

ERGO: A FRAMEWORK FOR THE DEVELOPMENT OF AUTONOMOUS ROBOTS

Jorge Ocón(1), Juan Manuel Delfa(1) , Alberto Medina(1), Daisy Lachat (2), Robert Marc (2), Mark Woods (3), Iain Wallace
(3), Andrew Coles (4), Amanda Coles (4), Derek Long (4), Thomas Keller (5), Malte Helmert (5), Saddek Bensalem (6)

(1) GMV Aerospace and Defense, Isaac Newton, 11, PTM Tres Cantos, 20760, Spain, Email: jocon@gmv.com

(2) Airbus Defence and Space Ltd., Gunnels Wood Road, Stevenage, SG1 2AS, UK, Email:

gnc.uk@astrium.eads.net
(3) Scisys UK Ltd, Methuen Park, Chippenham, SN14 0GB, UK, Email: mark.woods@scisys.co.uk

(4) King’s College London, Strand, London WC2R 2LS, UK, Email: andrew.coles@kcl.ac.uk
(5) University of Basel, Spiegelgasse 1, Basel 4051, Switzerland, Email: {tho.keller,malte.helmert}@unibas.ch

(6) Universite Grenoble Alpes, 700 Avenue Centrale, 38400 St Martin D’Heres, France, Email:

saddek.bensalem@univ-grenoble-alpes.fr

ABSTRACT

The European Robotic Goal-Oriented Autonomous

Controller ERGO (http://www.h2020-ergo.eu/) is one of

the six space robotic projects in the frame of the

PERASPERA SRC (http://www.h2020-peraspera.eu/).

Its goal is to provide an Autonomy Framework capable

of operating at different levels of autonomy, from tele-

operations to full on-board autonomy. Even though it has

been originally conceived for space robotics, its domain

independent design facilitates its application to any

terrestrial robotic system. This paper presents the

approach followed, current status and future steps.

1. INTRODUCTION

For many years, space agencies have pursued the

development of autonomous systems. While this

technology can be applied to virtually any mission, deep

space and more specifically planetary exploration have

benefited the most. This is for many different reasons,

mainly the combination of a harsh environment, and

limited communications due to the long distances and

communication windows, that characterize deep space

missions and planetary exploration.

NASA’s approach to autonomy differs between satellites

and rovers. The former have shown high levels of

autonomy at mission level, with notorious examples such

as EO-1 [1] and DS-1 [2]. On the other hand, autonomy

in rover missions has been applied to resolve specific

problems, from the autonomous navigation system

AUTONAV [3] to the opportunistic science agent

AEGIS [4]. European approach has proceeded in other

directions. While some missions such as Rosetta [5] have

displayed specific solutions, ESA and the European

Commission are pursuing the development of a generic

autonomous controller to be applied in any type of

mission requiring autonomy.

The European Research Agency is leading a Strategic

Research Cluster (SRC) in Space Robotics Technologies

that is the most recent, most ambitious European

programme ever, aimed at developing key robotic

technologies organized in six areas. This paper presents

ERGO, the SRC project oriented to develop a highly

autonomous, mission-independent controller based on

the lessons learnt from previous efforts, especially from

GOAC [6], ExoMars Rover GNC [7] and MASTER.

2. OBJECTIVES

The ERGO System aims to achieve the following

objectives:

 Mission-independent: ERGO shall be suitable for

different kind of individual/collaborative robotic

systems, from space (e.g. satellites and rovers) to

terrestrial (e.g. mobile platforms).

 Goal-based: ERGO shall be able to be commanded via

high-level goals, that is, it is capable of reaching the E4

level of autonomy defined in the ECSS Standards [8]

 Multiple levels of autonomy: ERGO shall be able to

handle the four autonomy levels defined in the ECSS

standards, that is, shall allow teleoperation in real-time

(E1), commanding via time-tags (E2), to be event-

driven (E3) as well as supporting goal commanding

(E4). Moreover, it shall be able to dynamically reduce

its level of autonomy in case the conditions for a high

level of autonomy are not met.

 (Re)Planning capabilities: ERGO shall be able to

generate plans on-board based on a list of high-level

goals, and to autonomously fix the plan on-board,

adapting the plan to the exogenous events that occur

during its execution.

 Suitable for flight: ERGO shall be designed bearing in

mind future requirements to deploy it on-board

spacecraft.

Focusing on the domain, space applications pose a

number of constraints with a big impact on the design of

ERGO. The environment might present high levels of

uncertainty (partial observability, non-determinism and

dynamism); spacecraft on-board resources such as CPU

power and memory are scarce; communication links with

ground can be interrupted during long periods, or have

low bandwidth and high latency. In addition, operations

can be highly complex due to the inherent sophistication

mailto:jocon@gmv.com
mailto:gnc.uk@astrium.eads.net
http://www.h2020-ergo.eu/
http://www.h2020-peraspera.eu/

of the mission/payload and the constraints associated to

their operations; spacecraft represent critical systems for

which high safety standards must be enforced.

3. THE ERGO AGENT

ERGO is an architecture (Figure 1) that inherits its basic

principles from the architecture developed in the GOAC

project. GOAC, in turn, was heavily based on T-REX [9],

an architecture developed and tested in autonomous

underwater robots, at the Monterey Bay Aquarium

Research Institute. The ERGO architecture, inherited

from GOAC and T-REX, conceives the system as a set

of different control loops managed by a single agent (the

controller). Each of these control loops is encapsulated

into a so-called reactor. Reactors can be deliberative or

reactive, and they share a common interface with the

controller. Working at the highest level of autonomy

(E4), a deliberative reactor, the mission planner,

performs the high-level goal decomposition; meanwhile,

purely reactive reactors are in charge of handling lower

levels of autonomy.

The controller maintains a level of autonomy as a

parameter of the system that determines the level of

commanding that can be issued. It can be set from

ground, or modified internally whenever the conditions

for a high level of autonomy are not met.

The level of autonomy is managed by a single reactor:

the ground controller interface reactor (GCI), that

processes telecommands received from ground.

Commanding at the lower levels of autonomy (E1, E2 &

E3) is performed by purely reactive reactors using a

combination of the traditional PUS Services.

Commanding at the highest level of autonomy (E4)

requires the mission planner to perform high-level goal

decomposition into lower-level goals. An additional

reactor, the so-called command dispatcher is in charge of

interfacing with the functional layer that provides

abstraction w.r.t. the underlying hardware.

While these three mentioned reactors (Mission planner,

Ground Control Interface and Command Dispatcher) are

common to any space mission, other reactors can be

added to the agent for specific purposes.

In particular ERGO is aimed to tackle two different

scenarios: an orbital scenario (specifically for a robotic

arm), and a planetary exploration rover scenario. The

number of reactors for each use case will be different and

tailored to suit their needs. For this purpose, a set of

additional, deliberative reactors complement the ERGO

architecture:

 A Rover Guidance reactor is in charge of performing

the navigation of a planetary exploration rover.

 An opportunistic goal detector is in charge of detecting

serendipitous events, autonomously posting new goals

to the planner whenever an interesting event is raised.

This reactor will take part of the configuration for the

planetary exploration rover as well.

 An arm motion planner is in charge of planning the

movements of the robotic arm.

As in GOAC and T-REX, the agent controller is

responsible of the correct flow of information between

the different reactors. All reactors share a common

interface that is used to exchange facts (observations) and

commands (goals) to/from other reactors. This

communication is based on state variables (i.e.

timelines). Time is discretized, and the agent controller

follows an algorithm to periodically synchronize the

status of each reactor; to forward the goals to those

reactors that are in charge of performing them; and to

inform the reactors interested in given timelines of those

observations that affect them. All of this process is

performed using the reactors’ common interfaces.

By doing so, the architecture has a series of advantages

against other traditional architectures, namely:

 Scalability: the architecture can be extended very

easily by adding new reactors, without the need to

redefine the interfaces between them.

 Consistency: the algorithm being used (detailed in

[9]) guarantees that all reactors share the same status

of the system.

 Portability: the system does not depend on a particular

scheduling policy. All reactors are controller by the

agent.

 Easy integration of new deliberative reactors.

Figure 1 - ERGO Architecture

In addition, the agent can be extended to communicate

with other agents, sending and receiving goals and facts

to/from other agents running in other robots, using the

same interfaces for both remote and local reactors.

Finally, the ERGO agent is conceived as a TASTE [10]

component. TASTE [11] is a software framework that

allows the development of critical embedded, real-time

systems, but it can be used also for terrestrial domains. It

relies on key technologies such as standardized

modelling languages (e.g., ASN.1 [12] and AADL [13]),

code generators and real-time systems. This allows the

generation of suitable skeletons, and glue code that can

be combined with code developed by the user into an

application’s executable. TASTE currently supports the

generation of code for Linux and SPARC/RTEMS

platforms. For a smooth integration of the agent into

TASTE, we count on the know-how and experience of

Ellidiss, one of the main partners involved in the

development of TASTE.

4. DECISION LAYER – AN INTEGRATED

APPROACH TOWARDS DELIBERATION

A big part of ERGO’s effort has been focused on the

decision layer, providing a number of novelties.

From an architectural point of view, two principles are

considered fundamental: 1) All deliberative subsystems

exchange the same type of information, that is, they send

goals and they receive observations related to these goals.

This aspect facilitates the adaptation of ERGO to the

specific requirements of future missions; 2) In order to

create more accurate plans, the mission planner can query

dedicated systems, specific for each mission, for detailed

information about certain aspects of the plan. This

approach, derived from QuijoteExpress [14], proved to

be extremely helpful in order to generate more accurate

plans in the frame of the FASTER project [15].

With respect to specific deliberative subsystems, there

are three technical aspects to remark: 1) ERGO

represents the first effort to develop a PDDL planner for

space applications, which is an incredible challenge

taking into consideration the complexity of temporal

planning and the scarce computational resources

available in a spacecraft; 2) A global approach to rover

guidance for long traverses beyond the field of view,

capability that is crucial in future missions such as MSR.

It exploits satellite imagery and on-board LIDAR scan to

enable fast and robust traverse;3) Finally, ERGO will

provide automatic detection, not only of scientific targets

as demonstrated with other systems such as Aegis, but

also of other space assets, such as the canister containing

samples in the MSR mission. These three capabilities,

crucial for future surface exploration, will be further

detailed in the following subsections.

5. STELLAR - A NOVEL PDDL PLANNER FOR

SPACE APPLICATIONS

One of the most important novelties proposed by ERGO

is the development of the first-ever PDDL-based planner

for space applications, named STELLAR, inspired by

three established planners: Optic [16], Fast Downward

[17] and QuijoteExpress.

There have been two traditionally antagonist approaches

to (temporal) planning: state-based and action-based.

There are several similarities between them: both receive

as inputs a domain (formally defining the system which

activities need to be planned) and problem (containing

the current status of the system and goals); both divide

the search for a plan in planning and scheduling phases;

both use variants of the same algorithms: heuristic search

(e.g. A*) for planning and All-pairs shortest paths (e.g.

Floyd Warshall) for scheduling.

But they present as well important differences: timeline

planners (a variant of state-based), are typically used in

space while PDDL (a variant of action-based) are widely

used in academia; the former have proprietary languages

(NDDL, DDL, …) while the latter are based on the

international de-facto standard language PDDL [18]; the

outputs are also different, in the former being represented

as (flexible) timelines (one for each subsystem of the

functional layer) while the latter contains a set of possibly

concurrent actions with rigid times.

At first glance the move to PDDL for space applications

does not seem obvious, apart from the benefit of using a

standard. However, PDDL-based planners often

outperform their timeline-based counterparts, which is a

major advantage especially due to the limited on-board

resources. The following paragraphs present the on-

going work to extend PDDL to cover those areas where

it falls short and the design of a new planner based on this

extension.

The on-board resource constraints set a tight envelope on

the way in which on-board deliberation can be

performed. Traditional search-based planning

approaches typically either combine cheap heuristics

(that offer only little guidance) with a search procedure

that requires gigabytes of local memory to store large

parts of the state space of the planning task; or, they

compute informative, state-of-the-art heuristics that offer

excellent search guidance (but are expensive to

compute), which allows to consider only small parts of

the search space. Unfortunately, both approaches are

infeasible on-board, as memory, time, and energy

constraints tightly constrain how the planner may

operate. For these reasons, it is essential to minimize the

search effort on-board, e.g., by finding ways that allow

us to precompute resource-intensive subtasks of the

planning process on-ground, which can then be used to

lower resource consumption of the planning process that

takes place on-board.

STELLAR aims to plan from scratch only when

necessary. If a plan exists that, for some reason, is no

longer valid, it uses re-planning techniques that build on

the existing plan. For instance, re-planning is triggered as

a consequence of the mismatch between observed and

expected facts during plan execution or because new

goals have been received. To re-plan, we “start” the

search from all states that are reachable under the current

plan, which reuses some of the computational effort gone

into finding the existing plan; and we aim to reach some

point along what was intended to be the remainder of the

plan, which “patches” the existing solution by finding

actions that reach a state that allows some of the rest of

the existing plan to succeed.

Another technique that allows on-board planning under

scarce resources is plan-refinement: the planning task is

modelled as a set of abstract high-level tasks, each

achieved by a number of low-level tasks. This approach

has demonstrated potential benefits in terms of

performance. Moreover, it does not require any

additional development at software level, as these

operations can be performed by the same mission planner

just by providing it with the appropriate inputs.

The inputs of the planner (domain and problem) are

modelled with PDDL 3.0, the standard language of the

planning and scheduling community. The planning

domain is static over the course of a mission. Only the

planning problem is dynamically created by combining

information from all sub-systems. The result of the

ERGO mission planner is a plan based on flexible

timelines, which guarantees its integration into the

planning reactor of the ERGO agent, an output that is

compatible with timeline-based planners, such as APSI

[19].

Planning in ERGO is based on heuristic search in a search

space of states that are connected via action application.

Each state consists of a propositional and a numeric part,

which we either store explicitly for fast access in a ‘bit

packed’ representation (if memory allows) or construct

implicitly on demand by application of the sequence of

actions that leads to the state. Internally, actions may

correspond to starting a new action, or ending one that is

currently executed. To start a new action, it must be

applicable, i.e., its preconditions must have been met, and

as long as an action is executing, its invariants must be

respected. Invariants of running actions are encoded in

linear temporal logic, and all invariants are combined to

a simple temporal network (STN) that is associated with

each state.

Figure 2 - STELLAR planner components

The requirement to find a plan that respects temporal

constraints means we cannot assume that any sequential

plan containing successive logically applicable actions is

reasonable. In temporally lifted progression planning,

applying an action orders it after a subset of the previous

actions in the plan. Additionally, ending an action adds a

duration constraint placing the end of the action after its

start. The advantage of such an approach is that it can

support problems with required concurrency: the

timestamps of actions are determined by applying a

suitable shortest-path algorithm to the STN, which will

assign feasible timestamps to actions (or show that no

satisfying set of timestamps exists). The disadvantage is

it carries a time overhead (STN solving) and in principle

a space overhead (storing additional temporal

information in each state).

To minimize time overheads, we only need to solve the

STN when necessary – i.e. when it might be inconsistent.

Inconsistency in the STN arises due to negative-length

cycles, and there are two useful cases where consistency

is guaranteed. First, if we start an action, and it must

come only after previous actions by an unbounded

amount – with no other relevant temporal constraints –

this cannot make the STN invalid, as no ‘maximum

duration’ edges (with finite positive weights) have been

added between the existing actions, and the new one.

Second, if we end an action and the only constraint is it

must follow its start, again this cannot make the STN

invalid, as the only cycle introduced is between the start

and end of the action; and we can assume actions’

minimum durations do not exceed their maximum.

In other cases, it is necessary to run a consistency check

on the STN. To militate against costs here, incremental

algorithms can be used. When expanding a state S during

search, we know its STN is consistent – or we would not

consider it for expansion. Thus, consistency checking in

a state S’ reached by extending the STN from S (to

contain an additional node, with the relevant temporal

constraints) is an incremental update.

With regards to memory overheads, when using an STN

approach, the question is what temporal information

actually needs to be stored in the state? In principle, all

information can be derived from a (partial) plan on

demand. However, to minimize computation time, we

adopt the concept of OPTIC and keep an explicit record

of: 1) the current STN; 2) each variable that was changed

to enable the application of an action; 3) the minimum

timestamp that could be given to each action.

Storing the first of these has the advantage that the STN

does not have to be reconstructed by stepping through all

the actions that lead to a state. The second reduces the

time taken to identify which previous actions each new

action needs to be ordered after. The third would be the

most expensive to derive, needing to both reconstruct and

solve the STN; and with reference to incremental STN

solving, the minimum timestamps of existing actions are

required as input, so removing this information from the

state would prevent us from reducing time overheads

using incremental techniques.

To find a plan in the search space, we apply heuristic

search. Given the limited resources, it is unlikely that

plans that are guaranteed to be optimal can be computed.

We therefore do not use A* search in combination with

an admissible heuristic, but use Weighted A* instead.

This has the advantage that we can still provide a bound

on the quality of the plan, but we are able to react on long

planning times by allowing plans of lower quality.

Moreover, it also allows us to enhance search with a

simple anytime component, where we continue search

with decreasing weights after an initial solution has been

found, which leads to a sequence of plans of increasing

quality as long as time and resource bounds allow the

planner to continue search, while an initial plan is found

as quickly as possible.

The decision which heuristic to use is a challenging one.

Apart from the limited resources, this is also because

most (if not all) well-known heuristics have been

developed in the context of classical planning, i.e., for

environments without temporal aspects, resources,

external functions, intermediate goals, complex metrics

or uncertain effects. However, due to dependencies

between the heuristic and search, it is not the case that a

heuristic function that uses less processing power and

memory is always preferable: a heuristic that uses more

resources is often better informed, which leads to

significantly less search effort and hence to overall fewer

consumed system resources. We therefore aim to use a

heuristic with a good ratio between accuracy and

resource consumption.

Delete relaxation heuristics [20] estimate the cost of

reaching a goal state by considering a relaxed task

derived from the actual planning task where all delete

effects of operators are ignored. The most promising

candidate is the FF heuristic [21], which approximates

the optimal (NP-hard) delete relaxation heuristic ℎ+ in

polynomial time and space in an inadmissible but often

fairly accurate way.

Most abstraction heuristics have in common that they are

cheap to evaluate in a state, but require a rather expensive

preprocessing step. We plan to perform the preprocessing

step on-ground (on high-performance computers), while

only the (compact) result of the preprocessing is made

available on-board to guide search. If this is successful,

informative abstraction heuristics like the merge-and-

shrink heuristic [2221] or a cost-partitioned [23], [24] set

of abstraction heuristics are promising candidates.

Potential heuristics [25], which encode a linear function

over a weighted set of features, can also optimized on-

ground in an elaborate preprocessing step and are very

cheap to evaluate. As we aim to learn the potentials, they

have the advantage that they can incorporate arbitrary

complex environment features as long as they are

reflected in the training set. Furthermore, they are

suitable for a “human-in-the-loop” approach where

experts on ground provide training examples which are

used to improve the resulting potential heuristic

6. ROVER GUIDANCE – AN EFFICIENT NOVEL

APPROACH FOR LONG-RANGE

NAVIGATION

The ERGO Rover Guidance is the responsibility of

Airbus Defence and Space Ltd. It builds upon expertise

and know-how from the ExoMars Rover Guidance,

Navigation and Control (GNC) in order to enable an

extremely long distance travelled of the order of 1km per

day, while keeping the rover safe at all times. The Rover

Guidance (RG) includes five building blocks (Figure 3).

Figure 3 - Rover Guidance building blocks

The Rover Guidance receives inputs from:

 The ERGO mission planner which provides the long

distance goals to travel towards.

 A sensor data fusion system, providing the estimated

rover position & attitude and a digital elevation map

of the area to be explored. This would be performed

by fusing data from LIDAR, stereo-camera, IMU and

HiRISE orbital maps.

For the ERGO demonstration, the sensor data fusion

inputs will be provided by the test platform which is

implemented by FACILITATORS, another

PERASPERA Operational Grant (OG6) running in

parallel. In the future, the Rover Guidance system will

use for these inputs the data provided by InFuse, the data

fusion system being developed in another PERASPERA

Operational Grant (OG3). The RG outputs a long-term

path with required resources estimation to be used by the

mission planner, and also outputs rover commands in

order to follow the short-term path.

The Navigation Map summarizes the results of terrain

modelling and terrain analysis. Essentially it describes

the rover’s understanding of its neighbourhood with

respect to hazards, objects, terrain and sites of interest. In

order to create this map, the Rover Guidance uses inputs

from the fused sensory data: including terrain

representation (e.g. digital elevation map – DEM) and

orbital information. This information is analysed to select

the safe areas to travel through and also to estimate the

terrain difficulty for these areas.

The Short-Term Path is planned on the navigation map

and is dynamically compatible with rover driving

capabilities. The Long-Term Path planner computes the

rover path in the long distance taking into account

identified obstacles and likelihood of the challenging

terrain areas from HiRISE orbital data.

Resources are estimated solely for the mission planner,

using the long-term path and orbital navigation map.

The Reactive Hazard Avoidance detects obstacles which

have not been identified at the time the path was planned

as they will become apparent in the near vicinity of the

rover. In addition, closed-loop trajectory control will

enable the rover to maintain its path along the planned

trajectory while encountering environmental

disturbances.

The requirements of the Rover Guidance system can be

summarized as follows:

 Rover Safety: ensure the rover to be commanded to

drive solely in safe areas of the terrain.

A safe area is defined as geographical zone where the

rover hardware cannot be damaged by the static

environmental conditions. Moreover the rover will not

get physically trapped in these safe areas.

 Navigation map & cost: create a navigation map which

defines the areas of the terrain that are traversable by

the rover. Including a cost will help the path planner

algorithm to decide on the most desirable area to be

traversed.

 Long-distance path planning: plan a long-distance path

from the current rover location to the long distance

target location.

 Short-distance path planning: plan a short distance path

with associated desired manoeuvres (trajectories) that

is both safe and drivable by the locomotion system.

 Rover commanding: control the rover by issuing

manoeuvre commands towards the locomotion system,

adapt these as needed to stick to the desired path, and

check if the rover stays within a safe corridor limit.

 Hazard avoidance: Identify and react to new hazards

appearing across the planned short-distance path. This

approach will enable the usage of a non-comprehensive

navigation map and will provide flexibility in the

design.

 Resources Estimation: estimate the required resources

to execute the path that the mission planner requires for

decision making.

 Rover type and mechanical configuration: to be

designed as agnostic as possible with respect to the

rover type and mechanical configuration. For highly

dependent functions, the rover type and its mechanical

configuration assumed for the RG design is the one

considered most likely to be used for a future Mars

Sample Return mission.

7. OPPORTUNISTIC SCIENCE AND PLANETARY

ASSET DETECTOR FOR FLEXIBLE

OPERATIONS

Bandwidth or communication limitations may make real-

time control of instruments for scientific discovery

difficult or impossible. For planetary rovers there is a

trade-off between detailed observation to ensure

important targets are not missed, which requires slow

traverses to downlink all the data, and maintaining

sufficient progress to visit many science targets. For the

orbital case, similar technology can aid in the detection

of targets of interest and misplaced or unexpected objects

that may lead to dangerous situations.

 The GODA component of ERGO builds on work in

several previous ESA studies. These include planetary

aerobots [26] which ranked images for downlink based

on geological science content and the CREST [27]

opportunistic science system that analysed images for

targets of scientific interest. The PRoViScout [28] project

developed a science assessment and response agent

(SARA) to identify science targets and allow different

reactions dependent on power and time constraints.

Wider afield NASA JPL are actively investigating this

topic and have deployed a basic form of autonomous

science detection known as AEGIS on the MER

Opportunity Rover [4]

More recently, SCISYS’s work in the MASTER [29]

study represents the cutting edge of autonomous space

system development, and relates to several topical

developments in the wider robotics and vision literature.

Whilst overall the work was firmly aimed at closing the

action-perception loop, MASTER only considers the

initial attention-acquisition event.

The MASTER project showed a promising future for

computer vision and machine learning approaches in the

space domain. The system prototyped could be

developed into a broad range of potential applications

ranging from flight systems on planetary rovers to

labelling and annotation tools to support terrestrial

scientists. The work on ERGO will represent one such

further development of the system and the chance to

advance the state of the art in autonomous scientific

agents.

The GODA component design, shown in Figure 4, pairs

a MASTER-like detector with a goal generation

component. The goal generation component maps from

detections of phenomena of interest onto concrete goals

for the planner to achieve. For example, detection of

novelty could trigger a goal to acquire high resolution

imagery or detecting a broken manipulator might trigger

a goal to put the spacecraft in a safe state. As well as the

work of MASTER, the detector component will also

benefit from ongoing research into science autonomy that

is being pursued in parallel, the ESA NOAH [30] project

looks to extend the capability and raise the TRL of work

started in MASTER. Recent advances in deep

convolutional neural networks for image processing hold

great promise for space applications. Whilst training

them requires great compute, inference at detection time

is a fixed known cost bounded by model complexity. The

outputs from NOAH will allow us to take advantage of

such improvements.

Figure 4 - GODA Component Design Overview

8. OFFLINE AND ONLINE VERIFICATION AND

VALIDATION

The techniques investigated in the project will be

incorporated into a modelling and verification

framework, called BIP Framework [31] which provides

a facility for model extension, that is, integration of

nominal and error models, and simulation of the

behaviour of the system in presence of faults once one or

more fault injections are defined.

Figure 5 - Planned workflow for the FDIR

component generation.

The BIP framework provides several capabilities by

using a single model description, including requirements

validation, functional verification [32] and performance

analysis [33].

The results of this project will provide a good basis for

dependability and safety assessment, fault tolerance

evaluation, and FDIR development. We will obtain the

necessary elements for the FDIR design and modelling

together with the facilities for diagnosability and FDIR

analysis. The workflow of this process is illustrated in

Figure 5. The FDIR development approach will be

supported by rigorous formal methods, providing the

possibility of application in the early development stages

allowing for effective use of the available software and

system designs and corresponding RAMS analysis data.

Furthermore, FDIR design will be implemented in

accordance with the FDIR requirements, software and

system architectural design, and system-level

dependability requirements.

9. CONCLUSIONS

The ERGO architecture is a novel architecture that

benefits from the experience and know-how of many

companies across Europe. The requirements for ERGO

have been defined and approved, and the project is

currently in the design phase.

The ERGO agent controller represents a new architecture

that provides the four levels of autonomy, and guarantees

modularity, cohesion and scalability.

STELLAR is the first PDDL planner specifically

conceived for space applications. Its design inherits from

the combined lessons learnt from classical (temporal)

PDDL planners such as Optic and Fast Downward, and

timeline-based planners such as QuijoteExpress. The

objective is to achieve the high performance

characteristic of the former while preserving high level

of expressiveness (especially temporal) typical from the

second. In ERGO these restrictions do not apply, since

the mission planner uses flexible time boundaries for the

execution, and it has an interface based in timelines with

the executive.

The system is conceived to be easily instantiated and

tailored to suit the needs of any particular robotic

platform by 1) adapting the planning domain, 2) adapting

the interface with the functional layer, and 3) defining the

commands and the telemetry to be sent and received

from/to ground.

One of the strengths of the project is that it is built based

on the experiences on previous projects for space

robotics, for instance GMV’s experience on autonomous

controllers from GOAC, the rover guidance design builds

on the expertise of Airbus Defence and Space Ltd. from

the ExoMars Rover GNC; meanwhile GODA inherits a

long experience from Scisys in previous ESA projects.

ERGO conceives the use of rigorous formal methods for

the FDIR design and modelling, and model-driven

techniques based on the TASTE framework and BIP.

Moreover, ERGO is in line with the other PERASPERA

building blocks, as it is designed to be easily integrated

with the robotic operating system being developed in

ESROCOS (OG1) or data fusion components developed

in InFuse (OG3).

In the near future, the team will start to develop the

different ERGO components. A number of field tests

have been defined, based on the Mars Sample Return

mission. The feedback obtained will be key to

demonstrate the concept and to improve the robustness of

the system; we expect that it will pave the way for a

future use of the proposed architecture in real space

missions.

ACKNOWLEDGEMENTS

We would like to thank the European Commission and

the members of the PERASPERA Programme Support

Activity (ESA as coordinator, ASI, CDTI, CNES, DLR

and UKSA) for their support and guidance in the ERGO

activity. Finally, we would like to thank Alberto Medina

for his work and support in the initial phases of this

project and in the elaboration of this paper. The project

has received funding from the European Union’s Horizon

2020 research and innovation programme under grant

agreement No 730086.

REFERENCES

1. G. Rabideau, D.Tran, et al “Mission Operations of

Earth Observing One with on-board autonomy” IEEE

International Conference on Space Mission Challenges

for Information Technology. Pasadena, CA. July 2006

2. E. Bernard, Douglas and Gamble, Jr., Edward B. .

“Remote Agent Experiment DS1 Technology Validation

Report”. Jet propulsion Laboratory. CIT, Pasadena,

California

3. Maimone, Jeffrey J. Biesiadecki and Mark W. The

mars exploration rover surface mobility flight software

driving ambition. s.l. : IEEE Aerospace Conference

(IAC), 2006.

4. Estlin T. A. et. al, “AEGIS Automated Science Targeting

for the MER Opportunity Rover”: ACM Transactions on

Intelligent Systems and Technology (TIST), 2012, Vol. 3,

p. 50.

5. Klaus Schilling, Jürgen Walter, Samuel Kounev.
Spacecraft Autonomous Reaction Capabilities, Control

Approaches, and Self-aware Computing. s.l. : Springer

International Publishing, 2017.

6. Medina, A., et al. in “Aerospace Robotics II”.

Ottawa, Canada: “Online of an Autonomy framework for

space robotics”. Springer International Publishing

pp 187-198, Switzerland 2015
7. M. Winter et al ExoMars Rover Vehicle: Detailed

Description of the GNC System. s.l. : Proceedings of

Space Technologies in Robotics and Automation

(ASTRA), 2015.

8. ESA/ESTEC. ECSS Secretariat. (ESA/ESTEC),

“ECSS-E-70-11 Space Segment Operability” .August,

2005. Norwjik, the Nederlands.
9. McGann, Connor, Rajan, Kanna and Py, Frederic T-

REX., a model-based architecture for AUV Control..

International Conference on Automated Planning and

Scheduling : s.n., 2007.

10. Perrotin, M, Terraillon, J.-L. and Honvault, C. “Taste:

towards a space system development framework”, Oct.

2015.
11. TASTE WebSite http://taste.tools

12. ASN.1 Website: http://www.itu.int/en/ITU-

T/asn1/Pages/asn1_project.aspx

13. AADL WebSite: http://aadl.info

14. J. M. Delfa Victoria, N. Policella, Y. Gao, and O.

V. Stryk. “Quijoteexpress - A novel APSI planning

system for future space robotic missions”. In ASTRA,

2013. Noordwijk, the Netherlands

15. E. Allouis, R. Marc, J. Gancet, Y.Nevatia, F.Cantori,

R.U Sonsalla, M. Fritsche, J. Machowinski, T. Vogele,

F.Comin, W. Lewinger, B. Yeomans, C. Saaj, Y.Gao,

J.Delfa, P.Weclewski, K. Skocki, B. Imhof, S.

Ransom, and L. Richter. Fp7 faster project -

demonstration of multi-platform operation for safer

planetary traverses. s.l. : 13th Symposium on Advanced

Space Technologies in Robotics and Automation

(ASTRA), 2015.7

16. J. Benton, Amanda Coles and Andrew Coles.

Temporal Planning with Preferences and Time-

Dependent Continuous Costs. s.l. : International

Conference on Automated Planning and Scheduling

(ICAPS), 2012.

17. Helmert, M. The fast downward planning system. s.l. :

Journal of Artificial Intelligence Research (JAIR), 2006,

Vol. 26.

18. Drew McDermott, Malik Ghallab, Adele Howe, Craig

Knoblock, Ashwin Ram, Manuela Veloso, Daniel

Weld and David Wilkins. PDDL - The Planning

Domain Definition Language - Version 1.2. 1998.

19. Fratini, A. Cesta and S. The timeline representation

framework as a planning and scheduling software

development environment. s.l. : 27th Workshop of the

UK Planning and Scheduling Special Interest Group

(PlanSIG), 2008.

20. Bonet, Blai and Geffner, Hector. Planning as Heuristic

Search. s.l. : Artificial Intelligence, 2001, Vol. 129.

21. Hoffmann, Jörg and Nebel, Bernhard. The FF

Planning System: (Fast) Plan Generation Through

Heuristic Searc. s.l. : Journal of Artificial Intelligence

Research, 2001, Vol. 14.

22. Helmert, Malte and Haslum, Patrik and Hoffmann,

Jörg and Nissim, Raz. Merge-and-Shrink Abstraction:

A Method for Generating Lower Bounds in Factored

State Spaces. s.l. : Journal of the ACM, 2014, Vol. 61.

23. Katz, Michael and Domshlak, Carmel. Optimal

Additive Composition of Abstraction-based Admissible

Heuristics. s.l. : ICAPS, 2008.

24. Yang, Fan and Culberson, Joseph and Holte, Robert

and Zahavi, Uzi and Felner, Ariel. A General Theory

of Additive State Space Abstractions. s.l. : Journal of

Artificial Intelligence Research, 2008, Vol. 32.

25. Pommerening, Florian and Helmert, Malte and

Röger, Gabriele and Seipp, Jendrik. From non-

http://taste.tools/
http://aadl.info/

Negative to General Operator Cost Partitioning. s.l. :

AAAI, 2015.

26. Woods, M. et al. Image based localisation and

autonomous image asessment for a Martian aerobot.

Hollywood, CA : 9th International Symposium on

Artificial Intelligence, Robotics and Automation in

Space, 2008.

27. Woods M., Shaw A., Barnes D., Price D., Long D.,

and Pullan D. Autonomous science for an ExoMars

Rover-like mission. s.l. : Journal of Field Robotics, 2009,

Vol. 26, pp. 358-390.

28. Paar G. et al. PRoViScout: a planetary scouting rover

demonstrator. s.l. : SPIE 8301, Intelligent Robots and

Computer Vision XXIX: Algorithms and Techniques, p.

83010A-83010A-14, 2012.

29. M., Wallace I. and Woods. MASTER: A Mobile

Autonomous Scientist For Terrestrial and Extra-

Terrestrial Research. s.l. : 13th Symposium on

Advanced Space Technologies in Robotics and

Automation, ASTRA, 2015. 3.

30. Wallace I., Woods M. and Read N labelmars.net:

driving next-generation science autonomy with large

high quality dataset collection.. s.l. : 14th Symposium on

Advanced Space Technologies in Robotics and

Automation, 2017.

31. Basu, A., Bozga, M., & Sifakis, J. Modeling

heterogeneous real-time components in BIP., SEFM, pp.

3-12. 2016. Fourth IEEE International Conference in

Software Engineering and Formal Methods.

32. Ben Rayana, S., et al. RTD-Finder: A Tool for

Compositional Verification of Real-Time Component-

Based Systems. Tools and Algorithms for the

Construction and Analysis of Systems. 2016. Tools and

Algorithms for the Construction and Analysis of

Systems: 22nd International Conference, TACAS. pp.

394-406.

33. Nouri, A., Bensalem, S., Bozga, M., Delahaye, B.,

Jegourel, C., & Legay, A. Statistical model checking

QoS properties of systems with SBIP. STTT,. 2015. pp.

171-185.

