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Abstract

In this paper we study the computational complexity of sev-
eral reasoning tasks centered around the bounded plan ex-
istence problem. We do this for standard classical planning
and hierarchical task network (HTN) planning and each for a
grounded and a lifted representation. Whereas bounded plan
existence complexity is known for classical planning, it has
not yet been studied for HTN planning. For plan verification,
results were available for both formalisms except for the lifted
HTN planning. We will present lower and upper bounds of
the complexity of plan verification in lifted HTN planning
and provide some new insights into its grounded counterpart,
in which we show that verification is not just NP-complete in
the general case, but already for a severely restricted special
case. Finally, we show the complexity concerning verifying
the optimality of a given plan and discuss its connection to
the bounded plan existence problem.

Introduction
Automated planning is the task of finding a course of actions
called a plan which achieves a certain goal. An immense ef-
fort has been devoted to studying the computational com-
plexity of the plan existence problem in the context of both
non-hierarchical (classical) planning (Erol, Nau, and Sub-
rahmanian 1991; Bylander 1994; Helmert 2006; Bäckström
and Jonsson 2011) and hierarchical planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Alford et al. 2014;
Alford, Bercher, and Aha 2015a,b; Bercher, Lin, and Alford
2022) which is to decide whether a planning problem has a
solution. In contrast, the number of research endeavors on
the complexity of deciding whether there exists a plan up to
a certain length (the bounded plan existence problem) is rel-
atively small which is a standard way to frame the problem
of finding an optimal plan as a decision problem. In partic-
ular, the complexity results only exist in the classical setting
but not in the hierarchical one, despite that many approaches
related to this problem have been developed for both for-
malisms (Karpas and Domshlak 2009; Pommerening et al.
2014; Bercher et al. 2017; Behnke, Höller, and Biundo 2019;
Behnke and Speck 2021).

We will discuss in this paper the complexity results of sev-
eral problems centered around the bounded plan existence
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problem. Our discussion will start with the plan verification
problem, which serves as the basis for the investigation of
the bounded plan existence problem, and ends up with the
plan optimality verification problem and its extension, the
bounded plan optimality verification problem. Plan optimal-
ity verification is to verify whether a plan is an optimal so-
lution to a planning problem, and its bounded version is to
check whether the length of a given plan is not far away from
the length of an optimal one by some bound.

We will investigate some general properties of these prob-
lems and discuss their complexity results in the specific con-
text of classical planning (Ghallab, Nau, and Traverso 2004)
and Hierarchical Task Network (HTN) planning (Bercher,
Alford, and Höller 2019), which is the most commonly used
hierarchical planning (Ghallab, Nau, and Traverso 2004;
Bercher, Alford, and Höller 2019) formalism. One impor-
tant reason for discussing all these results, which are sum-
marized in Tab. 1, is that they can serve as a reference for
future research endeavors in related disciplines.

Concretely, for plan verification, although the complexity
is well-developed for classical planning and grounded HTN
planning (Behnke, Höller, and Biundo 2015), no investiga-
tions have been done for lifted HTN planning. Here, we will
present a lower and an upper bound of the complexity of
lifted HTN plan verification, which turns out to be signifi-
cantly harder compared to its grounded counterpart.

For the bounded plan existence problem, we will discuss
its complexity in terms of both the encoding size and the
magnitude of the bound. For this, we follow the methodol-
ogy by Bäckström and Jonsson (2011) which encodes the
bound in binary and in unary, respectively. Lastly, we will
discuss the connection between the bounded plan existence
problem and the plan optimality verification problem and
present the complexity results for the latter.

Background
We first present the notations which will be used throughout
the paper and the planning formalisms on which the com-
plexity results are developed.

Size of Objects Given an arbitrary object x, e.g., x can be
a number, a problem instance, etc., we say that the size of x,
written ∥x∥, is the length of a binary string which encodes
the object x. When studying the complexity of a problem,
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Plan Verification k-length Plan Existence Plan Opt. Verification Bounded Plan Opt. Verification
k in binary k in unary plan given plan length given
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d In P NEXPTIME NP coNP coNP coNEXPTIME
Thm. 4 Prop. 3 Prop. 4 Prop. 5
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nd NP NEXPTIME NP coNP coNP coNEXPTIME

Prop. 2 Thm. 3 Thm. 5 Prop. 3 Prop. 4 Prop. 5

lif
te

d

PSPACE-hard NEXPTIME-hard PSPACE-hard PSPACE-hard PSPACE-hard coNEXPTIME-hard
Thm. 1 Cor. 1 Thm. 6 Prop. 3 Prop. 4 Prop. 5

In NEXPTIME In 2NEXPTIME In NEXPTIME In coNEXPTIME In coNEXPTIME In co2NEXPTIME
Thm. 2 Cor. 1 Thm. 6 Prop. 3 Prop. 4 Prop. 5

Table 1: Summary of the complexity results and the respective theorems. All complexity results are complete except for those
cases where hardness and membership are explicitly specified. Note that we demand here that a solution to an HTN planning
problem is an action sequence, which is different from the standard solution criteria where a solution is a primitive task network.
The complexity of the k-length plan existence with k encoded in binary in grounded classical planning was proved by Bylander
(1994) while the result for the lifted setting was proved by Erol, Nau, and Subrahmanian (1991). When k is encoded in unary, the
complexity in grounded classical planning was proved by Bäckström and Jonsson (2011). The complexity of plan verification
in grounded HTN planning was proved by Behnke, Höller, and Biundo (2015). We show that it holds even in a restricted case.

accounting for the size of the problem is crucial because the
runtime of a certain algorithm (operation) for the problem
is measured with respect to the problem size. Notably, the
size of an object varies in how it is encoded, e.g., a number
can be encoded either in binary or in unary, which can affect
the complexity of the problem. As an example, the unary
encoding of 5 is “11111”, and its binary encoding is “101”.

Grounded Classical Planning A grounded classical plan-
ning problem is a tuple Π = (D, sI , g) where D =
(F ,A, α) is called the domain of Π. F is a (finite) set of
propositions, A is a (finite) set of action names (or actions
for short), and α : A → 2F×2F×2F is a function mapping
each action a ∈ A to its precondition, add list, and delete
list, written α(a) = (prec(a), add(a), del(a)). sI ∈ 2F is
the initial state of Π and g ⊆ F the goal description.

Generally speaking, the objective of (grounded) classical
planning is to find an action sequence which turns the ini-
tial state into another state where the goal description is sat-
isfied. Formally, a state s in classical planning is a set of
propositions, i.e., s ∈ 2F . Applying an action a ∈ A in a
state s will result in a new state s′ with s′ = (s \ del(a)) ∪
add(a). An action a is applicable in a state s if prec(a) ⊆ s.
In other words, the precondition of a is satisfied in s. For
convenience, we write s →a s′ to indicate that the action a
is applicable in the state s, and the state s′ is obtained by ap-
plying a in s. Further, given a state s and an action sequence
π = ⟨a1 · · · an⟩ (n ∈ N), we write s →∗

π s′ for some state s′
to indicate that s′ is obtained by applying π in s, that is, there
exists a state sequence ⟨s0 · · · sn⟩ such that s0 = s, sn = s′,
and for each 1 ≤ i ≤ n, si−1 →ai si. Consequently, a solu-
tion to a (grounded) classical planning problem is an action
sequence π such that sI →∗

π s′ for some state s′ and g ⊆ s′.

Lifted Classical Planning The lifted classical planning
formalism is an extension of the grounded one and is defined

on the alphabet of a first-order language Σ = (V,O,R)
in which V is a set of variables, O a set of objects, and
R a set of predicates. A predicate p ∈ R is of the form
p = P (v1, · · · , vn) for some number n where P is called
the predicate’s name, and vi ∈ V for each 1 ≤ i ≤ n.
Substituting every variable in a predicate with an object is
called grounding the predicate. It is characterized by a vari-
able substitution function ϱ : V → O. More concretely,
given a variable substitution function ϱ, grounding the predi-
cate p according to ϱ results in the grounded predicate, writ-
ten pJϱK, with pJϱK = P (ϱ(v1), · · · , ϱ(vn)). In particular,
a grounded predicate is equivalent to a proposition in the
grounded classical planning formalism.

A lifted planning problem is again a tuple Π = (D, sI , g)
with D = (Σ,A, α) being its domain. In the lifted setting,
A is a set of action schemas. An action schema, a ∈ A, also
consists of an action name and a tuple of variables, writ-
ten A(v1, · · · , vn) (n ∈ N) with A being the action name.
α maps an action schema to its precondition, add list, and
delete list, written α(a) = (prec(a), add(a), del(a)), each
of which is a set of predicates P (vi1 , · · · , vij ) such that
vir ∈ {v1, · · · , vn} for each r ∈ {1, · · · , j}.

An action schema a can also be grounded into an action
a in the grounded setting by a variable substitution function
ϱ, written a = aJϱK. When grounding an action schema,
all predicates in its precondition and add and delete list are
grounded simultaneously by the same substitution function.

Lastly, sI and g are two sets of grounded predicates (i.e.,
propositions) which are the initial state and the goal descrip-
tion of Π, respectively. A solution to Π is an action se-
quence π = ⟨a1 · · · an⟩ such that sI →∗

π s′ for some state s′
with g ⊆ s′, and for each ai with 1 ≤ i ≤ n, there exist an
action schema a ∈ A and a variable substitution function ϱ
such that ai = aJϱK.

In some literatures, the set O of objects is not defined as
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a component of a domain but in conjunction with an initial
state and a goal description, forming a planning task. This
allows a domain to be paired with different planning tasks,
constituting different planning problems. We adapt a more
simple formalism because our complexity investigation only
focus on one single problem instance.

Notably, one can obtain a grounded planning problem Π
from a lifted one Π by grounding every predicate and action
schema with all possible variable substitution functions, and
the problem Π produced in such a way has the same solution
set as Π. One important remark is that ∥Π∥ is exponential in
∥Π∥, that is, ∥Π∥ = O(2∥Π∥q

) for some constant q ∈ N.

Grounded HTN Planning We now reproduce the for-
malism of the grounded Hierarchical Task Network (HTN)
planning (Bercher, Alford, and Höller 2019). A grounded
HTN planning problem Π is a tuple (D, sI , tnI , g) with
D = (F ,A, C,M, α) being its domain. A grounded HTN
planning problem is an extension of a grounded classical one
in the sense that F , A, α, sI , and g are defined in the same
way as their counterparts in the classical setting. An action
a ∈ A in HTN planning is also called a primitive task. Two
components, C and M, which are not in the classical for-
malism, are the set of compound tasks and of methods, re-
spectively. A method (c, tn) ∈ M decomposes a compound
task c ∈ C into a so-called task network tn, which is es-
sentially a partial order multiset of primitive and compound
tasks. Formally, a task network tn is a triple (T,≺, γ) where
T is a set of identifiers, ≺ ⊆ T × T is a partial order de-
fined over T , and γ : T → A ∪ C is a function that maps
each identifier to a task. Two task networks, tn = (T,≺, γ)
and tn′ = (T ′,≺′, γ′), are said to be isomorphic, written
tn ∼= tn′, if there exists a bijective mapping φ : T → T ′

such that γ(t) = γ′(φ(t)) for any t ∈ T , and for any
t, t′ ∈ T , (t, t′) ∈ ≺ iff (φ(t), φ(t′)) ∈ ≺′. The last compo-
nent tnI in Π is the initial task network.

The notion of decomposing a compound task can also be
extended to decomposing a task network. A task network tn
with tn = (T,≺, γ) is decomposed into another one tn′ =
(T ′,≺′, γ′) by some method m = (c, tn†), written tn ⇒m

tn′, if there exists an identifier t ∈ T and a task network
tn∗ = (T ∗,≺∗, γ∗) with tn∗ ∼= tn† such that
1) T ∗ ∩ T = ∅
2) T ′ = (T \ {t}) ∪ T ∗

3) γ(t) = c
4) γ′ = (γ \ {(t, c)}) ∪ γ∗

5) ≺′ = (≺\≺t)∪≺∗∪≺δ in which ≺t is the set of ordering
constraints {(t′, t) | (t′, t) ∈ ≺} ∪ {(t, t′) | (t, t′) ∈ ≺},
i.e., ≺t is the set of all ordering constraints in tn that are
associated with t, and ≺δ specifies the position of tn∗

in tn′ with respect to the task t replaced by it. In other
words, ≺δ is the set {(t1, t2) | t2 ∈ T ∗, (t1, t) ∈ ≺} ∪
{(t2, t1) | t2 ∈ T ∗, (t, t1) ∈ ≺}.

Further, let tn and tn′ be two task networks and m a se-
quence of methods. We use tn ⇒∗

m tn′ to indicate that tn′

is obtained from tn by applying m.
Like classical planning, (grounded) HTN planning is also

to find an action sequence (i.e., a plan) which turns sI into
a state satisfying g. However, in HTN planning, such a plan
must be obtained from the initial task network by decompo-
sitions. Concretely, a plan π is a solution to an HTN planning

problem Π if sI ⇒∗
π s with g ⊆ s for some state s, and there

exists a task network tn = (T,≺, γ) such that tnI ⇒∗
m tn

for some method sequence m, and tn has a linearization tn
that forms π. A linearization tn = ⟨t1 · · · t|T |⟩ of tn is a to-
tal order of T which respects ≺, and by tn forming π, we
mean that π = ⟨γ(t1) · · · γ(t|T |)⟩. For convenience, we use
γ(tn) to denote the task sequence formed by tn. Please note
that there is a minor difference compared to standard HTN
literature (Bercher, Alford, and Höller 2019; Erol, Hendler,
and Nau 1996) in our solution definition. In our definition,
a solution is an action sequence, which we argue makes the
most sense. In standard literature, a solution is a primitive
task network having an executable linearization.

Lifted HTN Planning A lifted HTN planning problem is
a tuple Π = (D, sI , tnI , g) with D = (Σ,A, C,M, α) be-
ing its domain where Σ = (V,O,R), A, and α are de-
fined in the same way as that in lifted classical planning.
Every action schema is also called a primitive task schema.
C is now a set of compound task schemas and M a set of
method schemas. A compound task schema c ∈ C is simply
a compound task name together with a tuple of variables. A
method schema m is a tuple (c, tn) where c is a compound
task schema and tn a task network schema. A task network
schema is again a tuple (T,≺, γ) where T and ≺ are iden-
tical to those in a grounded task network, and γ maps each
identifier to a task schema.

A task, task network, or method schema x can again be
grounded by some variable substitution function ϱ : V → O,
written xJϱK. When grounding a task network schema tn
with a substitution function ϱ, all task schemas in tn are
grounded simultaneously by ϱ, and for any method schema
m = (c, tn) with mJϱK = (cJϱK, tnJϱK). A grounded task
schema and a grounded method schema are equivalent to a
task and a method in the grounded setting, respectively.

sI and g are again the initial state and the goal descrip-
tion consisting of propositions, and tnI is the grounded ini-
tial task network. An action sequence π is a solution to a
lifted HTN planning problem if sI →∗

π s for some state s
with g ⊆ s, and there exists a grounded method sequence
m = ⟨m1 · · ·mn⟩, n ∈ N, such that for each 1 ≤ i ≤ n,
there exists a method schema m ∈ M with mJϱK = mi for
some ϱ, and tnI ⇒∗

m tn for some primitive grounded task
network tn which possesses a linearization forming π.

Similar to lifted classical planning, one could also ground
a lifted HTN planning problem without changing its solution
set, and the size of the grounded problem is again exponen-
tial in that of the lifted one.

Proposition 1. Let Π be a lifted (classical or hierarchical)
planning problem and Π its grounded counterpart. Then it
holds that ∥Π∥ = O(2∥Π∥q

) for some constant q ∈ N.

Plan Verification
We move on to discuss the complexity for plan verification,
which is to decide, given a planning problem and a plan,
whether the plan is a solution to the planning problem.

The complexity results for classical planning are obvi-
ous. In the grounded setting, a plan can clearly be validated
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in polynomial time by checking whether it is executable
and satisfies all goals. This is well-known and exploited by
verifiers like VAL (Howey, Long, and Fox 2004). Given a
ground plan but a lifted problem description, the problem
gets slightly more complicated because for each action in the
plan we need to check whether it can be created by ground-
ing some lifted action schema. This can easily be checked
in polynomial time (just match constants to the respective
variables). As a result, the plan verification problem for both
grounded and lifted classical planning is in P.

In contrast, the plan verification problem in HTN planning
is more computationally expensive. Previous works have al-
ready shown that it is already NP-complete in the grounded
setting (Behnke, Höller, and Biundo 2015; Bercher, Lin, and
Alford 2022). Those investigations rely on the standard def-
inition of solutions being task networks that possess some
executable linearization, whereas we define such a lineariza-
tion as the solution itself. However, even with our definition
of solutions, grounded HTN plan verification is still NP-
complete (Behnke, Höller, and Biundo 2015, Thm. 2).

The existing hardness proof (Behnke, Höller, and Biundo
2015) for plan verification (with our definition of solutions)
relies on finding a decomposition hierarchy that results in the
given plan. We can further improve this result by showing
that NP-hardness holds even if the initial task network is
primitive. This follows from the fact that deciding whether
a sequence of tasks is a linearization of a partial order task
network is NP-complete (Lin and Bercher 2023). The result
by Lin, Grastien, and Bercher (2023) does not differentiate
primitive and compound tasks, which makes the grounded
HTN plan verification problem with a primitive initial task
network a special case of that problem.

Proposition 2. The plan verification problem for grounded
HTN planning is NP-complete. This holds even in the special
case where the initial task network of the given planning
problem is primitive.

As a special case, the plan verification problem in the con-
text of total order (TO) HTN planning is poly-time decid-
able (Behnke, Höller, and Biundo 2015). A TOHTN plan-
ning problem is such that the initial task network is totally
ordered, and every method refines a compound task into a
total order task network as well. Solving a TOHTN plan-
ning problem is computationally cheaper than solving a par-
tial order one. Many theoretical investigations into proper-
ties of TOHTN planning have been made which have great
potential to be utilized to solve TO problems more efficiently
(e.g., see the work done by Olz, Biundo, and Bercher (2021)
and by Olz and Bercher (2023)). The poly-time decidabil-
ity of the TOHTN plan verification problem holds because a
(grounded) TOHTN planning problem is essentially equiv-
alent to a context-free grammar (CFG) (Höller et al. 2014),
and hence, the plan verification problem is equivalent to the
parsing problem for a CFG. Bearing this connection, several
efficient TOHTN plan verifiers (Barták et al. 2021; Lin et al.
2023; Pantucková and Barták 2023) have been developed by
exploiting CFG parsers.

One might raise the question asking why grounded HTN
plan verification is NP-complete but not PSPACE-complete

because it is PSPACE-complete to decide whether a word
is in a context-sensitive language (CSL) (Immerman 1988;
Szelepcsényi 1987) while the solution set of a grounded
HTN problem is a CSL (Höller et al. 2014). It is because the
language, denoted L1, of the solution set of a grounded HTN
problem Π is different from the language of the word mem-
bership problem for CSLs, denoted L2. More specifically,
L1 is {π | π ∈ sol(Π)} where sol(Π) is the solution set
of Π whereas L2 is the set {(ω,Γ) | ω ∈ Γ} in which Γ is a
context-sensitive grammar and ω a word. That is, every el-
ement in L2 is a tuple of a word and a grammar, but every
element in L1 is only a plan. L2 is PSPACE-complete while
the complexity of L1 depends on Π.

Next, we extend our investigation from the grounded set-
ting to the lifted one. Note that in the lifted setting, the plan
to be verified is still grounded, but the planning problem is
represented in the lifted way. Unlike the case in classical
planning, hardness of the plan verification problem increases
dramatically in lifted HTN planning.
Theorem 1. The plan verification problem in the context of
lifted HTN planning is PSPACE-hard.

Proof. We will reduce from the grounded classical plan ex-
istence problem. Let Π = (D, sI , g) with D = (F ,A, α) be
a grounded classical planning problem. For convenience, we
assume that F = {p1, · · · , pn} with n ∈ N. Our objective
is thus to construct a lifted HTN planning problem Π and
a plan π such that π is a solution to Π if and only if Π has
a solution. To this end, we need to construct the following
components (gadgets) that can 1) simulate states in the clas-
sical problem, 2) encode actions in A, and 3) encapsulate
the initial state and the goal of the classical problem.

For the purpose of simulating states in the classical prob-
lem, we construct one compound task schema such that each
grounding of this schema represents a state. This compound
task schema c is constructed as follows:

c = State(x1, · · · , xn, v0, v1)

where x1 · · ·xn, v0, v1 are variables, and n = |F|. Each xi

(1 ≤ i ≤ n) represent the respective proposition pi ∈ F .
Our constructed lifted HTN problem contains only two ob-
jects, namely, 0 and 1, and hence, for any grounded version
of c, if a variable xi is grounded to 1, then it means that the
proposition pi is in the respective state. For the remaining
two variables v0 and v1, their purpose is to simulate actions’
executions in the classical problem, and our latter construc-
tion will ensure that v0 can only be grounded to 0 and v1 to
1 (we will discuss this in more detail shortly).

Next we discuss how to encode the actions in the classi-
cal problem. This is done by constructing method schemas.
For each action a ∈ A, we construct a method schema ma

decomposing the task schema State(x′
1, · · · , x′

n, v0, v1)
into a task network schema which contains solely one com-
pound task schema State(x∗

1, · · · , x∗
n, v0, v1) such that for

all 1 ≤ i ≤ n, 1) x′
i = v1 if pi ∈ prec(a), 2) x∗

i = v0 if
pi ∈ del(a), 3) x∗

i = v1 if pi ∈ add(a), and 4) x′
i = x∗

i
if none of the previous holds. As mentioned above, we will
enforce that v0 = 0 and v1 = 1. Thus, all variables x′

i with
x′
i = v1 together restrict that in order to use this method
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schema to decompose a grounded task State, the respec-
tive xi in the task (to be decomposed) must be grounded to
1. This thus simulate the constraint in the classical problem
that an action a is applicable in a state s if prec(a) ⊆ s. Sim-
ilarly, those x∗

i ’s with x∗
i = v1 (resp. x∗

i = v0) encode that
the respective propositions will be added to (resp. deleted
from) the state s after applying the action a.

Lastly, we present the encoding for the classical problem’s
initial state sI and goal g. sI is encoded by the initial task cI
of the lifted HTN problem, which is constructed as follows:

cI = State(y1, · · · , yn, 0, 1)
where for each 1 ≤ i ≤ n, yi = 1 if the respective pi ∈ sI ,
otherwise, yi = 0. In particular, since we let v0 = 0 and
v1 = 1 in cI , we enforce that the values of these two vari-
ables cannot be changed in decomposition because in each
method schema we construct, v0 and v1 are always inherited
down from the task schema to be decomposed to the subtask.

The goal in the classical planning problem is represented
by the plan π to be verified. To construct this plan, we first
need to construct n extra compound task schemas Pi(x)’s,
one for each pi ∈ F , and one method schema ms which de-
composes the task schema State(x1, · · · , xn, v0, v1) into
the total order task network ⟨P1(x1) · · ·Pn(xn)⟩. The pur-
pose of these Pi’s and ms is to extract each proposition
pi from the respective state. Each Pi(x) can further be de-
composed by two method schemas. One decomposes Pi(x)
into the task network consisting of only one primitive task
schema ExistPi(x) that has neither precondition nor ef-
fects. The other method schema decomposes Pi(x) into the
primitive task schema NotCare(), which again has no pre-
condition and effects. Each ExistPi(x) can be viewed as a
certificate of whether the proposition pi is in the respective
state, namely, ExistPi(1) asserts the presence of pi, and
ExistPi(0) asserts its absence. NotCare() simply means
that we don’t care whether the proposition is in the state. Fi-
nally, the plan π to be verified is the sequence ⟨a1 · · · an⟩
where for each 1 ≤ i ≤ n, ai = ExistPi(1) if pi ∈ g, oth-
erwise, ai = NotCare(). The interpretation of the plan π
is that for every proposition in the goal of the classical prob-
lem, we must assert its presence in the final state obtained
by executing a solution plan, and for those propositions that
are not in the goal, we do not care whether they hold or not.

By construction, there exists a plan π′ in the Π such that
sI →∗

π′ s for some s with g ⊆ s iff there exists a decompo-
sition hierarchy in the constructed lifted HTN problem that
can decompose cI into the constructed plan π.

As an example of the reduction, consider a grounded clas-
sical problem which has three propositions {p1, p2, p3} and
three actions {a1, a2, a3}. The initial state sI of the classi-
cal problem is {p1}, and the goal g is {p2}. The precondition
and effects of each action are depicted in Fig. 1, which also
depicts the construction of each method schema that encodes
the respective action. Fig. 2 depicts how decomposition sim-
ulates actions’ executions. Concretely, the initial task cI en-
coding sI is State(1, 0, 0, 0, 1) because sI has only p1. a1
is the only action which is applicable in sI . Thus, only ma1

has a grounded version that can decompose cI . For the ac-
tion a2, since it requires p3 which is not in sI , it leads to a

a1
p1

p3

¬p1 State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

a2
p1

p3

p2

¬p1 State(v0, v1, v1, v0, v1)

State(v1, x2, v1, v0, v1)
ma2

a3
p3 p1

State(v1, x2, v1, v0, v1)

State(x1, x2, v1, v0, v1)
ma3

Construction

Figure 1: Encoding actions as method schemas.

contradiction that v1 should be grounded to both 0 and 1 si-
multaneously. The similar situation also happens to a3. De-
composing cI leads to the task State(0, 0, 1, 0, 1) which
encodes the state obtained by applying a1 in the initial state.

The plan π to be verified that encodes the goal of the clas-
sical problem is ⟨t1 t2 t3⟩ where t2 = ExistP2(1) and
t1 = t3 = NotCare(). This plan is a solution to the lifted
HTN problem. The decomposition resulting in π is to ap-
ply in sequence ma1

, ma3
, and ma2

, each with the corre-
sponding grounding, to obtain the task State(0, 1, 1, 0, 1),
which can be further decomposed into π. Note that this de-
composition also simulates the solution to the classical prob-
lem. However, if the goal of the classical problem is {p1, p2}
(in which case the classical problem is unsolvable), the plan
π shall be ⟨ExistP1(1) ExistP2(1) NotCare()⟩. Now
this plan is not a solution to the HTN problem because no
decomposition can ground x1 in State to 1.

For membership, one can observe that the lifted HTN plan
verification problem is in NEXPTIME. This is because for
any lifted HTN planning problem Π and a plan π, we can
first ground Π into a grounded one Π in exponential time
according to Prop. 1. Since the grounded HTN plan verifica-
tion problem is in NP, we can non-deterministically verify
whether π is a solution to Π in polynomial time with respect
to ∥Π∥ and ∥π∥. It thus follows that whether π is a solution
to Π can be checked non-deterministically in exponential
time with respect to ∥Π∥.

Theorem 2. The plan verification problem in lifted HTN
planning is PSPACE-hard and is in NEXPTIME.

Bounded Plan Existence
We now move on to discuss the complexity of the bounded
(k-length) plan existence problem, which is to decide, given
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State(1, 0, 0, 0, 1)sI = {p1}

State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

v0 7→ 0, v1 7→ 1
x2 7→ 0, x3 7→ 0

State(0, 0, 1, 0, 1)

State(v1, x2, v1, v0, v1)

State(v0, v1, v1, v0, v1)

ma2
State(x1, x2, v1, v0, v1)

State(v1, x2, v1, v0, v1)

ma3

v0 7→ 0, v1 7→ ×
x1 7→ 1, x2 7→ 0

v0 7→ 0, v1 7→ ×
x2 7→ 0

· · · · · ·
Figure 2: An example of using a decomposition hierarchy to simulate actions’ executions in a classical planning problem.

a planning problem and a k ∈ N, whether there is a solu-
tion plan π to the problem of length up to k. We start with
some general properties of this problem and then discuss its
complexity in specific planning formalisms.

One insight into this problem is that it can always be de-
cided by a two-step procedure independent of any planning
formalism: We first guess a plan π of length up to the bound
k and then verify whether π is a solution to the given plan-
ning problem Π. Bearing this observation, one could notice
that the complexity of the bounded plan existence problem
is restricted by the formula:

TN
V (∥Π∥+ ∥π∥) + TN

G (∥k∥) (1)

where TN
V is a function that denotes the runtime with respect

to the encoding size of Π and π for verifying whether π is a
solution, and TN

G denotes the runtime with respect to the en-
coding size of k for guessing π. The superscript N indicates
that both operations are done non-deterministically.

Having Formula (1) in hand, one could observe that NEX-
PTIME-membership of the bounded plan existence prob-
lem holds for any planning formalism that has the follow-
ing two properties: 1) each action can be encoded in poly-
nomially many bits with respect to the size of a planning
problem, which ensures that TN

G (∥k∥) is exponential to ∥k∥,
and 2) verifying whether a plan is a solution to a planning
problem is in NP with respect to the encoding size of the
plan and the planning problem, which further ensures that
TN
V (∥Π∥+ ∥π∥) is also exponential to ∥k∥.
One could observe that classical planning (including both

the grounded and the lifted representation) satisfies these
two properties, which implies NEXPTIME-membership. In
fact, the tight bound for the grounded representation have
been proved earlier (Erol, Nau, and Subrahmanian 1991; By-
lander 1994), which is PSPACE-complete, making it as hard
as its unbounded version (Bylander 1994). NEXPTIME-
completeness for the lifted setting has also been proved by
Erol, Nau, and Subrahmanian (1991) whereas its unbounded

counterpart is EXPSPACE-complete. We can extend this
reasoning to grounded HTN planning.

Theorem 3. The k-length (bounded) plan existence problem
for grounded HTN planning is NEXPTIME-complete.

Proof. Membership can be obtained by recognizing the fact
that grounded HTN planning satisfies the two properties that
assert NEXPTIME-membership. For hardness, we reduce
from the grounded acyclic HTN plan existence problem. The
basis for the reduction is the result by Behnke et al. (2016)
that for any acyclic HTN planning problem, the length of a
solution is bounded by an exponential number k∗. Thus, by
letting k = k∗, deciding whether an acyclic HTN problem
has a solution is equivalent to deciding whether that problem
has a solution bounded in length by k.

For lifted HTN planning, Thm. 2 implies that TN
V (∥Π∥+

∥π∥) is exponential to ∥π∥ and hence is double-exponential
to ∥k∥. We thus have the following result.

Corollary 1. The k-length plan existence problem for lifted
HTN planning is NEXPTIME-hard and in 2NEXPTIME.

Note that hardness follows from the fact that a grounded
HTN problem can be viewed as a special case of a lifted one.

Encoding the Bound in Unary Our discussion about the
k-length plan existence problem so far is restricted to the
case where the bound k is given in binary. That is, the
magnitude of k grows exponentially in its encoding size.
This however might contradict the intention of giving such a
bound. More concretely, in practice, when a user uses a plan-
ner to find a plan of length up to a certain bound, the user
is actually concerned with the magnitude of this bound but
not the encoding size. For instance, the input k in practice
would be increased incrementally, that is, we would increase
its magnitude by one or two (etc.) but not exponentionally.

Bearing this scenario, Bäckström and Jonsson (2011) in-
vestigated the k-length plan existence problem from a dif-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20208



ferent aspect where they developed its complexity with re-
spect to the magnitude of the bound. This is done by assum-
ing that the bound is encoded in unary. The authors studied
this for finite functional planning (FFP) and proved its NP-
completeness. They further justified that a grounded classi-
cal planning problem can be reduced to an FFP problem in
poly-time (Bäckström and Jonsson 2011, Prop. 1) (note that
this does not hold for the lifted formalism), and hence, NP-
completeness also holds in grounded classical planning.

We now extend the result by Bäckström and Jonsson to
lifted classical planning and grounded and lifted HTN plan-
ning. We first note that when k is given in unary, the term
TN
G (∥k∥) in Formula (1) becomes a polynomial. Hence, one

could immediately recognize that NP-membership holds
for any planning formalism in which TN

V (∥Π∥ + ∥π∥) is
also a polynomial. Thus, NP-membership for lifted classical
planning follows immediately. Furthermore, NP-hardness in
lifted classical planning holds as well due to NP-hardness in
the grounded setting.

Theorem 4. The k-length plan existence problem for lifted
classical planning is NP-complete if k is encoded in unary.

Next we move on to HTN planning.

Theorem 5. The grounded k-length plan existence problem
for HTN planning is NP-complete, if k is encoded in unary.

Proof. Membership can be obtained by recognizing that the
term TN

V (∥Π∥ + ∥π∥) in Formula (1) is a polynomial with
respect to the encoding size of k due to its unary encoding.

For hardness, we can reduce from the grounded classical
k-length plan existence problem with k given in unary. The
reduction is done by using the construction by Erol, Hendler,
and Nau (1996) that simulates a grounded classical problem
with a grounded HTN one. Given a grounded classical prob-
lem Π = (D, sI , g) with D = (F ,A, α), the grounded HTN
problem that simulates it is constructed as follows: The HTN
problem has the same proposition set and action set as the
classical problem and only one compound task c (which is
thus also the initial task). For each a ∈ A, we construct two
methods m1 and m2 where m1 decomposes c into a task net-
work having only one action a, and m2 decomposes c into
the total order task network ⟨a c⟩. Such a construction sim-
ulates selecting actions in the classical problem. The initial
state and the goal of the HTN problem are also identical to
the classical one. The reduction can then be done by copying
the given bound k (in unary).

Theorem 6. The k-length plan existence problem in lifted
HTN planning with k given in unary is PSPACE-hard and is
in NEXPTIME.

Proof. Thm. 2 implies that the term TN
V (∥Π∥ + ∥π∥) in

Formula (1) is exponential to ∥k∥ due to the unary encod-
ing. As a result, NEXPTIME-membership holds. For hard-
ness, we again reduce from the grounded classical plan exis-
tence problem. The construction of the lifted HTN problem
is identical to the one presented in the proof for Thm. 1 ex-
cept that 1) for each pi ∈ F in the classical problem, we con-
struct a lifted predicate Predi(x), 2) for each proposition
pi ∈ F , the respective primitive task schema ExistPi(x)

now has a single positive effect Predi(x), and 3) the goal of
the lifted HTN problem is {Predi(1) | 1 ≤ i ≤ n, pi ∈ g}.

Every proposition Predi(1) can only be obtained from
the respective primitive task ExistPi(1). Hence, the lifted
HTN problem has a solution iff there exists a decomposition
hierarchy that results in a plan containing all ExistPi(1)’s
with pi ∈ g, which can happen iff there exists an action
sequence in the classical problem that can turn the initial
state into another state where the goal is satisfied, by our
argument in the proof for Thm. 1 (in this supplementary ma-
terial). Furthermore, notice that any plan produced by the
lifted HTN problem always has length n. Hence, we could
let the bound k be n, which thus complete the reduction.

Verification of Plan Optimality
Lastly, we turn to discuss the problem of plan optimality ver-
ification, which is to decide, given a planning problem and a
plan, whether there exist no other solutions of length smaller
than that of the given one. Many vital tasks are centered on
plan optimality verification, e.g., the task of model reconcil-
iation, of plan post-optimization, and of domain learning.
The first one is to change a planning problem’s domain with
the least number of changes so as to turn a plan into an op-
timal solution, which is Σp

2-complete (Sreedharan, Bercher,
and Kambhampati 2022). The second one is concerned with
whether a plan can be further optimized by removing some
redundant actions from it, which is NP-complete in both
classical planning (Fink and Yang 1992; Nakhost and Müller
2010) and POCL planning (Olz and Bercher 2019). The last
task is about learning (i.e., constructing) a domain from
fully observed traces (actions and states) such that in the
learned domain the given plans contain no redundant ac-
tions. Depending on the notion of redundancy and additional
imposed constraints, this problem can be in P, NP-complete,
or Σp

2-complete (Bachor and Behnke 2024).
Despite that the complexity results for those related prob-

lems are well-developed, the problem of plan optimality ver-
ification itself has not yet received particular attention. One
remark of great importance is that the plan optimality ver-
ification problem can be viewed as a complement of the
bounded plan existence problem with the bound given in
unary. The reason is that each action in the plan π provided
in the plan optimality verification problem does not matter.
What we are really concerned with is the length |π| of that
plan. Thus, asking whether the plan π is an optimal one is
identical to asking whether there exist no solution plans of
length smaller or equal to |π| − 1 with |π| − 1 encoded in
unary, which is a complement of the bounded plan existence
problem with the bound given in unary.

As a result, the complexity of the plan optimality verifica-
tion problem for a specific planning formalism is naturally
the complement of that of the bounded plan existence prob-
lem with the bound given in unary for that formalism.

Proposition 3. The plan optimality verification problem for
classical planning, including both the grounded and lifted
settings, and grounded HTN planning is coNP-complete.
For lifted HTN planning, this problem is PSPACE-hard and
in coNEXPTIME.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20209



PSPACE-hardness in lifted HTN planning holds because
of the fact that PSPACE = coPSPACE (Szelepcsényi 1987;
Immerman 1988).

Since optimality is often diametral to efficiency, and find-
ing a strict optimal solution is time-consuming in practice,
it is quite often the case that a solution whose length lies in
an acceptable range of the length of an optimal solution is
practically more desirable.

Bearing this scenario, we thus formulate the problem of
bounded optimality verification, which is to decide, given a
planning problem Π, a solution plan π to Π, and a bound
k, whether the length |π∗| of an optimal solution π∗ to Π
satisfies |π| < |π∗| + k. In other words, we want to verify
whether the length of π is not larger than the length of an
optimal solution by the bound k. (Note that both |π∗| and π∗

are not given as input.)
Although the bounded optimality verification problem de-

scribes a scenario that is different from the one described by
the plan optimality verification problem, these two problems
are actually equivalent from the theoretical point of view.
This is because the bounded optimality verification problem
is identical to asking whether there exist no solution plans π′

to Π such that |π|−k > |π′|. For if such a π′ exists, we have
|π∗| ≤ |π′| because π∗ is an optimal solution, and hence,
|π| > |π′|+ k ≥ |π∗|+ k, which is a contradiction. Conse-
quently, for any planning formalism, the bounded optimality
verification problem with π and k being the given plan and
bound, respectively, is again the complement of the bounded
plan existence problem in which the bound is |π| − k and is
encoded in unary.

Proposition 4. The bounded plan optimality verification
problem (with the bound given in binary) has the same com-
plexity as the plan optimality verification problem, indepen-
dent of planning formalisms.

We have already mentioned earlier that in the (bounded)
plan optimality verification problem, what really matters is
the length of the given plan. As a consequence, we can fur-
ther generalize those problems by replacing the given plan
with the length of the plan. That is, given a planning problem
Π, and two numbers kπ and k where kπ is the length of some
solution, we want to decide whether there exist no solution
plans π′ to Π of length k′ such that kπ − k′ > k. We argue
that this generalized version is useful in the scenario of mod-
eling assistance where a (planning) domain modeler would
like to know whether a domain is correctly modeled (Mc-
Cluskey, Vaquero, and Vallati 2017; Lin and Bercher 2021,
2023; Lin, Grastien, and Bercher 2023). One way to do so is
by validating whether certain properties hold in the domain.
In our case, one could ask whether there exists an optimal
solution within a range of k, provided a claim that there is
a solution π with |π| steps (in some domains, the modeler
might be aware that the solution π exists, but doesn’t want
to write it down for the purpose of asking this question).

For this generalized problem, since we replace the given
plan with a number, its complexity is thus the complement
of the bounded plan existence problem without encoding the
bound in unary, independent of planning formalisms.

Proposition 5. The complexity of the bounded plan opti-

mality verification problem (with the bound given in binary)
where the plan is not explicitly given, is the complement of
the bounded plan existence problem, independent of plan-
ning formalisms.

When the bound is zero, the bounded plan optimality ver-
ification problem boils down to the plan optimality verifica-
tion problem where a plan is replaced by its length.

Proposition 6. The complexity of plan optimality verifica-
tion where only the plan length is given is the complement of
the bounded plan existence problem (with the bound given
in binary).

Discussion
Our complexity investigations for HTN planning are based
on the solution criteria that differ from the standard ones. In
fact, the presented complexity results for HTN planning re-
main the same even with the standard solution criteria where
we demand that a solution to an HTN problem is a primitive
task network that possesses an executable linearization. The
reason for this is that an action sequence is a totally ordered
primitive task network and hence is a special case of a par-
tially ordered primitive task network. Thus, hardness of all
problems which are investigated in this paper still hold in the
context of HTN planning with the standard solution criteria.
Membership of these problems does not change as well be-
cause for any partially order primitive task network, we can
guess a linearization of it and verify whether this lineariza-
tion is executable, which can be done in polynomial time
with respect to the encoding size of the task network.

Conclusion
We studied the computational complexity of several ques-
tions centered at the bounded plan existence problem. Our
results show that in classical planning and grounded HTN
planning, the computational complexity of plan verification
lies in the range of P to NP-complete, whereas it increases
dramatically in lifted HTN planning. For bounded plan ex-
istence, its complexity ranges from PSPACE-complete to
2NEXPTIME depending on planning formalisms whereas
it decreases to the range from NP-complete to NEXPTIME
when the bound is encoded in unary. For the problem of
(bounded) plan optimality verification, if the plan to be veri-
fied is explicitly given, then it is the complement of bounded
plan existence with the bound given in unary. If only the plan
length is given, it is the complement of the bounded plan ex-
istence problem with the bound given in binary.
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Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and its Implications for
Plan Recognition. In ICAPS 2015, 25–33. AAAI.
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