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ABSTRACT 

The European Robotic Goal-Oriented Autonomous 

Controller (ERGO) (http://www.h2020-ergo.eu) is one 

of the PERASPERA SRC first call projects. The focus 

of this project is to develop a framework for long-range 

autonomy that allows commanding a spacecraft via 

high-level goals. The developed ERGO framework 

achieves this aim by providing a new paradigm based on 

components and tools. Two main components, that 

include Artificial Intelligence technology, are at the core 

of ERGO: an on-board mission planner, able to 

dynamically generate plans on-board from high-level 

goals, and a scientific agent, that detects targets of 

interest from images. Additionally, other autonomous 

capabilities that can be used and tailored for different 

robotics platforms, such as rover navigation and robotic 

arm motion planning, are provided by ERGO. In this 

paper we discuss the results and performances achieved 

in the field tests of two applications developed with the 

ERGO framework: an orbital and a planetary mission. 

1 INTRODUCTION 

The first call of the PERASPERA SRC [1] aimed to 

develop the basic blocks for bringing intelligence and 

autonomy to space applications in general, and robotics 

in particular. Within this effort, the ERGO project is 

focused on extending such applications with autonomy, 

for which it has developed the ERGO framework [2] [3] 

[4].  

The ERGO framework is a set of components and tools 

for the development of highly autonomous systems. 

More specifically, the framework allows one to 

command a spacecraft via high-level goals that are 

dynamically transformed on-board into plans. The 

framework also enables opportunistic science (i.e., 

looking for targets of interest), while the system is 

performing other activities such as traverses or 

pick/drop operations. If a target of interest is found, the 

system is able to dynamically modify the plan in order 

to gather science.  

Moreover, the framework implements a rigorous model-

based development approach that enables the following 

properties: modularity, reuse of components, 

compatibility (with other frameworks), and formally 

checked reliability and resilience. For this ERGO uses 

the TASTE toolset [5], a model-driven architecture tool 

developed by ESA, in combination with the formal 

verification and validation techniques provided by the 

BIP tools [6] [7] [8].  

The ERGO framework and approach are generic enough 

to be tailored to any space robotics systems for different 

environments such as orbital, deep space probe, and 

planetary exploration missions, but also to future 

robotics terrestrial applications demanding a high level 

of autonomy.  

The capabilities of this framework have been tested 

within the ERGO project in two scenarios: an orbital 

scenario simulating an in-orbit servicing mission, and a 

planetary scenario, inspired from the Mars Sample 

Return (MSR), simulating long traverses and pick 

up/drop operations. 

In this paper, we present the validation scenarios of the 

ERGO framework and the results obtained during the 

field tests. We discuss the problems found during these 

tests, the performance of the system, and possible 

further improvements. We conclude with the lessons 

learned and a set of goals that future autonomous space 

robotics missions should achieve. 

2 OVERVIEW OF THE ERGO FRAMEWORK 

The ERGO framework consists of different reusable 

modules as showed in Fig. 1, each providing new 

capabilities for the developed system. The core tools 

provide generic features, such as telecommunication, 

mission planning and runtime enforcement. The specific 

components target precise features of space robotics 

applications, such as rover guidance and robotic arm 

motion planning, and can be configured based on the 

needs of the developed system. Finally, platform- 
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dependent components (ERGO Planetary and Orbital) 

enable tailoring the ERGO framework to the chosen 

robotics platform, e.g., the SherpaTT rover [9] for a 

planetary scenario and UR5 robotic arm [10] running in 

Platform-Art [11] for an orbital scenario. It is worth 

mentioning that the architecture of the ERGO 

framework allows tackling each problem independently, 

and therefore uses state-of-the-art algorithms for each of 

the proposed components. 

2.1 Design Approach 

The use of ERGO framework is based on a model-driven 

development process supported by the TASTE toolset. 

TASTE is the middleware chosen by the ESROCOS 

framework [12], another project of the PERASPERA 

first call aimed to the development of a robotics 

operating system. The decision to use TASTE in ERGO 

paves the way for a complete interoperability of both 

frameworks in future applications. 

The key concept of this approach is the system design, 

which consists of multiple components communicating 

via message exchanges/signals, possibly deployed on 

different architectures.  

A developer will start by designing the architecture of 

an application in a platform-independent component-

based fashion. Components can be user-defined ones or 

those existing from the ERGO framework, therefore 

allowing for a maximal reuse. For each user-defined 

component, the developer will model how it will interact 

with the others in terms of strongly typed interfaces (in 

ASN.1, a language for describing structured data types, 

that is independent of the programming language), and 

will connect them by means of connectors. Also, the 

functionality of the component is modelled/coded using 

different languages (e.g., SDL, C/C++). Platform-

dependent details, such as deployment hardware 

elements, are modelled next. Finally, executable code is 

generated from the system design and with respect to the 

targeted platform. TASTE provides support for different 

platforms (Linux 32 bit, Linux 64-bit, SPARC), which 

is automatically handled in the code generation phase 

ensuring the proper delivery and reception of messages 

between components.  

The design approach used by ERGO sets up good 

practices of system development: separation of 

concerns, modularity, compatibility and interoperability 

of components and frameworks, reduced dependencies, 

and reuse of already developed components. Moreover, 

the ERGO design approach is completed with formal 

verification and validation techniques based on the BIP 

tools, which ensure increased reliability and resilience at 

runtime with synthesised Fault Detection, Isolation and 

Recovery (FDIR) components [7] [8].  

2.2 ERGO Agent  

In ERGO, the intelligence of the system is embedded 

into the so-called ERGO agent. The aim of the ERGO 

Agent is manifold: (1) ensure the communication 

between the ground and the spacecraft, (2) generate the 

plans that are to be executed, and, eventually, modify the 

on-board plan dynamically when the conditions require 

it, (3) scan images for target detection, (4) ensure the 

consistent execution of on-board activities, and (5) 

control the platform in a sense/act approach. The agent 

follows the Teleo-reactor Executive (T-REX) paradigm 

[13], in which components are embedded into the so-

called reactors (components of the agent), each of them 

providing a common interface for an agent controller 

[4]. In our architecture, the following reactors are 

available, and they are explained hereafter: 

- Ground control interface  

- Mission planner  

- Scientific detector  

- Command dispatcher  

Please note that other reactors can be easily added to the 

framework/application by means of extending the 

reactor classes available.  

2.2.1 Ground Control Interface Reactor 

This component handles the telecommands and 

telemetry that are received/sent from/to ground, and the 

level of autonomy. This level of autonomy follows the 

ECSS standard definition [14] that is: 

- Level 1 (E1): only direct telecommanding is 

allowed. 

- Level 2 (E2): time-tagged telecommanding is 

allowed. 

- Level 3 (E3): adaptive (event-driven) 

telecommanding is allowed. On-board 

procedures can be executed based on events. 

This level enables the execution of an uplinked 

plan. 

- Level 4 (E4): goal-commanding is allowed. 

This highest level of autonomy is the main 

 
Figure 1. The ERGO Framework packages. 



objective of ERGO. In this level both AI 

components in ERGO (Stellar, the mission 

planner, and GODA, the scientific detector) are 

activated. 

The rationale for handling multiple levels of autonomy 

is to cope with the needs of different on-board situations. 

For instance, planning shall be disabled during 

maintenance operations, or under critical circumstances. 

2.2.2 Mission Planner (Stellar)  

ERGO’s mission planner, Stellar, is a heuristic search 

temporal planner based on Fast Downward [15]. It has 

an interface for external functions, handles temporal 

constraints similar to OPTIC [16], but is tailored to 

minimize memory consumption by not using state 

annotations. Fast Downward was extended to reason 

with snap-actions, where the start- and end-point of each 

PDDL durative action are considered to be separate 

instantaneous actions. We used a technique from OPTIC 

called compression safety to reduce the size of the 

search space. It recognises where it is completeness-

preserving to apply the end of an action as soon as it has 

started. 

The search algorithm is guided by a simple heuristic 

based on the successful FF heuristic [17]. We relax the 

task for the heuristic computation by ignoring its 

numerical aspects and by compiling the temporal 

aspects into two classical actions. We also use preferred 

operators, a technique that prefers actions from the 

relaxed plan in the search and had a strong impact on 

performance in the classical setting. 

We furthermore build upon the temporal constraint 

management approach of OPTIC, making a distinction 

between logical and temporal consistency. To 

circumvent the usage of memory inefficient annotations 

to each state, we recreate these annotations by inspecting 

the preconditions and effects of the snap-actions by 

iterating backwards through the plan. Therefore, only 

the constraints themselves are recorded in each state. 

Finally, to allow the usage of sub-solvers (e.g. for path 

or motion planning) in the planning process, we follow 

the approach from [18] that allow the definition of 

external solvers as modules. When loading the PDDL 

file Stellar looks for a dynamic library with the name of 

the module and imports all functions from it. The 

dynamic library can be implemented independently of 

the planning algorithm and may make calls to other 

reactors. 

2.2.3 Scientific Detector (GODA)  

Bandwidth or communication limitations make real-

time control of instruments for scientific discovery 

difficult or impossible. For planetary rovers there is a 

trade-off between detailed observation to ensure targets 

are not missed, which requires slow traverses to 

downlink all data, and maintaining sufficient progress to 

visit many science targets. The ability for a robotic 

system to interpret the data captured by its sensors, 

assess its situation in the environment and then perhaps 

alter its plan to account for this new knowledge about 

the world is a crucial component for a system with E4 

level of autonomy.  

For ERGO, SCISYS built the Goal Oriented Data 

Analysis (GODA) component based on the systems 

developed in the successful ESA project MASTER – 

Mobile Autonomous Scientist for Terrestrial and Extra-

terrestrial Research [19]. MASTER focused on the 

problems of detecting (and defining) novelty, and the 

need for expert scientist input to be used to train the 

detector. As well as integrating with the rest of the 

ERGO system, improvements and new components 

were added to GODA. 

Since MASTER was primarily concerned with detecting 

novelties, the workflow has been changed to 

accommodate for the GODA output which is primarily 

targets and goals of scientific interest. Combining the 

output of GODA with the inputs from the scientists for 

mission goals can greatly reduce the amount of time that 

is spent by scientists searching in images for features of 

interest. Moreover, GODA gives the ability to the 

scientists to process offline a large number of images 

and to get an automated report on the findings. 

The GODA component pairs a MASTER-like detector 

with a goal generation component. The goal generation 

component maps detections of phenomena of interest 

into concrete goals for the planner to achieve. For 

example, detection of novelty could trigger a goal to 

acquire high resolution imagery, or by detecting known 

phenomena it could potentially work in tandem with 

mission planning to provide cost estimates to deviate 

trajectories to capture serendipitous science. 

2.2.4 Command Dispatcher Reactors 

The so-called command dispatchers are the interface of 

the agent with the functional layer. The T-REX 

paradigm models the system as a set of variables that 

change their value during the execution, i.e., timelines 

[13]. The command dispatcher reactors handle the 

values of the timelines used to interface with the 

functional layer of the robotic platform.  

2.3 ERGO Specific Components 

As mentioned above, ERGO includes a set of 

components that can be used in specific robotics 



applications in order to provide a higher level of 

autonomy. These components, rover guidance and 

robotic arm, are described next. 

2.3.1 Rover Guidance 

Rover Guidance (RG) is aimed to provide navigation 

analysis, path planning, trajectory control, resources 

estimation and hazard prevention (HP) and avoidance 

for a planetary rover, as illustrated in Fig. 2.  

RG must ensure the rover navigates only in safe areas of 

the terrain. These decisions are based on orbital and 

local data provided by external interfaces in the form of 

2.5D digital elevation maps (DEMs). RG is responsible 

to close a mobility control loop by commanding directly 

the locomotion system with generic Ackerman 

commands based internal autonomy algorithms. 

The long-distance goal location is provided by ground 

control or the ERGO mission planner, while the 

estimated rover position/attitude is provided by an 

external sensor data fusion system. RG is perception 

agnostic, so this data can be obtained, for example, by 

fusing inputs from LiDAR (or stereo-camera), IMU and 

HiRISE orbital images.  

RG implements novel navigation architecture: using 

dynamically reconfigurable multi-mode autonomy 

together with a Hazard Prevention (HP) module, 

checking for path safety. The system is capable to adapt 

the amount of planning depending on the traversed 

terrain difficulty, performing increased local planning 

for more challenging terrains. 

 

Figure 2. Architectural overview of the RG building 

blocks (blue) including external systems (orange). 

2.3.2 Robotic Arm 

The functionality of the robotic arm component is 

twofold. On one hand, given a movement to be 

performed by the robotic arm in order to pick/move/drop 

an object or a single move operation, it identifies and 

returns the corresponding set of low-level commands to 

perform the movement, together with the timing related 

to the operation, as well as the energy required. This is 

what we call the motion planning capability.  

On the other hand, the robotic arm component is also 

responsible of the execution of the movement of the 

robotic arm, when it is needed, and the control of the 

robotic arm during its movement. For this, the 

component provides primitives to perform atomic 

operations, such as picking an object, dropping it or 

moving the arm to a given position (e.g., home). 

Additionally, the robotic arm component includes 

functionalities for correcting the arm position based on 

images obtained from a camera, updating its knowledge 

of the environment also with the use of the camera and 

ensuring the mechanical safety of the robotic arm with 

different measurements. 

3 THE ORBITAL SCENARIO 

The reference mission for the orbital track is the on-orbit 

servicing mission (Fig. 3), where a damaged spacecraft 

can have one of its modules replaced autonomously by 

a servicer spacecraft.  

3.1 Scenario Description 

In this scenario, a servicing spacecraft (chaser) first 

approaches a faulty or serviced spacecraft (target). 

Following the iBoss concept [20], the target consists of 

a set of building blocks or advanced payload modules 

(APMs) that can be exchanged or replaced at will. Then 

the chaser will perform the required operation: (1) 

replace in orbit some faulty/damaged APMs, thus 

repairing the target, or (2) reconfigure the target´s APMs 

based on the defined needs. 

 

Figure 3. Orbital scenario: a chaser approaches a 

target for spacecraft repair/reconfiguration. 

The robotic platform used in this scenario is the GMV´s 

Platform-arm dynamic test bench. The environment is 

adapted to the scenario with one Kuka robot holding a 

tray and simulating the movement of the chaser. On top 

of the tray, an UR5 robotic arm is used to perform the 



servicing. The target is simulated by a vertical platform 

holding the APMs, as illustrated in Fig. 4. 

 

Figure 4. Orbital scenario field test set-up. 

3.2 Evaluation Criteria 

The aim of the orbital scenario is to evaluate the 

autonomy performances. Besides the nominal 

execution(s) in all E1-E4 autonomy modes, the 

architecture and test environment must also allow 

demonstrating reactivity to runtime modifications. Two 

different sources of modifications are considered here: 

- Failures: such as pieces or tools not present in 

the expected place or found in a different 

attitude, obstacles in the visual field, failure in 

grasping pieces, excessive torque, relative 

deviation between chaser and target, etc. 

- Deviations with respect to the nominal mission, 

such as reconfiguration of the spacecraft due to 

mission constraints (deadlines exceeded, for 

instance). 

In both cases, re-planning needs to be performed based 

on updated information from the environment. For that 

purpose, feedback information is obtained by passive 

visual means (camera) and from the robot end-effector 

(force/torque of the robotic arm). 

For the sake of clarity, the aim of this scenario is to 

validate the mission planner and robotic arm 

components. The scientific detector and rover guidance 

are not part of the orbital application, since they are not 

needed.  

3.3 Results 

The testing approach consisted of two phases: a 

preliminary evaluation in order to detect and correct 

possible errors beforehand, and the demonstration field 

test.  

The first phase tackled, in an exhaustive manner, basic 

functionalities of the scenario, such as nominal missions 

in E1-E4 autonomy modes, E4 missions requiring re-

planning and downgrade of autonomy due to multiple 

reasons. During this phase, several errors were identified 

and corrected in the mission planner reactor and robotic 

arm component. In some cases, the planner took too long 

to find a valid plan, which led to an improved internal 

representation for the mission planner in the field tests. 

The demonstration field tests covered more complex 

executions of the basic functionalities tested before. At 

this point, all tests met the set criteria and the following 

achievements are reported: 

- Successful execution of E1-E4 telecommands. 

- Successful re-planning and goal execution in 

E4 (e.g., faulty APM). 

- Successful downgrade of autonomy when 

conditions require it (e.g., no feasible plan, 

dangerous situations demanding instructions/ 

reconfiguration from ground). 

- Successful validation of the FDIR components 

that ensure the robotic arm safety in dangerous 

situations (e.g., excessive torque, relative 

deviation between chaser and target). 

Additionally, several software metrics have been 

evaluated during the field tests. The performances 

achieved are given in Table 1. In this scenario, the 

physical parameters of the platform used are bounded by 

its software. The speed of the robotic arm was set at 

0.5rad/sec, while the acceleration at 0.18rad/sec2. 

Table 1. Performances of the orbital application in the 

field tests. 

Metric Description Value 

RT Total running time 45 min 

NG 
Number of goals executed in E1-E4 
autonomy modes 

3 

NPDO 

Number of executed pick, drop and 

home operations (ops) 

12 pick ops 

12 drop ops 

4 home ops 

TPS Total planning time 2min 

4 THE PLANETARY SCENARIO 

The reference mission for the planetary track is inspired 

by the Mars Sample Return (MSR) mission that covers 

the concepts and requirements of the Martian Long 

Range Autonomous Scientist. 

4.1 Scenario Description 

This scenario consists of a planetary exploration rover 

able to pick samples with a robotic arm, as well as to 

take images of scientific interest. The scenario allows 

the following functionalities: 

1. Setup multi-sol operations (Ground Control): 

Ground Control configures the robot and 

uploads the operations, which might be single 

or multi-sol. Operations received from Ground 

Control will be any of the following types. 



2. Traverse: The rover must perform a long range 

traverse, in the range of 1km, to a specified 

position. A command to take an image with a 

given heading, once the final position has been 

reached by the rover, can be implicit in the 

traverse operation. 

3. Opportunistic science: During the long 

traverse, the rover is allowed to perform 

opportunistic science. Based on the images 

taken from the SherpaTT’s camera, the 

scientific agent may detect targets of interest. 

When this occurs, new plans are dynamically 

generated to analyse the newly detected target. 

4. Sample collection: the rover can be requested 

by ground to pick or drop samples at different 

locations by using its robotic arm. 

 

Figure 5. DFKI’s SherpaTT rover being tested in 

Moroccan desert. 

The robotic platform used in the planetary scenario is the 

SherpaTT rover from DFKI. SherpaTT is a 4-wheeled 

planetary exploration rover with an actuated suspension 

system developed for high mobility in irregular terrain. 

The rover is able to use energy efficient wheeled 

locomotion (in contrast to legged locomotion) to cover 

long distances, and at the same time to negotiate difficult 

terrain by dynamically adapting the wheel suspension to 

slopes and obstacles. Fig. 5 shows the SherpaTT rover 

in the Moroccan desert during the test fields. 

4.2 Evaluation Criteria 

The aim of the planetary scenario is to evaluate the 

autonomy performances of the overall ERGO 

framework in an application built with all the developed 

components.  

Five main tests were conducted for the planetary 

scenario: 

- E1/E2/E3 missions checked the viability of 

commanding the rover in low levels of 

autonomy. 

- E4 nominal missions checked that from a set of 

goals sent to the rover, an on-board plan is 

generated and nominally executed. 

- E4 non-nominal missions checked that the 

mission planner re-plans due to abnormal 

circumstances during the execution (e.g., 

exceeded deadlines, low battery, etc.). 

- E4 missions with opportunistic science and re-

planning checked that, while a nominal plan is 

being executed, the scientific agent detects a 

new target and injects a new goal into the 

system. The plan is modified accordingly and 

executed. 

- Long traverse missions checked the rover 

guidance capabilities. The rover is capable of 

traversing more than 1km autonomously 

through harsh terrain, when a long traverse on-

board procedure is uplinked. 

4.3 Results 

The same validation approach as in the orbital scenario 

has been followed for the planetary scenario. The first 

phase, conducted in Bremen at DFKI facilities, targeted 

the validation of the components and their integration in 

the system. At this phase many issues were found and 

corrected. These errors were related to the integration of 

components in the TASTE design, integration of 

Mission Planner with GODA, tuning of the Rover 

Guidance and Robotic Arm for the SherpaTT, and 

integration of ERGO with the SherpaTT. At the end of 

the preliminary tests, the following had been achieved: 

- Successful execution of E1/E2/E3 

telecommands. 

- Rover Guidance was able to perform traverses 

of up to 40m in natural terrain. 

- Robotic Arm was able to perform pick and drop 

operations.  

- Successful image acquisition with the on-board 

camera, used for the configuration of GODA to 

detect targets of interest. 

- Successful validation of the FDIR components 

that ensure the rover safety in failure 

conditions.  

The demonstration field tests were performed at Erfoud, 

in the Moroccan desert, that provides a representative 

analogue setting for Martian environment. During this 

phase the tests briefly described in Sec. 4.2 were 

performed. Several issues have been corrected during 

the tests, mostly related to integration, further fine 

tuning of the components parameters, and the TASTE 

middleware. The main achievements of the field tests 

are the following: 



- The ERGO Agent worked continuously and 

reliably in all autonomy levels (E1 to E4) for 

hours.  

- GODA was able to detect serendipitous events 

in the environment. 

- The Mission Planner was able to continuously 

plan and alter the plans either due to abnormal 

circumstances or in order to investigate the 

target of interest detected by GODA. 

- The Rover Guidance was able to traverse more 

than 1km expected in the long traverse test: 

1.3km in a single sol. 

Besides the scenario success criteria, several metrics 

have been evaluated during the field tests. These 

parameters cover the overall tests performances, and 

performances of specific components such as Mission 

Planner, GODA and Rover Guidance. The results 

obtained are given in Table 2. 

Table 2. Performances of the planetary application in 

the field tests. 

Metric Description Value 

RT Total running time 9h39min 

CD 
Estimated distance covered in 
autonomous mode 

1396m 

MS 
Number of goals accomplished in 
E4  

10 goals 

PMS 
Ratio of accomplished/ total 
goals in E4 

41% 

APT Average planning time 9.07sec 

SDPT Variance of the planning time 9.65sec 

NIG 
Number of images analysed by 
GODA 

285 images 

GGFDR 

Ratio false positive goals/total 
number of goals generated by 

GODA. 

(Parameterized by P, minimum 

classification probability set by 
experts) 

11.7% (P≥0.8) 

27.2% (P≥0.6) 

ATSR 
Ratio average navigation speed / 
maximum rover speed 

0.32m/sec 

AP 
Average speed for approaching 
targets 

0.048m/sec 

While the results achieved validate and improve, to the 

best of our knowledge, the state of the art for 

autonomous rover planetary explorations, further 

enhancements can be considered for the ERGO 

framework. The main observations made during the 

field tests are: 

- The Mission Planner generates sub-optimal 

plans. 

- The current policy of discarding goals when 

there is no planning solution is not optimal. 

- GODA generates a rather large number of false 

positives that are given as goals to Mission 

Planner. In consequence, the rover could be 

blocked for large amounts of time due to 

continuous re-planning. 

- While Rover Guidance was able to perform a 

1.4km autonomous traverse, this could be 

further improved by parallelizing computations 

and therefore reducing the number of stops. 

All these enhancements are currently under study in the 

Autonomous Decision Making in very long traverses 

(ADE) project of the PERASPERA second call. 

5 CONCLUSION 

The ERGO framework has been developed to fulfil a set 

of characteristics required for autonomy in future space 

robotics applications. Its components and tools have 

been tested in two different use cases, and will be used 

in the PERASPERA second call for developing (other) 

applications. The main features are: 

1. Goal-commanding and selectable levels of 

autonomy from the Ground Control, 

implemented in the ERGO agent. 

2. On-board planning, by the Stellar planner. The 

mission planner additionally allows dynamic 

re-planning triggered by new goals received 

from ground, new goals received from the 

opportunistic science, and invalid constraints 

of the current plan. 

3. Opportunistic science by GODA. Any detected 

target of interest enables the re-planning of the 

current goals by Stellar such that it can be 

further inspected and investigated. 

4. Autonomous guidance for rovers that performs 

path planning, hazard avoidance and trajectory 

control. 

5. Motion planning and robotic arm control for 

gripping and grasping objects of interest. 

6. Rigorous model-based design approach for 

developing applications based on TASTE 

toolchain for system design and BIP tools for 

offline and online formal verification and 

validation. 

The capabilities of the ERGO framework make it 

suitable for future use in applications in which 

autonomy will be required. These applications also 

cover terrestrial needs for autonomy in domains as 

nuclear, oil & gas, rescue, etc. 

As mentioned above, the ERGO framework is currently 

being enhanced in the ADE project of the PERASPERA 

second call. While the performances obtained in the 

field tests by the framework are high-grade, we believe 



that it can be further extended and optimised. Several 

optimisations have already been identified during the 

field tests with respect to several components and are 

under study. Other enhancements in terms of 

capabilities (e.g., combined motion of rover and robotic 

arm) are being added to the framework. Finally, we plan 

to increase the TRL level of this framework, such that it 

will be a good candidate for developing future robotics 

applications in many domains. 
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