI
1997), 700–705. AAAI Press.

Korte, B., and Vygen, J. 2001. Combinatorial Optimization: Theory and Algorithms.
Springer, 2nd edition.

Lipovetzky, N., and Geffner, H. 2012. Width and serialization of classical planning
problems. In De Raedt, L.; Bessiere, C.; Dubois, D.; Doherty, P.; Frasconi, P.;
Heintz, F.; and Lucas, P., eds., Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI 2012), 540–545. IOS Press.

Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps, invariants, and dead-ends. In
Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S., eds., Proceedings
of the Twenty-Sixth International Conference on Automated Planning and Scheduling
(ICAPS 2016), 211–215. AAAI Press.

Lolli, G. 1763. Osservazioni teorico-pratiche sopra il giuoco degli scacchi. Bologna:
Stamperia di S. Tommaso D’Aquino. (In Italian).

Lougee-Heimer, R. 2003. The Common Optimization INterface for Operations Re-
search: Promoting open-source software in the operations research community. IBM
Journal of Research and Development 47(1):57–66.

Mangasarian, O. L. 2011. Privacy-preserving linear programming. Optimization Letters
5(1):165–172.

Mausam, and Kolobov, A. 2012. Planning with Markov Decision Processes. Morgan
& Claypool.

McCarthy, J. 1964. A tough nut for proof procedures. Stanford Artificial Intelligence
Project, Memo 16.

McDermott, D. 1999. Using regression-match graphs to control search in planning.
Artificial Intelligence 109(1–2):111–159.

Muise, C., and Lipovetzky, N. 2014. First Unsolvability International Planning Com-
petition (UIPC 2014). http://unsolve-ipc.eng.unimelb.edu.au. Ac-
cessed March 2017.

197

http://unsolve-ipc.eng.unimelb.edu.au

Bibliography

Muise, C. 2016. Planning.Domains. System Demonstrations on the Twenty-Sixth Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2016) http:
//www.haz.ca/papers/planning-domains-icaps16.pdf. Accessed
Dezember 2016.

Nebel, B. 2000. On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research 12:271–315.

Nissim, R., and Brafman, R. I. 2012. Multi-agent A∗ for parallel and distributed
systems. In Proceedings of the Eleventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2012), 1265–1266. IFAAMAS/ACM.

Numberphile. 2013. Pebbling a chessboard. https://www.youtube.com/
watch?v=lFQGSGsXbXE. (Accessed Feb. 2016).

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Pommerening, F., and Helmert, M. 2015. A normal form for classical planning tasks.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Scheduling
(ICAPS 2015), 188–192. AAAI Press.

Pommerening, F., and Seipp, J. 2016. Fast Downward dead-end pattern database. In
Muise, C., and Lipovetzky, N., eds., Unsolvability International Planning Competi-
tion: planner abstracts, 2.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2014a. From non-negative
to general operator cost partitioning: Proof details. Technical Report CS-2014-005,
University of Basel, Department of Mathematics and Computer Science.

Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014b. LP-based heuristics
for cost-optimal planning. In Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds.,
Proceedings of the Twenty-Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2014), 226–234. AAAI Press.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015. From non-negative to
general operator cost partitioning. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence (AAAI 2015), 3335–3341. AAAI Press.

Pommerening, F.; Helmert, M.; and Bonet, B. 2017a. Abstraction heuristics, cost
partitioning and network flows. In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling (ICAPS 2017), 228–232. AAAI
Press.

198

http://www.haz.ca/papers/planning-domains-icaps16.pdf
http://www.haz.ca/papers/planning-domains-icaps16.pdf
https://www.youtube.com/watch?v=lFQGSGsXbXE
https://www.youtube.com/watch?v=lFQGSGsXbXE

Bibliography

Pommerening, F.; Helmert, M.; and Bonet, B. 2017b. Higher-dimensional potential
heuristics for optimal classical planning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (AAAI 2017), 3636–3643. AAAI Press.

Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the most out of pattern
databases for classical planning. In Rossi, F., ed., Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2013), 2357–2364. AAAI
Press.

Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research 39:127–177.

Rintanen, J. 2000. An iterative algorithm for synthesizing invariants. In Kautz, H., and
Porter, B., eds., Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI 2000), 806–811. AAAI Press.

Rintanen, J. 2017. Schematic invariants by reduction to ground invariants. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017),
3644–3650. AAAI Press.

Röger, G., and Pommerening, F. 2015. Linear programming for heuristics in optimal
planning. In AAAI 2015 Workshop on Planning, Search, and Optimization, 69–76.

Röger, G.; Pommerening, F.; and Helmert, M. 2014. Optimal planning in the pres-
ence of conditional effects: Extending LM-Cut with context splitting. In Schaub, T.;
Friedrich, G.; and O’Sullivan, B., eds., Proceedings of the 21st European Conference
on Artificial Intelligence (ECAI 2014), 765–770. IOS Press.

Russell, S., and Norvig, P. 1995. Artificial Intelligence — A Modern Approach. Prentice
Hall.

Scherrer, S.; Pommerening, F.; and Wehrle, M. 2015. Improved pattern selection for
PDB heuristics in classical planning (extended abstract). In Lelis, L., and Stern, R.,
eds., Proceedings of the Eighth Annual Symposium on Combinatorial Search (SoCS
2015), 216–217. AAAI Press.

Schrijver, A. 1998. Theory of linear and integer programming. John Wiley & Sons.

Seipp, J., and Helmert, M. 2013. Counterexample-guided Cartesian abstraction refine-
ment. In Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S., eds., Proceedings
of the Twenty-Third International Conference on Automated Planning and Schedul-
ing (ICAPS 2013), 347–351. AAAI Press.

199

Bibliography

Seipp, J., and Helmert, M. 2014. Diverse and additive Cartesian abstraction heuristics.
In Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds., Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling (ICAPS
2014), 289–297. AAAI Press.

Seipp, J.; Pommerening, F.; Röger, G.; and Helmert, M. 2016a. Correlation complexity
of classical planning domains. In Kambhampati, S., ed., Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI 2016), 3242–3250.
AAAI Press.

Seipp, J.; Pommerening, F.; Sievers, S.; Wehrle, M.; Fawcett, C.; and Alkhazraji, Y.
2016b. Fast Downward Aidos. In Muise, C., and Lipovetzky, N., eds., Unsolvability
International Planning Competition: planner abstracts, 28–38.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M. 2017. downward-lab 2.0.
https://doi.org/10.5281/zenodo.399255.

Seipp, J.; Keller, T.; and Helmert, M. 2017a. A comparison of cost partitioning algo-
rithms for optimal classical planning. In Proceedings of the Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2017), 259–268.
AAAI Press.

Seipp, J.; Keller, T.; and Helmert, M. 2017b. Narrowing the gap between saturated and
optimal cost partitioning for classical planning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI 2017), 3651–3657. AAAI Press.

Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New optimization functions for
potential heuristics. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the Twenty-Fifth International Conference on Automated
Planning and Scheduling (ICAPS 2015), 193–201. AAAI Press.

Shannon, C. E. 1950. Programming a computer for playing chess. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science 41(314):256–275.

Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized label reduction for merge-
and-shrink heuristics. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence (AAAI 2014), 2358–2366. AAAI Press.

Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analysis of merge strategies for
merge-and-shrink heuristics. In Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.;
and Sanner, S., eds., Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016), 294–298. AAAI Press.

Smith, D. E. 2004. Choosing objectives in over-subscription planning. In Zilberstein,
S.; Koehler, J.; and Koenig, S., eds., Proceedings of the Fourteenth International

200

https://doi.org/10.5281/zenodo.399255

Bibliography

Conference on Automated Planning and Scheduling (ICAPS 2004), 393–401. AAAI
Press.

Steinmetz, M., and Hoffmann, J. 2016. Towards clause-learning state space search:
Learning to recognize dead-ends. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI 2016), 760–768. AAAI Press.

Štolba, M.; Fišer, D.; and Komenda, A. 2016. Potential heuristics for multi-agent
planning. In Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S., eds.,
Proceedings of the Twenty-Sixth International Conference on Automated Planning
and Scheduling (ICAPS 2016), 308–316. AAAI Press.

Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010. Incremental plan aggre-
gation for generating policies in MDPs. In Proceedings of the Nineth International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2010), 1231–
1238. IFAAMAS/ACM.

Torralba, Á.; Linares López, C.; and Borrajo, D. 2016. Abstraction heuristics for
symbolic bidirectional search. In Kambhampati, S., ed., Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI 2016), 3272–3278.
AAAI Press.

Trevizan, F.; Thiébaux, S.; and Haslum, P. 2017. Occupation measure heuristics for
probabilistic planning. In Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling (ICAPS 2017), 306–315. AAAI Press.

van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen, T. 2007. An LP-based
heuristic for optimal planning. In Bessiere, C., ed., Proceedings of the Thirteenth In-
ternational Conference on Principles and Practice of Constraint Programming (CP
2007), volume 4741 of Lecture Notes in Computer Science, 651–665. Springer-
Verlag.

Wilt, C., and Ruml, W. 2015. Building a heuristic for greedy search. In Lelis, L.,
and Stern, R., eds., Proceedings of the Eighth Annual Symposium on Combinatorial
Search (SoCS 2015), 131–139. AAAI Press.

Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A. 2008. A general theory of
additive state space abstractions. Journal of Artificial Intelligence Research 32:631–
662.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline for probabilistic
planning. In Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings of the Sev-
enteenth International Conference on Automated Planning and Scheduling (ICAPS
2007), 352–359. AAAI Press.

201

Bibliography

Zhu, L., and Givan, R. 2003. Landmark extraction via planning graph propagation. In
ICAPS 2003 Doctoral Consortium, 156–160.

202

	Introduction
	Contributions
	Structure
	Experimental Setup
	Relation to Published Work

	Classical Planning and Heuristic Search
	Planning Tasks
	Heuristic Search
	Abstraction Heuristics
	Transition Normal Form

	Linear Programs and Mixed Integer Programs
	Cost Partitioning
	Introduction to Cost Partitioning
	Extensions to Cost Partitioning
	General Operator Cost Partitioning
	Non-negative Transition Cost Partitioning
	General Transition Cost Partitioning

	Experiments
	Non-negative Operator Cost Partitioning
	General Operator Cost Partitioning
	Non-negative Transition Cost Partitioning
	General Transition Cost Partitioning
	Computation Time

	Summary

	Operator Counting
	Introduction to Operator Counting
	Operator-Counting Constraints
	Action Landmarks
	Delete Relaxation
	Post-hoc Optimization
	Net Change
	Prevail Conditions
	Network Flow

	Theoretical Analysis
	Connection to General Cost Partitioning
	Analyzing Landmark Heuristics
	Analyzing the State Equation Heuristic as a Net Change Heuristic
	Analyzing the State Equation Heuristic as a Flow Heuristic
	Improving the Flow Constraint
	Strengthening the State Equation Heuristic

	Limits of Operator Counting

	Experiments
	Individual Constraint Groups
	Landmarks
	Delete Relaxation
	Post-hoc Optimization
	Net Change
	Network Flow

	Combination of Constraint Groups

	Related and Future Work
	Under-Approximation Refinement
	Operator Sequencing
	Extension to Conditional Effects
	Extension to Other Planning Formalisms

	Summary

	Potential Heuristics
	Introduction to Potential Heuristics
	Admissible and Consistent Potential Heuristics
	Atomic Potential Heuristics
	Binary Potential Heuristics
	Higher-Dimensional Potential Heuristics
	Intractability
	Parametrized Tractability

	Objective Functions

	Theoretical Analysis
	Connection to Operator Counting
	Connection to Cost Partitioning

	Experiments
	Atomic Potential Heuristics
	Binary Potential Heuristics

	Related and Future Work
	Correlation Complexity
	Dead-end Detection
	Multi-Agent Planning
	Finding Good Feature Sets

	Summary

	Conclusion
	Conclusion

	Appendix A. Proof of Theorem 10.1
	Appendix B. From TNF to Unrestricted SAS+
	Net Change Constraints
	Flow Constraints
	Atomic Potential Heuristics
	Binary and Higher-Dimensional Potential Heuristics

	Appendix C. Maximizing a Sum of Functions
	Bucket Elimination
	Bucket Elimination for Linear Expressions

	Bibliography

