
AI Communications 26 (2013) 331–354 331
DOI 10.3233/AIC-130572
IOS Press

Automating the evaluation of planning
systems

Carlos Linares López a,∗, Sergio Jiménez a and Malte Helmert b

a Computer Science Department, Universidad Carlos III de Madrid, Madrid, Spain
E-mails: {carlos.linares, sergio.jimenez}@uc3m.es
b Department of Mathematics and Computer Science, Universität Basel, Basel, Switzerland
E-mail: malte.helmert@unibas.ch

Abstract. Research in automated planning is getting more and more focused on empirical evaluation. Likewise the need for
methodologies and benchmarks to build solid evaluations of planners is increasing. In 1998 the planning community made a
move to address this need and initiated the International Planning Competition – or IPC for short. This competition has typically
been conducted every two years in the context of the International Conference on Automated Planning and Scheduling (ICAPS)
and tries to define standard metrics and benchmarks to reliably evaluate planners. In the sixth edition of the competition, IPC
2008, there was an attempt to automate the evaluation of all entries in the competition which was imitated to a large extent and
extended in several ways in the seventh edition, IPC 2011. As a result, a software for automatically running planning experiments
and inspecting the results is available, encouraging researchers to use it for their own research interests. The software allows
researchers to reproduce and inspect the results of IPC 2011, but also to generate and analyze new experiments with private sets
of planners and problems. In this paper we provide a gentle introduction to this software and examine the main difficulties, both
from a scientific and engineering point of view, in assessing the performance of automated planners.

Keywords: Automated planning, evaluation, competition

1. Introduction

Automated Planning is an area of Artificial Intelli-
gence (AI) that studies, in its most general form, the
automatic selection of actions for achieving a number
of goals from an initial state. Blind methods for plan-
ning do not scale up because the search space of plan-
ning problems grows exponentially. Hence, research
on automated planning focuses on developing general
methods capable of effectively exploring the search
space in different classes of planning problems.

In practice, the number of planners implementing
different ideas trying to improve the existing ones has
increased significantly and also, a large number of
problems in a wide variety of planning domains have
been proposed over the last years. Similarly to other ar-
eas of Artificial Intelligence, such as Satisfiability Test-
ing (SAT), Answer Set Programming (ASP) or Ma-
chine Learning (ML), the emphasis on performance
improvement is leading researchers to pay particular

*Corresponding author. E-mail: carlos.linares@uc3m.es.

attention to the empirical evaluation, increasing the
need for reliable methodologies and benchmarks.

The International Planning Competition (IPC) has
taken place roughly every two years in the context of
the International Conference on Automated Planning
and Scheduling (ICAPS) and is targeted at the empiri-
cal evaluation of state-of-the-art planners. Encouraged
by this competition, researchers have been constantly
improving their planners and proposing new interest-
ing benchmarks to evaluate them. Many of the met-
rics and problems used at the various editions of the
competition have become a reference to the vast major-
ity of practitioners, and the common practice to prove
progress with respect to a particular planner is to show
the differences in performance on the set of problems
from the IPC.

In the sixth International Planning Competition (IPC
2008)1 there was a serious attempt to automate much
of the process required to run a large number of exper-
iments with an arbitrarily large collection of planners
and problems. The design and some key parts of the

1See http://ipc.informatik.uni-freiburg.de.

0921-7126/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

332 C. Linares López et al. / Automating the evaluation of planning systems

code developed at that time were mimicked to a large
extent, and extended in several ways, in the last In-
ternational Planning Competition, IPC 2011.2 All the
software developed during the IPC 2011 is now avail-
able3 along with technical documentation4 under the
terms of the GNU General Public License version 3.
To exemplify its usage, researchers can now: run tests
on their own planners and make comparisons with the
competitors of the last competition; store a private col-
lection of benchmarking problems; inspect the results
of the execution of any planner on any selected sub-
set of problems; perform statistical tests on the data
retrieved, etc. The results of all the experiments are
permanently stored in a repository, and the results of
the last competition are publicly available in the same
form, thus improving the accessibility of the results
and easing their inspection.

In this paper we present a gentle introduction to this
software and examine the main difficulties, both from
a scientific and engineering point of view, in assess-
ing the performance of automated planners. The pa-
per is structured as follows: Section 2 introduces ba-
sic concepts of Automated Planning and the Interna-
tional Planning Competition. Section 3 introduces the
diverse evaluation schemas followed at the IPC series
and explains the evaluation decisions that motivate the
design of the software. Section 4 explains the structure
of the software developed for running IPC 2011. Sec-
tion 5 shows a few practical uses of this software. Fi-
nally Sections 6, 7 and 8 discuss, respectively, related
work, future work and conclusions.

2. Background

This section first introduces the definition of auto-
mated planning tasks; then, it addresses important is-
sues when evaluating planners, and finally, it presents
the International Planning Competition, the main fo-
rum for planning evaluation.

2.1. Automated planning

Automated Planning studies the selection of actions
in a dynamic system to reach a state of the system that
satisfies a number of goals. The input to the planning
process is typically separated into two elements, the

2See http://www.plg.inf.uc3m.es/ipc2011-deterministic.
3See http://www.plg.inf.uc3m.es/ipc2011-deterministic/Front

Page/Software.
4See http://www.plg.inf.uc3m.es/sw-ipc2011/.

Fig. 1. Overview of the planning process.

domain and the problem. The domain contains pred-
icate and action schemas, while the problem contains
the set of objects (which are then used to ground the
schematic predicates/actions, and the initial state and
goal). Figure 1 illustrates a typical Automated Plan-
ning process.

There are different approaches to Automated Plan-
ning that range from the decomposition of hierarchi-
cal tasks [27] to the use of timelines [26]. In this paper
we focus on classical planning, the simplest and most
common planning model addressed at the IPC.

Classical planning assumes that the dynamic system
can be described by a state transition system defined
by a tuple

∑
= (S,A,C) where S is a finite set of

states, A is a finite set of actions and C(s, a) is a func-
tion of the cost of applying action a ∈ A in state s ∈ S.
Classical planning is essentially a graph search prob-
lem in a weighted and directed graph whose vertices
are the states of the problem and whose arcs corre-
spond to state transitions. The difficulty comes from
the fact that the graphs are generally too large to be tra-
versed exhaustively. In the formalism we describe here,
the number of (grounded) state variables can grow ex-
ponentially in the number of objects, and the number of
states is again exponential in the number of grounded
state variables.

Figure 2 shows the action unstack(X,Y) of
the BLOCKSWORLD planning domain represented in
PDDL, the representation language of the IPC. The
BLOCKSWORLD is a classic domain in automated
planning which consists of a set of blocks, a table and
a gripper: blocks can be on top of other blocks or on
the table, a block that has nothing on it is clear, and the
gripper can hold one block or be empty. This represen-
tation specifies the preconditions of the action, facts re-
quired to be true for the application of the action; the
add effects, facts made true by the application of the
action; the delete effects, facts made false by the appli-
cation of the action; and the cost associated with its ex-
ecution. The description of the add effects differ from
the description of the del effects in that the latter are
preceded by not, as shown in Fig. 2.

Following the previous notation, a planning problem
can be defined as a tuple P = (

∑
, s0,G) where s0 ∈ S

C. Linares López et al. / Automating the evaluation of planning systems 333

(:action unstack
:parameters

(?x - block ?y - block)
:precondition

(and (on ?x ?y)
(clear ?x)
(handempty))

:effect
(and (holding ?x)

(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))
(increase (total-cost) 1)))

Fig. 2. Action unstack from the BLOCKSWORLD domain.

(define (problem Sussman)
(:domain blocksworld)
(:objects blockA blockB blockC - block)
(:init (handempty)

(on blockC blockA)
(ontable blockA)
(ontable blockB)
(clear blockB)
(clear blockC))

(:goal
(and (on blockA blockB)

(on blockB blockC)
(ontable blockC))))

Fig. 3. The Sussman anomaly in the BLOCKSWORLD domain.

is the initial state of the dynamic system and G ⊆ S
is the set of states where the goals are satisfied (de-
scribed compactly, for example as a logical formula).
Figure 3 shows the problem representation of the Suss-
man anomaly in the BLOCKSWORLD domain [35] us-
ing PDDL. This problem comprises three blocks la-
beled A, B, and C. The problem starts with blocks B
and A on the table and block C on top of A, and con-
sists of stacking the blocks such that A is on top of B
and B is on top of C.

Solutions to planning problems are expressed in dif-
ferent forms such as a sequence of actions, a policy, or
a partially ordered set of actions. In the case of clas-
sical planning, a solution to a planning problem P is
a sequence of ground actions (a1, a2, . . . , an) corre-
sponding to the sequence of states (s0, s1, . . . , sn) such
that: action ai is applicable in state si−1, the state si
is the result of executing ai in si−1 and sn is a state
where all goals are satisfied, sn ∈ G. The cost of the

0: (UNSTACK BLOCKC BLOCKA) [1.000]
1: (PUT-DOWN BLOCKC) [1.000]
2: (PICK-UP BLOCKB) [1.000]
3: (STACK BLOCKB BLOCKC) [1.000]
4: (PICK-UP BLOCKA) [1.000]
5: (STACK BLOCKA BLOCKB) [1.000]

Fig. 4. Example of a solution plan for the Sussman anomaly problem.

sequential plan is the sum of its action costs, formally∑n
i=1 C(si−1, ai), and therefore, an optimal solution

to a planning task is one that minimizes the sum. Fig-
ure 4 shows an example of a sequential plan solving
the Sussman anomaly. This solution is a plan with six
actions and a total cost of six units, the sum of the cost
of the actions applied shown in brackets.

The IPC comprises different kinds of planning tasks
that correspond to planning models of different ex-
pressiveness. For example, classical planning stud-
ies the generation of sequential plans in deterministic
and fully observable environments. Temporal planning
studies planning problems where actions are not in-
stantaneous but have different durations and their pre-
conditions and effects are temporally annotated (e.g.,
effects occurring at the end of the action and precon-
ditions having to hold over the complete duration of
applying the action). Typically, the objective of tem-
poral planning is generating a concurrent plan with
minimal makespan, i.e., the temporal duration of the
plan [9,31]. Planning with soft goals studies how to
generate plans when goals express requirements of dif-
ferent strengths, for example, motivated by user pref-
erences [21]. Planning under uncertainty studies how
to tackle planning problems when states are not fully
observable and when the effects of actions are not de-
terministic [5].

Each of these planning models has its own language
extensions for representing the corresponding dynamic
system, initial state, goals and solution plans. Like-
wise, each model has its own algorithms for effectively
solving the corresponding planning problems. On the
whole, one can say that state-of-the-art planners often
rely on heuristic search to generate the solutions [4] but
compilations to other forms of general problem solv-
ing have also been effectively used. A prominent ex-
ample is SAT planning [19,20]. It encodes the planning
task as a SAT problem which is then solved by a SAT
solver. A number of SAT encodings are known to be
effective for solving specific planning problems, such
as for conformant planning [28] or contingent plan-
ning [1]. Other examples of compilations transform the

334 C. Linares López et al. / Automating the evaluation of planning systems

planning task into a Constraint Satisfaction [37] or a
Model Checking [7] problem.

2.2. Evaluation of planners

The experimental evaluation of planners usually
consists of running the planners over a set of different
problems and comparing their performance by looking
at some features of the generated solutions. To ensure
that the obtained evaluation results are meaningful, the
evaluation must be compliant, at least, with the follow-
ing characterization:

• Objectivity. The evaluation setting must be objec-
tive and it must be the same for all evaluated plan-
ners. Important aspects of the setting include:

– Representation language. Planning problems
can be represented using different formalisms
and even using the same formalism, they can
be represented in different ways affecting the
performance of planners. Indeed, it is a well-
known fact that the performance of a planner
can be altered by modifying the order of the
definition of some elements in either the do-
main or problem description [16].

– Evaluation metric. Planners can be evaluated
with regard to different metrics. Examples of
such metrics include the number of solutions
found, their lengths and costs, and the overall
time spent for finding them. Previous IPCs have
shown that the selection of a particular metric
can affect the selection of the planner with the
best performance. Different metrics might fa-
vor different planning approaches. For exam-
ple, SAT-based planners have been quite suc-
cessful for finding optimal temporal plans in
the setting where all actions have the same du-
ration, but have achieved less success for find-
ing optimal sequential plans (minimizing total
action cost).

– Validation mechanism. A reliable mechanism
must validate the solutions output by the plan-
ners. This mechanism must verify that the solu-
tion plans are executable, reach the goals start-
ing from the given initial state, and that the re-
ported metric values are correct. In the case
of tracks that mandate optimal solutions, ide-
ally the optimality of the reported solutions
should also be verified. However, this is gener-
ally challenging, as verifying the optimality of
a solution requires an exhaustive proof that no
better solutions exist.

• Exhaustiveness. The evaluation should support
general conclusions. This means that planners
must be evaluated over problems of a different
nature. Currently there is no generally accepted
measure for the diversity of planning problems. In
addition, the selected problems must cover differ-
ent difficulty ranges. Problem generators can help
to synthesize initial states and goals of different
difficulty keeping the same problem structure, but
again there is no general measure for predicting
the difficulty of the generated planning problems.

• Comparability. The evaluation should quantify
progress with respect to previous evaluations. In-
cluding well-studied algorithms as baselines or
reusing problems in the evaluation makes it easier
to tie new results to the literature.

• Reproducibility. The evaluation must be repro-
ducible ensuring that the same results can be ob-
tained when using the same experimental condi-
tions. Therefore the evaluation process must re-
port all the environmental conditions used during
the experimentation. These conditions comprise,
at least:

– Hardware details. The CPU model, the avail-
able RAM, the size of the cache memory, etc.
affect the performance of planners.

– Software details. The version of the operating
system, the compiler and the process that ex-
ecutes the planner can also affect the perfor-
mance of planners.

– Experimental setup. Planners must be evalu-
ated with the same CPU time, memory and disk
usage limits.

– Random behavior. Planners with (pseudo-) ran-
dom behavior must be able to reproduce their
performance using the same random seed.

• Reliability. It is highly desirable that the used
software is widely usable by the community while
ensuring the aforementioned principles. This can
be achieved by using portable programming lan-
guages across platforms which do not pose com-
plex installation requirements. This way, more re-
searchers can access the same planners and defi-
nitions of planning tasks so that bugs and errors
of any nature can be more easily spotted.

2.3. The International Planning Competition

The International Planning Competition (IPC) was
created in 1998 to set a common ground for compar-

C. Linares López et al. / Automating the evaluation of planning systems 335

ing different planning techniques. Nowadays, the IPC
is considered a reference source when building a plan-
ner and most new planning techniques are evaluated
regarding the languages, benchmarks and metrics de-
fined in the previous competitions.

The first IPC was organized in 1998 by Drew Mc-
Dermott. Since then, participation has increased dra-
matically over the years and a growing number of
tracks has formed, representing the broadening com-
munity. The most recent competition, the seventh edi-
tion, took place in 2011 and achieved a record num-
ber of entrants, almost eight times more than the first
competition.

The competition is run by the organizers over a pe-
riod of several months, with participants submitting
their planning systems electronically. Typically, en-
trants in the competition come from academia, though
some industrial colleagues have been involved, and in-
dustrial sponsorship has been secured. The results of
each edition of the competition are presented in a spe-
cial session of the International Conference on Au-
tomated Planning and Scheduling, ICAPS. The orga-
nization of the competition series is overseen by the
Competition Liaison, one of the officers of the ICAPS
executive council.

While the competition usually declares both a win-
ner and a runner-up per track, an equally important role
is to gather data and to disseminate it to all researchers.
It has also been useful to promote and review standards
in research in Automated Planning.

One of the major contributions of the IPC is the es-
tablishment of a common standard language for defin-
ing planning problems – the Planning Domain Defini-
tion Language (PDDL) [11,12,14,23]. PDDL has been
developed and extended throughout the competition
series and is a key in allowing fair benchmarking of
planners. As of today, PDDL has five levels with differ-
ent features, corresponding to different planning for-
malisms. PDDL 3.1 is the last and most complete level.
However, despite PDDL 3.1 covers the representation
needs of the new planning challenges most of the ex-
isting planners do not implement them; in fact, the ma-
jority of participants of the IPC-2011 implemented the
first PDDL level only supporting the STRIPS feature
besides typing and the equality predicate. Table 1 sum-
marizes the different levels of the PDDL language with
their features.

Another important contribution of the competition is
the spread of the plan validation tool VAL [17]. VAL

was introduced in the third IPC and since then it has al-
lowed reliable validation of the several thousand plans

Table 1

The levels of the PDDL language and its corresponding features

PDDL level Features

1.2 :strips :typing :equality :adl

:negative-preconditions :disjunctive-preconditions

:existential-preconditions :universal-preconditions

:quantified-preconditions :conditional-effects

2.1 :fluents :durative-actions

:duration-inequalities :continuous-effects

2.2 :derived-predicates :timed-initial-literals

3.0 :preferences :constraints

3.1 :object-fluents :numeric-fluents :action-costs

produced by the competitors, as well as helping re-
searchers in the development and debugging of their
planners.

Three parts of the competition have formed over the
years: the deterministic part, the learning part and the
uncertainty part. We will focus on the deterministic
and the learning part of IPC 2011 since their evalua-
tions were carried out using the software described in
this paper. The uncertainty part used different software
since it required an evaluation framework able to cope
with stochastic or non-deterministic effects of actions.

The deterministic part of the competition is the
longest-running part and evaluates the ability of classi-
cal planners to solve problems across a wide range of
unseen domains. At IPC 2011, the deterministic part
includes the sequential tracks with a track for optimal
planners, i.e., planners that are guaranteed to produce
solutions with the minimum plan cost, a track for satis-
ficing planners, i.e., planners that attempt to find solu-
tions of low cost but need not guarantee optimality, and
a track for satisficing multi-core planners, planners that
are able to take advantage of multiple processing units.
It also includes a track for temporal planners, which
try to find solutions that minimize the plan makespan
in a setting with durative actions that may temporally
overlap.

The learning part of the competition, first held at IPC
2008 [10], evaluates planners able to learn and exploit
domain-specific knowledge (DSK). Unlike the deter-
ministic part, it provides participants with the competi-
tion domains, so that planners can automatically gener-
ate knowledge that improves the performance of their
planners in these domains. Planners are then evaluated
on unseen problems from the same domains.

The seventh competition followed the successful
IPC 2008 and was run in a very similar way. The deter-
ministic and learning parts of IPC 2011 continued with
the same representation language, without introducing

336 C. Linares López et al. / Automating the evaluation of planning systems

extensions, as planners still need to catch up with the
currently available features of PDDL – see Table 1.

IPC 2011 also maintains the evaluation metrics in-
troduced in IPC 2008, favoring quality and coverage
over problem-solving speed. Briefly, each planner is
allowed 30 min (15 min for the learning part), up to
6 GB of RAM and 750 GB of hard disk memory on
each planning task. For every solved task, a planner re-
ceives a score between 0 and 1, computed as the ratio
between the cost of the optimal solution for the task
and the cost of the solution reported by the planner. (In
the sequential tracks, the cost of a plan is the sum of
action costs; in the temporal track, it is makespan.) For
tracks requiring optimal solutions, this means that the
score is 0 for unsolved tasks and 1 for solved tasks, so
the scoring mechanism simplifies to counting the num-
ber of solved tasks.

For tasks in the satisficing tracks for which optimal
solutions are not known, the quality of the best known
solution is used instead, including solutions found by
the participating planners. Using best known solutions
as proxies for optimal solutions in computing the qual-
ity is problematic and should be avoided if possible;
we discuss this further in Section 3.3.

To compute an overall score for a planner, the scores
for each task in the competition are summed, and the
winner and runner-up are the planners with the high-
est aggregate score. Scores are not combined between
tracks since each track is an independent competition.

The learning part uses the same metric as the se-
quential tracks but additionally includes another met-
ric to quantify the benefit that resulted from the learned
DSK – see Section 3.5.

3. Evaluation metrics at the International
Planning Competition

Since its first edition, the organizers of the IPC have
aimed to provide the community with standard mecha-
nisms for evaluating the performance of planning sys-
tems. In particular there has been a chase for a single
evaluation metric that could be used as a guideline to
judge which is the best current planner.

After seven editions of the competition this chase
has proved to be a difficult challenge. The difficulty
lies in the nature of planning, which lends itself to a
number of very diverse and often conflicting evaluation
criteria, from straight-forward binary success measures
(such as for example finding a solution or proving that
there is none) to optimization along many different di-

mensions. In addition, an evaluation metric for a plan-
ner has to measure the domain-independence of plan-
ners, quantifying their versatility for different classes
of problems across different domains. Accordingly, the
performance of planners can be analyzed from differ-
ent views such as the number of problems solved, the
CPU time used, the length of the plans, their cost,
makespan or further features of plans like diversity or
flexibility.

Because of this wide variety of possible objectives,
the selection of the best planner necessarily depends on
the context in which it will be used. Despite these dif-
ficulties the IPC series has kept pushing for the devel-
opment of mechanisms that allow fairer and more sig-
nificant planning evaluations. This section reviews the
evaluation metrics used throughout the IPCs and ana-
lyzes the decisions taken for the design of the software
for evaluating planners at IPC 2008 and IPC 2011.

3.1. Historical perspective

Throughout the competition series different evalu-
ation schemes have been proposed to score and rank
planners. The first edition of the competition in 1998
[24] attempted to define a single scoring function to
evaluate the planners. The proposed function regarded
three criteria: number of problems solved, time used
and length of the solutions found. However, the way
in which these features were combined by the scoring
function was found lacking, as it diverged significantly
from the expectations of organizers and participants. In
the end, the scoring function was abandoned and win-
ners were selected by a judgment call of the competi-
tion organizer.

The second edition of the competition, IPC 2000,
[2] followed the same approach of selecting winners
by a judgment call taking into account number of prob-
lems solved, runtime, plan lengths, but also scientific
novelty of the planning approach.

IPC 2002 [22] for the first time allowed specifying
optimization metrics for each planning problem, so so-
lutions could be compared by domain-adequate metric
values rather than just by looking at the number of ac-
tions. However, there was still no clearly defined way
of how to combine the metric values for different plan-
ning problems or how to trade them off against run-
time and number of solved problems. Because of these
complications, the winners were again selected by a
judgment call of the competition organizers. The post-
competition analysis of IPC 2002 also introduced sta-
tistical methods for quantifying if intuitive interpreta-

C. Linares López et al. / Automating the evaluation of planning systems 337

tions of the raw results were adequately supported by
the data. This statistical analysis resulted in partial or-
ders which showed which planners dominated which
others with regard to a specific level of significance.

IPC 2004 [14] for the first time separated the eval-
uations of optimal and satisficing planners (where op-
timal planners could choose between two different op-
timization metrics, sequential or parallel plan length)
and introduced a new way to rank planners by assign-
ing 1stor 2nd position tags to the groups of planners
that scaled best (and roughly similarly within each of
the two groups) in a given planning domain. Winners
of IPC 2004 were then selected according to the num-
ber of 1st and 2nd positions achieved by the planners.
The decision of how exactly to allocate 1st and 2nd
places were again made as a judgment call of the com-
petition organizers.

IPC 2006 [12] used essentially the same evaluation
criteria as IPC 2004 based on 1st and 2nd positions per
domain but gave more attention to plan quality than the
precedent editions. In addition, the organizers intro-
duced new constructs to allow the user to express both
strong and soft constraints on the structure of the de-
sired plans and also soft goals and temporally extended
goals. The IPC-2006 also postulated an additional re-
quirement that a planner could not be declared a win-
ner in a certain track unless it improved over the pre-
vious state of the art, i.e., over the performance of the
2004 winners. Finally, the organizers performed statis-
tical analyses similar to those of the IPC 2002 with a
strong emphasis on the number of problems solved.

In all planning competitions before IPC 2008, the
decision how the winners would be determined was
made by the organizers only after the competition was
run. Participants were informed ahead of time that
number of problems solved, runtime and plan length
would be important considerations, but evaluation de-
tails such as the “1st/2nd rank by domain” procedure,
the tradeoff between different quality measures, or (in
the case of IPC 2006) the requirement to outperform
the 2004 winners were not communicated in advance.

There was also no clear division into tracks apart
from the separation starting in 2004 between satisfic-
ing and optimal planners: a planner could be judged a
winner if it performed particularly well for one class of
planning problems (such as sequential planning prob-
lems), if it covered a wide range of different plan-
ning problems (e.g., sequential ones, temporal ones
and ones involving soft constraints), or if it offered a
good tradeoff between planner performance and sup-
port of rich domain models.

IPC 2008 was the first international planning com-
petition to introduce a clear separation into different
tracks where each track used a single scoring func-
tion, defined in advance, to evaluate the performance
of planners. The same evaluation scheme was used for
IPC 2011. In this evaluation scheme, each planner is
given 30 minutes to solve each problem and receives
a score in the range 0–1 for each solved problem de-
pending only on the quality of the found solution, with-
out regard to runtime. Apparently this new evaluation
scheme puts less emphasis on the number of problems
solved and the time used for generating the solutions,
although number of problems solved of course remains
important because unsolved problems are scored as
0. Arguably, runtime remains relevant to some extent
since planners able to quickly find solutions can ded-
icate more time to improve the quality of the initially
produced plans.

All through the years, this evolution of evaluation
schemes has been accompanied by fruitful and some-
times heated discussions about the most suitable way
to evaluate planner performance. One major aspect of
this discussion has been a continuous tension between
researchers in favor of pushing the expressiveness of
planners, aiming at bringing planning systems closer
to the expressiveness requirements of many realistic
problems, and researchers in favor of working with
more limited planning models, promoting increased
performance of planners over expressiveness. In some
cases, the latter group has argued that classical plan-
ning techniques can also be capable of efficiently deal-
ing with more expressive problems through compila-
tions from richer planning models (e.g., see [6,21]).

This tension between expressiveness and efficiency
is still present nowadays. As an example, the last ver-
sion of the description language PDDL 3.1 covers
many functionalities for representing temporal or nu-
meric aspects of real problems, or for representing
much more general kinds of conditions and effects
than the precondition, add and delete lists introduced in
Section 2 of this paper. However, most of the planners
competing at the last IPC only implement very limited
subsets of these features, rarely going significantly be-
yond the “core” classical planning subset of PDDL de-
fined for IPC 2000.

3.2. Evaluation of optimal planners

The currently used metric at the IPC for the evalua-
tion of optimal planners is coverage, i.e., the number of
problems optimally solved with respect to a fixed set of

338 C. Linares López et al. / Automating the evaluation of planning systems

benchmark problems and fixed time and memory set-
tings. Comparing the quality of the plans generated by
optimal planners is fruitless because they necessarily
have to generate optimal solutions.

The main difficulty when using coverage for evalu-
ating optimal planners comes from the fact that obvi-
ously, there is no domain-independent solver that can
be used to check the optimality of plans. The orga-
nizers of IPC 2008 developed several domain-specific
solvers to validate the optimality of the solutions pro-
vided by participants, although they did not achieve
complete coverage. All optimal planners evaluated at
the time had at least one bug at some point that made
them produce suboptimal plans sometimes, which is
often much easier than proving optimality. At IPC
2011, no optimal domain-specific solvers were devel-
oped for any domain. However, the competition results
showed no cases where two planners disagreed on the
quality of optimal solutions reported for a given plan-
ning problem, giving some confidence that the reported
solutions were indeed optimal.

A general observation that also applies to other com-
petition tracks is that the coverage metric weighs all
problems equally, so it can only fairly evaluate plan-
ners when the selected benchmark problems are unbi-
ased with respect to the evaluated planners. For exam-
ple, if the benchmark is (perhaps unintentionally) bi-
ased towards a specific planning paradigm it could fa-
vor one kind of planner over others. To investigate this
issue more deeply, there has been research on creating
random generators of synthetic unbiased problems for
restricted planning models [32], but further research
has to be done for the general case. All in all, there is
precious little research on the generation of problems
for planning evaluation, considering its dramatic influ-
ence on the results of the evaluation [16].

Some related competitions use more structured
mechanisms to select test problems. For example, the
organizers of the SAT competition select problem in-
stances from a public pool of problems and distinguish
different tracks for random, industrial and handcrafted
problem instances. The organizers of the CSP competi-
tion MINIZINC CHALLENGE only select problems that
are solvable by at least one of the participants in a sen-
sible time frame. Finally, the organizers of the Answer
Set Programming Competition aim to provide a bal-
ance between problem categories such as search, query
and optimization and covering different computational
complexity classes such as polynomial, NP and Beyond
NP.

3.3. Evaluation of satisficing planners

Unlike optimal planners, satisficing planners can
produce valid solutions of diverse quality. Within the
planning community, it is a largely (though not univer-
sally) supported notion that plan quality is an impor-
tant consideration in most application domains. If we
follow this argument, coverage (which only considers
the number of problems solved without solution qual-
ity considerations) is an inadequate evaluation metric.

Apart from coverage, the CPU time invested by sat-
isficing planners to generate their solutions has also
been extensively used to evaluate their performance.
The minimization of CPU time is a desirable fea-
ture for many planning applications that require fast
response, such as controlling the actions of an au-
tonomous physical system. However, emphasizing the
role of CPU time in the evaluation of satisficing plan-
ners at the IPC is not without problems:

• Making CPU time a primary consideration can
push competitors to implement low-level opti-
mizations. Currently there are many aspects in
most planners that are not time-critical. Because
these aspects are typically completed in few sec-
onds, they do not have to be heavily optimized.
With runtime factoring heavily into the scoring
function, every aspect would become critical for
the score.
While this could be beneficial for improving the
engineering quality of planning systems, it can
also dramatically increase the barrier of entry for
the competition, especially for novel planning ap-
proaches that cannot readily reuse heavily opti-
mized components of existing planners. In the
context of a scientific competition, this has the un-
desirable effect of hampering the exploration of
truly novel ideas.

• Making a planner substantially faster does not
necessarily imply making it capable of solving
substantially harder problems. Results of previ-
ous IPCs show that making a planner twice as fast
hardly increases the number of problems solved
at all, since there are few problems that can be
solved with a 60-minute timeout, but not a 30-
minute timeout. Hence, if the ultimate objective
is to scale planners to harder problems, the differ-
ence between solving a planning problem in, say,
10 s vs. 20 s is less significant than it might intu-
itively appear.

C. Linares López et al. / Automating the evaluation of planning systems 339

For these reasons, the evaluation scheme introduced
for IPC 2008 and reused for IPC 2011 emphasizes plan
quality over other considerations. In detail, this scheme
fixes the runtime per problem instance for all competi-
tors and only considers the cost of the solutions found.
An optimally solved problem contributes a score of 1
(as in the optimal planning tracks described above),
while suboptimal plans contribute lower scores scaled
inversely to the cost of the solution. For example, a so-
lution with four times the optimal cost would lead to
a score of 0.25. The overall score is obtained by sum-
ming the scores for all solved problems.

Even though this score is computed regarding only
the quality of the solutions, coverage and runtime are
implicit to some extent, as unsolved problems do not
contribute to the score, and slow planners are less
likely to meet the runtime bound on difficult problem
instances, leading to more unsolved problems. Also,
fast planners can rely on anytime planning strategies to
improve the quality of the generated plans.

An important question for this quality-based scor-
ing mechanism is how to compute the score when the
optimal solution quality is not known. A simple rem-
edy, which was used at IPC 2008 and 2011, is to com-
pare the quality of the generated solutions to the best
known solution quality rather than the optimal qual-
ity. A subtle issue here is that the best known solution
could be a solution found by one of the competition
participants. Consider two planners A and B which are
faced with four planning tasks. Planner A finds solu-
tions with a total cost equal to 10, 20, 100 and 110 re-
spectively, whereas planner B generates plans of cost
20, 40, 60 and 80, respectively. Apparently, the sec-
ond planner tends to create plans that are shorter and,
indeed, the median and mean of its cost distribution
equal 50, while the mean and median of the cost distri-
bution of the first planner equal 60. If the best known
solutions are used, planner A would be awarded with
(10/10) + (20/20) + (60/100) + (80/110) = 3.327,
whereas planner B would get (10/20) + (20/40) +
(60/60)+(80/80) = 3, which is less than 3.32, in con-
traposition with the expected outcome. Assume now
that the optimal solutions are independently computed
and are found to be 10, 5, 60 and 80. The reader can
easily verify that the scores are now sorted the other
way round: planner A gets 2.577, which is less than
the score of planner B, 2.625. From a fair evaluation
perspective, this is problematic, since it can violate the
decision-theoretic axiom of independence of irrelevant
alternatives.

Assume that the outcome of a planning competition
is such that P1 wins by narrowly outscoring P2. As-

sume further that the same competition is repeated, but
this time with an additional planner P3 which is clearly
worse overall than P1 or P2, but improves over the best
known solutions in a few problems. This can affect
the balance between P1 and P2 in such a way that P2
becomes the winner. In other words, adding the addi-
tional participant P3 influences which of P1 and P2 is
considered the better planner.

This kind of situation is highly undesirable since it
can introduce strategic considerations into the compe-
tition that run counter to its scientific goals. For exam-
ple, a team of researchers might refrain from entering
planner P into the competition because it might ad-
versely affect the performance of another planner Q by
the same team of researchers.

A good way to avoid or reduce such quandaries is
to use strong domain-dependent solvers to find high-
quality (or even optimal) reference plans, so that the
best known solutions will not be ones (uniquely) found
by the participating planners. Many such specially de-
veloped domain-dependent solvers, and in some cases
human-generated solutions, were used at IPC 2008 for
this reason.

3.4. Evaluation of temporal planners

In temporal planning, makespan (the temporal dura-
tion from the start of the first action execution to the
end of the last action execution) is generally accepted
as a useful quality criterion for plans. Hence, the scor-
ing function used at IPC 2008 and 2011 for tempo-
ral planning is the same as for the sequential planning
tracks, except that it considers makespan instead of to-
tal action cost as the quality measure of a plan. (Con-
sequently, there is no notion of action cost in the tem-
poral planning tracks.)

VAL is also able to validate the correctness of sat-
isficing temporal plans. Like with sequential optimal
planners, there is no domain-independent validator for
the minimality of makespan of temporal plans. This
has not been an issue at recent IPCs because no evalu-
ation of optimal temporal planning has taken place due
to the lack of participating planners.

When evaluating temporal satisficing planners, the
choice of evaluation domains is of particular impor-
tance. In recent years, the notion of planning do-
mains with required concurrency (temporal planning
domains in which every feasible plan must involve
overlapping actions) has attracted significant atten-
tion [9]. Perhaps surprisingly, the overwhelming ma-
jority of existing temporal PDDL planning domains

340 C. Linares López et al. / Automating the evaluation of planning systems

(prior to IPC 2011) do not exhibit required concur-
rency, even though concurrency is usually required to
come up with solutions of low makespan. Maybe as
a consequence of this, most existing temporal plan-
ning systems are not temporally expressive, i.e., are not
complete for problems with required concurrency.

This state of affairs means that it is hard to find
a benchmark set that is not biased towards particular
temporal planning approaches. Certainly, a benchmark
set with required concurrency is biased towards tempo-
rally expressive planners. Also, a benchmark set with-
out required concurrency can be considered as being
biased against temporally expressive planners, since
temporal expressiveness often comes at a cost in per-
formance compared to simpler planners that cannot
handle required concurrency. Since entering a planning
competition involves a lot of effort, it thus appears ad-
visable to clearly communicate before the competition
if and to what extent required concurrency will fea-
ture in the evaluation domains, in order to avoid disap-
pointed expectations.

3.5. Evaluation of planners exploiting
domain-specific knowledge

When looking at the performance of planners able
to benefit from domain-specific knowledge (DSK) two
aspects can be evaluated:

• The final performance of planners exploiting the
DSK. It is common knowledge that planners us-
ing hand-coded DSK can perform many orders of
magnitude better than ones that do not in most
planning domains. After all, at the extreme end
of the spectrum, a hand-written domain-specific
planner can be seen as an instance of a (very) gen-
eral planner with “domain-specific knowledge”
(its source code), and indeed the most successful
domain-specific planners are closer to program-
ming languages than to their domain-independent
counterparts.
Therefore, it is not useful to run domain-specific
and domain-independent planners in the same
competition. Instead, IPC 2000 and IPC 2002
have featured special competitions for planners
using DSK (“hand-tailored planners”). However,
these competitions have not been repeated as part
of the IPC since 2002, partly due to the concern
that it is not clear how to measure the quality of
the planner as opposed to the abilities of the per-
son providing the DSK.

However, DSK has reemerged in the International
Planning Competitions with the advent of the
learning part of the IPC since 2008. Here, the fi-
nal performance of planners exploiting the DSK is
the primary consideration for deciding the winner
of the competition. In contraposition to the hand-
tailored planners of IPC 2000 and 2002, the DSK
has to be found automatically by the planner.

• The benefit of exploiting DSK. The learning part
of the International Planning Competition was
created in 2008 to evaluate the performance of
planners that are able to automatically acquire and
exploit DSK. In addition to looking at the final
performance with the learned DSK, the track also
tries to identify the planners that benefited the
most from the learned DSK, by comparing their
performance with and without it.
There is, however, a clear problem with this ap-
proach. Participants could simply submit a plan-
ner that performs deliberately poorly without
DSK. To address this issue, the learning track
of the IPC 2011 introduced a new mechanism
for ranking planners based on Pareto domina-
tion. The planner with the greatest benefit from
using the DSK would be the planner that was
Pareto dominated by the fewest number of plan-
ners in terms of two dimensions: (1) the perfor-
mance metric under consideration, for example
plan quality; and (2) the improvement in perfor-
mance due to the DSK.

4. The software of the seventh International
Planning Competition

The software of the seventh International Planning
Competition was created with all the previous scien-
tific considerations in mind. On the other hand, the
organization and automation of the whole process for
evaluating planners in an automated fashion poses ad-
ditional engineering challenges. Specifically, the pur-
pose of the software of the seventh International Plan-
ning Competition is twofold:

(1) Automated evaluation of planners. It provides
specific means to automate the whole process
running a particular set of planners on a partic-
ular collection of domains. Finally, it also eases
the task of automatically validating all the results
of the experiments. It has been designed mainly
to address all the engineering challenges that re-
sult from automating an arbitrary number of ex-
periments.

C. Linares López et al. / Automating the evaluation of planning systems 341

(2) Analysis of results. The software provides spe-
cific means to analyze the performance of the
planners with a myriad of variables to inspect
without the need of repeating experiments over
and over. It provides both a wide range of metrics
and different nonparametric and parametric sta-
tistical tests. It has been devised fundamentally
to deal with all the scientific considerations pre-
sented in the previous sections.

Note that this software can be used to reproduce the
experiments of the IPC 2011 and that it provides tools
for carrying out further analysis of the reported results.
On the other hand, the software can be used to run and
analyze the results of private experiments over plan-
ners and problem sets different from the ones used at
the last International Planning Competition.

The idea of automating the tasks necessary for eval-
uating planners was fully considered in the sixth Inter-
national Planning Competition. Indeed, a specific de-
sign was devised with this goal in mind. The software
of the sixth International Planning Competition was
built around three different components: a wiki page
for exchanging information among the organizers and
with the competitors; an svn repository used, mainly,
to store the source code of all entries in the differ-
ent tracks and the problems selected for the competi-
tion as well as the results of the executions; thirdly,
the computer premises. The software built at that time
had interfaces with all these components though its
main contribution was a number of scripts used to au-
tomate the whole experimentation: building the test
sets, compiling the planners from scratch and execut-
ing the planners on a number of selected planning
tasks. On the other hand, there were tools to automati-
cally retrieve the results which were immediately vali-
dated with VAL [17] and even to generate informative
pdf documents with an overview of the overall perfor-
mance per track. While a significant body of work was
general, some parts were specific to the particular ar-
rangements made at the IPC 2008. Finally, the software
was publicly available on demand.

During the organization of the seventh International
Planning Competition it was decided to reuse as much
code as possible from the previous edition. The main
design was mimicked and some relevant parts of the
scripts were included in the new software. In particu-
lar, the new software enhanced the interface with the
svn repository, whereas it offers no support to interface
with the wiki page or the computer facilities. Addition-
ally a brand new package was built to inspect the re-
sults of the experiments, to generate different sorts of

reports in a wide variety of formats and even to auto-
mate statistical tests. In the end, all the software has
been released for public use under the terms of the
GNU General Public License version 3.

In this section, a gentle introduction to the software
developed during the last IPC is offered, both for au-
tomating the execution of a selection of planners on
a particular number of planning tasks, and also to in-
spect and generate reports with the results of the exper-
iments. For a detailed discussion of the capabilities of
software the interested reader is referred to the techni-
cal documentation.5

4.1. The SVN repository

The software is based on the use of an (either pub-
lic or private) svn repository that stores all the neces-
sary information for running a number of experiments.
As discussed in the Introduction, while performing ex-
periments a large collection of planners and problems
easily proliferate. Thus, a lot of results are easily gen-
erated and cataloging all this information while mak-
ing it easily accessible is not trivial. The svn reposi-
tory specifically addresses this issue. Public access is
granted to the svn repository used at the IPC 2011.6

It contains all the entrants of the seventh International
Planning Competition along with all the domain and
problem files selected and the obtained results.

One of the main drivers of the software was the re-
quirement to work with any svn repository. This way,
any researcher can create her own private repositories
so that private experiments can be conducted. For a de-
tailed discussion on this issue see the second practical
case discussed in the technical documentation.7

4.2. Overview of the software

The latest version of the software is also available
through the official svn repository of the IPC 2011.8

The software is organized into two main packages:
IPCData with the services for evaluating planners
over a collection of domains and problems and vali-
dating the results; IPCReport with the services for
analyzing the results and generating automatically re-
ports in a variety of formats. The following subsections

5See http://www.plg.inf.uc3m.es/sw-ipc2011/.
6svn://svn@pleiades.plg.inf.uc3m.es/ipc2011/data.
7See http://www.plg.inf.uc3m.es/ipc2011-deterministic/Front

Page/Software.
8See svn://svn@pleiades.plg.inf.uc3m.es/ipc2011/data/scripts/

pycentral.

342 C. Linares López et al. / Automating the evaluation of planning systems

Fig. 5. Overview of the processes for evaluating planners and analyzing results with the software of the seventh International Planning
Competition.

provide a shallow description of the main services pro-
vided by both packages. Figure 5 illustrates the work-
ing flow of all the scripts involved in the processes of
the automated evaluation of planners and the analy-
sis of results with the software of the seventh Interna-
tional Planning Competition. First, test sets (see Sec-
tion 4.2.1) and planners (see Section 4.2.2) are auto-
matically retrieved from the svn repository and their
contents properly arranged in preparation to automat-
ically run the experiments (see Section 4.2.3). The re-
sults are stored in a results tree directory in the local
computer which can be automatically validated while
generating additional information – see Section 4.2.4.
This local structure can be converted into a more com-
pact representation known as snapshot. This is indeed
a more efficient method to inspect the results (see Sec-
tion 4.2.5), rank planners (see Section 4.2.6) or per-
form statistical tests – see Section 4.2.7.

All the scripts discussed in this section acknowledge
a help directive that provides on-line assistance. Ad-
ditionally, a very detailed level of information (also
known as verbose) is available upon request. This abil-
ity is specifically important since some computations
can be very lengthy (especially in the scripts included
in the first package) so that verbose output keeps the
user updated more often. For the same reason, an addi-
tional number of services have been included in these
scripts, mainly: logging services and automated e-mail
notifications.

Logging services can be easily enabled by specify-
ing the name of a log file and a logging level so that
only messages of the given level or above are shown.

While all services described here are readily available
upon installation of the software, automated e-mail re-
quires some additional configuration. Thanks to this
feature, the user is automatically notified upon com-
pletion of a particular task with an e-mail that contains
some useful information along with a copy of the log
file generated so far.

4.2.1. Building test sets
With the aim of guaranteeing that all planners

are evaluated over the same benchmarks, the script
builddomain.py automatically builds the test sets
from the information stored in the svn repository.
The script builddomain.py, located in the pack-
age IPCData, checks out all the problem files of a
given domain which is qualified by its name and the
track/subtrack it belongs to. This script acknowledges
the use of regular expressions so that an arbitrary num-
ber of domains can be built at the same time. Each test
set is built in a separate directory in the local computer.

While domain and problem files can be given any
name in the svn repository, they are consistently re-
named in each test set as domain.pddl and prob-
lem.pddl when built in the local computer. On the
other hand, the ability of this script to generate the test
sets in a particular order allows the designer to post
problems according to some criteria such as expected
difficulty to solve them.

4.2.2. Building planners
In order to guarantee the completion of experi-

ments with the same versions of the planners, the
buildplanner.py script automatically checks out

C. Linares López et al. / Automating the evaluation of planning systems 343

the source code of the selected planners from the
svn repository and starts the compilation process from
scratch. The buildplanner.py script, located in
the IPCData package, records a verbatim copy of the
compilation process to make sure that the building pro-
cess went fine and that no errors were issued on the
way. For example, some planners can pose special re-
quirements in the form of third-party software – e.g.,
the LPRPGP planner uses ILOG CPlex. Recording the
building process is mandatory to ensure that the code
has been properly compiled and linked. On the other
hand, if anything ever went wrong a whole trace is re-
ported in these files.

To provide compatibility, the author of each planner
submitted to the IPC 2011 was requested to provide
a shell script which fully automates the building pro-
cess. This way, the only responsibility of this software
is just to invoke it after checking it out and to record
the whole building process in a log file as discussed
above. The resulting files are located in a directory pro-
vided by the user. As with the previous script, this one
also acknowledges the use of regular expressions to al-
low building an arbitrary collection of planners, all in
sequence.

4.2.3. Invoking planners
The invokeplanner.py script guarantees that

the executions of planners are carried out within the
same experimental setup. This script, distributed also
in the package IPCData, runs a particular experiment
which involves an arbitrary selection of planners, do-
mains and problems by first, invoking the services of
the two previous scripts and then automatically execut-
ing every planner with every planning task, all in se-
quence. The execution can be bounded both in time and
memory with arbitrary values measured in seconds and
gigabytes, respectively. The limit on memory refers
to the maximum area of address space which may
be taken by the process including both code and data
at any particular instant in time. This is particularly
important when running portfolios since the memory
limit affects the size and data stored by the portfolio it-
self but also the size and data used by each planner the
portfolio invokes. The time limit refers to CPU time
unless the script is invoked on planners and domains
of the multicore track. In this case, time is measured as
wall clock time. Another important difference is that
when being run in multi-core mode, invokeplan-
ner.py allows all threads and processes started by the
planner to run for the time specified in the time bound
so that the overall running time is easily larger; other-
wise, the script only allows the planner to run for a time

such that the sum of the CPU time of all its threads and
processes does not exceed the given bound. If any of
these bounds (either time or memory) is exceeded, the
script automatically terminates the planner and all the
subprocesses/threads it launched.

Since every planner has its own arguments, each
planner must provide a particular shell script which
acknowledges, usually, three parameters: the domain
file, the problem file and the prefix to be used in
the plan solution files – if an arbitrary number of
them can be generated as in the sequential satisfic-
ing track, then the given string is suffixed with a
number. The script automatically sets-up the neces-
sary parameters to be given to the planner. Since the
script builddomain.py always generates domain
and problem files named domain.pddl and prob-
lem.pddl (see Section 4.2.1) these are the precise
names used to invoke this script. The third parameter is
always plan.soln. An important difference results
when the subtrack used is dck – which means that
the script is running the learning track with domain-
specific knowledge, see Section 3.5. In this case, in-
vokeplanner.py provides a fourth parameter that
has to be accepted by the script provided by the author
of the planner: the directory where the domain-specific
knowledge resides.

Even if the planners can run in a non-Unix environ-
ment, Linux is assumed to be used here. The reason is
that this script records, for each execution, a number
of additional parameters as they are provided by the
Linux proc/ filesystem:

(1) The total CPU time the planner is taking for solv-
ing the problem.

(2) The total memory the planner is taking, also con-
sidering the memory taken by all the subprocess
and threads launched by the planner.

(3) The number of processes currently running.
(4) The number of threads currently running.

All of these parameters are sampled at rather regular
intervals of five seconds. However, the following are
recorded after the whole execution is over or after a
particular event (such as finding a solution) takes place:

(5) The number of solutions found, if any and zero
otherwise.

(6) The time elapsed since epoch (i.e., since the plan-
ner was started) when each solution was found.

(7) The overall running time (in clock wall time)
consumed by the planner.

(8) The maximum memory consumed by the planner
during the whole execution.

344 C. Linares López et al. / Automating the evaluation of planning systems

(9) The memory the planner was taking just be-
fore voluntarily resuming the execution or being
killed. Note that this is not necessarily equal to
the maximum memory – though this is usually
the case. While most planners take memory in-
crementally, some others take and release mem-
ory during execution – e.g., portfolios equipped
with a number of planners each with its own
memory profile, see Figure 8 in page 349.

On the other hand, the script also records additional
information for each execution about the CPU being
used, the operating system and the memory available.
All of these parameters are stored in dedicated log files.
In addition, invokeplanner.py captures both the
standard error and the standard output of the planners
and stores them in dedicated log files for diagnoses
purposes.

All of the resulting files (the domain and problem
definition files, the plan solution files generated, all the
log files, and the standard output and the error mes-
sages generated by each planner) are stored in a partic-
ular tree structure known as the results tree directory.
The scripts discussed in Sections 4.2.4 and 4.2.5 access
these directories.

4.2.4. Validating solutions
The final step in the evaluation process is mandatory

not only at the International Planning Competition but
also at any experiment run at the home laboratory. The
script validate.py takes care of this step and it is
the last script discussed from the package IPCData.
This script recursively traverses the solutions in the re-
sults tree directory and process them with VAL 4.2.09.9

Its output is recorded in a separate log file. In case of
error, the corresponding validation log file shows the
appropriate data. The validation process does not only
ensure that all the plan solution files generated are cor-
rect, it also stores other relevant data such as the fi-
nal value of the metric used and the step length of the
plan, or number of actions. These parameters, and oth-
ers, can be inspected in one way or another with the
following scripts.

4.2.5. Inspecting the results
To analyze the experimental results, the script re-

port.py allows researchers to process queries
against validated results. The report.py script uses

9While VAL is currently maintained at http://planning.cis.strath.
ac.uk/VAL/, a version slightly modified for its use with this software
is distributed in http://www.plg.inf.uc3m.es/ipc2011-deterministic/
FrontPage/Software.

either the results tree directory generated by the script
invokeplanner.py (see Section 4.2.3) or a partic-
ular structure known as snapshot – discussed below.

This script, distributed in the IPCReport package,
acknowledges more than 50 different variables that can
be queried either as a singleton or combined. Variables
are split into two different categories: raw variables
and elaborated data. The first one refers to all the pa-
rameters sampled by both invokeplanner.py (see
Section 4.2.3) and validate.py – see Section 4.2.4;
the second one refers to data that results from vari-
ous manipulations with raw data, such as computing
the maximum running time for all problems in a given
domain for a particular planner or the total number of
problems solved in a particular domain. There are, in
total, 33 raw variables and 23 elaborated variables.

Moreover, this script generates the output in a wide
variety of formats including: table, html, wiki, octave
and excel. The first one is just a convenient way to
show the information on the console; the next two ones
are markup languages that can be used to show the re-
sults either in a web page or a wiki. The octave format
is also acknowledged by Gnuplot so that it can be used
to generate figures or to process data in some way with
Octave. Finally, excel pages are also acknowledged.

Additionally, report.py can create a summary of
the results, also called snapshot, which is just a binary
file with exactly the same data but which is faster to
process than the original results tree directory. Since
snapshots are usually orders of magnitude smaller than
their counterparts, the results tree directories, they are
a convenient way to exchange data among researchers.
As a matter of fact, snapshots are the preferred method
to rank planners and perform statistical tests as dis-
cussed in the following subsections.

4.2.6. Ranking planners
Of particular interest to the organization of the Inter-

national Planning Competition, but also in private ex-
periments conducted at the home laboratory, it is to de-
rive the score of all entrants of a given track/subtrack.
The scripts score.py and tscore.py address pre-
cisely this requirement in various forms. Both scripts
are located in the IPCReport package and accept a
selection of the planners and domains present in either
a results tree directory or, alternatively, in a snapshot
and rank all planners according to a particular metric.
Since these scripts are not only thought for organiz-
ers of an IPC but also to private researchers as stated
above, up to six different metrics are acknowledged:

C. Linares López et al. / Automating the evaluation of planning systems 345

(1) quality, this is the official metric of both the sixth
and seventh IPCs. It computes for each problem
a score which equals C∗

C where C∗ is the cost of
the best known plan for a particular problem and
C stands for the cost of the plan produced by the
planner being evaluated.10 As explained in Sec-
tion 3.3, the computation of C∗ is performed with
regard to known solutions instead of the optimal
one. If the planner found no solution the quality
score is set to zero;

(2) coverage, this score function awards one point
to every planner that solves the current task and
zero otherwise. This is the function used to rank
planners in the sequential optimal track;

(3) time0, it computes the score of a planner for a
given task as the quotient T ∗

T where T ∗ is the
minimum time required by any planner to solve
the task, and T is the time spent by the evalu-
ated planner to solve the same planning task. All
times below 1 second are considered to be ex-
actly equal to 1 second to reduce emphasis on
micro-level optimizations of any part of the plan-
ner. This was the official metric used to evalu-
ate time performance at the learning track of the
sixth International Planning Competition;

(4) time1, this score function computes the score
of a planner for a given task as the quotient

1
1+log(T/T ∗) where T ∗ is the minimum time re-
quired by any planner to solve the task and T is
the time it took this particular planner to solve
the same planning task. Since differences in time
are normally greater than in quality, logarithms
are widely used for scaling time scores properly.
Again, all times below 1 second are considered
to be exactly equal to 1. This is the official met-
ric to evaluate time performance at the learning
track of the seventh International Planning Com-
petition;

(5) time2, this score function computes the score of a
planner for a given task as the quotient log(1+T ∗)

log(1+T)
where T ∗ is the minimum time required by any
planner to solve the same task and T is the time
it took this particular planner to solve the same
task. It is provided just as an alternative measure
of time and it has never been officially used;

10This assumes that plan quality can be measured in terms of a
cost to minimize, such as total sum of action costs for classical se-
quential planning or makespan for temporal planning. For the net-
benefit planning track of the sixth International Planning Competi-

tion, the formula was changed to Q
Q∗ , where Q is the net benefit of

the generated plan and Q∗ is the net benefit of the best known plan.

(6) qt, computes for each planner and task a tuple
(Q,T) where Q stands for the quality of the best
solution found by the same planner and T is the
time (in seconds) it took for the planner to find
it. Next, it awards each planner with a score that
equals the number of tuples it pareto-dominates11

for the same task. The main advantage of this
metric is that it compares the performance of a
planner with the performance of every other plan-
ner one by one instead of using the performance
of the best one as reference.

Of course, there might be many other metrics and,
as a matter of fact, an alternative measure previously
suggested for ranking planners according to CPU time
consists of assigning a score of 1.0 to a runtime of 1 s
and a score of 0.0 for a runtime of 1800 s (or, alter-
natively, to the maximum allotted time), and interpo-
late logarithmically in between these two (e.g., [30]).
This results in an absolute time score since the score of
a planner does not depend on the score of other plan-
ners. However, this metric has not been implemented
in the software described in this paper. In particular,
time metrics have been implemented only because they
were tried in previous competitions or because they
might be found useful by some users.

These metrics are computed per planner and plan-
ning task and then summed up for all planners across
the same track/subtrack. Next, all planners are ranked
in decreasing order of score, the first one being the win-
ner. Both scripts generate rank tables for all domains
selected and an additional one with all the accumulated
results. As it turned out with the script report.py,
these scripts can generate these tables in the same for-
mats. Additionally, score.py can generate the same
tables in LATEX which, when being processed, provide
the same information both textually and using color
codes which are easier to interpret.

On the other hand, score.py acknowledges a last
directive that explicitly sets up a time bound on the
analysis – if not given, the time bound used for run-
ning the competition is used instead. When given, all
the results generated after the specified threshold are
discarded. This is useful for making analysis of the
form: “What if the competition would have been run
in 15 minutes instead of 30?”. This ability is exploited
by the script tscore.py which computes how the
score of every selected planner evolves over time for
all the planning tasks chosen. It just takes the particu-

11(Q,T) is said to Pareto-dominate (Q′,T ′) if and only if Q �
Q′ and T � T ′.

346 C. Linares López et al. / Automating the evaluation of planning systems

lar time instants when any planner solved any task and
updates the score (for any of the six metrics defined
above) of all planners. Since this computation can be
very lengthy it is also allowed to request the script to
generate the tables for a particular number of time steps
instead of all. In the end, the tables show the score of
each planner per time step. This is useful for draw-
ing conclusions about the performance of the entrants
with regard to the time it takes them to solve problems
and to answer questions such as: “Do planner A al-
ways dominate planner B?” or “What planner should
be chosen if the goal is to solve problems quickly?”

These questions and others are considered for spe-
cific cases in Section 5.

4.2.7. Statistical tests
One of the most important difficulties when evalu-

ating planners with regard to a particular variable such
as time or plan quality (and, in general, when compar-
ing algorithms which are not guaranteed to terminate
in a given horizon of time or to find solutions which
are bounded by a factor) is that comparisons become
harder if one algorithm does not consistently domi-
nate the other. While the consideration of metrics as
those described in the previous section provide an as-
sessment of the global differences among planners, the
significance and confidence of this assessment is un-
known. In these cases, several approaches based on sta-
tistical tests have been suggested in different areas of
Artificial Intelligence including Automated Planning.

The script test.py implements four different sta-
tistical tests. For a thorough discussion of the statis-
tical tests mentioned here, the interested reader is re-
ferred to [8]. In all cases, the statistical tests report
the p-values or the probability that the observed differ-
ences are real and not due to chance. When the p-value
is less or equal than a given threshold, usually referred
to as the critical value, the Null or Research Hypothe-
sis is rejected and the Alternate Hypothesis is accepted
instead with regard to the specific critical value chosen.
Typical values of the level of risk are α = 0.05, 0.01
and 0.001 which stand for a probability of 95%, 99%
and 99.9% respectively that any observed statistical
difference will be real. Since parametrical statistical
tests make questionable assumptions about the distri-
bution of data and, also, most series are more likely
to be relatively short (e.g., in the seventh International
Planning Competition there were 20 planning tasks per
domain so that most series have n = 20 samples which
is regarded in some texts as being borderline between
a small and large set) three of them are nonparametric:

(1) Mann–Whitney U-test. It compares two samples
that are independent, or not related. It assesses
the Alternate Hypothesis that one of two samples
of independent observations tends to have larger
values than the other. The test automatically cor-
rects for ties and by default uses a continuity
correction. The reported p-value is for a one-
tailed hypothesis, i.e., when information about
whether one sample have larger values than the
other is provided. To get the two-tailed p-value
(i.e., when the Null Hypothesis is rejected if the
test statistic is either too small or too large) the
returned p-value has to be multiplied by two.
This statistical test is the alternative of choice
when comparing, for example, the performance
of a planner with regard to problems in different
domains since they are not necessarily related to
each other.

(2) Wilcoxon signed rank test. In contraposition to
the previous test, the Wilcoxon signed rank test is
a two-tailed nonparametric statistical procedure
for comparing two samples that are paired, or re-
lated. It tests the Null Hypothesis that both sam-
ples come from the same distribution.
Typical uses of this statistical test include com-
paring the performance of two different planners
with regard to the same set of planning instances
since they are paired. These sort of studies serve
to provide statistical evidence that one planner is
superior to the other. As a matter of fact, it has
been already used to compare the performances
of planners with respect to speed and quality in
the analysis of results of the third and fifth Inter-
national Planning Competitions [12,22].
It has been also used in a number of experiments
to determine whether a planner subsumes oth-
ers [33].

(3) Binomial test. It is an exact two-tailed sign test
used with dichotomous data. That is, when each
individual in the sample is classified in one of two
categories such as success or failure, or ‘+’ and
‘−’. It provides statistical significance of the Null
Hypothesis that both categories are equally likely
to occur.
When comparing the performance of two plan-
ners, those cases where one planner performs
better than the other are marked with ‘+’ and
with ‘−’ otherwise. The p-value returned is the
probability of obtaining as many positive marks
as observed according to a Binomial distribution
with p = 0.5.

C. Linares López et al. / Automating the evaluation of planning systems 347

This test was selected by Hoffmann and Nebel
[15] to provide statistical evidence that their plan-
ner, FF, performed significantly better with some
collections of enhancements than with others.

Also, because its popularity, a parametric test is pro-
vided as well:

(4) T -test for the means of two independent sam-
ples. It is the parametric equivalent test of the
Wilcoxon signed rank test. This is a two-tailed
test for the Null Hypothesis that two indepen-
dent samples have identical average (expected)
values.

One restriction of all of these tests, however, is that
they just compare two series of data. Other tests such
as, the Kolmogorov–Smirnov one-sample test to deter-
mine if a data sample meets acceptable levels of nor-
mality or the Friedmann or the Kruskal–Wallis H-tests
to compare three or more samples, (either related or
unrelated respectively), are not currently implemented.
Instead, all these statistical tests perform pairwise com-
parisons of an arbitrary number of series and provide
the p-value of each pair according to the selected sta-
tistical procedure.

The script test.py analyzes data retrieved by the
script report.py – see Section 4.2.5. Therefore, it
acknowledges the same parameters to select the series
of data to work with. Given that some entries might be
empty (so that they are invalid, such as the quality of
an unsolved problem), two additional parameters are
accepted: filter and matcher. The first directive
can be used to select only those entries that match a
particular variable – e.g., whether a particular planning
task has been successfully solved or not, variable ok-
solved. The second directive is used to select how
to create pairwise associations between two series of
data. It currently accepts three different values: and
requires that both samples have to match the filtering
variable (e.g., that both samples correspond to plan-
ning tasks successfully solved in the previous exam-
ple);12 or rejects all entries where no sample matches
the filtering variable (so that only those cases where
both entries correspond to unsolved problems are re-
jected); finally, all accepts all pairs in spite of the fil-
tering variable. If either all or or is specified, it is
then possible to give a default value to the entries that
do not match the given filter with the directive noen-
try. This is customary practice in those cases where
one can assume a particular value, e.g., when compar-

12These cases are typically known as double hits.

ing the performance on time of two planners it is typi-
cal to assign infinitely bad speed to those cases that are
not solved in a particular timespan.

5. Practical cases

In this section a number of practical cases are intro-
duced to exemplify the usage of the software of IPC
2011. The particular commands issued for generating
the following data are not shown and the interested
reader is referred to the user’s manual. They only cover
a few features offered by the software and we encour-
age practitioners to refer to the software manual to get
a full picture of all possibilities.

5.1. Inspecting the results

As mentioned in Section 4.2.5, the script re-
port.py handles two different types of variables:
raw and elaborated. While raw variables refer to mea-
surements of a particular planning task (such as the
time allotted to solve it, timebound, or the time a
planner spent to solve it or until being killed, run-
time), elaborated ones refer to the result of some
operation performed over raw variables – such as
computing either the minimum or maximum runtime,
minruntime and maxruntime, respectively. To il-
lustrate how elaborated variables can be used, the first
example examines the number of plans (variable num-
solved) versus the number of valid plans (variable
oknumsolved) generated in the sequential satisfic-
ing track of IPC 2011.

Figure 6 shows these numbers for all entrants. As it
can be seen, it is not so uncommon for some planners
to generate invalid plans.13 This clearly justifies the
need to use an automated validator such as VAL. As a
matter of fact, the disparity in the number of problems
that are claimed to be solved and those that are effec-
tively validated is as high as 13.6%. The same figures
were computed for the other tracks and it was found
that while this difference was very close to 0% in the
sequential optimal track, it is 16.5% in the sequential
multi-core track and finally as large as 40.1% in the
temporal satisficing track.

As discussed in Section 3.3, fast planners can rely
on anytime planning strategies to improve the qual-
ity of the generated plans. The second example con-

13It should be highlighted that in a number of cases plans were
considered invalid just because they did not conform to the syntax
recognized by VAL.

348 C. Linares López et al. / Automating the evaluation of planning systems

Fig. 6. Number of problems for which each planner of the sequential satisficing track generated at least one plan solution file (numsolved)
and the number of them where all the plan solution files generated where valid (oknumsolved). (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/AIC-130572.)

Fig. 7. Time (in seconds) when each solution file was generated and the value of the metric of the plans found by ARVANDHERD and AYAL-
SOPLAN in problem 010 of the domain OPENSTACKS of the sequential multi-core track. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-130572.)

sists of examining how the cost of plans improves over
time. Figure 7 shows the performance of planners AY-
ALSOPLAN and ARVANDHERD (from the sequential
multi-core track) in the problem 010 of the domain
OPENSTACKS with regard to plan cost. The resulting
plot makes it apparent that, at least in this particular
problem, ARVANDHERD (the winner of the sequential

multi-core track) improved its score faster leading to a
better plan than AYALSOPLAN, declared as the runner-
up of the same track.

While most planners take memory incrementally,
portfolios are more likely to take it and release it as
one planner is killed and the next one is invoked. For
illustrative purposes, Fig. 8 shows the memory profile

C. Linares López et al. / Automating the evaluation of planning systems 349

Fig. 8. Memory profile of the portfolio Fast-Downward Stone-Soup 2 in problems 007 and 014 of the domain WOODWORKING of the sequential
optimal track. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-130572.)

(in Megabytes) of the portfolio FDSS-2 (from the se-
quential optimal track) in problems 007 and 014 of the
domain WOODWORKING.

5.2. Ranking planners

Undoubtedly, the selection of a metric to compare
planners can affect the results in one way or another so
that even the best planners according to one particular
metric might not be as good when using a different one.

In this subsection, planners are ranked according to
different metrics and with different time bounds so
that conclusions about their robustness can be drawn.
It should be noted however that all entrants of IPC
2011 were aware that the official metric to use was
quality (see Section 4.2.6) and that the time bound
was 1800 seconds so that the following conclusions
shall be taken with caution: if the adopted metric and
time bounds would have been different, a good number
of planners would have probably followed a different
strategy.

In the following example, the script score.py is
used to compute the score of all planners in the tempo-
ral satisficing track with regard to the following metrics
discussed in Section 4.2.6: quality, solutions, time2
and qt. Figure 9 shows the result of the differences
in score for all planners (but SHARAABI and TLP-GP

which solved no problem) with regard to the four met-
rics mentioned above.

From the preceding figure, a number of conclu-
sions can be drawn. First, all planners seem to be
split into two groups: on one hand, DAE_YAHSP,
YAHSP2, YAHSP2-MT and POPF2; on the other hand,
CPT4 and LMTD. The last two planners perform worse
across all metrics. Second, it is clear that the planner
DAE_YAHSP was the most benefited from the selection
of the metric since that is the only case where it ranks
first. On the other hand, YAHSP2 is the worst affected
by the selection of the metric quality since it performs
better ranking always second instead of fourth under
all the other metrics.

In the last example, only the metric quality is con-
sidered but tscore.py is used to compute how it
evolves over time. For the sake of clarity only the first
six planners of the sequential satisficing track were
considered. Figure 10 shows the evolution of the met-
ric quality over time (in log scale) of the planners
LAMA-2011, FDSS-1, FDSS-2, FD-AUTOTUNE-1, FD-
AUTOTUNE-2 and ROAMER. Note that the score does
not necessarily grow monotonically. The reason is that
since the best known solution is used instead of the op-
timal one (see discussion in Section 3.3), the scores of
all planners are computed again every time a planner
finds a solution. Thus, the score of all the others de-
crease if it improved the quality of the best solution
found so far.

From the previous picture, it is easy to see that
LAMA-2011 dominated all the others from the very

350 C. Linares López et al. / Automating the evaluation of planning systems

Fig. 9. Differences in ranking of all planners of the temporal satisficing track (but SHARAABI and TLP-GP) according to four different metrics:
quality, solutions, time2 and qt. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-130572.)

Fig. 10. Evolution of the metric quality over time for the first six planners of the sequential satisficing track of the seventh International Planning
Competition. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-130572.)

beginning so that it is not affected at all (for this par-
ticular metric) by the time horizon chosen and would
have been declared the winner the same for any time
span – up to 1800 seconds. In contraposition to this ob-
servation, ROAMER and FD-AUTOTUNE-1 are affected
by the time horizon chosen: ROAMER progresses faster
than the other planners and it is observed that its perfor-
mance worsens only at the end of the time horizon; on

the other hand, FD-AUTOTUNE-1 seems to be as good
or better than FDSS-1 and FDSS-2 but at the end where
it is surpassed by both variants of FDSS.

6. Related work

The organizers of the IPC 2008 already considered
the development of software for automating the eval-

C. Linares López et al. / Automating the evaluation of planning systems 351

uation of planners. The software of the IPC 2011 fol-
lowed the architecture devised at that time and ex-
tended its functionality in various ways. Additionally,
it introduces a brand new component for helping re-
searchers to inspect and analyze the results of the ex-
periments. This component allows researchers to cre-
ate summaries of the evaluation results, to perform
queries on more than fifty different variables, to pro-
cess them to compute different performance scores, to
explore the evolution of these scores over time, to gen-
erate reports for all those data in different formats and
even to apply statistical tests to the data generated.

The idea of creating software for automating and
standardizing evaluation tasks have also been explored
in other areas of Artificial Intelligence. The SAT com-
munity created SatEx [34], a web site devoted to
SAT experimentation. Given a set of SAT solvers and
a set of SAT benchmarks, SatEx generated results
synthesis as well as detailed explorations of the ex-
perimental results. In addition, SatEx provided web-
presentation of results and online answering of user
queries. The reinforcement-learning (RL) community
developed RL-GLUE [36], a piece of software for
standardizing the evaluation in RL experiments. The
software implemented a graphic interface that illus-
trated the progress of the different RL algorithms in
different environments and allowed working with sev-
eral languages and computing platforms using network
socket communications. RL-GLUE has been used to
run the RL International competition.14

There are also recent efforts to create abstracted
software for assisting in the automatic evaluation of
solvers of different nature. STAREXEC15 is a cross
community logic solving service written in Java un-
der development at the University of Iowa. LAB16 is
a Python package for conducting and analyzing ex-
periments that run on a single machine or a computer
cluster. LAB can also be used in combination with the
DOWNWARD package to run experiments and create
custom reports for the Fast Downward planning sys-
tem [13].

Finally, there is extensive previous work on defin-
ing methodologies and collecting good practices for
the experimental evaluation of algorithms, several rel-
evant examples are [18,25,29]. During the design of
this software we have adapted the general recommen-
dations that were applicable to the particular evaluation
of planners.

14See http://www.rl-competition.org/.
15See http://www.starexec.org/.
16See https://lab.readthedocs.org/.

7. Future work

In a survey conducted among the scientific com-
munity of Automated Planning in October 2011, 40%
of those polled asserted that the software described
here already meets their demands. While the remaining
60% replied that it is okay, they consider that it should
be improved. In the same survey, among the people that
already tried the software of the IPC 2011 at that time,
42.9% used it to download the benchmarking planning
tasks; another 42.9% used it to conduct private exper-
iments and to produce informative reports of the per-
formance of their planners. On the other hand, more
than 87.5% considered that it already performs either
well or very well for: checking out domains and prob-
lems, downloading and building planners, automating
all the experimentation process, inspecting the result-
ing data and generating informative reports of different
purposes.

From this feedback, it is understood that future work
should still undergo the current development though
the current functionality looks promising to a large
number of researchers. In this sense, a number of fu-
ture developments to extend its functionality are iden-
tified:

• Developing a web interface. More than 70% of
the survey responses suggested to develop a web
site that would allow the access to this software in
the backend. This is almost straightforward for a
number of functionalities including: the reporting
tools (that can be used to generate reports on the
fly after fulfilling a form) or showing the details of
any planning task stored in a repository accessible
from the web site.

• Extending the software to support different plan-
ning representation languages. Currently, the soft-
ware of the seventh International Planning Com-
petition deals only with planning tasks described
in PDDL. However, it has been devised to get be-
yond the IPC so that supporting other representa-
tion languages, such as NDDL [3], would be very
welcome as well.
On the other hand, a typical practice in previous
IPCs was to provide different definitions of the
various planning tasks selected for the evaluation.
However, from the sixth International Planning
Competition it was decided to provide only a sin-
gle definition, mostly based on STRIPS and, op-
tionally, with fluents – both for the sequential and
temporal tracks in the deterministic part as well

352 C. Linares López et al. / Automating the evaluation of planning systems

as in the learning track.17 Nevertheless, in order
to ease comparisons it would be good also to al-
low designers of benchmarks to provide different
definitions.

• Investigating how to reuse past evaluation re-
sults – so that for example progress among IPCs
can be measured more reliably. A potential so-
lution would be using virtual machines. One ad-
vantage of this approach is that virtual machines
can be frozen (e.g., with all the third-party soft-
ware needed for the compilation of planners) and
shared among researchers so that different ex-
periments can be conducted with regard to the
same hardware configuration. However, the per-
formance of virtual machines can be dependent
on the performance of the hardware configuration
of the native host.

• Providing a well-defined API to develop addi-
tional functionality. In its current form, every
script described herein is structured through a dis-
patcher that provides the same functionality of-
fered through the command line so that other
scripts can invoke them directly. However, there is
currently no documentation and a Programmer’s
Guide should be elaborated.

• Regarding the statistical tests an obvious ex-
tension consists of adding new statistical tests
as those mentioned in Section 4.2.7, especially
the Kolmogorov–Smirnov one-sample test since
providing statistical significance that a particu-
lar sample follows a normal distribution allows a
wide range of statistical tools to be applied. How-
ever, it seems more useful to provide additional
information such as confidence intervals for the
selected samples or to consider a measure of the
strength such as the effect size.

• Finally, the reporting tools serve only to retrieve
data generated by either invokeplanner.py
or validate.py. However, it is desirable to al-
low programmers to add plug-ins to their plan-
ners so that additional data such as the number
of expansions, the progress of the heuristic func-
tion and other information could be recognized by
the reporting tools as well. In the same vain, all
the metrics discussed in Section 4.2.6 are hand-
coded. While modifying them or adding new ones
is a rather simple procedure, it requires some pro-

17Still, in the sixth International Planning Competition, an alter-
native definition based in ADL was provided in a few domains in
some tracks.

gramming skills. It is thus desirable to provide
means to users to add new definitions of metrics
that would be automatically acknowledged by the
scripts score.py and tscore.py.

An important remark is that the reporting tools are
not as flexible as one might desire. A solution to
this problem would be using a database so that in-
formation other than the variables implemented there
would be accessible. Finally, because using this soft-
ware through a command-line can be cumbersome to
some people, a Graphical User Interface could be de-
veloped to ease its usage.

8. Conclusions

We have described the general problem of assess-
ing the performance of planners and have examined
also the engineering challenges associated to its au-
tomation. The presented software sets up a frame-
work for automating the evaluation of planning sys-
tems to a large extent while providing tools for ad-
dressing most of the scientific considerations that are
typically raised in this context. The software binds to-
gether other pieces built in past International Planning
Competitions, more remarkably the automatic valida-
tion tool, VAL, and a large body of software created for
automating the sixth International Planning Competi-
tion.

Since November 1st, the software web pages have
received more than three hundred visits. In the afore-
mentioned survey conducted among the scientific com-
munity it turned out that 80% assured they will give
this software a try, and 50% replied that standardizing
tools is a good idea with an additional 47.2% consider-
ing it to be a must. These facts, when taken altogether,
make us believe that releasing the competition software
may increase the participation and transparency of fu-
ture International Planning Competitions while it can
significantly enhance private experimentations.

In addition, more than 50% of those polled fully
agree with the consideration that this software im-
proves reproducibility, exhaustiveness, and reliability.
In the end, it is expected that the software of the
seventh International Planning Competition allows re-
searchers to complete an empirical evaluation of plan-
ners with the following benefits:

• Objectivity. Different researchers can use the
same software to rank planners according to dif-
ferent criteria, already implemented. The soft-

C. Linares López et al. / Automating the evaluation of planning systems 353

ware also allows researchers to automatically val-
idate a set of experimental results using the same
validation tool, VAL. Extensions to these criteria,
the validation process or other parts of the same
software are immediately available to the whole
community since the latest version is always fully
available under the terms of the GNU General
Public License version 3.

• Exhaustiveness. One can create a private svn
repository that extends the set of planners, do-
mains and/or problems used in the IPC 2011.
Snapshots with the results of particular experi-
ments can be shared among researchers and even
the current svn can be extended with new results.
The software also provides additional tools to al-
low everyone to examine the available data under
different perspectives.

• Comparability. The source code of all the entrants
of the IPC 2011 together with the domains and
problems used for the evaluation are permanently
stored in an svn repository that is publicly avail-
able. Thus, easing the process of running exper-
iments with regard to the same set of planning
tasks used in the last International Planning Com-
petition. The software stores all the results that
can be checked up to compare performance with
new planners.
The same principle applies to private reposito-
ries: researchers performing experiments with this
software can make their results publicly available
allowing others to access even far more data than
the amount that would typically fit in a scientific
communication such as a conference or journal.

• Reproducibility. The software of the IPC 2011 au-
tomatically generates a number of logs with de-
tailed information about the environmental con-
ditions (such as the hardware details), the build-
ing process of each planner selected (resulting in
a large body of information about software de-
tails) and the time and memory bounds used for
performing the experiments, among other details.

• Reliability. Finally, the software is easy to in-
stall and it has no particular requirements allow-
ing more people to examine planners, planning
tasks and results so that errors of different nature
are easier to catch.

All in all, it is expected that releasing the software
of the competition: first, allow future competitors to
test their software in an important number of domains
and problems before submitting it to other IPCs; sec-
ond, encourage practitioners to make more extensive

experimentation when needed in preparation of their
research; finally, allows them to make fairer compar-
isons among the results of different planning systems.

Acknowledgements

The design and implementation of the ideas be-
hind the software of the seventh International Planning
Competition benefited from a number of people and
organizations who contributed in different ways.

We do want to explicitly express our gratitude to
Derek Long for his assistance and support with the au-
tomated validation tool, VAL.

Also, to the people that tried previous versions of the
software and provided comments to either extend the
functionality of the software or to fix bugs of different
nature. Among them, Emil Keyder, Jendrik Seipp and
Ángel García Olaya.

Very importantly as well, to the IPC council for pro-
viding extensive comments and offering a lot of helpful
suggestions.

Finally, we have to acknowledge the sponsorship of
Decide Soluciones, iActive, the University Carlos III
de Madrid and ICAPS. The hardware platform that
was primarily used for developing and testing the soft-
ware was funded by Spanish Science Ministry un-
der project MICIIN TIN2008-06701-C03-03. Addi-
tionally, this development has been also partially sup-
ported by project TIN2011-27652-C03-02.

References

[1] A. Albore, H. Palacios and H. Geffner, A translation-based ap-
proach to contingent planning, in: Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence
(IJCAI-09), Pasadena, CA, USA, 2009, pp. 1623–1628.

[2] F. Bacchus, AIPS 2000 planning competition: The fifth in-
ternational conference on artificial intelligence planning and
scheduling systems, AI Magazine 22(3) (2001), 47–56.

[3] T. Bedrax-Weiss, C. McGann, A. Bachmann, W. Edgington
and M. Iatauro, EUROPA2: User and contributor guide. Tech-
nical report, NASA AMES Research Center, Moffett Field,
CA, USA, 2005.

[4] B. Bonet and H. Geffner, Planning as heuristic search, Artifi-
cial Intelligence 129(1,2) (2001), 5–33.

[5] B. Bonet and H. Geffner, Faster heuristic search algorithms
for planning with uncertainty and full feedback, in: Pro-
ceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03), Acapulco, Mexico, 2003,
pp. 1233–1238.

354 C. Linares López et al. / Automating the evaluation of planning systems

[6] B. Bonet and H. Geffner, Planning under partial observabil-
ity by classical replanning: Theory and experiments, in: Pro-
ceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence (IJCAI-11), Barcelona, Spain, 2011,
pp. 1936–1941.

[7] A. Cimatti, E. Giunchiglia, F. Giunchiglia and P. Traverso,
Planning via model checking: A decision procedure for AR,
in: European Conference on Planning, Toulouse, France, 1997,
pp. 130–142.

[8] G.W. Corder and D.I. Foreman, Nonparametric Statistics for
Non-Statisticians, Wiley, Hoboken, NJ, USA, 2009.

[9] W. Cushing, S. Kambhampati, Mausam and D.S. Weld, When
is temporal planning really temporal?, in: Proceedings of the
Twentieth International Joint Conference on Artificial Intelli-
gence (IJCAI-07), Hyderabad, India, 2007, pp. 1852–1859.

[10] A. Fern, R. Khardon and P. Tadepalli, The first learning track
of the international planning competition, Machine Learning
84 (2011), 81–107.

[11] M. Fox and D. Long, PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains, Journal of Artificial In-
telligence Research 20 (2003), 61–124.

[12] A.E. Gerevini, P. Haslum, D. Long, A. Saetti and Y. Dimopou-
los, Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the plan-
ners, Artificial Intelligence 173(5,6) (2009), 619–668.

[13] M. Helmert, The fast downward planning system, Journal of
Artificial Intelligence Research 26 (2006), 191–246.

[14] J. Hoffmann and S. Edelkamp, The deterministic part of IPC-4:
An overview, Journal of Artificial Intelligence Research 24
(2005), 519–579.

[15] J. Hoffmann and B. Nebel, The FF planning system: Fast plan
generation through heuristic search, Journal of Artificial Intel-
ligence Research 14 (2001), 253–302.

[16] A.E. Howe and E. Dahlman, A critical assessment of bench-
mark comparison in planning, Journal of Artificial Intelligence
Research 17 (2002), 1–33.

[17] R. Howey, D. Long and M. Fox, VAL: Automatic plan val-
idation, continuous effects and mixed initiative planning us-
ing PDDL, in: The Sixteenth IEEE International Conference
on Tools with Artificial Intelligence (ICTAI-2004), Boca Raton,
FL, USA, 2004, pp. 294–301.

[18] D.S. Johnson, A theoretician’s guide to the experimental analy-
sis of algorithms, in: Data Structures, Near Neighbor Searches,
and Methodology: Fifth and Sixth DIMACS Implementation
Challenges, 2002, pp. 215–250.

[19] H.A. Kautz and B. Selman, Pushing the envelope: Planning,
propositional logic, and stochastic search, in: Proceedings of
the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), Portland, OR, USA, 1996, pp. 1194–1201.

[20] H.A. Kautz and B. Selman, Unifying SAT-based and graph-
based planning, in: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99), Stock-
holm, Sweden, 1999, pp. 318–325.

[21] E. Keyder and H. Geffner, Soft goals can be compiled away,
Journal of Artificial Intelligence Research 36 (2009), 547–556.

[22] D. Long and M. Fox, The 3rd international planning compe-
tition: Results and analysis, Journal of Artificial Intelligence
Research 20 (2003), 1–59.

[23] D. McDermott, PDDL – the planning domain definition lan-
guage, Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, 1998.

[24] D. McDermott, The 1998 AI planning systems competition, AI
Magazine 21 (2000), 35–55.

[25] B.M.E. Moret and H.D.D. Shapiro, Algorithms and experi-
ments: The new (and old) methodology, Journal of Universal
Computer Science 7(5) (2001), 434–446.

[26] P. Morris and N. Muscettola, Temporal dynamic controllabil-
ity revisited, in: Proceedings of the Twentieth National Confer-
ence on Artificial Intelligence (AAAI-05), Pittsburgh, PA, USA,
2005, pp. 1193–1198.

[27] D. Nau, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu and F. Ya-
man, SHOP2: An HTN planning system, Journal of Artificial
Intelligence Research 20 (2003), 379–404.

[28] H. Palacios and H. Geffner, From conformant into classical
planning: Efficient translations that may be complete too, in:
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling (ICAPS-07), Providence,
RI, USA, 2007, pp. 264–271.

[29] R.L. Rardin and R. Uzsoy, Experimental evaluation of heuris-
tic optimization algorithms: A tutorial, Journal of Heuristics 7
(2001), 261–304.

[30] S. Richter and M. Helmert, Preferred operators and de-
ferred evaluation in satisficing planning, in: Proceedings of
the Nineteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS-07), Thessaloniki, Greece, 2009,
pp. 273–280.

[31] J. Rintanen, Complexity of concurrent temporal planning, in:
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling (ICAPS-07), Providence,
RI, USA, 2007, pp. 280–287.

[32] J. Rintanen, Phase transitions in classical planning: An ex-
perimental study, in: Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-04), Whistler, BC, Canada, 2004, pp. 101–110.

[33] M. Roberts and A. Howe, Learning from planner performance,
Artificial Intelligence 173 (2009), 536–561.

[34] L. Simon, SatEx: towards an exhaustive and up-to-date SAT
experimentation, in: IJCAI’01 Workshop on Empirical Meth-
ods in Artificial Intelligence, 2001.

[35] G.J. Sussman, A Computer Model of Skill Acquisition, Elsevier
Science, New York, NY, USA, 1975.

[36] B. Tanner and A. White, RL-Glue: Language-independent
software for reinforcement-learning experiments, Journal of
Machine Learning Research 10 (2009), 2133–2136.

[37] P. van Beek and X. Chen, CPlan: A constraint programming
approach to planning, in: Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), Orlando, FL,
USA, 1999, pp. 585–590.

