
O

U
i
A
L
A
A
a

b

c

d

e

f

g

A

K
A
P
I

C

1

w

h
R

SoftwareX 29 (2025) 102012

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

nified Planning: Modeling, manipulating and solving AI planning problems
n Python
ndrea Micheli a,∗, Arthur Bit-Monnot b, Gabriele Röger c, Enrico Scala d, Alessandro Valentini a,
uca Framba a, Alberto Rovetta d, Alessandro Trapasso g, Luigi Bonassi d,
lfonso Emilio Gerevini d, Luca Iocchi g, Felix Ingrand b, Uwe Köckemann e, Fabio Patrizi g,
lessandro Saetti d, Ivan Serina d, Sebastian Stock f

Fondazione Bruno Kessler, Trento, Italy
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
University of Basel, Switzerland
University of Brescia, Italy
Örebro University, Sweden
DFKI, Osnabrück, Germany
Sapienza University of Rome, Italy

R T I C L E I N F O

eywords:
utomated planning and scheduling
ython library
nteroperability

A B S T R A C T

Automated planning is a branch of artificial intelligence aiming at finding a course of action that achieves
specified goals, given a description of the initial state of a system and a model of possible actions. There are
plenty of planning approaches working under different assumptions and with different features (e.g. classical,
temporal, and numeric planning). When automated planning is used in practice, however, the set of required
features is often initially unclear. The Unified Planning (UP) library addresses this issue by providing a feature-
rich Python API for modeling automated planning problems, which are solved seamlessly by planning engines
that specify the set of features they support. Once a problem is modeled, UP can automatically find engines
that can solve it, based on the features used in the model. This greatly reduces the commitment to specific
planning approaches and bridges the gap between planning technology and its users.

ode metadata

Current code version v1.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00504
Permanent link to Reproducible Capsule https://doi.org/10.5281/zenodo.11127268
Legal Code License Apache 2.0 license
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Linux, MacOS, Microsoft Windows
If available Link to developer documentation/manual https://unified-planning.readthedocs.io/
Support email for questions unified-planning@googlegroups.com

. Motivation and significance

Automated planning is the area of artificial intelligence concerned
ith identifying a suitable course of action to achieve a goal based

∗ Corresponding author.
E-mail address: amicheli@fbk.eu (Andrea Micheli).

on a predictive model of the environment. Due to its abstract nature,
planning technology is relevant to a wide range of application areas,
such as agile manufacturing [1], space operations [2,3], robotics [4]
or logistics [5].
ttps://doi.org/10.1016/j.softx.2024.102012
eceived 20 September 2024; Received in revised form 26 November 2024; Accepted 9 December 2024
vailable online 19 December 2024
352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00504
https://doi.org/10.5281/zenodo.11127268
https://unified-planning.readthedocs.io/
mailto:unified-planning@googlegroups.com
mailto:amicheli@fbk.eu
https://doi.org/10.1016/j.softx.2024.102012
https://doi.org/10.1016/j.softx.2024.102012
http://creativecommons.org/licenses/by/4.0/

Andrea Micheli et al. SoftwareX 29 (2025) 102012
Fig. 1. The unified planning framework in context.

To illustrate the general concept, consider a smart warehouse envi-
ronment with a number of storage locations and one packing location.
Robots can carry boxes from the storage to the packing location and
back, and the task is to get a set of products to the packing location.
The planning task can then be described by the current state of the
world (the initial state, e.g. the locations of all products and robots),
the objective (a goal condition, e.g. having the required products at
the packing location, regardless of the locations of the robots) and the
possible actions. In such a scenario, we would expect move actions to
model the robots movements between locations or load actions to
model the act of loading a box containing a required product onto a
movable robot.

World states of planning tasks are typically described by means
of so-called fluents. For example, there could be a boolean fluent
carrying(robot,box) that is true whenever a robot is carrying a
specific box, and a symbolic fluent location(robot) whose value
is the current position of the robot. Actions typically specify the states
in which they are applicable through conditions on fluents, while their
effects capture how they would alter the current state when applied.
In our example, an action for loading a box on a robot would then be
applicable whenever the robot is empty and at the same location as the
box; after its application the box would be carried by the robot, which
in turn would no longer be empty.

The task for the planning system is to identify a plan, i.e. a suitable
course of action that leads from the initial state to the goal. The exact
form of the plan depends on the details of the planning task. For
example, in classical planning, actions are instantaneous and the plan
is simply a sequence of actions; in temporal planning instead, actions
have an associated duration and their execution can overlap, so a plan
would be an exact schedule that specifies a start time for every action
instance in the plan.

Even though there are many planning techniques and tools avail-
able, it is still hard to apply them in practice. The Unified Planning (UP)
Python library, developed as part of the AIPlan4EU project funded by
the European Union, helps in overcoming some of the major challenges.

The first challenge is the modeling of a real-world problem as a
planning task, defining suitable fluents and actions. Planning systems
typically expect the input task as a text file in some description lan-
guage (such as the Planning Domain Definition Language (PDDL) [6,7]
or the Action Notation Modeling Language (ANML) [8]), which is
usually created manually or by some dedicated piece of code for the
specific application. The UP library enables the user to model the
planning task programmatically with Python; it retains the formality
of the planning model, but replaces a concrete formal description
language with an API in a commonly used programming language.
This makes it easier to incorporate data from different sources of
information, and allows the modeling of the task without committing
to a specific description language (Python knowledge is required, but
this skill is arguably more available than niche modeling languages).
The UP library also implements a number of task transformations that
allow reformulating a task to make it suitable for a wider range of

planning systems, e.g. by compiling away features that are convenient
for modeling but not widely supported by the engines.

The second challenge for solving the task is to select and run a
suitable planning engine. Planning systems typically only support a
certain kind of planning tasks: in fact, different fragments of planning
have different computational complexity (e.g. deciding plan existence
for STRIPS classical planning is PSPACE-complete [9], whereas for
numeric planning it is only decidable for finite domains [10,11]), so
limiting a planner to a certain fragment allows using more specific
and efficient approaches. For the user, however, it can be very hard
to understand what systems can be used for their problem at all.
Moreover, even as suitable planners are selected, each engine comes
with its own installation and usage instructions, so there is a substantial
setup effort before actually solving the task with the engine.

With the UP library, all of this requires just a few lines of code. Its
plugin system allows developers to easily make their planning engine
available, and several planning systems have already been integrated
by the AIPlan4EU partners and through the AIPlan4EU open call pro-
gram. A user can now easily install such planning engines with the
Python package installer pip. The UP analyzes which engines are
suitable for the modeled task, and the user can call them directly from
the UP through a common interface, simplifying the experimentation
with different engines or running several of them in parallel. Moreover,
the resulting plan is a structured Python object, facilitating further
processing in the desired context.

Fig. 1 shows the UP framework in the overall context: it allows users
to leverage planning technology without committing to any specific
planning engines, which are however available via UP’s API.

2. Related work

Several tools for modeling planning problems exist, in particular for
creating models in PDDL [6,7], an input language supported by most
planners as it is used in International Planning Competitions.

The model acquisition tool itSIMPLE [12] allows modeling tasks in
the diagram-based UML language, and provides analyses based on Petri
nets.

Tarski [13] is a Python library for modeling, manipulating and
analyzing planning tasks that can also parse languages other than
PDDL, such as functional STRIPS [14] or RDDL [15]. The tool is
intended for planning researchers and can be used for reachability
analysis or problem reformulations like the showcased compilation
from deterministic conformant planning (with uncertainty about the
initial state) to classical planning.

PDDL4J [16] is a Java PDDL parser delivering an internal repre-
sentation of the parsed task that can be used via an API. For exam-
ple, the PlanX Toolbox [17] uses PDDL4J to build a composition of
planning-based services over a Docker infrastructure.

An extension for PDDL exists for the Visual Studio Code editor [18].
Besides standard IDE support, it also provides plan visualization, sup-
port for regression tests of the model, and the possibility to use tem-
plating in PDDL problem files.
2

Andrea Micheli et al.

c
t

b
f
l

u
o

n
f

P
w

o

e
r

l
s

b
s
t
c

SoftwareX 29 (2025) 102012
Fig. 2. Class diagram of the supported problems classes.

The online suite planning.domains1 [19] includes a PDDL editor,
a comprehensive database of benchmark tasks, and a planner-in-the-
loud service (with limited time and memory resources) accessible
hrough a RESTful API. Web Planner [20] is a similar tool that provides

several visualizations of the search space of a problem in addition to
asic PDDL editing and remote solving. These tools are indeed useful
or first tests on small instances, but do not scale enough to process
arger instances or production environments.

Similarly to UP, the planutils [21] project aims at facilitating run-
ning different planning engines. It provides several environments for
niformly interacting with different planning systems, overcoming each
ne’s peculiarities in terms of build instructions, dependencies, or call-

ing interface. Individual planning systems are integrated as packages
(typically Singularity/Apptainer images).

Furthermore, there are several frameworks for the creation of plan-
ing algorithms in specific contexts. In particular, LAPKT [22] is a
ramework to build classical planners, EUROPA [23] provides the

infrastructure for timeline-based temporal planners, F4Plan [24] allows
the integration in the EnTiMid home-automation software system, and
yHOP [25] is a Python implementation of a hierarchical planner
here a problem can be modeled directly in code.

3. Software description

3.1. Software architecture

In this section, we focus on the core concepts required to leverage
the capabilities of UP.

The core modeling feature provided by UP is the representation
f planning problems. We tackle a variety of types of planning prob-

lems with different expressiveness. In particular, the UP library cur-
rently supports the following classes of planning problems: Classical,
Numeric, Temporal, Scheduling, Multi-Agent, Hierarchical, Task and
Motion Planning (TAMP) and Contingent. In order to properly represent
this variety, we created the class structure depicted in Fig. 2, where
ach class represents a kind of planning problems (Problem can
epresent multiple kinds: classical, numeric, temporal and TAMP).

All the classes of planning problems inherit from AbstractProb-
em, which is the class used for the generic interfaces in our plugin
ystem. This class hierarchy is meant to facilitate adding new types

of problems and to make the library as generic as possible. More-
over, we used the ‘‘mixin’’ design pattern to avoid code duplication
etween sibling classes: this is an implementation detail, but greatly
implifies the maintainability of the code. One of the key elements of
he problem specifications is the ProblemKind class (automatically
omputed by all the planning problems classes via the kind property),

1 https://planning.domains

implemented as a collection of flags2 that lists the modeling features
used in any problem specification. Each integrated engine must specify
which of those features it supports, so that the library can determine
its applicability with respect to a given problem.

3.2. Software functionalities

Operation Modes (OMs) represent and standardize the possible
interactions with a planning engine. Each OM defines an API that an
engine willing to support the OM shall implement: in this way, engines
declaring to support the same OM can be used interchangeably. In
addition, the interface of each OM includes a set of methods designed to
be mutually non-interfering and documented with their respective as-
sumptions and guarantees, allowing an engine to support multiple OMs.
Moreover, each engine will inherit from the Engine abstract class,
which provides the basic machinery for the plug-in mechanism and for
declaring the supported kinds of problem. The currently available OM
are:

• OneshotPlanner: single call to a planning engine that, given a
problem, returns a plan or a failure response;

• PlanValidator: given a planning problem and a plan, indicates
whether the plan is valid;

• SequentialSimulator: given a problem, provides functionalities
to explore the reachable states;

• Compiler: transforms a given problem into an equivalent one,
performing some kind of rewriting;

• AnytimePlanner: iteratively generates solutions to a planning
problem (e.g. incrementally better plans);

• Replanner: generates plans when a base problem is changed,
possibly re-using previous computation;

• PlanRepairer: given a planning problem and a possibly invalid
plan, returns a valid plan;

• PortfolioSelector: given a planning problem, selects the best
engines to solve the problem.

All the OMs can be invoked using the Factory class, which imple-
ments the engine selection mechanism based on our plug-in system.
Each environment contains a private Factory, allowing different
subsets of engines and selection priorities to coexist in the same process:
in addition, each OM is also exposed as a top-level function for the
global environment in the unified_planning.shortcuts mod-
ule. When calling the OM constructor (either from the factory or from
the shortcuts), it is always possible to specify the name of the engine
to be used (i.e. to force the selection of a specific engine, if available)

2 See https://unified-planning.readthedocs.io/en/latest/problem_representa
tion.html#problem-kinds for the full details.
3

https://planning.domains
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds
https://unified-planning.readthedocs.io/en/latest/problem_representation.html#problem-kinds

Andrea Micheli et al.

s
o
t

c
c
t
f

SoftwareX 29 (2025) 102012
Fig. 3. Simple example of a planning problem modeled using the UP Python API and solved by one of the engines via the ‘‘OneshotPlanner’’ OM.

or to let UP select an engine automatically, by specifying only the
ProblemKind (which can be retrieved automatically from a problem
p using the p.kind property).

A Custom Resolution Strategy (CRS) is a procedural specification
(i.e. a piece of Python code) that can be used to guide an engine or to
pecify some action behaviors. The UP library currently offers two types
f CRS: Simulated Effects and Custom Heuristics. The former allows for
he specifications of changes in the values of the fluents for which only

a Python function is provided. This is useful when complex dynamics
annot be faithfully modeled and can only be evaluated (e.g. an effect
an be modeled as a neural network). With the latter, the user can guide
he search in the underlying planning engine by providing a Python
unction estimating the distance from a given state to the goal.

In addition to the planning API, the library also offers a Protobuf3

interface for inter-process integration.

4. Illustrative examples

Fig. 3 shows a small example of the API offered by the UP. More
specifically, the displayed Python code models a robot moving on a
graph as a simple numeric planning problem. The code constructs
a model of a system and then solves a planning problem on this
model. The problem state is described using a predicate robot_at,
indicating the current location of the robot, and a numeric fluent
battery_charge, modeling the remaining battery in percentage. In
this simple problem, we have a single action move that moves the

3 https://protobuf.dev

robot between two locations, l1 and l2. The problem is then fed
into a planner, which is selected automatically by the library. While
this is a very minimal example constructed for the sake of brevity,
many more interactive demonstrations are available at https://unified-
planning.readthedocs.io/en/latest/examples.html.

5. Impact

The Unified Planning (UP) project provides several benefits to the
research community and facilitates the efficient and effective use of
automated planning technologies in various contexts. Here follow three
notable contexts where the UP has already yielded some impact or can
be utilized.
Knowledge compilation techniques: UP offers a programmatic inter-
face for specifying planning problems of different types and paradigms.
This flexibility enables researchers to easily transform a problem ex-
pressed in one formulation into another, facilitating the application of
techniques that may not be available for the original formulation. For
example, it is known that planning problems with conditional effects
can be transformed into equivalent problems without such effects [26,
27]: this allows the use of planning tools that do not provide native sup-
port for conditional effects. Other compilations are also implemented;
for example, UP has been used to transform problems with numeric
temporal constraints expressed in PDDL3 into problems without such
constraints [28].
Integration of planning into complex systems: UP serves as an in-
terface for integrating planning technologies into broader applications,
including robotics. By using UP, developers can easily incorporate
4

https://protobuf.dev
https://unified-planning.readthedocs.io/en/latest/examples.html
https://unified-planning.readthedocs.io/en/latest/examples.html
https://unified-planning.readthedocs.io/en/latest/examples.html

Andrea Micheli et al.

u
p
a
t
t
i

u
m

d

SoftwareX 29 (2025) 102012
planning technologies into robotic platforms, reducing integration com-
plexity and allowing the platform to adopt a wider range of planning
engines, enhancing flexibility and adaptability. For example, UP is
sed to interface an underwater robotic platform for surveillance with
lanning and replanning facilities [29], allowing automatic adaptation
nd long-term autonomy. Similarly, UP is employed as a middle-ware
o bridge the gap between automated planning and embedded sys-
ems [30]. Finally, the Protobuf interface is used for the UP integration
n the AIBuilder4 component of the European AI-On-Demand Plat-

form,5 which allows the creation of AI pipelines involving planning
components.
Homogeneous approach to using planning engines: UP provides
sers with a consistent approach to utilizing planning engines that
ay be written in different programming languages. This streamlines

experimental analysis, particularly in scenarios like planning competi-
tions (e.g., [31]): researchers can seamlessly switch between different
planning engines without needing to adapt to different programming
languages or interfaces. This capability contributes to speeding up
experimental analyses and fostering collaboration.

UP is an open-source project available on GitHub (https://github.
com/aiplan4eu/unified-planning): its popularity in the research com-
munity and its overall adoption across research groups have steadily
increased over time. At the time of writing, the project counts 194 stars
and 42 forks.

6. Conclusion

This paper has presented the Unified Planning (UP) library that pro-
vides programmatic access to planning technologies through Python.
UP offers a comprehensive Python API for modeling and manipulating
different kinds of planning problems. In addition, the library also
provides a plugin system for easily integrating planning engines over
standardized APIs: at the time of writing, more than 40 planning
engines of different kind have been integrated.

CRediT authorship contribution statement

Andrea Micheli: Writing – review & editing, Writing – original
raft, Software, Project administration, Methodology, Funding acqui-

sition, Conceptualization. Arthur Bit-Monnot: Writing – review &
editing, Software, Methodology, Conceptualization. Gabriele Röger:
Writing – review & editing, Writing – original draft, Software, Method-
ology, Conceptualization. Enrico Scala: Writing – review & editing,
Writing – original draft, Methodology, Conceptualization. Alessandro
Valentini: Software, Project administration, Methodology, Conceptual-
ization. Luca Framba: Software. Alberto Rovetta: Software, Concep-
tualization. Alessandro Trapasso: Software, Methodology, Conceptu-
alization. Luigi Bonassi: Software, Conceptualization. Alfonso Emilio
Gerevini: Methodology, Conceptualization. Luca Iocchi: Methodol-
ogy, Conceptualization. Felix Ingrand: Writing – review & editing,
Methodology, Conceptualization. Uwe Köckemann: Writing – review
& editing, Software, Methodology, Conceptualization. Fabio Patrizi:
Methodology, Conceptualization. Alessandro Saetti: Writing – review
& editing, Methodology, Conceptualization. Ivan Serina: Writing –
review & editing, Methodology, Conceptualization. Sebastian Stock:
Writing – review & editing, Methodology, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Andrea Micheli reports financial support was provided by European
Commission. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

4 https://aiexp.ai4europe.eu
5 https://aiod.eu

Acknowledgments

We are grateful for the AIPlan4EU project support, which was
funded by the European Union’s Horizon 2020 research and inno-
vation programme under GA n. 101016442. Andrea Micheli is also
supported by the STEP-RL project funded by the European Research
Council under GA n. 101115870. We also thankful to Daniele Calisi,
Guglielmo Gemignani, Malte Helmert, Joachim Hertzberg, Oscar Lima,
Federico Pecora, Alessandro Saffiotti, Selvakumar Hastham Sathiya
Satchi Sadanandam, Alexander Sung, Florent Teichtel-Koenigsbuch,
Elisa Tosello, and Paolo Traverso for fruitful discussions that helped
steering the development of the UP library during the AIPlan4EU
project.

References

[1] Ruml W, Do MB, Fromherz MP. On-line planning and scheduling for high-
speed manufacturing. In: International conference on automated planning and
scheduling. 2005, p. 30–9.

[2] Vaquero T, Chien SA, Agrawal J, Chi W, Huntsberger TL. Temporal brittleness
analysis of task networks for planetary rovers. In: International conference on
automated planning and scheduling. 2019, p. 564–72, URL https://ojs.aaai.org/
index.php/ICAPS/article/view/3553.

[3] Pralet C, Doose D, Anxionnat J, Pouly J. Building resource-dependent conditional
plans for an earth monitoring satellite. In: International conference on automated
planning and scheduling. 2022, p. 490–8, URL https://ojs.aaai.org/index.php/
ICAPS/article/view/19835.

[4] Ingrand F, Ghallab M. Deliberation for autonomous robots: A survey. Artificial
Intelligence 2017;247:10–44.

[5] García J, Flórez JE, de Reyna ÁTA, Borrajo D, López CL, Olaya AG, et al.
Combining linear programming and automated planning to solve intermodal
transportation problems. European J Oper Res 2013;227(1):216–26. http://dx.
doi.org/10.1016/j.ejor.2012.12.018.

[6] Fox M, Long D. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. J Artificial Intelligence Res 2003;20:61–124.

[7] Gerevini AE, Long D. Plan constraints and preferences in PDDL3. Tech. Rep. R.
T. 2005-08-47, University of Brescia, Department of Electronics for Automation;
2005.

[8] Smith DE, Frank J, Cushing W. The ANML language. In: The ICAPS-08 workshop
on knowledge engineering for planning and scheduling. 2008.

[9] Bylander T. The computational complexity of propositional STRIPS planning.
Artificial Intelligence 1994;69(1–2):165–204.

[10] Helmert M. Decidability and undecidability results for planning with numerical
state variables. In: International conference on artificial intelligence planning and
scheduling. 2002, p. 303–12.

[11] Gigante N, Scala E. On the compilability of bounded numeric planning. In:
International joint conference on artificial intelligence. 2023, p. 5341–9.

[12] Vaquero TS, Silva JR, Ferreira M, Tonidandel F, Beck JC. From requirements
and analysis to PDDL in itSIMPLE3.0. In: Proceedings of the third international
competition on knowledge engineering for planning and scheduling. 2009, p.
54–61.

[13] Francés G, Ramirez M. Collaborators, tarski: An AI planning modeling
framework. 2018, https://github.com/aig-upf/tarski.

[14] Geffner H. Functional Strips: A more flexible language for planning and problem
solving. In: Minker J, editor. Logic-based artificial intelligence. Kluwer interna-
tional series in engineering and computer science, vol. 597, Kluwer; 2000, p.
187–209, [Ch. 9].

[15] Sanner S. Relational dynamic influence diagram language (RDDL): Language
description. 2010.

[16] Pellier D, Fiorino H. Pddl4j: a planning domain description library for java. J
Exp Theor Artif Intell 2018;30(1):143–76.

[17] Georgievski I. Planx: A toolbox for building and integrating ai planning systems.
In: 2023 IEEE international conference on service-oriented system engineering.
IEEE; 2023, p. 130–4.

[18] Dolejsi J, Long D, Fox M, Besançon G. PDDL authoring and validation environ-
ment for building end-to-en planning solutions. In: ICAPS system demonstrations
and exhibits. 2018.

[19] Muise C. Planning.Domains. In: ICAPS system demonstrations and exhibits. 2016.
[20] Magnaguagno MC, Fraga Pereira R, Móre MD, Meneguzzi FR. Web planner: A

tool to develop classical planning domains and visualize heuristic state-space
search. In: 2017 workshop on user interfaces and scheduling and planning. USA;
2017.

[21] Muise C, Pommerening F, Seipp J, Katz M. Planutils: Bringing planning to the
masses. In: ICAPS system demonstrations and exhibits. 2022.

[22] Miquel Ramirez CM. Nir Lipovetzky, Lapkt: Lightweight automated planning
toolkit. 2024, https://github.com/LAPKT-dev.
5

https://github.com/aiplan4eu/unified-planning
https://github.com/aiplan4eu/unified-planning
https://github.com/aiplan4eu/unified-planning
https://aiexp.ai4europe.eu
https://aiod.eu
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb1
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb1
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb1
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb1
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb1
https://ojs.aaai.org/index.php/ICAPS/article/view/3553
https://ojs.aaai.org/index.php/ICAPS/article/view/3553
https://ojs.aaai.org/index.php/ICAPS/article/view/3553
https://ojs.aaai.org/index.php/ICAPS/article/view/19835
https://ojs.aaai.org/index.php/ICAPS/article/view/19835
https://ojs.aaai.org/index.php/ICAPS/article/view/19835
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb4
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb4
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb4
http://dx.doi.org/10.1016/j.ejor.2012.12.018
http://dx.doi.org/10.1016/j.ejor.2012.12.018
http://dx.doi.org/10.1016/j.ejor.2012.12.018
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb6
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb6
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb6
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb7
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb7
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb7
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb7
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb7
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb8
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb8
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb8
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb9
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb9
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb9
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb10
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb10
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb10
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb10
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb10
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb11
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb11
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb11
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb12
https://github.com/aig-upf/tarski
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb14
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb15
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb15
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb15
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb16
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb16
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb16
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb17
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb17
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb17
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb17
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb17
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb18
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb18
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb18
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb18
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb18
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb19
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb20
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb21
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb21
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb21
https://github.com/LAPKT-dev

Andrea Micheli et al. SoftwareX 29 (2025) 102012
[23] Barreiro J, Boyce M, Do M, Frank J, Iatauro M, Kichkaylo T, et al. Europa: A
platform for ai planning, scheduling, constraint programming, and optimization.
In: 4th international competition on knowledge engineering for planning and
scheduling. 2012, p. 6–7.

[24] André F, Daubert E, Nain G, Morin B, Barais O. F4plan: An approach to build
efficient adaptation plans. In: International conference on mobile and ubiquitous
systems: computing, networking, and services. Springer; 2010, p. 386–92.

[25] McGreggor D, Nau D. Pyhop: a simple hierarchical task network (htn) planner
written in python. 2024, https://github.com/oubiwann/pyhop.

[26] Gerevini AE, Percassi F, Scala E. An effective polynomial technique for compiling
conditional effects away. In: Association for the advancement of artificial
intelligence conference. 2024, p. 20104–12.

[27] Nebel B. On the compilability and expressive power of propositional planning
formalisms. J Artificial Intelligence Res 2000;12:271–315.

[28] Bonassi L, Gerevini AE, Scala E. Dealing with numeric and metric time con-
straints in PDDL3 via compilation to numeric planning. In: Association for the
advancement of artificial intelligence conference. 2024, p. 20036–43.

[29] Tosello E, Bonel P, Buranello A, Carraro M, Cimatti A, Granelli L, et al.
Opportunistic (re)planning for long-term deep-ocean inspection: An autonomous
underwater architecture. IEEE Robot Autom Mag 2024;31(1):72–83.

[30] Hastham Sathiya Satchi Sadanandam S, Stock S, Sung A, Ingrand F, Lima O,
Vinci M, et al. A closed-loop framework-independent bridge from AIPlan4EU’s
unified planning platform to embedded systems. In: ICAPS 2023 workshop on
planning and robotics. 2023.

[31] Taitler A, Alford R, Espasa J, Behnke G, Fišer D, Gimelfarb M, et al. The 2023
international planning competition. AI Mag 2023;45(2):280–96. http://dx.doi.
org/10.1002/aaai.12169.
6

http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb23
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb24
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb24
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb24
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb24
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb24
https://github.com/oubiwann/pyhop
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb26
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb26
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb26
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb26
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb26
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb27
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb27
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb27
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb28
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb28
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb28
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb28
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb28
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb29
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb29
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb29
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb29
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb29
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://refhub.elsevier.com/S2352-7110(24)00382-0/sb30
http://dx.doi.org/10.1002/aaai.12169
http://dx.doi.org/10.1002/aaai.12169
http://dx.doi.org/10.1002/aaai.12169

	Unified Planning: Modeling, manipulating and solving AI planning problems in Python
	Motivation and Significance
	Related Work
	Software Description
	Software architecture
	Software functionalities

	Illustrative Examples
	Impact
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

