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This technical report contains the full versions of all sketched or omitted proofs of our ICAPS 2023 paper “A Theory of
Merge-and-Shrink for Stochastic Shortest Path Problems”. We follow the same notation as originally introduced in the paper.

Proof of Theorem 2
Recall that for a transformation τ = ⟨Θ,Θ′, σ, λ⟩, we defined the following two heuristics:

hτ
Θ(s) :=

{
J∗
Θ′(σ(s)) s ∈ dom(σ)

∞ s /∈ dom(σ)
hτ
Θ′(s′) :=

{
maxs∈σ−1(s′) J

∗
Θ(s) σ−1(s′) ̸= ∅

0 σ−1(s′) = ∅

The statement of Theorem 2 was the following.

Theorem 2 Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation.

(i) If τ is conservative, then hτ
Θ is goal-aware, consistent, safe and admissible.

(ii) If τ is refinable, then hτ
Θ′ is goal-aware, consistent, safe and admissible.

(iii) If τ is refinable, then hτ
Θ is pessimistic.

(iv) If τ is exact, then hτ
Θ is perfect.

As already mentioned in the paper, (iii) follows from (ii) since hτ
Θ(s) = J∗

Θ′(σ(s)) ≥ hτ
Θ′(σ(s)) ≥ J∗

Θ(s) by admissibility if
s ∈ dom(σ) and hτ

Θ(s) = ∞ ≥ J∗
Θ(s) otherwise. Clearly, (iv) follows directly from (i) and (iii). Admissibility of the heuristics

follows from goal-awareness, consistency and safety. To prove (i) and (ii), we split these statements into multiple parts. We
first concentrate on goal-awareness and consistency only, and then leverage this intermediate result to also show safety and
admissibility.

Theorem 2A Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation.

(i) If τ is conservative, hτ
Θ is goal-aware and consistent.

(ii) If τ is refinable, hτ
Θ′ is goal-aware and consistent.

Proof. Let Θ = ⟨S,L, c, T,G⟩ and Θ′ = ⟨S′, L′, c′, T ′, G′⟩.

(i) Goal-Awareness Let s ∈ G. From CONSS and CONSG we can immediately conclude σ(s) ∈ G′ and therefore hτ
Θ(s) =

J∗
Θ′(σ(s)) = 0.

(i) Consistency Let s ∈ S. We need to show hτ
Θ(s) ≤ (BΘh

τ
Θ)(s). Assume T (s) ̸= ∅, as otherwise this is trivial by definition

of BΘ. This also implies T ′(σ(s)) ̸= ∅ since indτ (T (s)) ̸= ∅ by CONSS and CONSL and indτ (T (s)) ⊆ T ′(σ(s)) by CONST.
Because J∗

Θ′ ≤ BΘ′J∗
Θ′ , we have by definition of hτ

Θ and BΘ′ :

hτ
Θ(s) ≤ min

⟨σ(s),ℓ′,δ′⟩∈T ′(σ(s))

[
c′(ℓ′) +

∑
t′∈S′

δ′(t′)J∗
Θ′(t′)

]
≤ min

⟨σ(s),ℓ′,δ′⟩∈indτ (T (s))

[
c′(ℓ′) +

∑
t′∈S′

δ′(t′)J∗
Θ′(t′)

]
(by indτ (T (s)) ⊆ T ′(σ(s)))



Next, acknowledge the simple mathematical fact that minx∈f(X) g(x) = minx∈X g(f(x)) for f total on X . In our case,
f = indτ is total on X = T (s) by CONSS and CONSL. This allows us to minimize over T (s) directly.

. . . = min
⟨s,ℓ,δ⟩∈T (s)

[
c′(λ(ℓ)) +

∑
t′∈S′

σD(δ)(t
′)J∗

Θ′(t′)
]

≤ min
⟨s,ℓ,δ⟩∈T (s)

[
c(ℓ) +

∑
t′∈S′

σD(δ)(t
′)J∗

Θ′(t′)
]

(by CONSC)

= min
⟨s,ℓ,δ⟩∈T (s)

[
c(ℓ) +

∑
t′∈S′

∑
t∈σ−1(t′)

δ(t)J∗
Θ′(t′)

]
(by def. σD)

= min
⟨s,ℓ,δ⟩∈T (s)

[
c(ℓ) +

∑
t∈S

δ(t)J∗
Θ(σ(t))

]
(by CONSS)

= min
⟨s,ℓ,δ⟩∈T (s)

[
c(ℓ) +

∑
t∈S

δ(t)hτ
Θ(t)

]
(by def. hτ

Θ)

= (BΘh
τ
Θ)(s) (by def. BΘ)

(ii) Goal-Awareness Let s′ ∈ G′. If σ−1(s′) = ∅ we have hτ
Θ′(s′) = 0 by definition of h, otherwise REFG guarantees

σ−1(s′) ⊆ G and hτ
Θ′(s′) = 0 since J∗

Θ(s) = 0 for s ∈ G.

(ii) Consistency Let s′ ∈ S′. We need to prove hτ
Θ′(s′) ≤ (BΘ′hτ

Θ′)(s′). Assume T ′(s′) ̸= ∅, as otherwise this is trivial by
definition of BΘ′ . We can also assume σ−1(s′) ̸= ∅ as otherwise hτ

Θ′(s′) = 0 by definition of hτ
Θ′ and the inequality is trivial

since all terms are non-negative.
We choose an arbitrary s ∈ σ−1(s′). Note that T ′(s′) ⊆ indτ (T (s)) by REFT and therefore ∅ ≠ T (s) and ind−1

τ (T ′(s′)) ⊆
T (s). Because J∗

Θ ≤ BΘJ
∗
Θ, we have

J∗
Θ(s) ≤ min

⟨s,ℓ,δ⟩∈T (s)

[
c(ℓ) +

∑
t∈S

δ(t)J∗
Θ(t)

]
≤ min

⟨s,ℓ,δ⟩∈ind−1
τ (T ′(s′))

[
c(ℓ) +

∑
t∈S

δ(t)J∗
Θ(t)

]
(by ind−1

τ (T ′(s′)) ⊆ T (s))

Now, notice that δ ∈ dom(σD) for ⟨s, ℓ, δ⟩ ∈ ind−1
τ (T ′(s′)). Thus, supp(δ) ⊆ dom(σ) = σ−1(S′) by definition of σD.

. . . = min
⟨s,ℓ,δ⟩∈ind−1

τ (T ′(s′))

[
c(ℓ) +

∑
t∈σ−1(S′)

δ(t)J∗
Θ(t)

]
(by supp(δ) ⊆ σ−1(S′))

= min
⟨s,ℓ,δ⟩∈ind−1

τ (T ′(s′))

[
c(ℓ) +

∑
t′∈S′

t∈σ−1(t′)

δ(t)J∗
Θ(t)

]

= min
⟨s,ℓ,δ⟩∈ind−1

τ (T ′(s′))

[
c′(λ(ℓ)) +

∑
t′∈S′

t∈σ−1(t′)

δ(t)J∗
Θ(t)

]
(by REFC)

≤ min
⟨s,ℓ,δ⟩∈ind−1

τ (T ′(s′))

[
c′(λ(ℓ)) +

∑
t′∈S′

σD(δ)(t
′)hτ

Θ′(t′)
]

(by def. σD and hτ
Θ′ )

Lastly, we minimize over the transitions in T ′(s′) directly instead.

. . . = min
⟨s′,ℓ′,δ′⟩∈T ′(s′)

[
c′(ℓ′) +

∑
t′∈S′

δ′(t′)hτ
Θ′(t′)

]
= (BΘ′hτ

Θ′)(s′) (by def. BΘ′ )

All in all, J∗
Θ(s) ≤ (BΘ′hτ

Θ′)(s′). Since s ∈ σ−1(s′) was arbitrary, we have hτ
Θ′(s′) = maxs∈σ−1(s′) J

∗
Θ(s) ≤ (BΘ′hτ

Θ′)(s′)
by definition of hτ

Θ′ . □

To show the remaining properties of Theorem 2 (i) and (ii), we apply Theorem 2A to a very specific type of transformation.
To this end, for a PTS Θ = ⟨S,L, c, T,G⟩, we introduce the MaxProb compilation of Θ as MP(Θ) := ⟨S ∪· {sG(Θ)}, L ∪·
{give up(Θ), success(Θ)}, c′, T ′, {sG(Θ)}⟩ where sG(Θ) is a fresh goal state, give up(Θ) and success(Θ) are fresh labels,
c′(give up(Θ)) := 1 and c′(ℓ) := 0 for ℓ ̸= give up(Θ) and the transitions are defined as T ′ := T ∪· {⟨s, give up(Θ), sG(Θ)⟩ |



s ∈ S} ∪· {⟨s, success(Θ), sG(Θ)⟩ | s ∈ G}. The name of this construction represents the fact that 1 − J∗
MP(Θ)(s) ∈ [0, 1] is

the maximal goal probability of the state s ∈ S, i. e., the probability of terminating in the goal with a policy that maximizes
this metric. In particular, J∗

Θ(s) ∈ R≥0 if and only if J∗
MP(Θ)(s) = 0, since an s-proper policy terminates in the goal with

probability one.
For a transformation τ = ⟨Θ,Θ′, σ, λ⟩, we now investigate the corresponding extended transformation MP(τ) :=

⟨MP(Θ),MP(Θ′), σ′, λ′⟩ where σ′(s) := σ(s) for s ∈ S, σ′(sG(Θ)) := sG(Θ
′), and λ′(ℓ) := λ(ℓ) for ℓ ∈ L,

λ′(give up(Θ)) := give up(Θ′) and λ′(success(Θ)) := success(Θ′). The following is easy to see.

Theorem 2B Let τ be a transformation. If τ satisfies any of the properties of Definition 2, then MP(τ) also satisfies this
property.

With the help of the MaxProb compilation and the fact that J∗
Θ(s) ∈ R≥0 if and only if J∗

MP(Θ)(s) = 0, we can now prove
the remaining part of Theorem 2.

Theorem 2C Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation.

(i) If τ is conservative, hτ
Θ is safe and admissible.

(ii) If τ is refinable, hτ
Θ′ is safe and admissible.

Proof. For (i), we can use Theorem 2B to apply Theorem 2A (i) to MP(τ) and obtain that the heuristic hMP(τ)
MP(Θ) is goal-

aware and consistent. Note that the MaxProb compilation does not contain any dead-ends, so hMP(τ)
MP(Θ) is trivially safe and thus

admissible. Concludingly, for all states s ∈ S, hMP(τ)
MP(Θ)(s) = J∗

MP(Θ′)(σ(s)) ≤ J∗
MP(Θ)(s). Ultimately, J∗

MP(Θ)(s) = 0 implies
J∗
MP(Θ′)(σ(s)) = 0, which means that J∗

Θ(s) ∈ R≥0 implies hτ
Θ(s) = J∗

Θ′(σ(s)) ∈ R≥0. This shows that hτ
Θ is also safe and

therefore admissible.
For (ii), we likewise use Theorem 2b to apply Theorem 2a (ii) to MP(τ) and obtain that the heuristic hτ

Θ′ for MP(Θ′) is
goal-aware and consistent. hMP(τ)

MP(Θ′) is also trivially safe and thus admissible. This means that hMP(τ)
MP(Θ′)(s

′) ≤ J∗
MP(Θ′)(s

′)
and therefore J∗

MP(Θ)(s) ≤ J∗
MP(Θ′)(s

′) for all s ∈ σ−1(s′). Ultimately, J∗
MP(Θ′)(s

′) = 0 implies J∗
MP(Θ)(s) = 0 for all

s ∈ σ−1(s′), which means that J∗
Θ′(s′) ∈ R≥0 implies J∗

Θ(s) ∈ R≥0 and for all states s ∈ σ−1(s′) and thus hτ
Θ′(s′) ∈ R≥0.

This shows that hτ
Θ′ is also safe and admissible for refinable τ . □

Proof of Theorem 3
Theorem 3 provided a characterization of exact transformations in terms of PTS bisimulation, but the proof was only sketched.
We now provide a rigorous proof of this statement.

Theorem 3 Let Θ be a PTS and let τ = ⟨Θ,Θσ,id, σ, id⟩. Then τ is exact if and only if ∼σ is a PTS bisimulation on Θ.

Proof. Before we prove both implications, acknowledge that s1 ∼σ s2 is equivalent to σ(s1) = σ(s2) and δ1 ∼σ δ2 is equivalent
to σD(δ1) = σD(δ2) by definition of ∼σ .

“⇐” We show the following two properties:
(i) If ∼σ satisfies BISIM1 then τ satisfies REFG.
(ii) If ∼σ satisfies BISIM2 then τ satisfies REFT.

REFC trivializes because the label mapping is the identity function and the cost functions of Θ and Θσ,id coincide.

BISIM1 ⇒ REFG: Consider a goal state s′ ∈ Θσ,id and let s ∈ σ−1(s′). Because τ satisfies INDG, there is a goal state
s̃ ∈ σ−1(s′) of Θ. In particular, σ(s) = σ(s̃) = s′ and we have s ∼σ s̃. Ultimately, because ∼σ satisfies BISIM1 and s̃ is a
goal state, s is also a goal state of Θ.

BISIM2 ⇒ REFT: Consider a transition ⟨s′, ℓ, δ′⟩ ∈ Θσ,id and a state s ∈ σ−1(s′). We must show that there exists a
transition ⟨s, ℓ, δ⟩ ∈ Θ with δ ∈ σ−1

D (δ′). Because τ satisfies INDT, there exists a transition ⟨s̃, ℓ, δ̃⟩ ∈ Θ such that s̃ ∈ σ−1(s′)

and δ̃ ∈ σ−1
D (δ′). In particular, s ∼σ s̃. Due to BISIM2, there is a transition ⟨s, ℓ, δ⟩ ∈ Θ with δ ∼σ δ̃. Ultimately, σD(δ) =

σD(δ̃) = δ′ and therefore δ ∈ σ−1
D (δ′).

“⇒” We show the following two properties:
(i) If τ satisfies REFG, then ∼σ satisfies BISIM1.
(ii) If τ satisfies REFT, then ∼σ satisfies BISIM2.

Now, let s1, s2 ∈ Θ be two states with σ(s1) = σ(s2).

REFG ⇒ BISIM1: Assume that s1 is a goal state of Θ. Because of CONSG, we conclude that σ(s1) is a goal state of Θσ,id.
From σ(s1) = σ(s2), we have s2 ∈ σ−1(σ(s1)). Combined with REFG, it follows that s2 is a goal state of Θ.



REFT ⇒ BISIM2: Let ⟨s1, ℓ, δ1⟩ ∈ Θ. We must show that there exists ⟨s2, ℓ, δ2⟩ ∈ Θ with σD(δ1) = σD(δ2). Because
of CONSS+L+T, we have ⟨σ(s1), ℓ, σD(δ1)⟩ ∈ Θσ,id. Because of σ(s1) = σ(s2), we once again conclude s2 ∈ σ−1(σ(s1)).
Combined with REFT, we derive that there is a successor distribution δ2 with δ2 ∈ σ−1

D (σD(δ1)) such that ⟨s2, ℓ, δ2⟩ ∈ Θ. In
particular, σD(δ1) = σD(δ2). □

Proof of Theorem 5
Theorem 5 claimed that every shrink transformation is both induced and conservative. Here, we provide a detailed analysis of
this statement. To this end, the following intermediate lemma will prove helpful as a simplification rule.

Lemma 1 Let F = (Ai)i∈I be a factored APTS and let Σ = (Atom(i, σi))i∈I be an F2FM only consisting of atomic FMs.
Furthermore, let (αi)i∈I with αi : E → Si be a tuple of successor mappings over the state spaces Si of Ai and let ℓ be a label
of F . It holds that JΣKD(δℓ(

⊗
i∈I αi)) = δℓ(

⊗
i∈I σi ◦ αi).

Proof. Let s′ ∈ S′. Firstly, since Σ consists only of atomic FMs, we have JΣK−1(s′) =×i∈I σ
−1
i (s′i). Secondly, for the pre-

image of a product successor mapping, note that (
⊗

i∈I αi)
−1(s) =

⋂
i∈I α

−1
i (si) (for arbitrary αi). To prove the equation,

we unfold the definitions of JΣKD and δℓ and make use of these two facts:

JΣKD(δℓ(
⊗
i∈I

αi))(s
′) =

∑
s∈×i∈I σ−1

i (s′i)

e∈
⋂

i∈I α−1
i (si)

Dℓ(e) =
∑

e∈
⋂

i∈I α−1
i (σ−1

i (s′i))

Dℓ(e)

=
∑

e∈
⋂

i∈I(σi◦αi)
−1(s′i)

Dℓ(e) = δℓ(
⊗
i∈I

σi ◦ αi)

□

We now proceed to prove Theorem 5 in detail.

Theorem 5 Shrink transformations are ind. abstractions.

Proof. The properties CONSS+L+C+G and INDS+L+C+G are proven exactly as in the classical theory. We therefore only focus
on CONST and INDT. In the following, let F = (Ai)i∈I and let τ = ⟨F, F ′,Σ, id⟩ be any transformation such that Σ =
(Atom(i, σi))i∈I is an F2FM only consisting of atomic FMs and F ′ = (A′

i)i∈I with A′
i = Aσi

i . We show that F satisfies INDT
and CONST. Note that shrinking transformations are a special case of such transformations where only a single σi is not the
identity function.

CONST Let ⟨s, ℓ, δ⟩ ∈ Θ(
⊗

F ). We need to show that indτ (⟨s, ℓ, δ⟩) ∈ Θ(
⊗

F ′). By definition of
⊗

F and Θ(
⊗

F ),
there are transitions ⟨si, ℓ, αi⟩ ∈ Ai for all i ∈ I such that δ = δℓ(

⊗
i∈I αi). We have ⟨σi(si), ℓ, σi ◦ αi⟩ ∈ A′

i = Aσi
i by

definition of Aσi
i . By definition of

⊗
F ′ and Θ(

⊗
F ′), we have ⟨(σi(si))i∈I , ℓ, δℓ(

⊗
i∈I σi ◦ αi)⟩ ∈ Θ(

⊗
F ′). Ultimately,

we have JΣK(s) = (σi(si))i∈I by definition of JΣK and δℓ(
⊗

i∈I σi ◦ αi) = JΣKD(δℓ(
⊗

i∈I αi)) by application of Lemma 1,
which shows the claim by definition of indτ .

INDT Let ⟨s′, ℓ, δ′⟩ ∈ Θ(
⊗

F ′). We need to construct a transition ⟨s, ℓ, δ⟩ ∈ Θ(
⊗

F ) with indτ (⟨s, ℓ, δ⟩) = ⟨s′, ℓ, δ′⟩. By
definition of

⊗
F ′ and Θ(

⊗
F ′), there are transitions ⟨s′i, ℓ, α′

i⟩ ∈ A′
i for all i ∈ I such that δ′ = δℓ(

⊗
i∈I α

′
i). By definition

of Aσi
i = A′

i there exist transitions ⟨si, ℓ, αi⟩ ∈ Ai for all i ∈ I such that σi(si) = s′i and σi ◦ αi = α′
i. By definition of

⊗
F

and Θ(
⊗

F ), we conclude ⟨(si)i∈I , ℓ, δℓ(
⊗

i∈I αi)⟩ ∈ Θ(
⊗

F ). Last but not least, note that JΣK((si)i∈I) = (σi(si))i∈I = s′

and JΣKD(δℓ(
⊗

i∈I αi)) = δℓ(
⊗

i∈I α
′
i) by Lemma 1, which shows the claim by definition of indτ . □

Proof of Theorem 6
In Theorem 6, we made the statement that a shrink transformation that uses a local abstraction generated from an APTS
bisimulation is an exact transformation, which strengthens Theorem 5 for such shrinking strategies. In the following, we give a
complete and formal proof for this statement.

Theorem 6 APTS bisimulation-based shrinking is exact.

Proof. Let F = (Ai)i∈I with Ai = ⟨Si, L, c, E,D, Ti, Gi⟩ and
⊗

F = ⟨S,L, c, E,D, T,G⟩. Let ∼ be an APTS bisimulation
on Ak ∈ F and let τ = ⟨F, F ′,Σ, id⟩ be the shrinking transformation for σ∼ and Ak.

By Theorem 5, every shrinking transformation is induced conservative. In particular, Θ(
⊗

F ′) = Θ(
⊗

F )JΣK,id. By apply-
ing Theorem 3, we can therefore conclude that τ is exact if and only if the induced equivalence relation ∼JΣK of JΣK is a PTS
bisimulation on Θ(

⊗
F ).



To show this, let s, t ∈ Θ(
⊗

F ) such that s ∼JΣK t, i. e., JΣK(s) = JΣK(t) in the following. Note that this implies si = ti for
i ̸= k and sk ∼ tk by definition of Σ and σ∼.

BISIM1 Assume s ∈ G. We must show that t ∈ G. By definition of
⊗

F , we get si ∈ Gi for all i ∈ I . For i ̸= k, we have
ti = si ∈ Gi. Because ∼ is a PTS bisimulation on Ak and since sk ∈ Gk and sk ∼ tk, we also have tk ∈ Gk by BISIM1 for
∼. All in all, t ∈ G by definition of

⊗
F .

BISIM2 Let ⟨s, ℓ, δ⟩ ∈ Θ(
⊗

F ). By definition of
⊗

F and Θ(
⊗

F ), there exist transitions ⟨si, ℓ, αi⟩ ∈ Ai with δ =
δℓ(

⊗
i∈I αi). Since ∼ is an APTS bisimulation on Ak and sk ∼ tk, there exists a transition ⟨tk, ℓ, βk⟩ ∈ Ak such that αk ∼ βk

by BISIM2 for ∼. Now define βi := αi for i ̸= k. By definition of
⊗

F and Θ(
⊗

F ), we have ⟨t, ℓ, δℓ(
⊗

i∈I βi)⟩ ∈ Θ(
⊗

F ).
It remains to show that δℓ(

⊗
i∈I αi) ∼JΣK δℓ(

⊗
i∈I βi), i. e.,

∑
u∈C δℓ(

⊗
i∈I αi)(u) =

∑
u∈C δℓ(

⊗
i∈I βi)(u) for all

equivalence classes C ∈ S/∼JΣK. Let C ∈ S/∼JΣK be an equivalence class. We start by applying the definition of δℓ:∑
u∈C

δℓ(
⊗
i∈I

βi)(u) =
∑
u∈C

∑
e∈

⋂
i∈I

β−1
i (ui)

Dℓ(e).

We can further partition the innermost sum by first considering the equivalence classes of ≃Ak,ℓ, which gives us

. . . =
∑
u∈C

∑
D∈E/≃Ak,ℓ

e∈D∩
⋂
i∈I

β−1
i (ui)

Dℓ(e).

Now, note that every equivalence class D ∈ E/≃Ak,ℓ is either completely contained in the intersection
⋂

i∈I\{k} β
−1
i (ui) or

completely disjoint from it by definition of ≃Ak,ℓ. This allows us to restrict to those equivalence classes which are contained in
the intersection.

. . . =
∑
u∈C

∑
D∈E/≃Ak,ℓ

D⊆
⋂

i∈I\{k}
β−1
i (ui)

∑
e∈D∩β−1

k (uk)

Dℓ(e)

By definition of Σ and ∼F , we can write the equivalence class C as C =×i∈I Ci, where Ck ∈ Sk/∼ and Ci = {ũi} for fixed
states ũi ∈ Ai, i ̸= k. The outermost sum therefore only needs to consider the k-th component and can be moved inwards.

. . . =
∑

D∈E/≃Ak,ℓ

D⊆
⋂

i∈I\{k}
β−1
i (ũi)

∑
uk∈Ck

∑
e∈D∩β−1

k (uk)

Dℓ(e)

Next, we apply the facts αk ∼ βk and αi = βi for i ̸= k.

. . . =
∑

D∈E/≃Ak,ℓ

D⊆
⋂

i∈I\{k}
α−1

i (ũi)

∑
uk∈Ck

∑
e∈D∩α−1

k (uk)

Dℓ(e)

Lastly, we apply the previous transformations in reverse.

. . . =
∑
u∈C

∑
D∈E/≃Ak,ℓ

D⊆
⋂

i∈I\{k}
α−1

i (ui)

∑
e∈D∩α−1

k (uk)

Dℓ(e) =
∑
u∈C

∑
D∈E/≃Ak,ℓ

e∈D∩
⋂
i∈I

α−1
i (ui)

Dℓ(e)

=
∑
u∈C

∑
e∈

⋂
i∈I

α−1
i (ui)

Dℓ(e) =
∑
u∈C

δℓ(
⊗
i∈I

αi)(u)

□

Proof of Theorem 7
In Theorem 7, we made the claim that all merge transformations are isomorphisms, and therefore only cause a renaming of the
states of the represented state space.



Theorem 7 All merge transformations are isomorphisms.

Proof. Let τ = ⟨F, F ′,Σ, id⟩ be a merge transformation of F = (Ai)i∈I into F ′ = (A′
i)i∈I′ for j, k ∈ I with j ̸= k, where

I ′ = I \ {j, k} ∪ {⟨j, k⟩}. We need to show that τ is an isomorphism. Since merge transformations only affect the (goal) states
and transitions of

⊗
F , it suffices to show that JΣK is bijective, that JΣK(G) = G′ for the goal states G and G′ of

⊗
F and⊗

F ′, and that T ′ = {⟨JΣK(s), ℓ, JΣK ◦ α⟩ | ⟨s, ℓ, α⟩ ∈ T} for the transitions T and T ′ of
⊗

F and
⊗

F ′. Since Σ, G and G′

are exactly defined as in the classical theory of merge transformations, the former two claims are already proven in the classical
case. We only need to focus on the transitions. We show both inclusions seperately.

“⊇” Let ⟨s, ℓ, β⟩ ∈
⊗

F . We need to show ⟨JΣK(s), ℓ, JΣK ◦ β⟩ ∈
⊗

F ′. By definition of
⊗

F , there exist transitions
⟨si, ℓ, αi⟩ ∈ Ai for each i ∈ I such that β =

⊗
i∈I αi. Furthermore, since ⟨sj , ℓ, αj⟩ ∈ Aj and ⟨sk, ℓ, αk⟩ ∈ Ak, we conclude

that ⟨⟨sj , sk⟩, ℓ, αj ⊗ αk⟩ ∈ Aj ⊗Ak by definition of Aj ⊗Ak. We now define

s′ := (si)i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ ⟨sj , sk⟩} α′ := (αi)i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ αj ⊗ αk}.

We have that ⟨s′i, ℓ, α′
i⟩ ∈ A′

i for every i ∈ I ′ by definition, and therefore ⟨s′, ℓ,
⊗

i∈I′ α′
i⟩ ∈

⊗
F ′ by definition of

⊗
F ′. We

clearly have JΣK(s) = s′ by definition of Σ and s′. It is left to show that JΣK ◦
⊗

i∈I αi =
⊗

i∈I′ α′
i. To this end, let e be an

label effect. We have:

(JΣK ◦
⊗
i∈I

αi)(e) = JΣK((αi(e))i∈I) = (αi(e))i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ ⟨αj(e), αk(e)⟩}

= (αi(e))i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ (αj ⊗ αk)(e)}
= (α′

i(e))i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ (α′
⟨j,k⟩)(e)}

= (α′
i(e))i∈I′ = (

⊗
i∈I′

α′
i)(e).

“⊆” Let ⟨s′, ℓ, β′⟩ ∈
⊗

F ′. By definition of
⊗

F ′, there exist transitions ⟨s′i, ℓ, α′
i⟩ ∈ A′

i for each i ∈ I ′ such that β′ =⊗
i∈I′ α′

i. From ⟨s′⟨j,k⟩, ℓ, α
′
⟨j,k⟩⟩ ∈ A′

⟨j,k⟩ = Aj ⊗ Ak and the definition of Aj ⊗ Ak, there exist ⟨s̃j , ℓ, α̃j⟩ ∈ Aj and
⟨s̃k, ℓ, α̃k⟩ ∈ Ak such that s′⟨j,k⟩ = ⟨s̃j , s̃k⟩ and α′

⟨j,k⟩ = α̃j ⊗ α̃k. We now define

s := (s′i)i∈I\{j,k} ⊔ {j 7→ s̃j} ⊔ {k 7→ s̃k} α := (α′
i)i∈I\{j,k} ⊔ {j 7→ α̃j} ⊔ {k 7→ α̃k}.

By definition, we have ⟨si, ℓ, αi⟩ ∈ Ai for all i ∈ I and therefore ⟨s, ℓ,
⊗

i∈I αi⟩ ∈
⊗

F by definition of
⊗

F . It is clear that
JΣK(s) = s′ by definition of Σ and s. It is left to show that JΣK ◦

⊗
i∈I αi =

⊗
i∈I′ α′

i. To this end, we have:

(JΣK ◦
⊗
i∈I

αi)(e) = JΣK((αi(e))i∈I) = (αi(e))i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ ⟨α̃j(e), α̃k(e)⟩}

= (αi(e))i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ (α̃j ⊗ α̃k)(e)}
= (α′

i(e))i∈I\{j,k} ⊔ {⟨j, k⟩ 7→ (α′
⟨j,k⟩)(e)}

= (α′
i(e))i∈I′ = (

⊗
i∈I′

α′
i)(e).

□

Proof of Theorem 8
In Theorem 8, we investigated the basic properties of label reductions. The proof given in the paper contained a final claim that
we deal with here. For the sake of simplicity, we including here the steps already mentioned in the paper.

Theorem 8 Label reductions are abstractions and satisfy INDS+L+C+G and REFG. Furthermore, they satisfy REFC if and only
if only labels with the same costs are reduced and satisfy INDT if and only if they satisfy REFT.

Proof. The proofs for properties CONSS+L+C+G, INDS+L+C+G and REFG, and the necessary and sufficient condition of REFC
are given in the classical theory. Since JΣK = id we have

⋂
s∈JΣK−1(s′) indτ (T (s)) = indτ (s

′) and so INDT and REFT collapse
to a common statement.

For CONST, let ⟨s, ℓ, δ⟩ ∈ Θ(
⊗

F ). By definition of Θ(A) and the product, there is some α such that δ = δℓ(
⊗

i∈I αi) and
⟨si, ℓ, αi⟩ ∈ Ai for all i ∈ I . By definition of Aλ,ϵ

i , we get ⟨si, λ(ℓ), αi ◦ ϵ−1
ℓ ⟩ ∈ Aλ,ϵ

i for all i ∈ I . By definition of the product
and Θ(A), ⟨s, λ(ℓ), δλ(ℓ)(

⊗
i∈I αi ◦ ϵ−1

ℓ )⟩ ∈ Θ(
⊗

F ′). It is left to show that δℓ(
⊗

i∈I αi) = δλ(ℓ)(
⊗

i∈I αi ◦ ϵ−1
ℓ ).



To this end, let s ∈
⊗

F . We have

δℓ(
⊗
i∈I

αi)(s) =
∑

e∈
⋂

i∈I α−1
i (s)

Dℓ(e) =
∑

e∈
⋂

i∈I α−1
i (s)

(D′
ℓ ◦ ϵℓ)(e)

by definition of δℓ and D′. We now move ϵℓ to the range of the sum, so we get:

. . . =
∑

e′∈ϵℓ(
⋂

i∈I α−1
i (s))

D′
ℓ(e

′)

Note that ϵℓ is bijective. For injective functions, the function image commutes with intersections, so we obtain:

. . . =
∑

e′∈
⋂

i∈I ϵℓ(α
−1
i (s))

D′
ℓ(e

′)

Lastly, we apply the inverse on a function composition and finally use the definition of δℓ to conclude the claim.

. . . =
∑

e′∈
⋂

i∈I(αi◦ϵ−1
ℓ )−1(s)

D′
ℓ(e

′) = δλ(ℓ)(
⊗
i∈I

αi ◦ ϵ−1
ℓ )(s).

□

Proof of Theorem 9
Theorem 9 covered exact label reduction.

Theorem 9 A label reduction of a FAPTS F that combines exactly two labels ℓ1, ℓ2 of F is exact if c(ℓ1) = c(ℓ2) and either
(A) ℓ1 ϵ-subsumes ℓ2 in all A ∈ F or vice versa,
(B) ℓ1 and ℓ2 are (A, ϵ)-combinable for some A ∈ F or
(C) ℓ1 and ℓ2 are dead for some A ∈ F .

We split the proof of Theorem 9 into two subtheorems, Theorem 9A and Theorem 9B, from which Theorem 9 follows as a
corollary.

Theorem 9A A label reduction for λ : L → L′ and ϵ of an FAPTS F = (Ai)i∈I that combines exactly two labels ℓ1, ℓ2 ∈ L
satisfies

×
i∈I

⋃
ℓ∈λ−1(ℓ′)

Tϵ(Ai, ℓ) ⊆
⋃

ℓ∈λ−1(ℓ′)

×
i∈I

Tϵ(Ai, ℓ)

for all ℓ′ ∈ L′ if one of the following conditions holds:
(A) ℓ1 ϵ-subsumes ℓ2 in all A ∈ F or vice versa,
(B) ℓ1 and ℓ2 are (A, ϵ)-combinable for some A ∈ F or
(C) ℓ1 and ℓ2 are dead for some A ∈ F .

Proof. The inclusion is trivial for ℓ′ ̸= ℓ12. For ℓ12, the inclusion collapses to:

×
i∈I

(
Tϵ(Ai, ℓ1) ∪ Tϵ(Ai, ℓ2)

)
⊆×

i∈I

Tϵ(Ai, ℓ1) ∪×
i∈I

Tϵ(Ai, ℓ2).

We now prove this inclusion for every case.

Case (A) Assume ℓ1 ϵ-subsumes ℓ2 in all factors, the other case is symmetric. We have

×
i∈I

(
Tϵ(Ai, ℓ1) ∪ Tϵ(Ai, ℓ2)

)
=×

i∈I

Tϵ(Ai, ℓ1) ⊆×
i∈I

Tϵ(Ai, ℓ1) ∪×
i∈I

Tϵ(Ai, ℓ2).

Case (B) Choose k ∈ I such that ℓ1 and ℓ2 are (Ak, ϵ)-combinable. Then:

×
i∈I

(
Tϵ(Ai, ℓ1) ∪ Tϵ(Ai, ℓ2)

)
=×

i∈I

{
Tϵ(Ai, ℓ1) if i = k

Tϵ(Ai, ℓ1) ∪ Tϵ(Ai, ℓ2) if i ̸= k

}
=×

i∈I

Tϵ(Ai, ℓ1) ∪×
i∈I

{
Tϵ(Ai, ℓ1) if i = k
Tϵ(Ai, ℓ2) if i ̸= k

}
=×

i∈I

Tϵ(Ai, ℓ1) ∪×
i∈I

Tϵ(Ai, ℓ2).



Case (C) Let k ∈ I such that ℓ1, ℓ2 are dead in Ak ∈ F . Then Tϵ(Ak, ℓ1) = ∅ = Tϵ(Ai, ℓ2) and both sides are empty. □

Theorem 9B A label reduction for λ : L → L′ and ϵ of an FAPTS F = (Ai)i∈I with labels L that combines exactly two labels
ℓ1, ℓ2 ∈ L satisfies INDT if for all ℓ′ ∈ L′:

×
i∈I

⋃
ℓ∈λ−1(ℓ′)

Tϵ(Ai, ℓ) ⊆
⋃

ℓ∈λ−1(ℓ′)

×
i∈I

Tϵ(Ai, ℓ)

Proof. We prove the statement by contraposition. Assume INDT does not hold. By assumption, let ⟨s, ℓ′, δ⟩ ∈ Θ(
⊗

F ′) be
a transition such that there exists no transition ⟨s, ℓ, δ⟩ ∈ Θ(

⊗
F ) with ℓ ∈ λ−1(ℓ′). By definition of the product, F ′ and

Θ(
⊗

F ′), we can decompose δ into δ = δℓ′(
⊗

i∈I αi ◦ ϵ−1
ℓ′ ). Now, if it were the case that ⟨s, ℓ,

⊗
i∈I αi⟩ ∈

⊗
F , for some

ℓ ∈ λ−1(ℓ′), then we would have δℓ(
⊗

i∈I αi) = δℓ′(
⊗

i∈I αi ◦ ϵ−1
ℓ′ ). We therefore have ⟨s, ℓ,

⊗
i∈I αi⟩ /∈

⊗
F for all

ℓ ∈ λ−1(ℓ′).
Now, let p = (⟨si, αi ◦ ϵ−1

ℓ′ ⟩)i∈I . We will show that p ∈ LHS := ×i∈I

⋃
ℓ∈λ−1(ℓ′) Tϵ(Ai, ℓ), but p /∈ RHS :=⋃

ℓ∈λ−1(ℓ′)×i∈I Tϵ(Ai, ℓ), thereby showing that the inclusion in the assumption does not hold.

p ∈ LHS We have ⟨s, ℓ′,
⊗

i∈I αi ◦ ϵ−1
ℓ′ ⟩ ∈

⊗
F ′. From the definition of the product, this means ⟨si, ℓ′, αi ◦ ϵ−1

ℓ′ ⟩ ∈ A′
i

for all i ∈ I . From the definition of label reduction, this means that for all i ∈ I , there exists a label ℓi ∈ λ−1(ℓ′) such that
⟨si, ℓi, αi⟩ ∈ Ai, which means ⟨si, αi◦ϵ−1

ℓ′ ⟩ ∈ Tϵ(Ai, ℓi). Hence, ⟨si, αi◦ϵ−1
ℓ′ ⟩ ∈

⋃
ℓ∈λ−1(ℓ′) Tϵ(Ai, ℓ) for all i ∈ I . Ultimately,

p ∈×i∈I

⋃
ℓ∈λ−1(ℓ′) Tϵ(Ai, ℓ), by definition of p.

p /∈ RHS Consider a label ℓ ∈ λ−1(ℓ′). We know that ⟨s, ℓ,
⊗

i∈I αi⟩ /∈
⊗

F . By definition of the product, there must be a
k ∈ I such that ⟨sk, ℓ, αk⟩ /∈ Ak and therefore ⟨sk, αk ◦ ϵ−1

ℓ ⟩ /∈ Tϵ(Ak, ℓ). We obtain p /∈×i∈I Tϵ(Ai, ℓ) by definition of p.
Since ℓ was arbitrary, this shows p /∈

⋃
ℓ∈λ−1(ℓ′)×i∈I Tϵ(Ai, ℓ). □


