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Abstract

Planning-based methods to guide switched hybrid sys-
tems from an initial state into a desired goal region
opens an interesting field for control. The idea of the
Domain Predictive Control (DPC) approach is to gener-
ate input signals affecting both the numerical states and
the modes of the system by stringing together atomic
actions to a logically consistent plan. However, the ex-
isting DPC approach is restricted in the sense that a dis-
crete and pre-defined input signal is required for each
action. In this paper, we extend the approach to deal
with symbolic states. This allows for the propagation
of reachable regions of the state space emerging from
actions with inputs that can be arbitrarily chosen within
specified input bounds. This symbolic extension enables
the applicability of DPC to systems with bounded inputs
sets and increases its robustness due to the implicitly
reduced search space. Moreover, precise numeric goal
states instead of goal regions become reachable.

Introduction
Dynamic systems are usually models derived from real world
physics based on differential equations. Guiding such sys-
tems from an initial state into a desired goal state becomes
difficult if the system can additionally switch between sev-
eral modes containing e.g. sensors of different accuracies,
actuators of different capabilities and controllers affecting
the system dynamics in different ways. This class of systems
is often referred to as switched dynamic systems (Liberzon
2003). Particularly challenging is the case of logical depen-
dencies between the modes of a switched dynamic system.

A planning based method to control this kind of system is
Domain Predictive Control (DPC) introduced by Löhr et al.
(2012). It provides a domain-independent planning frame-
work for modelling and solving planning problems derived
from switched hybrid systems. Therefore, it deals with a set
of actions called domain model each containing time dis-
crete linear differential equations of each mode of the hy-
brid system. Heuristic search methods (Pearl 1984) are used
to explore reachable states along minimal future cost esti-
mates with the purpose to find a state satisfying the goal
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Figure 1: Modelling e.g. heaters, gas pedals or valves as pa-
rameters of actions leads to more realistic domains.

conditions. Preconditions and logical effects of actions en-
sure logically consistent state transitions. The resulting plan
contains a sequence of actions connecting the initial state
with the goal state and provides both a control signal and a
mode switching strategy.

Although DPC has shown to find effective control strate-
gies for switched hybrid systems in various domains (Löhr
et al. 2012; 2013), there are two significant drawbacks which
limit DPC’s practical applicability: First, actions in the do-
main model rely on input signals of the system that have
to be pre-specified for each action when setting up the do-
main model. While this is reasonable for actuators that can
be switched between different inputs, actuators often pro-
vide a bounded continuous input spectrum as shown in Fig-
ure 1. In DPC, such bounded inputs are modelled by a sam-
pling workaround, yielding a coarse approximation of the
system’s capabilities. Second, the desired goal state cannot
be reached precisely, but is considered as reached if a state
is found that is reasonably close. Both of these drawbacks
stem from the discrete handling of input signals.

In this paper, we generalize DPC to deal with continu-
ous bounded input signals and symbolic goal recognition.
Overall, our approach connects planning, control theory and
reachability analysis (Le Guernic 2009).

Scope
In this section we recall Domain Predictive Control and em-
phasize the need for more expressive domain models.

Domain Predictive Control
DPC propagates reachable states using time-discretized dy-
namics of continuous systems modelled as actions. A state
s = 〈x, l〉 consists of a n dimensional numerical state vector
x ∈ Rn and a vector l containing the logical variables. Each



action ai = 〈P,E〉 has the numerical effect E mapping the
numerical state x to its successor state x′ ∈ Rn by

E : x′ = Φix + Ψi (1)
which corresponds to a linear transformation using the state
transition matrix Φi ∈ Rn×n and the addition of an external
input vector Ψi ∈ Rn. The action can be applied to a state, if
the preconditions P are fulfilled. Beside the numerical effect
each action may have additional logical effects. For any lin-
ear time-invariant dynamical system ẋ = Ax +Bu (Kailath
1980) state transition matrices (Moler and van Loan 1978;
2003) can be obtained by

Φi = eAi δi , (2)

where Ai ∈ Rn×n corresponds to an arbitrary dynamic ma-
trix and δi is the duration of an action. The dynamics is
possibly influenced by feedback control in different modes.
Therefore we can switch between several modes denoted by
i from action to action. The effect of external inputs (e.g.
forces acting on the system) over the duration δi is given by

Ψi =

∫ δi

0

eAi (δi−τ)Bi ui dτ. (3)

where ui ∈ Rm is the input vector which has to be pre-
defined over the duration δi for each action ai. The state
transition matrix Φi and the discrete input Ψi are com-
puted in a preprocessing step in order to propagate the states
quickly using Equation 1.

Need for Effects on Sets of States
The main drawback of the current approach lies in Equa-
tion 3. Since the input signal u has to be pre-defined when
setting up the domain model it is difficult to model inputs
which can arbitrarily be chosen from a closed input set U .
A common workaround is to sample the input set uj ∈ U
by j ∈ {1, ..., z} input signals covering only a subset of z
elements, see Figure 1. Furthermore, each sampled input is
modelled as a separate action which leads to a heavily in-
creased branching factor of the domain. To avoid the blow-
up of the search space and to cope with the continuity of the
input set we want do deal with bounded input sets as param-
eters of actions. This increases the applicability of Domain
Predictive Control mainly due to two reasons:
• Real world actuators can provide an input spectrum rang-

ing from a minimal input to a maximal input and it is the
task of the control algorithm to choose a suitable input
signal to bring the system into the desired goal state. Ide-
ally, this should not be artificially restricted in advance
when setting up the domain model.

• Reachability is another important aspect. In the previ-
ous DPC approach the goal is said to be satisfied if a
planned state is ”close enough” to the desired setpoint.
The search can fail in cases of small target regions or
coarse discretizations of the dynamics. With the propa-
gation of symbolic states a plan is found if the target set-
point is part of the propagated reachable set of states. We
will show later that we can deduce an explicit input sig-
nal from this plan which leads the system from the initial
state to the goal state precisely.
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Figure 2: Illustration of a zonotope Z with three generators.

It is worth to mention that there are many possibilities
to describe closed sets of a vector space e.g. using boxes,
ellipsoids, or support functions. A comparison between set
representations is given in Le Guernic (2009). In the next
section we identify zonotopes (Grunbaum et al. 1967) as a
suitable representation for the symbolic approach.

Methods
In this section we introduce methods known from reachabil-
ity analysis to cope with the new class of action effects E
that deal with symbolic states.

Zonotopes
Zonotopes Z = 〈c, G〉 are a sub-class of polytopes which
consist of a center vector c ∈ Rn and a set of k generators
gj which are also part of the n dimensional vector space and
stored as column vectors in matrixG. It contains all points in
the vector space reachable by the linear system of equations

Z =
{

c +

k∑
j=0

αj gj : ∀αj ∈ [−1, 1]
}
, (4)

as depicted in Figure 2. Visually the vertices of the set cor-
respond to the convex hull of the points generated by adding
and subtracting consecutively all generators gj ∈ G to the
ends of the emerging vector chains starting with the center
vector c. To avoid confusion we indicate the membership of
the center vector or generators to a certain zonotope by Z.c
and Z.g respectively when dealing with several zonotpes.

Linear Transformations of Zonotopes
Zonotopes can be linearly transformed by a state transition
matrix Φ obtained from a dynamic system as described in
Equation 2. It is defined as a linear transformation of all el-
ements X ′ =

{
Φx : x ∈ X

}
. The successor zonotope is

obtained by the linear transformation of the center vector
and all k generators of the zonotope describing X , i.e.

X .c′ = ΦX .c, and X .g′ = ΦX .g ∀g ∈ G.
This way the homogeneous evolution of sets of states with-
out external input can be described. The homogeneous evo-
lution of an initial set of states described by a zonotope is
shown in Figure 3 for a simple mechanical system.
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Figure 3: Successive linear transformation by Φ = eAδ of a
set of initial states modelled as zonotope X to their succes-
sors after δ = 1 seconds.

Minkowski Sum
The Minkowski sumX⊕Y =

{
x+y : x ∈ X and y ∈ Y

}
is

a new set which contains the sum of all elements contained
in X and Y .

Adding zonotopes under the Minkowski sum yields zono-
topes again which is a clear advantage to other set represen-
tations like e.g. ellipsoids. The Minkowski sum Z = X ⊕ Y
can be obtained by

Z.c = X .c + Y.c, and Z.G = {X .G,Y.G}
with a new set of generators Z.G containing all generators
from X .G and Y.G, as illustrated in Figure 4.

Planning with Reachable Sets
From the methods section we have all ingredients available
to plan with symbolic sets. We define a symbolic state as
a tuple s = 〈l,X〉, which consists of a state variables vec-
tor l containing logical variables and a set of state variable
vectors X each containing numerical variables.

Planning Domain
In this section, we model the planning domain expressing
the capabilities of the hybrid system. LetX ⊂ Rn be a zono-
tope describing a symbolic set of state variable vectors each
consisting of n numeric variables. The closed input set of
an actuator with a minimum possible actuation umin and
a maximum possible actuation umax is symbolically de-
scribed as zonotope U with

U .c =
1

2
(umin + umax), and U .g =

1

2
(umax − umin),

where U .c is the center vector and U .g is the generator. If
the system can use more actuators at once the feasible in-
puts can be chosen from a combined input set generated by
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Figure 4: Illustration of the Minkowski sum Z = X ⊕ Y

the Minkowski sum of the respective zonotopes. The actu-
ation of such a continuous actuator for a duration δi shall
be modelled as action ai. A finite set of such actions O de-
scribes the domain model. We define the effect E of action
ai on the symbolic state X by

E : X ′ = ΦiX ⊕ Ud,i, (5)

where X ′ is the closed set of successor states which are
reachable from X . The linear transformation corresponds to
the natural evolution of the symbolic state over the duration
of one action while the Minkowski sum describes the ad-
ditionally reachable set of states if an actuator is available
for this time. The state transition matrix Φi can be obtained
by Equation 2 and Ud,i is the reachable set driven by an ar-
bitrary input u chosen from Ui. Due to the linearity of the
integral the entities of Ud,i can be obtained from Ui by

Ud,i.c =

∫ δi

0

eAi(δi−τ)Bi Ui.c dτ (6)

Ud,i.g =

∫ δi

0

eAi(δi−τ)Bi Ui.g dτ, ∀g ∈ G.

While the Equations 2 and 6 can be calculated in a pre-
processing step when setting up the domain, effects as in
Equation 5 can be calculated quickly during planning since
the linear transformation and the Minkowski sum are simple
mathematical operations on zonotopes.

Planning Problem
The planning problem is given by an initial state s0 and a
goal state s? = 〈l?, x?〉. The logical part l? can be partially
defined over the logical variables while the numerical part x?
of the goal state is an assignment over the numeric variables.

A trajectory S = 〈s0, s1, . . . , sz〉 connects the initial state
with the goal state such that each 1 ≤ i ≤ z intermediately
generated state si can be generated out of its predecessor
state si−1 by applying an action a ∈ O. The trajectory is
valid if all the conditions of all involved actions are satisfied
at their appropriate time. The sequence of actions generating
a valid trajectory is called a plan if sz complies with the goal
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Figure 5: Zonotope X and the subset X reachable by using
pseudo inverse to obtain the generator coefficients α.

specification s?. This means that for the logical state lz is
part of the partial state l? and for the numerical part that the
propagated symbolic states Xz contains x?.

Checking the Goal
A key question is how we can check whether a propagated
set contains the goal state. Using the set definition from
Equation 4, we letG = [g1, ..., gk] ∈ Rn×k be a matrix con-
taining all k generators as column vectors and define α as a
vector of k generator coefficients. We want to check the set
X = 〈c, G〉 for containing the goal state. Since

x? = c +G α, (7)

the goal x? is part of X if there exists a solution for α under
the constraint αj ∈ [−1, 1] for all j ∈ {1, . . . , k}.

We use a straight forward approach utilizing the pseudo
inverse1 G+ which fulfils G+G = I , where I is the unity
matrix. From Equation 7 we get

α = G+(x? − c) (8)

and x is part of the set if ||α||∞ ≤ 1.
The use of the pseudo inverse needs G to be of full rank2.

If k = n the pseudo inverse becomes the regular inverse and
α can be determined exactly. If k > n there is an infinite
number of possible solutions for α and the pseudo inverse
returns the solution with minimal Euclidean norm. We in-
duce conservatism by saying that the minimum Euclidean
norm of α obtained by the pseudo inverse is also an accept-
able solution regarding the minimum infinity norm. The re-
sult is that ||α||2 ≤ 1 only triggers if x ∈ X ⊆ X as depicted
in Figure 5.

Interpreting the Plan
If we have found a plan with trajectory S = 〈s0, s1, . . . , sz〉
then x? ∈ X z and therefore also x? ∈ Xz . This means only
that the numerical goal is reachable in principle. To actually

1The pseudo inverse G+ is defined as PS+QT , where P and
Q stem from the singularity decomposition G = QSPT and S+ ∈
Rk×n is a diagonal matrix with the inverse singular values of G as
diagonal elements [S+]ii.

2If rank(G) < n the solution of Equation 8 using the pseudo
inverse leads to an α with least square result for (x? − c). One has
to double check Equation 7 by inserting α again to ensure that the
goal was reached.

control the hybrid system into the goal state we have to de-
termine the concrete input signal ui ∈ Ui which has to be
applied for each action during the plan execution such that
the numerical system state x equals x? after plan execution.
The knowledge of α = (αT1 ,α

T
2 , ...,α

T
z )T enables us to de-

termine the input signal guiding the system into the goal by
ui = Ui.c+Ui.Gαi ∈ U which is valid during the execution
of action ai in the time interval t ∈ [ti, ti + δi].

Tracing of the numerical states visited during plan execu-
tion can be done by using the recursive function generating
the successors x(ti + δi) = x(ti) + Ud,i.c + Ud,i.Gαi from
the previous numerical state, starting at the initial numerical
state x(t0) and ending at x(tz) = x?.

Guiding the Search
In order to efficiently find goal states, we need a heuristic
estimation of the effort to reach the numerical goal. The nu-
merical system state is either a certain point in the state space
x or a reachable set X .

The DPC approach dealt with points in the state space and
positive experience was made with heuristic functions that
were based on a weighted error metric. Therefore we obtain
the error e = x∗ − X .c and choose a weighted vector norm
as heuristic value

h = ||W e||◦, (9)

where W is a weighting matrix and ◦ ∈ {1, 2,∞} indi-
cates the absolute norm, the Euclidian norm or the infinity
norm of the weighted error. A weighting is very convenient
for dynamic systems since not all values in e have the same
importance. Via the weighting matrix W the errors can be
scaled to an appropriate ratio.

What is the estimated cost to go for a set X with genera-
tors G? Visually it is the part of the error vector that is not
covered by the zonotope. In the case that the zonotope con-
tains no generators we can directly use Equation 9. If it also
contains a set of generators G we use

h = ||W e||◦ −
1

||α||∞
||W e||◦ (10)

as heuristic value. Note that the goal is reached if the term
1

||α||∞ becomes larger than one. Thus the heuristic value
stays positive during the search and becomes zero or neg-
ative if the goal was reached. The larger the distance be-
tween the predicted zonotope and the goal state, the larger is
||α||∞ and the less is the heuristic value influenced by the
generators of the zonotope.

Case Study
We demonstrate the symbolic DPC approach in a orbital ma-
noeuvre domain similar to the domain used by Löhr et al.
(2013). A satellite is ideally located at the origin of the Local
Vertical Local Horizontal frame (LVLH) after orbit injec-
tion and separation. Deviations in position and velocity due
to the separation from the launcher shall be compensated by
the symbolic DPC approach. The LVLH origin moves with
the orbital velocity around Earth while the V -axis points into
flight direction and the R-axis points towards Earth (Fehse
2003), see Figure 6.



Earth seperation

orbit

injection

rate dampingR

V

Figure 6: Injection of a satellite to a circular target orbit with
subsequent separation and rate damping.

Planning Domain
We are considering a medium sized satellite of 1000 kg
mass. The spacecraft is equipped with one orbit manoeu-
vre thruster which can provide significant force of 2.24 N
up to 10 N but only in one direction of the spacecraft body
frame, which means that the satellite has to be slewed before
a force can be applied into a certain direction. The attitude
control system can reach any attitude within 200 seconds.
The orbital relative dynamics are linearized at the LVLH
frame yielding the dynamic and input matrices

A =

0 0 1 0
0 0 0 1
0 0 0 2( 2π

TP
)

0 3( 2π
TP

)2 −2( 2π
TP

) 0

 , B =

 0 0
0 0
1
m

0
0 1

m

 ,
where TP is the orbit period and m is the mass of the
spacecraft. The system of ordinary differential equations are
known as Hill equations (Hill 1878). We consider a circular
orbit with period of 6000 seconds which corresponds to a
orbit height of about 765 km. The state x = (x, y, vx, vy)T

contains the position and velocity components along the R-
direction and the V-direction of the spacecraft.

Using thruster pulsing the provided force can be scaled
within a continuous input spectrum from umin = 2.24 N to
umax = 10 N. We allow the spacecraft to slew into attitudes
where the force can be applied in flight or opposite to flight
direction (±V -axis) and vertically towards nadir and zenith
(±R-axis). This leads to four actions. The duration of each
action is chosen as δ = 50 seconds. The related state tran-
sition matrix Φ is obtained by Equation 2 and the discrete
input set is obtained by Equation 6. Additionally we model
two actions: a 50 seconds coast action where the thruster is
switched off and a slew action of 200 seconds duration per-
formed from the attitude control system. The correspond-
ing state transition matrix for the slew action is Φslew = Φ4

where also no translational thrust is applied. All actions in-
cluding also the logical effects El and preconditions P are
summarized in Table 1.
Planning Problem
The position and velocity after the separation and rate damp-
ing phase may vary significantly from the desired one at the
origin of the LVLH frame x? = (0, 0, 0, 0)T . We randomly
initialize a set of simulations with an initial position error
x1,2 ∈ [−500 m, 500 m] along V-bar and R-bar and a ve-
locity error of x3,4 ∈ [−1 m

s , 1
m
s ] in both directions, see

Table 2. The attitude after rate damping is known as pV.

action P En El
a1 - X ′ = ΦX -
a2 - X ′ = ΦslewX pV,mV,pR,mR
a3 pV X ′ = ΦX ⊕ Ud,pV ¬mV,¬pR,¬mR
a4 mV X ′ = ΦX ⊕ Ud,mV ¬pV,¬pR,¬mR
a5 pR X ′ = ΦX ⊕ Ud,pR ¬pV,¬mV,¬mR
a6 mR X ′ = ΦX ⊕ Ud,mR ¬pV,¬mV,¬pR

Table 1: Action set defining the domain model O.

Simulation
The simulation part consists of three steps. First a symbolic
reachability analysis is performed using the domain model
and greedy search. Once we have found a plan we gener-
ate the continuous input signal. Finally we perform a nu-
meric time simulation to obtain the continuous trajectory.
The heuristic search is guided by Equation 10. Errors of the
velocity are stronger weighted compared to the position er-
rors by using the diagonal weighting matrix W with ele-
ments W11 = 1,W22 = 1,W33 = 10,W44 = 10 to ob-
tain the heuristic value. It is important to point out that the
weighting is domain dependent and subject to optimization.
Analogous to the design of weighting matrices in optimal
controller synthesis some engineering knowledge is needed
to weight the states properly.

The results are shown in Figure 7. On the left hand side
the trajectory of the numerical time simulation is shown for
each planning problem. They start at the corresponding ini-
tial state (the initial velocity is marked by an arrow) and ends
precisely at the goal state at the origin of the LVLH frame.

The input signal guiding the dynamic system into the goal
state is shown on the right hand side of Figure 7. All ob-
jectives are fulfilled, since the input is not exceeding the
actuator capacity of 10 N at all times. Moreover, the min-
imum input signal does not undercut 2.24 N corresponding
to the minimum force of the thruster. If the direction of the
input signal is changed, the attitude control system performs
a slew manoeuvre with a predefined duration of 200 seconds
where no force is applicable. Again, the plans found provide
a control signal and a switching strategy that is compliant
with the specifications modelled in the domain, here corre-
sponding to different attitudes of the spacecraft.

The computational effort is shown in Table 3 in terms
of explored nodes. Comparing breadth-first search to the
greedy-search using the presented heuristics one can say that
the heuristics work very effectively.

Related Work
The concept of flow tubes is a related idea for planning with
continuous dynamics. It is used by Li and Williams (2008) to
obtain an optimal trajectory within a hull of legal trajectories
called hybrid flow graphs represented by cones for bounded
velocity systems. The solution is obtained by solving mixed
logic (non-) linear programs.

Hybrid planning as model checking (Della Penna, Maga-
zzeni, and Mercorio 2012; Bogomolov et al. 2014) has been
used to solve problems expressed in PDDL+ (Fox and Long



No initial numerical state
P1 x0 = (−370.9106, 104.8375, 0.0079, 0.9009)T

P2 x0 = (−163.2896,−407.6480,−0.6806, 0.5617)T

P3 x0 = (192.5291,−163.7162, 0.8430, 0.4272)T

P4 x0 = (−50.7718,−321.6447, 0.2343,−0.3626)T

P5 x0 = (−39.6511,−416.6847,−0.4382, 0.4576)T

P6 x0 = (108.2207,−135.2274, 0.4653, 0.7224)T

P7 x0 = (433.3637,−456.3211,−0.7784,−0.3377)T

Table 2: Initial states defining one planning problem each.

2006). The work is also related to model checking for hybrid
automata (Henzinger 2000) with the objective to show cor-
rectness by proving that error states are not reachable. Tool
supported symbolic search for this purpose has be done by
Frehse et al. (2011) in the SPACEEX project. The increas-
ing complexity of the representing sets of states are tackled
with tight over-approximations which avoids a growing er-
ror known as wrapping effect (Kühn 1999).

The idea to plan with control inputs based on the future
state evolution of dynamic systems is borrowed from model
predictive control methods (Wang 2009) where errors and
control efforts are optimized over a finite time horizon. Poly-
topes are also utilized by Rubagotti, Trimboli, and Bempo-
rad (2013) to model additive uncertainties and by Trimboli,
Rubagotti, and Bemporad (2011) to cope with parametric
uncertainties in order to deduce stability properties of piece-
wise affine hybrid systems by analysing the bounds of the
emerging reachable sets.

Conclusion
We presented a symbolic extension to the Domain Predic-
tive Control framework that enables the modelling of input
signals as a numeric parameter of actions. We use set repre-
sentations from reachability analysis to handle the resulting
symbolic analysis of the reachable states. We successfully
guide the search based on weighted error norms and pseudo
inverse, while breadth-first search does not provide results
in reasonable time. Current work involves the development
of admissible heuristics for optimal search.

While earlier work on DPC was expressible in standard
planning languages (Fox and Long 2003), this is difficult for
the symbolic extension, since the complexity of the sym-
bolic state expressed by zonotopes increases with the plan
length. Tight under-approximations of the zonotopes as used
by Girard, Le Guernic, and Maler (2006) could become
important to keep the complexity of the set representation
constant. An additional drawback is the requirement of an
obstacle-free numeric state space for the symbolic approach
since the calculation of intersections of zonotopes is known
to be a crucial operation.

However, important issues of earlier work by Löhr et al.
(2012) on DPC could efficiently be tackled by the presented
symbolic approach. First, the precise goal reachability could
be achieved. Second, oversized domains and the correspond-
ing oversized search space can be avoided by expressing
bounded input-sets as parameters of actions. Both is indis-
pensable to provide input signals in reasonable time.

No breadth-first ||W e||2 ||W e||1 ||W e||∞
P1 404647 (11) 290 (16) 250 (16) 509 (12)
P2 37759 (9) 92 (11) 4162 (23) 251 (11)
P3 464666 (11) 202 (16) 282 (19) 130 (12)
P4 1623085 (12) 598 (18) 348 (18) 416 (18)
P5 8146 (8) 54 (9) 298 (21) 69 (9)
P6 1237236 (12) 989 (24) 1093 (25) 1626 (22)
P7 48069 (9) 63 (16) 1841 (19) 150 (19)

Table 3: Explored nodes for breadth-first and different error
norm heuristics using greedy-search. Quickest results bold.
The respective plan length is given within the brackets.
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Figure 7: Simulation results. The trajectory of each planning
problem leading to the origin of the LVLH frame is shown
on the left hand side. On the right hand side the planned
input signal is shown.



Acknowledgements
This work was supported by the German Aerospace Center
(DLR) and Airbus Defence and Space as part of the project
“Kontiplan” (50 RA 1221) and partially by EPSRC project
EP/J012211”.

References
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as model checking in hybrid domains.
In Twenty-Eighth Conference on Artificial Intelligence.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012.
A universal planning system for hybrid domains. Applied
intelligence 36(4):932–959.
Fehse, W. 2003. Automated rendezvous and docking of
spacecraft. Cambridge and and New York: Cambridge Uni-
veristy Press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. J. Artif. Intell. Res.(JAIR)
27:235–297.
Frehse, G.; Le Guernic, C.; Donzé, A.; Cotton, S.; Ray, R.;
Lebeltel, O.; Ripado, R.; Girard, A.; Dang, T.; and Maler, O.
2011. SpaceEx: Scalable verification of hybrid systems. In
Computer Aided Verification, 379–395. Springer.
Girard, A.; Le Guernic, C.; and Maler, O. 2006. Efficient
computation of reachable sets of linear time-invariant sys-
tems with inputs. In Hybrid Systems: Computation and Con-
trol. Springer. 257–271.
Grunbaum, B.; Klee, V.; Perles, M. A.; and Shephard, G. C.
1967. Convex polytopes, volume 2. Springer.
Henzinger, T. A. 2000. The theory of hybrid automata.
Springer.
Hill, G. W. 1878. Researches in the lunar theory. American
Journal of Mathematics 1(1):5–26.
Kailath, T. 1980. Linear systems, volume 1. Prentice-Hall
Englewood Cliffs, NJ.
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