Computing Domain Abstractions for Optimal Classical Planning with Counterexample-Guided Abstraction Refinement

Raphael Kreft, Clemens Büchner, Silvan Sievers, Malte Helmert

Setting: Optimal Classical Planning in the SAS+ Formalism

Compute Abstractions with Counterexample-Guided Abstraction Refinement

Cartesian Abstraction

Abstract Goal State

Projection

Cartesian Abstraction

Domain Abstraction

CEGAR for Domain Abstractions

- Flaws are atoms (not variables as in Projections)
- Two strategies for choosing Flaws:

Rand	MinGrow

Constructing Collections

- Multiple Sequential CEGAR runs
- Combined using Saturated Cost Partitioning
- Using different diversification strategies:

Initialisation

Domain Abstractions

Sweet spot between projections and cartesian abstractions?

	Rand - GI	MinGr - GI	PDB	Cartesian	coverage
Rand - GI	-		_28_	38	1142.4
MinGr - GI	_14_	-		_41_	1139.6
PDB	13	9	-	_33_	1091.5
Cartesian	7	8	13	-	1070.4