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Abstract

Automated planning is one of the foundational areas of Al
Since a single planner unlikely works well for all tasks
and domains, portfolio-based techniques become increas-
ingly popular recently. In particular, deep learning emerges as
a promising methodology for online planner selection. Owing
to the recent development of structural graph representations
of planning tasks, we propose a graph neural network (GNN)
approach to selecting candidate planners. GNNs are advan-
tageous over a straightforward alternative, the convolutional
neural networks, in that they are invariant to node permuta-
tions and that they incorporate node labels for better infer-
ence.

Additionally, for cost-optimal planning, we propose a two-
stage adaptive scheduling method to further improve the like-
lihood that a given task is solved in time. The scheduler may
switch at halftime to a different planner, conditioned on the
observed performance of the first one. Experimental results
validate the effectiveness of the proposed method against
strong baselines, both deep learning and non-deep learning
based.

Introduction

Automated planning is one of the foundational areas of Arti-
ficial Intelligence research (Russell and Norvig 1995). Plan-
ning is concerned with devising goal-oriented policies exe-
cuted by agents in large-scale state models. Since planning
is intractable in general (Chapman 1987) and even classi-
cal planning is PSPACE-complete (Bylander 1994), a sin-
gle algorithm unlikely works well for all problem domains.
Hence, surging interest exists in developing portfolio-based
approaches (Seipp et al. 2012; Vallati 2012; Cenamor, de la
Rosa, and Ferndndez 2013; Seipp et al. 2015), which, for
a set of planners, compute an offline schedule or an on-
line decision regarding which planner to invoke per plan-
ning task. While offline portfolio approaches focus on find-
ing a single invocation schedule that is expected to work well
across all planning tasks, online methods learn to choose the
right planner for each given task. Most online methods use
handcrafted features for learning (Cenamor, de la Rosa, and
Fernandez 2016).

Recent advances in deep learning has stimulated increas-
ing interest in the use of deep neural networks for online
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portfolio selection, alleviating the effort of handcrafting fea-
tures. A deep neural network may be considered a machin-
ery for learning feature representations of an input object
without the tedious effort of feature engineering. For ex-
ample, convolutional neural networks (CNN) take the raw
pixels as input and learn the feature representation of an
image through layers of convolutional transformations and
abstractions, which result in a feature vector that captures
the most important characteristics of the image (Krizhevsky,
Sutskever, and Hinton 2012). A successful example in the
context of planning is Delfi (Katz et al. 2018), which treats
a planning task as an image and applies CNN to predict the
probability that a certain planner solves the task within the
time limit. Delfi won the first place in the Optimal Track of
the International Planning Competition (IPC) 2018.

As planning tasks admit state transition graphs that are
often too big to fit in any conceivable size memory, sev-
eral other graphs were developed to encode the structural
information. Two prominent examples are the problem de-
scription graph (Pochter, Zohar, and Rosenschein 2011),
for a grounded task representation, and the abstract struc-
ture graph (Sievers et al. 2017), for a lifted representation.
Both graphs are used in classical planning for computing
structural symmetries (Sievers et al. 2017; Domshlak, Katz,
and Shleyfman 2012). The most important use of structural
symmetries is search space pruning, considerably improv-
ing the state-of-the-art. The lifted structural symmetries are
also found useful for faster grounding and mutex generation
(Roger, Sievers, and Katz 2018).

Owing to the development of these structural graphs, we
propose a graph neural network (GNN) approach to learn
the feature representation of a planning task. A proliferation
of GNN architectures emerged recently (Bruna et al. 2014;
Defferrard, Bresson, and Vandergheynst 2016; Li et al. 2016;
Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017; Gilmer et al. 2017). They have two advantages over
CNNs for graph inputs. First, GNNs address the limitation
of images that are not invariant to node permutation. Second,
GNNs incorporate node and edge attributes that produce a
richer representation than does the image surrogate of the
graph adjacency matrix alone. In this work, we explore the
use of two representative GNNs—graph convolutional net-
works (Kipf and Welling 2017) and gated graph neural net-
works (Li et al. 2016). The former is convolutional, which
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Figure 1: An example planning task (left) with its grounded graph representation (middle) and the lifted one (right). The task,
blocksworld, uses a gripper to rearrange a set of blocks from an initial configuration to the goal configuration. The coloring of
the graph nodes indicate node labels. For more details, see the section “Graph Construction.”

extends convolution filters for image patches to graph neigh- et al. 2015) were developed to reduce the search effort,
borhoods. The latter is recurrent, which treats the represen- producing sophisticated search algorithms (Edelkamp, Kiss-
tation of a graph node as a dynamical-system state that can mann, and Torralba 2015; Gnad and Hoffmann 2015). All
be recurrently updated through neighborhood aggregation. these techniques can be used interchangeably. Moreover,
A key difference between the two is whether network pa- most of them are highly parameterized, allowing to construct
rameters are shared cross layers, similar to that between a many possible cost-optimal planners.
CNN and a recurrent neural network. Because of the intractability of planning, a single plan-
With the use of GNNs, we in addition consider the prob- ner unlikely works well across all possible domains. Some
lem of cost-optimal planning, whose goal is to solve as many planners excel on certain tasks, while some on others. How-
tasks as possible, each given a time limit, with cost-optimal ever, given a task, it is unclear whether a particular planner
planners. We propose a two-stage adaptive scheduling ap- works well on the task without actually running it. With a
proach that enhances the likelihood of task solving within large number of planners, especially in resource constrained
the time limit, over the usual approach of using a single plan- situations, it is infeasible to try all of them until a good one
ner for the whole time span. The proposal is based on the is found. Hence, it is desirable to predict the performance of
observation that if a planner solves a given task in time, its the planners on the task and select the best performing one.
execution is often rather quick. Hence, we divide the time One approach of making such a selection is machine
interval in two equal halves and determine at the midpoint learning based on handcrafted features (Cenamor, de la
whether to change the planner, should it be still running at Rosa, and Fernandez 2016), which include the number of ac-
that time. Experimental results show that the proposed adap- tions, objects, predicates in the planning task, and the struc-
tive scheduling consistently increases the number of solved ture of the task’s causal graph. This approach worked rea-
tasks, compared with the use of a single planner. sonably well in practice for non-optimal planning, winning
the first place in IPC 2014. However, even the updated ver-
. . sion, whose portfolio included top performing planners at
Planning and Planner Selection IPC 2018 (e.g., the one presented by (Katz and Hoffmann
Planning algorithms generally perform reachability anal- 2014)), performed poorly in this competition, ranked only
ysis in large-scale state models, which are implicitly de- 12th.
scribed in a concise manner via some intuitive declara- To the best of our knowledge, the only existing cost-
tive language (Russell and Norvig 1995; Ghallab, Nau, and optimal planner that is based on online planner selection is
Traverso 2004). One of the most popular approaches to clas- Delfi (Katz et al. 2018). Delfi treats planning tasks as im-
sical planning in general and to cost-optimal planning in par- ages and selects a planner through training a CNN to predict
ticular is state-space heuristic search. The key to this ap- which planner solves the given task in time. Specifically, a
proach is to automatically derive an informative heuristic planning task is formulated as a certain graph, whose adja-
function h from states to scalars, estimating the cost of the cency matrix is converted to a black-and-white image, which
cheapest path from each state to its nearest goal state. The in turn is resized to 128 x 128, becoming grayscale. A CNN
search algorithms then use these heuristics as search guides. is used to perform image classification.
If A is admissible (that is, it never overestimates the true cost Two versions of Delfi were submitted to IPC 2018, differ-
of reaching a goal state), then search algorithms such as A* ing in the way the planning task is represented. Delfil works
(Hart, Nilsson, and Raphael 1968) are guaranteed to provide on the lifted representation of the task, based on PDDL’s ab-
a cost-optimal plan. stract structure graph (ASG) (Sievers et al. 2017); whereas
Over the years, many admissible heuristics were devel- Delfi2 works on the grounded representation, based on
oped to capture various aspects of planning tasks; see, e.g., the problem description graph (PDG) (Pochter, Zohar, and
(Edelkamp 2001; Helmert et al. 2014; Helmert and Domsh- Rosenschein 2011). Both graphs have additional features
lak 2009; Haslum, Bonet, and Geffner 2005). Further, search (e.g., node labels), which however are ignored when being

pruning techniques (Wehrle and Helmert 2014; Shleyfman converted to an image.



Graph Construction

In this work, we reuse the graphs built by Delfi, incorpo-
rating additionally node labels. Figure 1 shows a classical
planning example, blocksworld, with its two graphs. For il-
lustrative purpose only the three-block version is shown; the
problem is NP-hard (Gupta and Nau 1992).

For the construction of ASGs, planning tasks correspond
to abstract structures, which include actions, axioms, the ini-
tial state, and the goal. Nodes are labeled by their types; e.g.,
action, axiom, predicate, and object. Edges encode the inclu-
sion hierarchy of the abstract structures.

For the construction of PDGs, there are nodes for all task
facts, variables, actions, conditional effects, and axioms.
Each node type has a separate label, further divided by the
action cost in the case of action nodes, and whether the fact
is initially true and required in the goal, in the case of facts.
Edges connect facts to their variables, actions to their con-
ditional effects, conditional effects to their effect facts, con-
dition facts to their conditional effects, precondition facts to
their actions and axioms, and actions and axioms to their
unconditional effect facts.

Planner Selection with Graph Neural Nets

Given a portfolio of planners, we model the selection prob-
lem as predicting the probability that each planner fails to
solve a given task in time. Then, the planner with the low-
est probability is selected for execution. Denote by G a task,
G = {G} the space of tasks, and D the size of the portfolio.
Parameterized by 6 € O, the problem amounts to learning a
D-variate function f : G x © — [0, 1]P that computes the
probabilities for all planners in the portfolio.

Let S = {(G,y)} be the set of task-label pairs for train-
ing, where y € {0,1}? is the ground-truth labeling vector,
whose element y; denotes the fact whether planner j fails to
solve the task in time:

ey

_ [0, if execution time of j does not exceed T,
Yi= 1, otherwise.

Then, the learning amounts to finding the optimal parameter
6 that minimizes the cross-entropy loss function

D
LO)=— > Y ylogf;(G,0)

(Gy)es, j=1
+ (1 —y;)log(1 — f5(G,0)).

Learning Graph Representations

Since a planning task is formulated as a graph, we write G =
(V,E), where V is the node set and E is the edge set. For
calculus, the function f requires a vectorial representation
he of the graph G. Deep learning uses deep neural networks
to compute this vector, rather than handcrafting. In our work,
the design of f consists of three steps:

1. Parameterize the vectorial representation h,, for all nodes
velV.

2. Form the graph representation as a weighted combination
of hy:

hG = Z avh1J7 (2)
veV
where «,, denotes the attention weight, scoring in a sense
the importance of the contribution of each node to the
overall representation of the graph. These weights depend
on the node representations h.,,.

3. Parameterize f as a feedforward neural network, taking
hg as input:

f(G,0) = sigmoid(Wyygiha)- 3)

The parameter set 6 thus includes the parameter matrix
Wiogit and all the parameters in h, and «,. Note the use
of the sigmoid activation function, such that each element
of the output vector is an independent probability. This is
in contrast to the multiclass classification scenario, where
the softmax activation function is used such that the out-
put is a probability distribution.

Graph neural networks differ in the parameterizations of
the node representation h,, and possibly the attention weight
a,. In this work, we consider two types of GNNs: graph
convolutional networks and gated graph neural networks.

Graph Convolutional Networks (GCN)

GCN (Kipf and Welling 2017) generalizes the convolution
filters for image patches to graph neighborhoods. Whereas
an image patch contains a fixed number of pixels, which may
be handled by a fixed-size filter, the size of a node neighbor-
hood varies. Hence, the convolution filter for graphs uses
a parameter matrix to transform each node representation
computed from the past layer, and linearly combines the
transformed representations with certain weights based on
the graph adjacency matrix.

Specifically, let ¢ be the layer index, orient the node rep-

resentations hq(,t) as row vectors, and stack them to form the
matrix H(®). A layer of GCN is defined as

HY = o(AHOW®),

Here, W®) is the parameter matrix, A is a normalization of
the adjacency matrix A, and o is an activation function (e.g.,
ReLU). Clearly, the combination weights are nothing but the

rows of A. The normalization is defined as
A=D"2AD"%, A= A+I, D =diag(d)), di =Y  Au.
k

Using an initial feature matrix X (which, for example,
can be defined based on node labels) as the input H ©) q
few graph convolutional layers produce a sophisticated rep-
resentation matrix H (), whose rows are treated as the final
node representations h,. Orient them back as column vec-
tors; then, the attention weights are defined by using a feed-
forward layer

o, = Sigmoid(w;lte [hgT) ; hv(jo)]), )

where wg, is a parameter vector. Hence, the overall param-
eter set for the model f by using the GCN architecture is

0 = {Wiogt, wyae, WO, WO, w0y,



Gated Graph Neural Networks (GG-NN)

The architecture of GG-NN (Li et al. 2016) is recurrent
rather than convolutional. In this architecture, the node rep-
resentation is treated as the state of a dynamical system and
the gated recurrent unit (GRU) is used to update the state
upon a new input message:

R = GRU(AS), m{+1).
The message mffﬂ) is an aggregation of the transformed
states for all the neighboring nodes of v. Specifically, de-
note by in(v) and out(v) the sets of in-neighbors and out-
neighbors of v, respectively, and let Wi, and W, be the

corresponding parameter matrices shared by all graph nodes
and recurrent steps. The message is then defined as

SRR DI AV ISR SR AW

u€in(v) u’ €out(v)

Similar to GCN, GG-NN may use the initial features for

each node as the input hS,‘” and produce hS,T) as the final
node representation h.,, through 7T recurrent steps. Thus, the
attention weights o, may be computed in the same manner
as (4). Therefore, the overall parameter set for the model f

by using GG-NN is
0 = {Wiogit, Weate» Win, Wour, and parameters of GRU}.

Discussions

The original GCN architecture proposed by (Kipf and
Welling 2017) defines representations for only the nodes
but not the overall graph. Here, we use the unified frame-
work (2) to define the graph representation, which essen-
tially is a global pooling of the node representations with
weights. The definition of the weights (4) is inspired by
the attention mechanism (Bahdanau, Cho, and Bengio 2015;
Vaswani et al. 2017) popularly used nowadays for sequence
models. This definition is also simpler than that of the origi-
nal GG-NN architecture (Li et al. 2016).

One variant of the attention weights in (4) is that the pa-
rameter vector wgye may not be shared by the planners. In
other words, for each planner j, a separate parameter Weae,
is used to compute the attention weights o, ; and subse-
quently the graph representation hg ; and the predictive
model f;(G,0) = sigmoid(ﬂ/l;rgn,jhg)j). In this manner,
node representations are still shared by different planners,
but not the graph one. Such an approach may be used to in-
crease the capacity of the model f, which sometimes works
better than using a single weye.

The original GG-NN architecture incorporates also edge
labels by using a different pair of parameter matrices
Win,es » Wou,e for each edge type e. This idea may easily
be used to extend GCN: Replace the parameter matrix W (*)
by We(t) for different types of edges when performing con-
volution. In our context, however, no edge labels exist and

hence in the preceding subsection we present only the sim-
plest version of GG-NN.

Adaptive Scheduling

When the goal is to solve a given task within a time limit
T (but not how quickly it is solved), one may try a second
planner if she “senses” that the selected one unlikely com-
pletes in time. Such a scenario may occur when the model
f described in the preceding section is insufficiently accu-
rate. Then, we offer a second chance to reevaluate the prob-
ability that the currently invoked planner cannot complete
within the rest of time allowance, versus the probability that
a separate planner fails to solve the task in this time span.
If the former probability is lower, we have no choice but
to continue the execution of the current planner; otherwise,
we switch to the latter one. The intuition comes from the
observation that if a planner solves a task in time, often it
completes rather quickly. Hence, the remaining time may be
sufficient for a second planner, should its failure/success be
accurately predicted.

To formalize this idea, we set the time of reevaluation at
T'/2. We learn a separate model g that predicts the probabil-
ities that each planner fails to solve the task before timeout,
conditioned on the fact that the current planner p needs more
time than 7'/2. We write the function g : G x [D] x © —
[0, 1]P, where [D] denotes the set of integers from 1 to D,
and parameterize it as

9(G,p,by) = Sigmojd(I/VlIgithG + Whaep),

where ¢, € {0, 1}? is the one-hot vector whose pth element
is 1 and O for others.

Compare this model with f in (3). First, we introduce an
additional parameter matrix Wy to capture the conditional
fact. Second, the graph representation h¢ reuses thatin f. In
other words, the two models f and g share the same graph
representation but differ in the final prediction layer.

Training Set

One must construct a training set S, for learning the model
g. One approach is to reuse all the graphs in the training
of the model f. For every such graph G, we pick the plan-
ners p whose execution time exceeds 7'/2 and form the pairs
(G, p). For each such pair, we further construct the ground-
truth labeling vector z € {0,1}” to form the training set
S, = {(G.p,)}.

The construction of the labeling vector follows this ratio-
nale: For any planner j different from p, because the time
allowance is only T'/2, straightforwardly z; = 0 if j solves
the task in time less than 7'/2; otherwise, z; = 1. On the
other hand, when j coincides with p, the continued execu-
tion of j gives a total time allowance T'. Hence, z; = 0 if j
solves the task in time less than 7" and otherwise z; = 1. To
summarize,

0, if j = p and execution time of j is < T,
1, if j = p and execution time of j is > T,
0, ifj # p and execution time of j is < T'/2,
1, if j # p and execution time of j is > T'/2.

zj =

The size of the training set .S, constructed in this manner
may be smaller, but more likely greater, than that of .S, de-
pending on the performance of the planners on each task. In



Table 1: Summary of data set.

Grounded Lifted

# Graphs, train/val/test
# Nodes, min/max/mean/median

# Node labels

6/47,554 /2,056 /580
Edge-Node ratio, min/max/mean/median  0.88 / 10.65/3.54/3.28

2,008 /286 / 145

51/238,909 /3,001 /1,294
1.04/1.82/1.49/1.47

6 15

practice, we find that |.S,| is a few times of |.S|. Such a size
does not incur substantially more expense for training.
With the training set defined, the loss function is

D
Ly(by) = — Z sz log g; (G, p,by)

(G,p,z)€S,, =1

Two-Stage Scheduling

We now have two models f and g. In test time, we first eval-
vate f and select the planner p with the lowest predicted
probability for execution. If it solves the task before half-
time 7/2, we are done. Otherwise, at halftime, we evaluate
g and obtain a planner j with the lowest predicted probabil-
ity. If j = p, we do nothing but to let the planner continue
the job. Otherwise, we terminate p and invoke 7, expecting a
successful execution.

Experiments
Data Set and Portfolio

To evaluate the effectiveness of the proposals, we prepare
a data set composed of historical and the most recent IPC
tasks.! Specifically, the historical IPC tasks form the train-
ing and validation sets, whereas those of the year 2018 form
the test set. A small amount of tasks are ignored, the reason
of which is explained in the next paragraph. When perform-
ing the training/validation split, tasks in the same domain are
not separated in two sets. Hence, we randomly select a few
domains to form the validation set, such that its size is ap-
proximately 10% of that of the training set. Summary of the
resulting data set is given in Table 1.

We use the same portfolio as did (Katz et al. 2018), which
makes it convenient to compare with the image-based CNN
approach. The tasks unsolvable by any of the planners in the
portfolio within the time limit 7" = 1800s are ignored in the
construction of the data set. In particular, some of these tasks
occur in IPC 2018.

Each task in the data set has two graph versions, grounded
and lifted, as explained earlier. For each version, the size of
the graphs has a very skewed distribution (whereas the spar-
sity distribution is relatively flat), with some graphs being
particularly large. The table suggests that the lifted version
is generally larger than the grounded one. However, because
the distribution is rather skewed, we plot additionally in Fig-
ure 2 the individual graph sizes to offer a complementary
view. In this figure, the tasks are sorted according to the size

'nttps://ipc2018.bitbucket.io/

of the grounded graph. Then, for each task, the sizes of the
graphs are normalized. The blue curve to the far right end
indicates that the lifted version is much smaller for the tasks
with the largest grounded graphs.

—— grounded
— lifted

relative node count

il ‘HIH AT

i

.|\| T

107!

0 500 1000 1500 2000 2500
tasks

Figure 2: Node counts of the lifted graphs relative to that of
the grounded ones.

Training Details

For the training of the neural networks, we use the Adam
optimizer (Kingma and Ba 2015) with learning rate 0.001.
We slightly tune other hyperparameters: the number of lay-
ers in GCN and steps in GG-NN is selected from {2,4, 6}

and the dimension of the node representations th) is chosen
from {100, 150,200}. Meanwhile, we also tune the archi-
tecture through experimenting with a variant of the attention
weights: replace the parameter vector wgye in (4) by using D
separate copies, one for each planner (see discussions in an
earlier section). Because of memory limitation, graphs with
more than 100, 000 nodes are ignored for training.

Effectiveness of Graph Neural Networks

We compare the performance of several types of methods, as
summarized in Table 2. In addition to the golden criterion,
the percentage of solved tasks, the column “eval. time” is
the time needed for selecting a planner, which includes the
time to convert a planning task to a graph, that to convert
the graph file format, and that to evaluate the neural net-
work model. This time is overhead and hence for any rea-
sonable method, it should not occupy a substantial portion
of the overall time allowance 1" = 1800s.

The first two methods are weak baselines. As the name
suggests, “random planner” uniformly randomly selects a
planner, whereas “single planner for all tasks” uses the one



Table 2: Percentage of solved tasks in the test set and average
evaluation time of the method.

Method Solved  Eval. Time
Random planner 60.6% 0
Single planner for all tasks 64.8% 0
Complementary?2 84.8% 0
Planning-PDBs 82.0% 0
Symbolic-bidirectional 80.0% 0
Image based, CNN, grounded 73.1% 11.00s
Image based, CNN, lifted 86.9% 3.16s
Graph based, GCN, grounded 80.7% 23.15s
Graph based, GCN, lifted 87.6 % 9.41s
Graph based, GG-NN, grounded 77.9% 14.53s
Graph based, GG-NN, lifted 81.4% 11.44s

that solves the most number of tasks in the training set. Nei-
ther method takes time to perform selection. The percentage
of solved tasks for the random method is the expected value.

The next three are state-of-the-art planing systems, not
based on deep learning. These systems are the top per-
formers of IPC 2018, second only to Delfi. Both Com-
plementary2 and Planning-PDBs perform A* search with
heuristic guidances based on sophisticated methods for pat-
tern databases creation (Franco, Lelis, and Barley 2018;
Martinez et al. 2018). Symbolic-bidirectional, on the other
hand, is a baseline entered into the competition by the orga-
nizers. As the name suggests, it runs a bidirectional symbolic
search, with no heuristic guidance (Torralba et al. 2017).
These three methods are not portfolio based and hence no
time is needed for planner selection; however, there are
rather competitive for cost-optimal planning.

Followed are deep learning methods: the two CNNs come
from Delfi and the GCNs and GG-NNs are our proposal.
For each network architecture, the performance of using
grounded/lifted inputs are separately reported.

The results in Table 2 show that the planners in the portfo-
lio have good qualities: with close to twenty planners, even a
random choice can solve more than 60% of the tasks. Mean-
while, the state-of-the-art methods, even though not based
on deep learning, set a high bar. Delfi, based on CNN, yields
a better result for the lifted graphs, but not so much for the
grounded ones. Further, one of our GNNs (GCN on lifted
graphs) achieves the best performance, whereas the other
three GNNs outperform CNN on grounded graphs.

Using either CNNs or GNNSs, it appears consistently that
the lifted graphs yield better results than do the grounded
ones. Moreover, for the same neural network architecture,
they also require less evaluation time. One reason is that
lifted graphs are less expensive to construct, albeit being
larger on average. More discussions in this regard are given
in a later subsection.

We confirm from the table that for all deep learning meth-
ods, the time for selecting a planner is negligble compared
with the allowed time for executing the planner.

We further plot a curve for each method regarding the
number of solved tasks as time evolves; see Figure 3. To
avoid cluttering, only a few are shown. The oracle curve on

the top is the ceiling performance obtained by always select-
ing the fastest planner for each task. For all curves, one sees
a trend of diminishing increase, indicating that most of the
tasks are solved rather quickly.

60 -

# solved tasks

oracle

GCN lifted
CNN lifted
GG-NN lifted
04 single best

T T T T T T T T
0 250 500 750 1000 1250 1500 1750
runtime in s

Figure 3: Number of solved tasks with respect to time. “Ora-
cle” is the ceiling performance obtained by always selecting
the fastest planner for each task. Curves for the grounded
graphs are not shown to avoid cluttering.

Effectiveness of Adaptive Scheduling

The oracle curve in Figure 3 confirms our intuition for adap-
tive scheduling: because often a planner solves a task rather
quickly, allowing halftime for a second chance suffices for
an alternative planner to complete the task. Hence, we com-
pare the performance of the single selection with that of
adaptive scheduling.

95%

Il Single planner
Adaptive
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o 0% T 88.3% e e
< = 87.6%
8
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e
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Figure 4: Percentage of solved tasks.

Figure 4 reports the results. One sees that adaptive
scheduling consistently increases the percentage of solved
tasks on both GNN architectures and both graph versions. It
pushes the best performance 87.6% seen in Table 2 to the
new best 89.7%.

For a finer grained analysis, we focus on the tasks for
which adaptive scheduling changes the planner at halftime
and divide them in four groups, according to whether the



original/new planner solves the task. The gain of adaptive
scheduling must come from a higher number of tasks solv-
able by the new but not the original planner, than that solv-
able by the original but not the new one. Table 3 lists these
numbers. Adaptive scheduling changes the fate of quite a
few tasks and indeed in more cases than other, the new plan-
ner successfully solve the task but the original one cannot.

Table 3: Fine grained analysis of adaptive scheduling. In
each subtable, tasks for which adaptive scheduling changes
the planner in the second half are divided in four groups.

GCN, grounded
Original planner New planner  # Tasks

solvable solvable 8
solvable unsolvable 2
unsolvable solvable 13
unsolvable unsolvable 11
GCN, lifted
Original planner New planner # Tasks
solvable solvable 1
solvable unsolvable 7
unsolvable solvable 10
unsolvable unsolvable 7

GG-NN, grounded
Original planner New planner  # Tasks

solvable solvable 5
solvable unsolvable 6
unsolvable solvable 16
unsolvable unsolvable 4

GG-NN, lifted
Original planner New planner  # Tasks

solvable solvable 8
solvable unsolvable 5
unsolvable solvable 16
unsolvable unsolvable 7

Discussions on Grounded versus Lifted Graphs

Throughout the paper, we referred to the graphs built from
ASGs (that represent PDDL tasks) as the lifted version,
while those from PDGs the grounded version, which is cus-
tomary in the planning community. Experimental results in
the prior subsections suggest that the former version yields
consistently better results than the latter. It is, however, im-
portant to understand the distinctions between these two ver-
sions, since tradeoffs exist in construction and characteris-
tics.

While in most cases, PDDL describes tasks in the lifted
manner through parameterizing actions and predicates, oc-
casionally the PDDL may already be pre-grounded, with
all actions and predicate parameters instantiated. In such
cases, the lifted version might be comparable to in size,
or even larger than, the grounded one. One additional rea-
son is the existence of static predicates in the lifted version
but not the grounded one. These predicates are often used
to encode roadmaps or arithmetics and they can become

quite large. However, they do not serve any purpose on the
grounded level, since the truth values of these predicates do
not change. Thus, on the grounded level, static predicates
are safely removed.

Beyond the difference in sizes, as the grounded version
encodes grounded actions, which are connected to facts in
their preconditions and effects, such causal relations be-
tween facts are encoded explicitly in the grounded version.
Further, the grounded version is more structured. In the case
of planning tasks without conditional effects, grounded ver-
sions are bipartite graphs, where all edges are from fact to
non-fact nodes, or in the reverse direction. In the case of con-
ditional effects, these versions are tripartite graphs, where
nodes are partitioned into facts, effect condition nodes, and
the rest. Lifted versions have a different structure. Since
nodes encode abstract structures and edges correspond to
the hierarchy among the abstract structures, lifted versions
are directed acyclic graphs. These structural differences may
attribute to the predictive power of the learning models.

Conclusion

Graphs encode the structural information of a planning task.
In this work, we have proposed a graph neural network ap-
proach for online planner selection. This approach outper-
forms Delfi, the winner of the Optimal Track of IPC 2018,
which treats a planning task as an image and applies con-
volutional neural networks for selecting candidate planners.
The appealing results are owing to the representation power
of GNNs that address the lack of permutation invariance and
the negligence of node-labeling information in CNNs.

We have also proposed an adaptive scheduling approach
to compensate the inaccuracy of a single predictive model,
through offering a chance for switching planners at halftime,
conditioned on the performance of the previously selected
one. Such an adaptive approach consistently increases the
number of solved tasks, leading to a new state-of-the-art.

Overall, it appears that the lifted graph version is advanta-
geous over the grounded one, because of consistently better
performance. However, on average they are larger in size
and some are particularly enormous. Moreover, the size dis-
tribution is highly skewed in both versions. These factors
impose substantial challenges for the batch training of the
neural networks. As a compromise, we cut some overly large
graphs. An avenue of future research is to investigate more
efficient and scalable training approaches.

Another line of future work is to use GNNs and to ex-
tend the idea of adaptive scheduling for other types of prob-
lems, including satisficing planning, agile planning, and
cost-bounded planning.
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