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ABSTRACT 

The European Robotic Goal-Oriented Autonomous 

Controller ERGO (http://www.h2020-ergo.eu/) is one of 

the six space robotic projects in the frame of the 

PERASPERA SRC (http://www.h2020-peraspera.eu/). 

Its goal is to provide an Autonomy Framework capable 

of operating at different levels of autonomy, from tele-

operations to full on-board autonomy. Even though it has 

been originally conceived for space robotics, its domain 

independent design facilitates its application to any 

terrestrial robotic system. This paper presents the 

approach followed, current status and future steps. 

 

1. INTRODUCTION 

For many years, space agencies have pursued the 

development of autonomous systems. While this 

technology can be applied to virtually any mission, deep 

space and more specifically planetary exploration have 

benefited the most. This is for many different reasons, 

mainly the combination of a harsh environment, and 

limited communications due to the long distances and 

communication windows, that characterize deep space 

missions and planetary exploration. 

 

NASA’s approach to autonomy differs between satellites 

and rovers. The former have shown high levels of 

autonomy at mission level, with notorious examples such 

as EO-1 [1] and DS-1 [2]. On the other hand, autonomy 

in rover missions has been applied to resolve specific 

problems, from the autonomous navigation system 

AUTONAV [3] to the opportunistic science agent 

AEGIS [4]. European approach has proceeded in other 

directions. While some missions such as Rosetta [5] have 

displayed specific solutions, ESA and the European 

Commission are pursuing the development of a generic 

autonomous controller to be applied in any type of 

mission requiring autonomy. 

 

The European Research Agency is leading a Strategic 

Research Cluster (SRC) in Space Robotics Technologies 

that is the most recent, most ambitious European 

programme ever, aimed at developing key robotic 

technologies organized in six areas. This paper presents 

ERGO, the SRC project oriented to develop a highly 

autonomous, mission-independent controller based on 

the lessons learnt from previous efforts, especially from 

GOAC [6], ExoMars Rover GNC [7] and MASTER. 

 

2. OBJECTIVES 

The ERGO System aims to achieve the following 

objectives: 

 Mission-independent: ERGO shall be suitable for 

different kind of individual/collaborative robotic 

systems, from space (e.g. satellites and rovers) to 

terrestrial (e.g. mobile platforms). 

 Goal-based: ERGO shall be able to be commanded via 

high-level goals, that is, it is capable of reaching the E4 

level of autonomy defined in the ECSS Standards [8] 

 Multiple levels of autonomy: ERGO shall be able to 

handle the four autonomy levels defined in the ECSS 

standards, that is, shall allow teleoperation in real-time 

(E1), commanding via time-tags (E2), to be event-

driven (E3) as well as supporting goal commanding 

(E4). Moreover, it shall be able to dynamically reduce 

its level of autonomy in case the conditions for a high 

level of autonomy are not met. 

 (Re)Planning capabilities: ERGO shall be able to 

generate plans on-board based on a list of high-level 

goals, and to autonomously fix the plan on-board, 

adapting the plan to the exogenous events that occur 

during its execution. 

 Suitable for flight: ERGO shall be designed bearing in 

mind future requirements to deploy it on-board 

spacecraft. 

Focusing on the domain, space applications pose a 

number of constraints with a big impact on the design of 

ERGO. The environment might present high levels of 

uncertainty (partial observability, non-determinism and 

dynamism); spacecraft on-board resources such as CPU 

power and memory are scarce; communication links with 

ground can be interrupted during long periods, or have 

low bandwidth and high latency. In addition, operations 

can be highly complex due to the inherent sophistication 
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of the mission/payload and the constraints associated to 

their operations; spacecraft represent critical systems for 

which high safety standards must be enforced. 

 

3. THE ERGO AGENT 

ERGO is an architecture (Figure 1) that inherits its basic 

principles from the architecture developed in the GOAC 

project. GOAC, in turn, was heavily based on T-REX [9], 

an architecture developed and tested in autonomous 

underwater robots, at the Monterey Bay Aquarium 

Research Institute. The ERGO architecture, inherited 

from GOAC and T-REX, conceives the system as a set 

of different control loops managed by a single agent (the 

controller). Each of these control loops is encapsulated 

into a so-called reactor. Reactors can be deliberative or 

reactive, and they share a common interface with the 

controller. Working at the highest level of autonomy 

(E4), a deliberative reactor, the mission planner, 

performs the high-level goal decomposition; meanwhile, 

purely reactive reactors are in charge of handling lower 

levels of autonomy.  

The controller maintains a level of autonomy as a 

parameter of the system that determines the level of 

commanding that can be issued.  It can be set from 

ground, or modified internally whenever the conditions 

for a high level of autonomy are not met. 

The level of autonomy is managed by a single reactor: 

the ground controller interface reactor (GCI), that 

processes telecommands received from ground. 

Commanding at the lower levels of autonomy (E1, E2 & 

E3) is performed by purely reactive reactors using a 

combination of the traditional PUS Services. 

Commanding at the highest level of autonomy (E4) 

requires the mission planner to perform high-level goal 

decomposition into lower-level goals. An additional 

reactor, the so-called command dispatcher is in charge of 

interfacing with the functional layer that provides 

abstraction w.r.t. the underlying hardware.  

While these three mentioned reactors (Mission planner, 

Ground Control Interface and Command Dispatcher) are 

common to any space mission, other reactors can be 

added to the agent for specific purposes. 

In particular ERGO is aimed to tackle two different 

scenarios: an orbital scenario (specifically for a robotic 

arm), and a planetary exploration rover scenario. The 

number of reactors for each use case will be different and 

tailored to suit their needs. For this purpose, a set of 

additional, deliberative reactors complement the ERGO 

architecture: 

 

 A Rover Guidance reactor is in charge of performing 

the navigation of a planetary exploration rover. 

 An opportunistic goal detector is in charge of detecting 

serendipitous events, autonomously posting new goals 

to the planner whenever an interesting event is raised. 

This reactor will take part of the configuration for the 

planetary exploration rover as well. 

 An arm motion planner is in charge of planning the 

movements of the robotic arm. 

As in GOAC and T-REX, the agent controller is 

responsible of the correct flow of information between 

the different reactors. All reactors share a common 

interface that is used to exchange facts (observations) and 

commands (goals) to/from other reactors. This 

communication is based on state variables (i.e. 

timelines). Time is discretized, and the agent controller 

follows an algorithm to periodically synchronize the 

status of each reactor; to forward the goals to those 

reactors that are in charge of performing them; and to 

inform the reactors interested in given timelines of those 

observations that affect them. All of this process is 

performed using the reactors’ common interfaces. 

By doing so, the architecture has a series of advantages 

against other traditional architectures, namely: 

 Scalability: the architecture can be extended very 

easily by adding new reactors, without the need to 

redefine the interfaces between them. 

 Consistency: the algorithm being used (detailed in 

[9]) guarantees that all reactors share the same status 

of the system. 

 Portability: the system does not depend on a particular 

scheduling policy. All reactors are controller by the 

agent. 

 Easy integration of new deliberative reactors.  

 
Figure 1 - ERGO Architecture 

 

In addition, the agent can be extended to communicate 

with other agents, sending and receiving goals and facts 

to/from other agents running in other robots, using the 

same interfaces for both remote and local reactors. 

Finally, the ERGO agent is conceived as a TASTE [10] 

component. TASTE [11] is a software framework that 

allows the development of critical embedded, real-time 

systems, but it can be used also for terrestrial domains. It 

relies on key technologies such as standardized 

modelling languages (e.g., ASN.1 [12] and AADL [13]), 



 

code generators and real-time systems. This allows the 

generation of suitable skeletons, and glue code that can 

be combined with code developed by the user into an 

application’s executable.  TASTE currently supports the 

generation of code for Linux and SPARC/RTEMS 

platforms. For a smooth integration of the agent into 

TASTE, we count on the know-how and experience of 

Ellidiss, one of the main partners involved in the 

development of TASTE. 

 

4. DECISION LAYER – AN INTEGRATED 

APPROACH TOWARDS DELIBERATION 

A big part of ERGO’s effort has been focused on the 

decision layer, providing a number of novelties.  

 

From an architectural point of view, two principles are 

considered fundamental: 1) All deliberative subsystems 

exchange the same type of information, that is, they send 

goals and they receive observations related to these goals. 

This aspect facilitates the adaptation of ERGO to the 

specific requirements of future missions; 2) In order to 

create more accurate plans, the mission planner can query 

dedicated systems, specific for each mission, for detailed 

information about certain aspects of the plan. This 

approach, derived from QuijoteExpress [14], proved to 

be extremely helpful in order to generate more accurate 

plans in the frame of the FASTER project [15]. 

 

With respect to specific deliberative subsystems, there 

are three technical aspects to remark: 1) ERGO 

represents the first effort to develop a PDDL planner for 

space applications, which is an incredible challenge 

taking into consideration the complexity of temporal 

planning and the scarce computational resources 

available in a spacecraft; 2) A global approach to rover 

guidance for long traverses beyond the field of view, 

capability that is crucial in future missions such as MSR. 

It exploits satellite imagery and on-board LIDAR scan to 

enable fast and robust traverse;3) Finally, ERGO will 

provide automatic detection, not only of scientific targets 

as demonstrated with other systems such as Aegis, but 

also of other space assets, such as the canister containing 

samples in the MSR mission. These three capabilities, 

crucial for future surface exploration, will be further 

detailed in the following subsections. 

 

5. STELLAR - A NOVEL PDDL PLANNER FOR 

SPACE APPLICATIONS 

One of the most important novelties proposed by ERGO 

is the development of the first-ever PDDL-based planner 

for space applications, named STELLAR, inspired by 

three established planners: Optic [16], Fast Downward 

[17] and QuijoteExpress. 

There have been two traditionally antagonist approaches 

to (temporal) planning: state-based and action-based. 

There are several similarities between them: both receive 

as inputs a domain (formally defining the system which 

activities need to be planned) and problem (containing 

the current status of the system and goals); both divide 

the search for a plan in planning and scheduling phases; 

both use variants of the same algorithms: heuristic search 

(e.g. A*) for planning and All-pairs shortest paths (e.g. 

Floyd Warshall) for scheduling. 

But they present as well important differences: timeline 

planners (a variant of state-based), are typically used in 

space while PDDL (a variant of action-based) are widely 

used in academia; the former have proprietary languages 

(NDDL, DDL, …) while the latter are based on the 

international de-facto standard language PDDL [18]; the 

outputs are also different, in the former being represented 

as (flexible) timelines (one for each subsystem of the 

functional layer) while the latter contains a set of possibly 

concurrent actions with rigid times. 

 

At first glance the move to PDDL for space applications 

does not seem obvious, apart from the benefit of using a 

standard. However, PDDL-based planners often 

outperform their timeline-based counterparts, which is a 

major advantage especially due to the limited on-board 

resources. The following paragraphs present the on-

going work to extend PDDL to cover those areas where 

it falls short and the design of a new planner based on this 

extension. 

 

The on-board resource constraints set a tight envelope on 

the way in which on-board deliberation can be 

performed. Traditional search-based planning 

approaches typically either combine cheap heuristics 

(that offer only little guidance) with a search procedure 

that requires gigabytes of local memory to store large 

parts of the state space of the planning task; or, they 

compute informative, state-of-the-art heuristics that offer 

excellent search guidance (but are expensive to 

compute), which allows to consider only small parts of 

the search space. Unfortunately, both approaches are 

infeasible on-board, as memory, time, and energy 

constraints tightly constrain how the planner may 

operate. For these reasons, it is essential to minimize the 

search effort on-board, e.g., by finding ways that allow 

us to precompute resource-intensive subtasks of the 

planning process on-ground, which can then be used to 

lower resource consumption of the planning process that 

takes place on-board. 

 

STELLAR aims to plan from scratch only when 

necessary. If a plan exists that, for some reason, is no 

longer valid, it uses re-planning techniques that build on 

the existing plan. For instance, re-planning is triggered as 

a consequence of the mismatch between observed and 

expected facts during plan execution or because new 

goals have been received. To re-plan, we “start” the 

search from all states that are reachable under the current 

plan, which reuses some of the computational effort gone 

into finding the existing plan; and we aim to reach some 

point along what was intended to be the remainder of the 

plan, which “patches” the existing solution by finding 

actions that reach a state that allows some of the rest of 

the existing plan to succeed. 

 



 

Another technique that allows on-board planning under 

scarce resources is plan-refinement: the planning task is 

modelled as a set of abstract high-level tasks, each 

achieved by a number of low-level tasks. This approach 

has demonstrated potential benefits in terms of 

performance. Moreover, it does not require any 

additional development at software level, as these 

operations can be performed by the same mission planner 

just by providing it with the appropriate inputs. 

 

The inputs of the planner (domain and problem) are 

modelled with PDDL 3.0, the standard language of the 

planning and scheduling community. The planning 

domain is static over the course of a mission. Only the 

planning problem is dynamically created by combining 

information from all sub-systems. The result of the 

ERGO mission planner is a plan based on flexible 

timelines, which guarantees its integration into the 

planning reactor of the ERGO agent, an output that is 

compatible with timeline-based planners, such as APSI 

[19]. 

 

Planning in ERGO is based on heuristic search in a search  

space of states that are connected via action application.  

Each state consists of a propositional and a numeric part, 

which we either store explicitly for fast access in a ‘bit 

packed’ representation (if memory allows) or construct 

implicitly on demand by application of the sequence of 

actions that leads to the state. Internally, actions may 

correspond to starting a new action, or ending one that is 

currently executed. To start a new action, it must be 

applicable, i.e., its preconditions must have been met, and 

as long as an action is executing, its invariants must be 

respected.  Invariants of running actions are encoded in 

linear temporal logic, and all invariants are combined to 

a simple temporal network (STN) that is associated with 

each state. 

 
Figure 2 - STELLAR planner components 

 

The requirement to find a plan that respects temporal 

constraints means we cannot assume that any sequential 

plan containing successive logically applicable actions is 

reasonable. In temporally lifted progression planning, 

applying an action orders it after a subset of the previous 

actions in the plan. Additionally, ending an action adds a 

duration constraint placing the end of the action after its 

start. The advantage of such an approach is that it can 

support problems with required concurrency: the 

timestamps of actions are determined by applying a 

suitable shortest-path algorithm to the STN, which will 

assign feasible timestamps to actions (or show that no 

satisfying set of timestamps exists).  The disadvantage is 

it carries a time overhead (STN solving) and in principle 

a space overhead (storing additional temporal 

information in each state). 

 

To minimize time overheads, we only need to solve the 

STN when necessary – i.e. when it might be inconsistent.  

Inconsistency in the STN arises due to negative-length 

cycles, and there are two useful cases where consistency 

is guaranteed.  First, if we start an action, and it must 

come only after previous actions by an unbounded 

amount – with no other relevant temporal constraints – 

this cannot make the STN invalid, as no ‘maximum 

duration’ edges (with finite positive weights) have been 

added between the existing actions, and the new one. 

Second, if we end an action and the only constraint is it 

must follow its start, again this cannot make the STN 

invalid, as the only cycle introduced is between the start 

and end of the action; and we can assume actions’ 

minimum durations do not exceed their maximum. 

 

In other cases, it is necessary to run a consistency check 

on the STN. To militate against costs here, incremental 

algorithms can be used. When expanding a state S during 

search, we know its STN is consistent – or we would not 

consider it for expansion.  Thus, consistency checking in 

a state S’ reached by extending the STN from S (to 

contain an additional node, with the relevant temporal 

constraints) is an incremental update.   

 

With regards to memory overheads, when using an STN 

approach, the question is what temporal information 

actually needs to be stored in the state? In principle, all 

information can be derived from a (partial) plan on 

demand. However, to minimize computation time, we 

adopt the concept of OPTIC and keep an explicit record 

of: 1) the current STN; 2) each variable that was changed 

to enable the application of an action; 3) the minimum 

timestamp that could be given to each action. 

 

Storing the first of these has the advantage that the STN 

does not have to be reconstructed by stepping through all 

the actions that lead to a state. The second reduces the 

time taken to identify which previous actions each new 

action needs to be ordered after. The third would be the 

most expensive to derive, needing to both reconstruct and 

solve the STN; and with reference to incremental STN 

solving, the minimum timestamps of existing actions are 

required as input, so removing this information from the 

state would prevent us from reducing time overheads 

using incremental techniques.  

To find a plan in the search space, we apply heuristic 

search. Given the limited resources, it is unlikely that 

plans that are guaranteed to be optimal can be computed. 

We therefore do not use A* search in combination with 

an admissible heuristic, but use Weighted A* instead. 

This has the advantage that we can still provide a bound 



 

on the quality of the plan, but we are able to react on long 

planning times by allowing plans of lower quality.  

Moreover, it also allows us to enhance search with a 

simple anytime component, where we continue search 

with decreasing weights after an initial solution has been 

found, which leads to a sequence of plans of increasing 

quality as long as time and resource bounds allow the 

planner to continue search, while an initial plan is found 

as quickly as possible. 

 

The decision which heuristic to use is a challenging one. 

Apart from the limited resources, this is also because 

most (if not all) well-known heuristics have been 

developed in the context of classical planning, i.e., for 

environments without temporal aspects, resources, 

external functions, intermediate goals, complex metrics 

or uncertain effects. However, due to dependencies 

between the heuristic and search, it is not the case that a 

heuristic function that uses less processing power and 

memory is always preferable: a heuristic that uses more 

resources is often better informed, which leads to 

significantly less search effort and hence to overall fewer 

consumed system resources. We therefore aim to use a 

heuristic with a good ratio between accuracy and 

resource consumption. 

 

Delete relaxation heuristics [20] estimate the cost of 

reaching a goal state by considering a relaxed task 

derived from the actual planning task where all delete 

effects of operators are ignored. The most promising 

candidate is the FF heuristic [21], which approximates 

the optimal (NP-hard) delete relaxation heuristic ℎ+ in 

polynomial time and space in an inadmissible but often 

fairly accurate way. 

Most abstraction heuristics have in common that they are 

cheap to evaluate in a state, but require a rather expensive 

preprocessing step. We plan to perform the preprocessing 

step on-ground (on high-performance computers), while 

only the (compact) result of the preprocessing is made 

available on-board to guide search. If this is successful, 

informative abstraction heuristics like the merge-and-

shrink heuristic [2221] or a cost-partitioned [23], [24] set 

of abstraction heuristics are promising candidates. 

Potential heuristics [25], which encode a linear function 

over a weighted set of features, can also optimized on-

ground in an elaborate preprocessing step and are very 

cheap to evaluate. As we aim to learn the potentials, they 

have the advantage that they can incorporate arbitrary 

complex environment features as long as they are 

reflected in the training set. Furthermore, they are 

suitable for a “human-in-the-loop” approach where 

experts on ground provide training examples which are 

used to improve the resulting potential heuristic 

 

 

 

 

 

 

6. ROVER GUIDANCE – AN EFFICIENT NOVEL 

APPROACH FOR LONG-RANGE 

NAVIGATION  

The ERGO Rover Guidance is the responsibility of 

Airbus Defence and Space Ltd. It builds upon expertise 

and know-how from the ExoMars Rover Guidance, 

Navigation and Control (GNC) in order to enable an 

extremely long distance travelled of the order of 1km per 

day, while keeping the rover safe at all times. The Rover 

Guidance (RG) includes five building blocks (Figure 3). 

 

 
Figure 3 - Rover Guidance building blocks 

 

The Rover Guidance receives inputs from: 

 

 The ERGO mission planner which provides the long 

distance goals to travel towards. 

 A sensor data fusion system, providing the estimated 

rover position & attitude and a digital elevation map 

of the area to be explored. This would be performed 

by fusing data from LIDAR, stereo-camera, IMU and 

HiRISE orbital maps. 

For the ERGO demonstration, the sensor data fusion 

inputs will be provided by the test platform which is 

implemented by FACILITATORS, another 

PERASPERA Operational Grant (OG6) running in 

parallel. In the future, the Rover Guidance system will 

use for these inputs the data provided by InFuse, the data 

fusion system being developed in another PERASPERA 

Operational Grant (OG3). The RG outputs a long-term 

path with required resources estimation to be used by the 

mission planner, and also outputs rover commands in 

order to follow the short-term path. 

The Navigation Map summarizes the results of terrain 

modelling and terrain analysis. Essentially it describes 

the rover’s understanding of its neighbourhood with 

respect to hazards, objects, terrain and sites of interest. In 

order to create this map, the Rover Guidance uses inputs 

from the fused sensory data: including terrain 

representation (e.g. digital elevation map – DEM) and 

orbital information. This information is analysed to select 

the safe areas to travel through and also to estimate the 

terrain difficulty for these areas. 

 

The Short-Term Path is planned on the navigation map 

and is dynamically compatible with rover driving 

capabilities. The Long-Term Path planner computes the 



 

rover path in the long distance taking into account 

identified obstacles and likelihood of the challenging 

terrain areas from HiRISE orbital data. 

 

Resources are estimated solely for the mission planner, 

using the long-term path and orbital navigation map. 

 

The Reactive Hazard Avoidance detects obstacles which 

have not been identified at the time the path was planned 

as they will become apparent in the near vicinity of the 

rover. In addition, closed-loop trajectory control will 

enable the rover to maintain its path along the planned 

trajectory while encountering environmental 

disturbances. 

 

The requirements of the Rover Guidance system can be 

summarized as follows: 

 

 Rover Safety: ensure the rover to be commanded to 

drive solely in safe areas of the terrain. 

A safe area is defined as geographical zone where the 

rover hardware cannot be damaged by the static 

environmental conditions. Moreover the rover will not 

get physically trapped in these safe areas. 

 Navigation map & cost: create a navigation map which 

defines the areas of the terrain that are traversable by 

the rover. Including a cost will help the path planner 

algorithm to decide on the most desirable area to be 

traversed. 

 Long-distance path planning: plan a long-distance path 

from the current rover location to the long distance 

target location. 

 Short-distance path planning: plan a short distance path 

with associated desired manoeuvres (trajectories) that 

is both safe and drivable by the locomotion system. 

 Rover commanding: control the rover by issuing 

manoeuvre commands towards the locomotion system, 

adapt these as needed to stick to the desired path, and 

check if the rover stays within a safe corridor limit. 

 Hazard avoidance: Identify and react to new hazards 

appearing across the planned short-distance path. This 

approach will enable the usage of a non-comprehensive 

navigation map and will provide flexibility in the 

design. 

 Resources Estimation: estimate the required resources 

to execute the path that the mission planner requires for 

decision making. 

 Rover type and mechanical configuration: to be 

designed as agnostic as possible with respect to the 

rover type and mechanical configuration. For highly 

dependent functions, the rover type and its mechanical 

configuration assumed for the RG design is the one 

considered most likely to be used for a future Mars 

Sample Return mission. 

 

 

7. OPPORTUNISTIC SCIENCE AND PLANETARY 

ASSET DETECTOR FOR FLEXIBLE 

OPERATIONS 

Bandwidth or communication limitations may make real-

time control of instruments for scientific discovery 

difficult or impossible. For planetary rovers there is a 

trade-off between detailed observation to ensure 

important targets are not missed, which requires slow 

traverses to downlink all the data, and maintaining 

sufficient progress to visit many science targets. For the 

orbital case, similar technology can aid in the detection 

of targets of interest and misplaced or unexpected objects 

that may lead to dangerous situations.  

 The GODA component of ERGO builds on work in 

several previous ESA studies. These include planetary 

aerobots [26] which ranked images for downlink based 

on geological science content and the CREST [27] 

opportunistic science system that analysed images for 

targets of scientific interest. The PRoViScout [28] project 

developed a science assessment and response agent 

(SARA) to identify science targets and allow different 

reactions dependent on power and time constraints. 

Wider afield NASA JPL are actively investigating this 

topic and have deployed a basic form of autonomous 

science detection known as AEGIS on the MER 

Opportunity Rover [4] 

 

More recently, SCISYS’s work in the MASTER [29] 

study represents the cutting edge of autonomous space 

system development, and relates to several topical 

developments in the wider robotics and vision literature. 

Whilst overall the work was firmly aimed at closing the 

action-perception loop, MASTER only considers the 

initial attention-acquisition event.  

 

The MASTER project showed a promising future for 

computer vision and machine learning approaches in the 

space domain. The system prototyped could be 

developed into a broad range of potential applications 

ranging from flight systems on planetary rovers to 

labelling and annotation tools to support terrestrial 

scientists. The work on ERGO will represent one such 

further development of the system and the chance to 

advance the state of the art in autonomous scientific 

agents. 

 

The GODA component design, shown in Figure 4, pairs 

a MASTER-like detector with a goal generation 

component. The goal generation component maps from 

detections of phenomena of interest onto concrete goals 

for the planner to achieve. For example, detection of 

novelty could trigger a goal to acquire high resolution 

imagery or detecting a broken manipulator might trigger 

a goal to put the spacecraft in a safe state. As well as the 

work of MASTER, the detector component will also 

benefit from ongoing research into science autonomy that 

is being pursued in parallel, the ESA NOAH [30] project 

looks to extend the capability and raise the TRL of work 

started in MASTER. Recent advances in deep 



 

convolutional neural networks for image processing hold 

great promise for space applications. Whilst training 

them requires great compute, inference at detection time 

is a fixed known cost bounded by model complexity. The 

outputs from NOAH will allow us to take advantage of 

such improvements. 

 
Figure 4 - GODA Component Design Overview 

 

8. OFFLINE AND ONLINE VERIFICATION AND 

VALIDATION 

The techniques investigated in the project will be 

incorporated into a modelling and verification 

framework, called BIP Framework [31] which provides 

a facility for model extension, that is, integration of 

nominal and error models, and simulation of the 

behaviour of the system in presence of faults once one or 

more fault injections are defined. 

 
Figure 5 - Planned workflow for the FDIR 

component generation. 

The BIP framework provides several capabilities by 

using a single model description, including requirements 

validation, functional verification [32] and performance 

analysis [33]. 

 

The results of this project will provide a good basis for 

dependability and safety assessment, fault tolerance 

evaluation, and FDIR development. We will obtain the 

necessary elements for the FDIR design and modelling 

together with the facilities for diagnosability and FDIR 

analysis. The workflow of this process is illustrated in 

Figure 5. The FDIR development approach will be 

supported by rigorous formal methods, providing the 

possibility of application in the early development stages 

allowing for effective use of the available software and 

system designs and corresponding RAMS analysis data. 

Furthermore, FDIR design will be implemented in 

accordance with the FDIR requirements, software and 

system architectural design, and system-level 

dependability requirements. 

 

9. CONCLUSIONS 

The ERGO architecture is a novel architecture that 

benefits from the experience and know-how of many 

companies across Europe.  The requirements for ERGO 

have been defined and approved, and the project is 

currently in the design phase. 

The ERGO agent controller represents a new architecture 

that provides the four levels of autonomy, and guarantees 

modularity, cohesion and scalability.  

STELLAR is the first PDDL planner specifically 

conceived for space applications. Its design inherits from 

the combined lessons learnt from classical (temporal) 

PDDL planners such as Optic and Fast Downward, and 

timeline-based planners such as QuijoteExpress. The 

objective is to achieve the high performance 

characteristic of the former while preserving high level 

of expressiveness (especially temporal) typical from the 

second. In ERGO these restrictions do not apply, since 

the mission planner uses flexible time boundaries for the 

execution, and it has an interface based in timelines with 

the executive. 

 

The system is conceived to be easily instantiated and 

tailored to suit the needs of any particular robotic 

platform by 1) adapting the planning domain, 2) adapting 

the interface with the functional layer, and 3) defining the 

commands and the telemetry to be sent and received 

from/to ground.  

One of the strengths of the project is that it is built based 

on the experiences on previous projects for space 

robotics, for instance GMV’s experience on autonomous 

controllers from GOAC, the rover guidance design builds 

on the expertise of Airbus Defence and Space Ltd. from 

the ExoMars Rover GNC; meanwhile GODA inherits a 

long experience from Scisys in previous ESA projects.  

ERGO conceives the use of rigorous formal methods for 

the FDIR design and modelling, and model-driven 

techniques based on the TASTE framework and BIP. 



 

Moreover, ERGO is in line with the other PERASPERA 

building blocks, as it is designed to be easily integrated 

with the robotic operating system being developed in 

ESROCOS (OG1) or data fusion components developed 

in InFuse (OG3). 

In the near future, the team will start to develop the 

different ERGO components. A number of field tests 

have been defined, based on the Mars Sample Return 

mission. The feedback obtained will be key to 

demonstrate the concept and to improve the robustness of 

the system; we expect that it will pave the way for a 

future use of the proposed architecture in real space 

missions. 
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