
TESTING AUTONOMOUS ROBOTS: A DISCUSSION ON PERFORMANCES

OBTAINED DURING THE ERGO FIELD TESTS

Jorge Ocón (1), Francisco Colmenero (1), Iulia Dragomir (1), Enrique Heredia (1), Mercedes Alonso (1), Joaquin

Estremera (1), Robert Marc (2), Piotr Weclewski (2), Thomas Keller (3), Mark Woods (4), Spyros Karachalios (4)

(1) GMV Aerospace and Defence, Isaac Newton 11, PTM, Tres Cantos, 28760, Spain, Email: jocon@gmv.com
(2) Airbus Defence and Space Ltd., Gunnels Wood Road, Stevenage, SG1 2AS, UK, Email: gnc.uk @airbus.com

(3) University of Basel, Spiegelgasse 1, Basel 4051, Switzerland, Email: tho.keller@unibas.ch
(4) Scisys UK Ltd, Methuen Park, Chippenham, SN14 0GB, UK, Email: mark.woods@scisys.co.uk

ABSTRACT

The European Robotic Goal-Oriented Autonomous

Controller (ERGO) (http://www.h2020-ergo.eu) is one

of the PERASPERA SRC first call projects. The focus

of this project is to develop a framework for long-range

autonomy that allows commanding a spacecraft via

high-level goals. The developed ERGO framework

achieves this aim by providing a new paradigm based on

components and tools. Two main components, that

include Artificial Intelligence technology, are at the core

of ERGO: an on-board mission planner, able to

dynamically generate plans on-board from high-level

goals, and a scientific agent, that detects targets of

interest from images. Additionally, other autonomous

capabilities that can be used and tailored for different

robotics platforms, such as rover navigation and robotic

arm motion planning, are provided by ERGO. In this

paper we discuss the results and performances achieved

in the field tests of two applications developed with the

ERGO framework: an orbital and a planetary mission.

1 INTRODUCTION

The first call of the PERASPERA SRC [1] aimed to

develop the basic blocks for bringing intelligence and

autonomy to space applications in general, and robotics

in particular. Within this effort, the ERGO project is

focused on extending such applications with autonomy,

for which it has developed the ERGO framework [2] [3]

[4].

The ERGO framework is a set of components and tools

for the development of highly autonomous systems.

More specifically, the framework allows one to

command a spacecraft via high-level goals that are

dynamically transformed on-board into plans. The

framework also enables opportunistic science (i.e.,

looking for targets of interest), while the system is

performing other activities such as traverses or

pick/drop operations. If a target of interest is found, the

system is able to dynamically modify the plan in order

to gather science.

Moreover, the framework implements a rigorous model-

based development approach that enables the following

properties: modularity, reuse of components,

compatibility (with other frameworks), and formally

checked reliability and resilience. For this ERGO uses

the TASTE toolset [5], a model-driven architecture tool

developed by ESA, in combination with the formal

verification and validation techniques provided by the

BIP tools [6] [7] [8].

The ERGO framework and approach are generic enough

to be tailored to any space robotics systems for different

environments such as orbital, deep space probe, and

planetary exploration missions, but also to future

robotics terrestrial applications demanding a high level

of autonomy.

The capabilities of this framework have been tested

within the ERGO project in two scenarios: an orbital

scenario simulating an in-orbit servicing mission, and a

planetary scenario, inspired from the Mars Sample

Return (MSR), simulating long traverses and pick

up/drop operations.

In this paper, we present the validation scenarios of the

ERGO framework and the results obtained during the

field tests. We discuss the problems found during these

tests, the performance of the system, and possible

further improvements. We conclude with the lessons

learned and a set of goals that future autonomous space

robotics missions should achieve.

2 OVERVIEW OF THE ERGO FRAMEWORK

The ERGO framework consists of different reusable

modules as showed in Fig. 1, each providing new

capabilities for the developed system. The core tools

provide generic features, such as telecommunication,

mission planning and runtime enforcement. The specific

components target precise features of space robotics

applications, such as rover guidance and robotic arm

motion planning, and can be configured based on the

needs of the developed system. Finally, platform-

mailto:jocon@gmv.com
mailto:robert.marc@airbus.com
mailto:tho.keller@unibas.ch
mailto:mark.woods@scisys.co.uk
http://www.h2020-ergo.eu/

dependent components (ERGO Planetary and Orbital)

enable tailoring the ERGO framework to the chosen

robotics platform, e.g., the SherpaTT rover [9] for a

planetary scenario and UR5 robotic arm [10] running in

Platform-Art [11] for an orbital scenario. It is worth

mentioning that the architecture of the ERGO

framework allows tackling each problem independently,

and therefore uses state-of-the-art algorithms for each of

the proposed components.

2.1 Design Approach

The use of ERGO framework is based on a model-driven

development process supported by the TASTE toolset.

TASTE is the middleware chosen by the ESROCOS

framework [12], another project of the PERASPERA

first call aimed to the development of a robotics

operating system. The decision to use TASTE in ERGO

paves the way for a complete interoperability of both

frameworks in future applications.

The key concept of this approach is the system design,

which consists of multiple components communicating

via message exchanges/signals, possibly deployed on

different architectures.

A developer will start by designing the architecture of

an application in a platform-independent component-

based fashion. Components can be user-defined ones or

those existing from the ERGO framework, therefore

allowing for a maximal reuse. For each user-defined

component, the developer will model how it will interact

with the others in terms of strongly typed interfaces (in

ASN.1, a language for describing structured data types,

that is independent of the programming language), and

will connect them by means of connectors. Also, the

functionality of the component is modelled/coded using

different languages (e.g., SDL, C/C++). Platform-

dependent details, such as deployment hardware

elements, are modelled next. Finally, executable code is

generated from the system design and with respect to the

targeted platform. TASTE provides support for different

platforms (Linux 32 bit, Linux 64-bit, SPARC), which

is automatically handled in the code generation phase

ensuring the proper delivery and reception of messages

between components.

The design approach used by ERGO sets up good

practices of system development: separation of

concerns, modularity, compatibility and interoperability

of components and frameworks, reduced dependencies,

and reuse of already developed components. Moreover,

the ERGO design approach is completed with formal

verification and validation techniques based on the BIP

tools, which ensure increased reliability and resilience at

runtime with synthesised Fault Detection, Isolation and

Recovery (FDIR) components [7] [8].

2.2 ERGO Agent

In ERGO, the intelligence of the system is embedded

into the so-called ERGO agent. The aim of the ERGO

Agent is manifold: (1) ensure the communication

between the ground and the spacecraft, (2) generate the

plans that are to be executed, and, eventually, modify the

on-board plan dynamically when the conditions require

it, (3) scan images for target detection, (4) ensure the

consistent execution of on-board activities, and (5)

control the platform in a sense/act approach. The agent

follows the Teleo-reactor Executive (T-REX) paradigm

[13], in which components are embedded into the so-

called reactors (components of the agent), each of them

providing a common interface for an agent controller

[4]. In our architecture, the following reactors are

available, and they are explained hereafter:

- Ground control interface

- Mission planner

- Scientific detector

- Command dispatcher

Please note that other reactors can be easily added to the

framework/application by means of extending the

reactor classes available.

2.2.1 Ground Control Interface Reactor

This component handles the telecommands and

telemetry that are received/sent from/to ground, and the

level of autonomy. This level of autonomy follows the

ECSS standard definition [14] that is:

- Level 1 (E1): only direct telecommanding is

allowed.

- Level 2 (E2): time-tagged telecommanding is

allowed.

- Level 3 (E3): adaptive (event-driven)

telecommanding is allowed. On-board

procedures can be executed based on events.

This level enables the execution of an uplinked

plan.

- Level 4 (E4): goal-commanding is allowed.

This highest level of autonomy is the main

Figure 1. The ERGO Framework packages.

objective of ERGO. In this level both AI

components in ERGO (Stellar, the mission

planner, and GODA, the scientific detector) are

activated.

The rationale for handling multiple levels of autonomy

is to cope with the needs of different on-board situations.

For instance, planning shall be disabled during

maintenance operations, or under critical circumstances.

2.2.2 Mission Planner (Stellar)

ERGO’s mission planner, Stellar, is a heuristic search

temporal planner based on Fast Downward [15]. It has

an interface for external functions, handles temporal

constraints similar to OPTIC [16], but is tailored to

minimize memory consumption by not using state

annotations. Fast Downward was extended to reason

with snap-actions, where the start- and end-point of each

PDDL durative action are considered to be separate

instantaneous actions. We used a technique from OPTIC

called compression safety to reduce the size of the

search space. It recognises where it is completeness-

preserving to apply the end of an action as soon as it has

started.

The search algorithm is guided by a simple heuristic

based on the successful FF heuristic [17]. We relax the

task for the heuristic computation by ignoring its

numerical aspects and by compiling the temporal

aspects into two classical actions. We also use preferred

operators, a technique that prefers actions from the

relaxed plan in the search and had a strong impact on

performance in the classical setting.

We furthermore build upon the temporal constraint

management approach of OPTIC, making a distinction

between logical and temporal consistency. To

circumvent the usage of memory inefficient annotations

to each state, we recreate these annotations by inspecting

the preconditions and effects of the snap-actions by

iterating backwards through the plan. Therefore, only

the constraints themselves are recorded in each state.

Finally, to allow the usage of sub-solvers (e.g. for path

or motion planning) in the planning process, we follow

the approach from [18] that allow the definition of

external solvers as modules. When loading the PDDL

file Stellar looks for a dynamic library with the name of

the module and imports all functions from it. The

dynamic library can be implemented independently of

the planning algorithm and may make calls to other

reactors.

2.2.3 Scientific Detector (GODA)

Bandwidth or communication limitations make real-

time control of instruments for scientific discovery

difficult or impossible. For planetary rovers there is a

trade-off between detailed observation to ensure targets

are not missed, which requires slow traverses to

downlink all data, and maintaining sufficient progress to

visit many science targets. The ability for a robotic

system to interpret the data captured by its sensors,

assess its situation in the environment and then perhaps

alter its plan to account for this new knowledge about

the world is a crucial component for a system with E4

level of autonomy.

For ERGO, SCISYS built the Goal Oriented Data

Analysis (GODA) component based on the systems

developed in the successful ESA project MASTER –

Mobile Autonomous Scientist for Terrestrial and Extra-

terrestrial Research [19]. MASTER focused on the

problems of detecting (and defining) novelty, and the

need for expert scientist input to be used to train the

detector. As well as integrating with the rest of the

ERGO system, improvements and new components

were added to GODA.

Since MASTER was primarily concerned with detecting

novelties, the workflow has been changed to

accommodate for the GODA output which is primarily

targets and goals of scientific interest. Combining the

output of GODA with the inputs from the scientists for

mission goals can greatly reduce the amount of time that

is spent by scientists searching in images for features of

interest. Moreover, GODA gives the ability to the

scientists to process offline a large number of images

and to get an automated report on the findings.

The GODA component pairs a MASTER-like detector

with a goal generation component. The goal generation

component maps detections of phenomena of interest

into concrete goals for the planner to achieve. For

example, detection of novelty could trigger a goal to

acquire high resolution imagery, or by detecting known

phenomena it could potentially work in tandem with

mission planning to provide cost estimates to deviate

trajectories to capture serendipitous science.

2.2.4 Command Dispatcher Reactors

The so-called command dispatchers are the interface of

the agent with the functional layer. The T-REX

paradigm models the system as a set of variables that

change their value during the execution, i.e., timelines

[13]. The command dispatcher reactors handle the

values of the timelines used to interface with the

functional layer of the robotic platform.

2.3 ERGO Specific Components

As mentioned above, ERGO includes a set of

components that can be used in specific robotics

applications in order to provide a higher level of

autonomy. These components, rover guidance and

robotic arm, are described next.

2.3.1 Rover Guidance

Rover Guidance (RG) is aimed to provide navigation

analysis, path planning, trajectory control, resources

estimation and hazard prevention (HP) and avoidance

for a planetary rover, as illustrated in Fig. 2.

RG must ensure the rover navigates only in safe areas of

the terrain. These decisions are based on orbital and

local data provided by external interfaces in the form of

2.5D digital elevation maps (DEMs). RG is responsible

to close a mobility control loop by commanding directly

the locomotion system with generic Ackerman

commands based internal autonomy algorithms.

The long-distance goal location is provided by ground

control or the ERGO mission planner, while the

estimated rover position/attitude is provided by an

external sensor data fusion system. RG is perception

agnostic, so this data can be obtained, for example, by

fusing inputs from LiDAR (or stereo-camera), IMU and

HiRISE orbital images.

RG implements novel navigation architecture: using

dynamically reconfigurable multi-mode autonomy

together with a Hazard Prevention (HP) module,

checking for path safety. The system is capable to adapt

the amount of planning depending on the traversed

terrain difficulty, performing increased local planning

for more challenging terrains.

Figure 2. Architectural overview of the RG building

blocks (blue) including external systems (orange).

2.3.2 Robotic Arm

The functionality of the robotic arm component is

twofold. On one hand, given a movement to be

performed by the robotic arm in order to pick/move/drop

an object or a single move operation, it identifies and

returns the corresponding set of low-level commands to

perform the movement, together with the timing related

to the operation, as well as the energy required. This is

what we call the motion planning capability.

On the other hand, the robotic arm component is also

responsible of the execution of the movement of the

robotic arm, when it is needed, and the control of the

robotic arm during its movement. For this, the

component provides primitives to perform atomic

operations, such as picking an object, dropping it or

moving the arm to a given position (e.g., home).

Additionally, the robotic arm component includes

functionalities for correcting the arm position based on

images obtained from a camera, updating its knowledge

of the environment also with the use of the camera and

ensuring the mechanical safety of the robotic arm with

different measurements.

3 THE ORBITAL SCENARIO

The reference mission for the orbital track is the on-orbit

servicing mission (Fig. 3), where a damaged spacecraft

can have one of its modules replaced autonomously by

a servicer spacecraft.

3.1 Scenario Description

In this scenario, a servicing spacecraft (chaser) first

approaches a faulty or serviced spacecraft (target).

Following the iBoss concept [20], the target consists of

a set of building blocks or advanced payload modules

(APMs) that can be exchanged or replaced at will. Then

the chaser will perform the required operation: (1)

replace in orbit some faulty/damaged APMs, thus

repairing the target, or (2) reconfigure the target´s APMs

based on the defined needs.

Figure 3. Orbital scenario: a chaser approaches a

target for spacecraft repair/reconfiguration.

The robotic platform used in this scenario is the GMV´s

Platform-arm dynamic test bench. The environment is

adapted to the scenario with one Kuka robot holding a

tray and simulating the movement of the chaser. On top

of the tray, an UR5 robotic arm is used to perform the

servicing. The target is simulated by a vertical platform

holding the APMs, as illustrated in Fig. 4.

Figure 4. Orbital scenario field test set-up.

3.2 Evaluation Criteria

The aim of the orbital scenario is to evaluate the

autonomy performances. Besides the nominal

execution(s) in all E1-E4 autonomy modes, the

architecture and test environment must also allow

demonstrating reactivity to runtime modifications. Two

different sources of modifications are considered here:

- Failures: such as pieces or tools not present in

the expected place or found in a different

attitude, obstacles in the visual field, failure in

grasping pieces, excessive torque, relative

deviation between chaser and target, etc.

- Deviations with respect to the nominal mission,

such as reconfiguration of the spacecraft due to

mission constraints (deadlines exceeded, for

instance).

In both cases, re-planning needs to be performed based

on updated information from the environment. For that

purpose, feedback information is obtained by passive

visual means (camera) and from the robot end-effector

(force/torque of the robotic arm).

For the sake of clarity, the aim of this scenario is to

validate the mission planner and robotic arm

components. The scientific detector and rover guidance

are not part of the orbital application, since they are not

needed.

3.3 Results

The testing approach consisted of two phases: a

preliminary evaluation in order to detect and correct

possible errors beforehand, and the demonstration field

test.

The first phase tackled, in an exhaustive manner, basic

functionalities of the scenario, such as nominal missions

in E1-E4 autonomy modes, E4 missions requiring re-

planning and downgrade of autonomy due to multiple

reasons. During this phase, several errors were identified

and corrected in the mission planner reactor and robotic

arm component. In some cases, the planner took too long

to find a valid plan, which led to an improved internal

representation for the mission planner in the field tests.

The demonstration field tests covered more complex

executions of the basic functionalities tested before. At

this point, all tests met the set criteria and the following

achievements are reported:

- Successful execution of E1-E4 telecommands.

- Successful re-planning and goal execution in

E4 (e.g., faulty APM).

- Successful downgrade of autonomy when

conditions require it (e.g., no feasible plan,

dangerous situations demanding instructions/

reconfiguration from ground).

- Successful validation of the FDIR components

that ensure the robotic arm safety in dangerous

situations (e.g., excessive torque, relative

deviation between chaser and target).

Additionally, several software metrics have been

evaluated during the field tests. The performances

achieved are given in Table 1. In this scenario, the

physical parameters of the platform used are bounded by

its software. The speed of the robotic arm was set at

0.5rad/sec, while the acceleration at 0.18rad/sec2.

Table 1. Performances of the orbital application in the

field tests.

Metric Description Value

RT Total running time 45 min

NG
Number of goals executed in E1-E4
autonomy modes

3

NPDO

Number of executed pick, drop and

home operations (ops)

12 pick ops

12 drop ops

4 home ops

TPS Total planning time 2min

4 THE PLANETARY SCENARIO

The reference mission for the planetary track is inspired

by the Mars Sample Return (MSR) mission that covers

the concepts and requirements of the Martian Long

Range Autonomous Scientist.

4.1 Scenario Description

This scenario consists of a planetary exploration rover

able to pick samples with a robotic arm, as well as to

take images of scientific interest. The scenario allows

the following functionalities:

1. Setup multi-sol operations (Ground Control):

Ground Control configures the robot and

uploads the operations, which might be single

or multi-sol. Operations received from Ground

Control will be any of the following types.

2. Traverse: The rover must perform a long range

traverse, in the range of 1km, to a specified

position. A command to take an image with a

given heading, once the final position has been

reached by the rover, can be implicit in the

traverse operation.

3. Opportunistic science: During the long

traverse, the rover is allowed to perform

opportunistic science. Based on the images

taken from the SherpaTT’s camera, the

scientific agent may detect targets of interest.

When this occurs, new plans are dynamically

generated to analyse the newly detected target.

4. Sample collection: the rover can be requested

by ground to pick or drop samples at different

locations by using its robotic arm.

Figure 5. DFKI’s SherpaTT rover being tested in

Moroccan desert.

The robotic platform used in the planetary scenario is the

SherpaTT rover from DFKI. SherpaTT is a 4-wheeled

planetary exploration rover with an actuated suspension

system developed for high mobility in irregular terrain.

The rover is able to use energy efficient wheeled

locomotion (in contrast to legged locomotion) to cover

long distances, and at the same time to negotiate difficult

terrain by dynamically adapting the wheel suspension to

slopes and obstacles. Fig. 5 shows the SherpaTT rover

in the Moroccan desert during the test fields.

4.2 Evaluation Criteria

The aim of the planetary scenario is to evaluate the

autonomy performances of the overall ERGO

framework in an application built with all the developed

components.

Five main tests were conducted for the planetary

scenario:

- E1/E2/E3 missions checked the viability of

commanding the rover in low levels of

autonomy.

- E4 nominal missions checked that from a set of

goals sent to the rover, an on-board plan is

generated and nominally executed.

- E4 non-nominal missions checked that the

mission planner re-plans due to abnormal

circumstances during the execution (e.g.,

exceeded deadlines, low battery, etc.).

- E4 missions with opportunistic science and re-

planning checked that, while a nominal plan is

being executed, the scientific agent detects a

new target and injects a new goal into the

system. The plan is modified accordingly and

executed.

- Long traverse missions checked the rover

guidance capabilities. The rover is capable of

traversing more than 1km autonomously

through harsh terrain, when a long traverse on-

board procedure is uplinked.

4.3 Results

The same validation approach as in the orbital scenario

has been followed for the planetary scenario. The first

phase, conducted in Bremen at DFKI facilities, targeted

the validation of the components and their integration in

the system. At this phase many issues were found and

corrected. These errors were related to the integration of

components in the TASTE design, integration of

Mission Planner with GODA, tuning of the Rover

Guidance and Robotic Arm for the SherpaTT, and

integration of ERGO with the SherpaTT. At the end of

the preliminary tests, the following had been achieved:

- Successful execution of E1/E2/E3

telecommands.

- Rover Guidance was able to perform traverses

of up to 40m in natural terrain.

- Robotic Arm was able to perform pick and drop

operations.

- Successful image acquisition with the on-board

camera, used for the configuration of GODA to

detect targets of interest.

- Successful validation of the FDIR components

that ensure the rover safety in failure

conditions.

The demonstration field tests were performed at Erfoud,

in the Moroccan desert, that provides a representative

analogue setting for Martian environment. During this

phase the tests briefly described in Sec. 4.2 were

performed. Several issues have been corrected during

the tests, mostly related to integration, further fine

tuning of the components parameters, and the TASTE

middleware. The main achievements of the field tests

are the following:

- The ERGO Agent worked continuously and

reliably in all autonomy levels (E1 to E4) for

hours.

- GODA was able to detect serendipitous events

in the environment.

- The Mission Planner was able to continuously

plan and alter the plans either due to abnormal

circumstances or in order to investigate the

target of interest detected by GODA.

- The Rover Guidance was able to traverse more

than 1km expected in the long traverse test:

1.3km in a single sol.

Besides the scenario success criteria, several metrics

have been evaluated during the field tests. These

parameters cover the overall tests performances, and

performances of specific components such as Mission

Planner, GODA and Rover Guidance. The results

obtained are given in Table 2.

Table 2. Performances of the planetary application in

the field tests.

Metric Description Value

RT Total running time 9h39min

CD
Estimated distance covered in
autonomous mode

1396m

MS
Number of goals accomplished in
E4

10 goals

PMS
Ratio of accomplished/ total
goals in E4

41%

APT Average planning time 9.07sec

SDPT Variance of the planning time 9.65sec

NIG
Number of images analysed by
GODA

285 images

GGFDR

Ratio false positive goals/total
number of goals generated by

GODA.

(Parameterized by P, minimum

classification probability set by
experts)

11.7% (P≥0.8)

27.2% (P≥0.6)

ATSR
Ratio average navigation speed /
maximum rover speed

0.32m/sec

AP
Average speed for approaching
targets

0.048m/sec

While the results achieved validate and improve, to the

best of our knowledge, the state of the art for

autonomous rover planetary explorations, further

enhancements can be considered for the ERGO

framework. The main observations made during the

field tests are:

- The Mission Planner generates sub-optimal

plans.

- The current policy of discarding goals when

there is no planning solution is not optimal.

- GODA generates a rather large number of false

positives that are given as goals to Mission

Planner. In consequence, the rover could be

blocked for large amounts of time due to

continuous re-planning.

- While Rover Guidance was able to perform a

1.4km autonomous traverse, this could be

further improved by parallelizing computations

and therefore reducing the number of stops.

All these enhancements are currently under study in the

Autonomous Decision Making in very long traverses

(ADE) project of the PERASPERA second call.

5 CONCLUSION

The ERGO framework has been developed to fulfil a set

of characteristics required for autonomy in future space

robotics applications. Its components and tools have

been tested in two different use cases, and will be used

in the PERASPERA second call for developing (other)

applications. The main features are:

1. Goal-commanding and selectable levels of

autonomy from the Ground Control,

implemented in the ERGO agent.

2. On-board planning, by the Stellar planner. The

mission planner additionally allows dynamic

re-planning triggered by new goals received

from ground, new goals received from the

opportunistic science, and invalid constraints

of the current plan.

3. Opportunistic science by GODA. Any detected

target of interest enables the re-planning of the

current goals by Stellar such that it can be

further inspected and investigated.

4. Autonomous guidance for rovers that performs

path planning, hazard avoidance and trajectory

control.

5. Motion planning and robotic arm control for

gripping and grasping objects of interest.

6. Rigorous model-based design approach for

developing applications based on TASTE

toolchain for system design and BIP tools for

offline and online formal verification and

validation.

The capabilities of the ERGO framework make it

suitable for future use in applications in which

autonomy will be required. These applications also

cover terrestrial needs for autonomy in domains as

nuclear, oil & gas, rescue, etc.

As mentioned above, the ERGO framework is currently

being enhanced in the ADE project of the PERASPERA

second call. While the performances obtained in the

field tests by the framework are high-grade, we believe

that it can be further extended and optimised. Several

optimisations have already been identified during the

field tests with respect to several components and are

under study. Other enhancements in terms of

capabilities (e.g., combined motion of rover and robotic

arm) are being added to the framework. Finally, we plan

to increase the TRL level of this framework, such that it

will be a good candidate for developing future robotics

applications in many domains.

6 REFERENCES

1. Plan European Roadmap and Activities for Space

Exploitation of Robotics and Autonomy (PERASPERA).

Online at http://www.h2020-peraspera.eu

2. Ocón, J., Delfa, J.M., Medina, A., Lachat, D., Marc, R.,

Woods, M., Wallace, I., Coles, A.I., Coles, A.J., Long,

D., Keller, T., Helmert, M., Bensalem, S. (2017). ERGO:

A Framework for the Development of Autonomous

Robots. In Proc. 15th Symposium on Advanced Space

Technologies in Robotics and Automation (ASTRA),

European Space Agency, Noordwijk, The Netherlands.

3. Ocón, J., Buckley, K., Colmenero, F.J., Bensalem, S.,

Dragomir, I., Karachalios, S., Woods, M., Pommerening,

F., Keller, T. (2018). Using the ERGO Framework for

Space Robotics in a Planetary and an Orbital Scenario. In

Proc. 14th Symposium in Artificial Intelligence, Robotics

and Automation in Space (i-SAIRAS), European Space

Agency, Noordwijk, The Netherlands.

4. Ocón, J., Colmenero, F.J., Estremera, J., Buckley, K.,

Alonso, M., Heredia, E., Garcia, J., Coles, A.I., Coles,

A.J., Martinez, M., Savas, E., Pommerening, F., Keller,

T., Karachalios, S., Woods, M., Dragomir, I., Bensalem,

S., Dissaux, P., Schach, A., Marc, R., Weclewski, P.

(2018). The ERGO Framework and its Use in

Planetary/Orbital Scenarios. In Proc. 69th International

Astronautical Congress (IAC), IAF, Bremen, Germany.

5. Perrotin, M., Conquet, E., Delange, J., Tsiodras, T.

(2012). TASTE – An open-source tool-chain for

embedded system and software development. In Proc.

Embedded Real Time Software and Systems Conference

(ERTSS), SAE, Toulouse, France.

6. Basu, A., Bozga, M., Sifakis, J. (2006). Modeling

heterogeneous real-time components in BIP. In Proc. 4th

Int. Conf. on Software Engineering and Formal Methods

(SEFM), IEEE.

7. Dragomir, I., Iosti, S., Bozga, M., Bensalem, S. (2018).

In Proc. 8th Int. Symposium on Leveraging Applications

of Formal Methods, Verification and Validation (ISoLA),

Springer.

8. Dragomir, I., Bensalem, S. (2019). Rigorous Design of

FDIR Systems with BIP. In Proc. 1st Interactive

Workshop on the Industrial Application of Verification

and Testing (InterAVT), EPTCS. (To appear)

9. Cordes, F., Babu, A. (2016). SherpaTT: A versatile

hybrid wheeled-leg rover. In Proc. 13th Symposium on

Artificial Intelligence, Robotics and Automation in Space

(i-SAIRAS), European Space Agency, Noordwijck, The

Netherlands.

10. https://www.universal-robots.com/products/ur5-robot/

11. https://www.gmv.com/en/Products/platform/

12. Muñoz, M., Montano, G., Wirkus, M., Hoeflinger, K.,

Silveira, D., Tsiogkas, N., Hugues, J., Bruyninckx, H.,

Dragomir, I., Muhammad, A. (2017). ESROCOS: A

Robotic Operating System for Space and Terrestrial

Applications. In Proc. 15th Symposium on Advanced

Space Technologies in Robotics and Automation

(ASTRA), European Space Agency, Noordwijk, The

Netherlands.

13. McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R.,

McEwen, R. (2007). T-REX: A model-based architecture

for AUV control. In 3rd Workshop on Planning and Plan

Execution for Real-World Systems.

14. ECSS Secretariat. (2005). ECSS-E-70-11 Space Segment

Operability. European Space Agency, Noordwijk, The

Netherlands.

15. Helmert, M. (2006). The Fast Downward Planning

System. In Journal of Artificial Intelligence Research,

vol. 26, pp. 191-246, AI Access Foundation.

16. Benton, J., Coles, A., Coles, A. (2012). Temporal

Planning with Preferences and Time-dependent

Continuous Costs. In Proc. 22nd Int. Conf. on Automated

Planning and Scheduling (ICAPS), AAAI.

17. Hoffmann, J., Nebel, B. (2001). The FF Planning System:

Fast Plan Generation through Heuristic Search. In Journal

of Artificial Intelligence Research, vol. 14, pp 253-202,

AI Access Foundation.

18. Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner,

M., Nebel, B. (2009). Semantic attachments for domain-

independent planning systems. In Proc. 19th Int. Conf. on

Automated Planning and Scheduling (ICAPS), AAAI.

19. Wallace, I., Woods, M. (2015). MASTER: A Mobile

Autonomous Scientist for Terrestrial and Extra-

Terrestrial Research. In Proc. 13th Symposium on

Advanced Space Technologies in Robotics and

Automation (ASTRA), European Space Agency,

Noordwijk, The Netherlands.

20. Kreisel, J. (2017). iBOSS: intelligent Building Blocks for

On-Orbit Satellite Servicing and Assembly. In European

Robotics Forum.

ACKNOWLEDGMENTS

We would like to thank the European Commission and

the members of the PERASPERA programme support

activity (ESA as coordinator, ASI, CDTI, CNES, DLR,

and UKSA) for their support and guidance in the ERGO

activity. We also thank the ERGO Consortium for their

collaboration and support during the field tests. Finally,

we are grateful to Malte Wirkus and Thomas Vögele

from DFKI for their support in the integration of the

ERGO software on the SherpaTT rover.

This project has received funding from the European

Union´s HORIZON 2020 research and innovation

programme under grant agreement No 730086.

http://www.h2020-peraspera.eu/
https://www.universal-robots.com/products/ur5-robot/
https://www.gmv.com/en/Products/platform/

