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Abstract

The merge-and-shrink framework is a powerful tool to con-
struct state space abstractions based on factored representa-
tions. One of its core applications in classical planning is the
construction of admissible abstraction heuristics. In this pa-
per, we develop a compositional theory of merge-and-shrink
in the context of probabilistic planning, focusing on stochas-
tic shortest path problems (SSPs). As the basis for this de-
velopment, we contribute a novel factored state space model
for SSPs. We show how general transformations, including
abstractions, can be formulated on this model to derive ad-
missible and/or perfect heuristics. To formalize the merge-
and-shrink framework for SSPs, we transfer the fundamental
merge-and-shrink transformations from the classical setting:
shrinking, merging, and label reduction. We analyze the for-
mal properties of these transformations in detail and show
how the conditions under which shrinking and label reduction
lead to perfect heuristics can be extended to the SSP setting.

Introduction
Probabilistic planning is a generalization of classical plan-
ning in which actions are stochastic, i.e., an action may re-
sult in several outcomes, each known to occur with a spe-
cific probability. Stochastic shortest path problems (SSPs,
Bertsekas and Tsitsiklis 1991) are particular probabilistic
planning problems in which the objective is the minimiza-
tion of accumulated costs in expectation until a specific goal
is reached. Heuristic search algorithms (Hansen and Zilber-
stein 2001; Bonet and Geffner 2003; Trevizan et al. 2017)
can solve SSPs without constructing the full state space by
utilizing an admissible heuristic, i. e., a function that un-
derestimates the expected cost-to-goal of all states. Previ-
ous work on admissible heuristics include determinization-
based approaches (e. g., Bonet and Geffner 2005; Kolobov,
Mausam, and Weld 2010, 2012), which evaluate classi-
cal planning heuristics on the all-outcomes determiniza-
tion of the problem; occupation measure heuristics (Tre-
vizan, Thiébaux, and Haslum 2017), which can be seen as a
generalization of operator-counting heuristics from classical
planning (Pommerening et al. 2014); and pattern database
heuristics for SSPs (Klößner and Hoffmann 2021).
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Merge-and-shrink (Dräger, Finkbeiner, and Podelski
2009) is a powerful framework based on factored state
space representations with a broad range of applications in
classical planning, including the computation of abstraction
heuristics (e. g., Helmert et al. 2014; Sievers and Helmert
2021), task reformulation (Torralba and Sievers 2019) or
identifying irrelevant actions (Torralba and Kissmann 2015).
The core concept of the merge-and-shrink framework is to
represent a (large) labelled transition system implicitly as a
factored transition system (FTS), a set of multiple smaller
transition systems (called factors) with the same labels.
Given such an FTS of an input transition system, the frame-
work repeatedly applies transformations, while at the same
time maintaining a factored state mapping (Helmert, Röger,
and Sievers 2015) from the original transition system to the
transformed FTS. All transformations can be categorized in
terms of desirable properties that they have. For example,
conservative transformations induce admissible heuristics
and exact transformations induce perfect heuristics. Further-
more, transformations can be chained, and such composed
transformations inherit the properties of the individual trans-
formations. As all merge-and-shrink transformations are at
least conservative, each factor of the transformed FTS in-
duces an abstraction of the original transition system, which
empowers computing admissible abstraction heuristics.

While factored state space representations also exist for
MDPs (e. g., Boutilier, Dearden, and Goldszmidt 2000), the
merge-and-shrink framework in particular has not been ap-
plied to this setting as of yet. Our main contribution is
the extension of this framework as detailed by Sievers and
Helmert (2021) to the SSP setting. We design a new factored
state space representation suitable for our new framework
and show how transformations and their properties must be
adapted to this representation to operate as expected. We
show that an exact reconstruction of the original state space
is impossible if factors are represented as probabilistic tran-
sition systems. Instead, we introduce a new factored rep-
resentation amenable for exact transformations by annotat-
ing each transition with the task-level probabilistic outcome
it belongs to. Then, we define shrink, merge, and label re-
duction transformations within the new framework and an-
alyze their properties, including conditions which guaran-
tee exactness of such transformations. In particular, we show
that shrink transformations based on probabilistic bisimula-



tion (Larsen and Skou 1991) are not exact, and subsequently
adapt them to yield exactness. Our theory allows to fully
exploit the power of merge-and-shrink for SSPs, including
the computation of admissible heuristics, thus providing a
method to compute arbitrary abstraction heuristics for SSPs.

Background
In this section, we introduce our probabilistic planning set-
ting and recall the merge-and-shrink framework.

Mathematical Notation
We write D(X) := {δ : X → [0, 1] |

∑
x∈X δ(x) = 1}

for the set of (discrete) probability distributions over X and
supp(δ) := {x | δ(x) > 0} for the support of δ ∈ D(X).
We use R := R ∪ {−∞,∞} for the extended reals, with
the convention 0 · ±∞ = 0. We write idX for the identity
function on X , using id if X it is clear from the context.

A partial function f from a set X to Y is a function from
some domain dom(f) ⊆ X to Y and is denoted f : X ⇀ Y .
If dom(f) = X then f is total on X and we write f : X →
Y . The image of X ′ ⊆ X under f is denoted f(X ′) :=
{f(x) | x ∈ X ′ ∩ dom(f)} and the pre-image of Y ′ ⊆ Y
under f is denoted f−1(Y ′) := {x | f(x) ∈ Y ′}.

The restriction of f to X ⊆ dom(f) is denoted f |X . The
composition of f : X ⇀ Y and g : Y ⇀ Z is denoted
g ◦ f : dom(f) ∩ f−1(dom(g)) → Z, x 7→ g(f(x)). The
disjoint union of f : X → Y and g : X ′ → Y ′ is denoted
f ∪· g : X ∪· X ′ → Y ∪ Y ′, x 7→ f(x) if x ∈ X else g(x).

Probabilistic Planning
Stochastic Shortest Path Problems A stochastic short-
est path problem (SSP, Bertsekas and Tsitsiklis 1991) is a
tuple S = ⟨S,L, c, P,G⟩, where S is a set of states, L
is a set of labels, c : L → R≥0 is a label cost function,
P : S × L × S → [0, 1] is a transition probability function
with

∑
t∈S P (s, ℓ, t) ∈ {0, 1} for all ⟨s, ℓ⟩ ∈ S × L, and

G ⊆ S is a set of goal states. The set of labels applicable in
s ∈ S is denoted L(s) := {ℓ ∈ L |

∑
t∈S P (s, ℓ, t) = 1}.

A policy for S is a function π : S ⇀ L either selecting a
label π(s) ∈ L(s) when s is encountered during execution
resulting in the successor t with probability P (s, π(s), t), or
deciding to terminate if s /∈ dom(π). An s-proper policy for
s ∈ S terminates in a goal state with probability 1 when exe-
cuted from s. We write Π(s) for the set of s-proper policies.

The expected cost-to-goal function Jπ
S for π is defined as

Jπ
S (s) := Eπ,s[

∑T
i=0c(π(Si)) ], where the random variable

Si models the state after i decisions of π when starting in s
and T := inf{i | Si+1 /∈ dom(π)} is the last execution step
before termination. If T = ∞, the sum is a series.

The optimal expected cost-to-goal function J∗
S is defined

by J∗
S(s) := infπ∈Π(s) J

π
S (s), where ∞ signifies that dead

ends are unavoidable from s. A policy π is optimal for s ∈ S
iff Jπ

S (s) = J∗
S(s). For s ∈ S, J∗

S(s) is characterizable by a
linear program. To this end, let the Bellman (1957) optimal-
ity operator BS : (S → R≥0) → (S → R≥0) be defined
by (BSJ)(s) := minℓ∈L(s)[c(ℓ) +

∑
t∈S P (s, ℓ, t)J(t)] if

L(s) ̸= ∅, else (BSJ)(s) := J(s). It holds that J∗
S(s) =

supJ:S→R≥0
{J(s) | J ≤ BSJ ∧ ∀s ∈ G. J(s) = 0}.

SSP Heuristic Search Given an SSP S = ⟨S,L, c, P,G⟩,
a heuristic h : S → R≥0 provides estimates for J∗

S(s) for
all states s ∈ S. h is admissible iff h ≤ J∗

S , pessimistic iff
h ≥ J∗

S and perfect iff h = J∗
S . Furthermore, h is goal-

aware iff h(s) = 0 for all s ∈ G, consistent iff h ≤ BSh
and safe iff J∗

S(s) ∈ R≥0 implies h(s) ∈ R≥0. A goal-aware
and consistent heuristic h is not necessarily admissible if ∞
is allowed as a heuristic value, unlike in classical planning.
However, if h is additionally safe, then admissibility follows
from the linear programming formulation of J∗.

A wide range of SSP heuristic search algorithms exists
(e. g., Bonet and Geffner 2003; Trevizan et al. 2017). For all
intents and purposes of this work, it suffices to know that
these algorithms require an admissible heuristic and com-
pute an optimal policy for a given initial state, if one exists.

Variable Spaces A variable space is a finite set of state
variables V associated with non-empty sets (D(v))v∈V ,
called the variable domains. An assignment is an element
of A(V) :=×v∈V D(v). A partial assignment is an element
of Ap(V) :=

⋃
W⊆V×v∈WD(v). For s, t ∈ Ap(V), we

say that s is consistent with t, written s |= t, iff dom(s) ⊇
dom(t) and s(v) = t(v) for all v ∈ dom(t). We denote with
sJtK := s|dom(s)\dom(t) ∪· t the update of s with t.

Probabilistic Planning Tasks As the top-level model of
the planning problem, we consider probabilistic planning
tasks (PPTs) with stochastic effects in finite-domain repre-
sentation (Trevizan, Thiébaux, and Haslum 2017). A PPT
is a tuple Π = ⟨V, O, c, s0, s⋆⟩. V is a variable space. O
is the finite set of operators. Each operator o ∈ O is asso-
ciated with a precondition pre(o) ∈ Ap(V), and an effect
probability distribution Pro ∈ D(Ap(V)). c : O → R≥0

is the operator cost function. Finally, s0 ∈ A(V) is the ini-
tial state and s⋆ ∈ Ap(V) is the goal. Π induces the SSP
S(Π) := ⟨A(V), O, c, P, {s | s |= s⋆}⟩ where P (s, o, t) :=∑

e∈Ap(V).sJeK=t Pro(e) if s |= pre(o), else P (s, o, t) := 0.
The objective is to find an optimal policy for s0 in S(Π).

Merge-and-Shrink
We describe merge-and-shrink in terms of the composi-
tional theory by Sievers and Helmert (2021), from which
we adopt notation. A (labelled) transition system (TS) is
a tuple Θ = ⟨S,L, c, T,G⟩ where T ⊆ S × L × S
is a transition relation and all other components are the
same as for SSPs. A factored transition system (FTS) F =
(Θi)i∈I is a family of transition systems (called factors)
Θi = ⟨Si, L, c, Ti, Gi⟩ with common labels and label cost
function. F implicitly represents the synchronized product⊗

F := ⟨×i∈I Si, L, c, T⊗,×i∈I Gi⟩ over all of its factors,
where T⊗ := {⟨s, ℓ, t⟩ | ∀i ∈ I. ⟨si, ℓ, ti⟩ ∈ Ti}.

The merge-and-shrink algorithm is based on transforma-
tions of the represented TS. A transformation of Θ into Θ′ is
a tuple ⟨Θ,Θ′, σ, λ⟩ where Θ = ⟨S,L, c, T,G⟩ is the orig-
inal TS, Θ′ = ⟨S′, L′, c′, T ′, G′⟩ is the transformed TS and
σ : S ⇀ S′ and λ : L ⇀ L′ are state and label mappings
that relate the states and labels of both TS.

Transformations on the implicitly represented TS of the
FTS are themselves carried out implicitly via factored trans-
formations, which are based on factored mappings (FMs)



which serve as state mappings between FTS. An FM from
a variable space V to a set of values D is an inductively de-
fined tree-like data structure. For v ∈ V and a partial func-
tion α : D(v) ⇀ D, Atom(v, α) is an atomic FM. For FMs
σL from VL to DL and σR from VR to DR and a map-
ping α : DL × DR → D, Merge(σL, σR, α) is a merge
FM. Each FM σ from V to D represents a partial function
JσK : A(V) ⇀ D. For atomic FMs, JAtom(v, α)K(s) :=
α(s(v)) and for merge FMs, JMerge(σL, σR, α)K(s) :=
α(JσLK(s), JσRK(s)). For a variable v ∈ V , a projection FM
is defined as πv := Atom(v, idD(v)) with JπvK(s) = s(v).

A factored-to-factored mapping (F2FM) from a variable
space V to another variable space W is a family Σ =
(σw)w∈W where each σw, w ∈ W is an FM from V to D(w)
which represents the function JΣK : A(V) ⇀ A(W), s 7→
(JσwK(s))w∈W . For every two F2FMs Σ from V to W and
Γ from W to U , there is a composed F2FM Γ ◦Σ from V to
U with JΓ ◦ ΣK = JΓK ◦ JΣK.

A factored transformation is a tuple ⟨F, F ′,Σ, λ⟩ where
F is the original FTS, F ′ is the transformed FTS, Σ is an
F2FM from F to F ′, where the variable domain of a factor
is its state set, and λ is the label mapping. It naturally induces
the transformation ⟨

⊗
F,

⊗
F ′, JΣK, λ⟩.

For the purpose of computing admissible heuristics for a
given TS Θ, the merge-and-shrink algorithm initially com-
putes a factored representation F of Θ, the identity F2FM Σ
from Θ to F as well as the identity label mapping λ on the
labels of Θ. It then repeatedly applies factored transforma-
tions on F until reaching a specified limit or until F consists
of a single factor. Every factor of F together with Σ induces
an abstraction heuristic and thus the algorithm can be termi-
nated at any point to return these abstraction heuristics.

There are four standard merge-and-shrink transforma-
tions. Shrinking applies a state abstraction on some factor
Θ ∈ F . Merging replaces two factors Θ,Θ′ ∈ F with the
factor Θ⊗Θ′. Label reduction applies an abstraction on the
common label set of F . Pruning removes some states and
their transitions in some factor Θ ∈ F .

Transformations
Our first objective is the formalization of transformations in
the probabilistic setting akin to transformations over transi-
tion systems. All proof details for proofs sketched or omitted
in the rest of this paper can be found in our technical report
(Klößner et al. 2023).

While a TS has a transition relation T ⊆ S×L×S and an
agent chooses a transition ⟨s, ℓ, t⟩ ∈ T when in state s, the
SSP model assumes a transition function P : S × L× S →
[0, 1] with

∑
t∈S P (s, ℓ, t) ∈ {0, 1} for all ⟨s, ℓ⟩ ∈ S × L,

and the agent chooses a label ℓ ∈ L(s). To obtain a proper
extension of the classical transformation theory, we first ex-
tend the SSP model to adhere to standard TS semantics by
extending T to a relation and choosing transitions instead.

Definition 1 (Probabilistic Transition Systems) A proba-
bilistic transition system (PTS) is a tuple Θ =
⟨S,L, c, T,G⟩ where T ⊆ S × L × D(S) is a finite proba-
bilistic transition relation, and all other components are the
same as for SSPs. We define T (s) := {⟨s, ℓ, δ⟩ ∈ T}.

A policy for Θ is now a function π : S ⇀ T which termi-
nates or executes a transition π(s) = ⟨s, ℓ, δ⟩ ∈ T (s) when
visiting s, leading to t ∈ S with probability δ(t). The set of
s-proper policies Π(s) and the cost-to-goal functions Jπ

Θ(s)
and J∗

Θ(s) are defined analogously. The Bellman optimality
operator BΘ now becomes (BΘJ)(s) := J(s) if T (s) = ∅,
else (BΘJ)(s) := min⟨s,ℓ,δ⟩∈T (s)[c(ℓ) +

∑
t∈S δ(t)J(t)].

As before, a heuristic for Θ is a function h : S → R≥0. All
heuristic properties are defined analogously.

The induced PTS of a PPT Π = ⟨V, O, c, s0, s⋆⟩ is the
PTS Θ(Π) = ⟨A(V), O, c, T,G⟩ where G := {s | s |=
s⋆} and T := {⟨s, o, δs,o⟩ | s |= pre(o)} with δs,o(t) :=∑

e∈Ap(V).sJeK=t Pro(e). Clearly, J∗
S(Π) = J∗

Θ(Π).
We now formally define transformations for PTS. A trans-

formation of Θ into Θ′ is a tuple ⟨Θ,Θ′, σ, λ⟩ where Θ =
⟨S,L, c, T,G⟩ is the original PTS, Θ′ = ⟨S′, L′, c′, T ′, G′⟩
is the transformed PTS, σ : S ⇀ S′ is a state mapping and
λ : L ⇀ L′ is a label mapping. The composition of two
transformations τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ = ⟨Θ′,Θ′′, σ′, λ′⟩
is the transformation τ ′ ◦ τ := ⟨Θ,Θ′′, σ′ ◦ σ, λ′ ◦ λ⟩.

To introduce syntactic categories of such transformations,
we introduce a natural way to lift a state mapping σ : S ⇀
S′ to a state distribution mapping σD : D(S) ⇀ D(S′)
by defining dom(σD) := {δ | supp(δ) ⊆ dom(σ)}
and σD(δ)(s

′) :=
∑

s∈σ−1(s′) δ(s). The probability of s′

w.r.t. σD(δ) is the total probability of states in the pre-
image of s′ w.r.t. δ. This lets us associate any transformation
τ = ⟨Θ,Θ′, σ, λ⟩ with the mapping indτ from transitions
of Θ to transitions of Θ′ induced by τ , which is defined as
indτ (⟨s, ℓ, δ⟩) := ⟨σ(s), λ(ℓ), σD(δ)⟩.

With this, we define the following syntactic categories of
transformations, which are generalizations of the properties
for transformations on transition systems as defined by Siev-
ers and Helmert (2021). We do not consider an explicit ini-
tial state, so the properties INDI and CONSI are omitted.

Definition 2 Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation of
Θ = ⟨S,L, c, T,G⟩ into Θ′ = ⟨S′, L′, c′, T ′, G′⟩. We define
the following list of syntactic properties for τ .

CONSS σ is total on S
CONSL λ is total on L
CONSC ∀ℓ ∈ dom(λ). c′(λ(ℓ)) ≤ c(ℓ)
CONST indτ (T ) ⊆ T ′

CONSG σ(G) ⊆ G′

INDS σ is surjective on S′

INDL λ is surjective on L′

INDC ∀ℓ′ ∈ L′.∃ℓ ∈ λ−1(ℓ′). c(ℓ) = c′(ℓ′)
INDT indτ (T ) ⊇ T ′

INDG σ(G) ⊇ G′

REFC ∀ℓ′ ∈ L′.∀ℓ ∈ λ−1(ℓ′). c(ℓ) = c′(ℓ′)
REFT ∀s′ ∈ S′. T ′(s′) ⊆

⋂
s∈σ−1(s′) indτ (T (s))

REFG σ−1(G′) ⊆ G

We say that τ is conservative (an abstraction) iff τ satisfies
CONSS+L+C+T+G, induced iff τ satisfies INDS+L+C+T+G and
refinable iff τ satisfies REFC+T+G. Furthermore, we say that
τ is exact iff it is conservative and refinable.
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(a) An example probabilistic transition system Θ.
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(b) The transformed PTS Θσ,λ for the state mapping σ :
{s1, s2, s3, s4} → {s12, s34} with σ(s1) = σ(s2) = s12 and
σ(s3) = σ(s4) = s34 and the label mapping λ : {ℓ1, ℓ2, ℓ3} →
{ℓ12, ℓ3} with λ(ℓ1) = λ(ℓ2) = ℓ12 and λ(ℓ3) = ℓ3.

Figure 1: Example of an induced abstraction transformation.

All properties listed in Definition 2 are semantically
equivalent to their respective counterpart in the classical the-
ory, except for INDT, CONST and REFT, which are gen-
eralizations for stochastic transitions. If every transition is
deterministic, i. e., has a unique successor with probability
one, then these properties can also be considered equivalent.

As in the classical case, for every PTS Θ and total and
surjective state and label mappings σ and λ, there is a unique
PTS Θσ,λ induced by σ and λ such that ⟨Θ,Θσ,λ, σ, λ⟩ is
induced conservative. An example is depicted in Figure 1.

Like their classical counterparts, all of these syntactic
properties are compositional. If any of the above properties
is shared individually by two composed transformations, the
property is inherited by the composition.

Theorem 1 Let τ and τ ′ satisfy one of the properties of Def-
inition 2. Then τ ′ ◦ τ also satisfies this property.

Proof. All properties except CONST, INDT and REFT are
semantically equivalent in the classical theory, where they
compose. Let τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ = ⟨Θ′,Θ′′, σ′, λ′⟩.
Let T, T ′ and T ′′ be the transitions of Θ, Θ′ and Θ′′.

Regarding CONST, we have indτ (T ) ⊆ T ′ due to
CONST for τ , hence indτ ′◦τ (T ) = indτ ′(indτ (T )) ⊆
indτ ′(T ′) ⊆ T ′′ where the first subsumption involves the
image of a superset under indτ ′ and the last subsumption
follows from CONST for τ ′. For INDT, the proof is identi-
cal, except that we replace ⊆ and CONST with ⊇ and INDT.

For REFT, let s′′ ∈ Θ′′. By REFT for τ ′ and τ , we have

T ′′(s′′) ⊆
⋂

s′∈σ′−1(s′′)

indτ (T
′(s′)) ⊆

⋂
s′∈σ′−1(s′′)

indτ (
⋂

s∈σ−1(s′)

T (s))

⊆
⋂

s′∈σ′−1(s′′)

s∈σ−1(s′)

indτ (T (s)) =
⋂

s∈(σ′◦σ)−1(s′′)

indτ (T (s)).

where subsumption two involves the image of a superset and
subsumption three is basic set algebra. □

For any transformation τ = ⟨Θ,Θ′, σ, λ⟩, we define a cor-
responding heuristic hτ

Θ(s) := J∗
Θ′(σ(s)) if s ∈ dom(σ)

and hτ
Θ(s) := ∞ otherwise for the TS Θ, as in the classical

theory. Additionally, we define a corresponding heuristic for
Θ′ by hτ

Θ′(s′) := maxs∈σ−1(s′) J
∗
Θ(s) if σ−1(s′) ̸= ∅, else

hτ
Θ′(s′) := 0. Depending on the syntactic category of the

transformation, we can derive guarantees for these heuristics
which are similar to those observed in the classical setting.

Theorem 2 Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation. (i)
If τ is conservative, then hτ

Θ is goal-aware, consistent, safe
and admissible. (ii) If τ is refinable, then hτ

Θ′ is goal-aware,
consistent, safe and admissible. (iii) If τ is refinable, then
hτ
Θ is pessimistic. (iv) If τ is exact, then hτ

Θ is perfect.

Proof (sketch). (iii) follows from (ii) since hτ
Θ(s) =

J∗
Θ′(σ(s)) ≥ hτ

Θ′(σ(s)) ≥ J∗
Θ(s) by admissibility if s ∈

dom(σ) and hτ
Θ(s) = ∞ ≥ J∗

Θ(s) otherwise. Clearly,
(iv) follows directly from (i) and (iii). Admissibility of
the heuristics follows from goal-awareness, consistency and
safety.

Goal-awareness of hτ
Θ (respectively hτ

Θ′ ) follows directly
from CONSS and CONSG (respectively REFG).

Consistency of hτ
Θ is shown by proving the inequality

hτ
Θ(s) = J∗

Θ′(σ(s)) ≤ (BΘ′J∗
Θ′)(σ(s)) ≤ (BΘh

τ
Θ)(s) for

all s ∈ Θ, by making use of CONSS+L+C+T for the last in-
equality. Consistency of hτ

Θ′ is shown by proving J∗
Θ(s) ≤

(BΘJ
∗
Θ)(s) ≤ (BΘ′hτ

Θ′)(s′) for all s′ ∈ Θ′, s ∈ σ−1(s′),
where the last inequality is derived using REFC+T.

Regarding safety of hτ
Θ, we argue that the maximal goal

probability of a state s ∈ Θ is lower or equal to the maximal
goal probability of the state σ(s) ∈ Θ′. Therefore, J∗

Θ(s) ∈
R≥0 implies hτ

Θ(s) = J∗
Θ′(σ(s)) ∈ R≥0. For safety of hτ

Θ′ ,
we show that the maximal goal probability of a state s′ ∈
Θ′ is a lower bound for the maximal goal probability of all
states s ∈ σ−1(s′) of Θ. This means that J∗

Θ′(s′) ∈ R≥0

implies J∗
Θ(s) ∈ R≥0 for all states s ∈ σ−1(s′). Ultimately,

we have hτ
Θ′(s′) = maxs∈σ−1(s′) J

∗
Θ(s) ∈ R≥0. □

Beyond these basic properties, we can also pinpoint ex-
actly when an induced and conservative transformation is
also refinable. In classical planning, bisimulations can be
used to characterize this property for transformations which
only alter the states. We now revisit this property in our set-
ting, this time formulated in terms of a variant of probabilis-
tic bisimulation (Larsen and Skou 1991). For probabilistic
transition systems, we define bisimulation as follows.

Definition 3 (PTS Bisimulation) Let Θ = ⟨S,L, c, T,G⟩
be a PTS. A PTS bisimulation on Θ is an equivalence re-
lation ∼ ⊆ S × S such that for all states s1, s2 ∈ S with
s1 ∼ s2: (BISIM1) if s1 ∈ G then s2 ∈ G and (BISIM2) if
⟨s1, ℓ, δ1⟩ ∈ T , there is ⟨s2, ℓ, δ2⟩ ∈ T with δ1 ∼ δ2, where
δ1 ∼ δ2 if and only if

∑
s∈C δ(s) =

∑
s∈C δ′(s) for all

equivalence classes C ∈ S/∼.
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(c) The atomic projections Av(Πp) and Aw(Πp).

Figure 2: The induced PTS and atomic (A)PTS projections of the example planning task Πp, where p ∈ [0, 1
4 ].

Naturally, a state mapping σ induces an equivalence rela-
tion on states ∼σ := {(s, t) | σ(s) = σ(t)}. In direct corre-
spondence to the classical situation, we will now prove the
following, which will be useful when proving certain prop-
erties about shrink transformations later on.

Theorem 3 Let Θ be a PTS and let τ = ⟨Θ,Θσ,id, σ, id⟩.
Then τ is exact if and only if ∼σ is a PTS bisimulation on Θ.

Proof (sketch). We can follow the same argumentation as
in the classical theory, showing the following properties:

(i) If ∼σ satisfies BISIM1 then τ satisfies REFG.
(ii) If ∼σ satisfies BISIM2 then τ satisfies REFT.
(iii) If τ satisfies REFG, then ∼σ satisfies BISIM1.
(iv) If τ satisfies REFT, then ∼σ satisfies BISIM2.

While (i) and (ii) show the reverse implication (note here
that REFC is trivial because λ = id), (iii) and (iv) show the
forward implication. □

The Synchronized Product
We now devote our attention to state spaces generated from
a probabilistic planning task. We want to give a definition
of atomic projections in correspondence to their definition
in classical merge-and-shrink, and investigate their role as a
natural starting point for the merge-and-shrink algorithm. To
this end, we define atomic projections as follows.

Definition 4 (Atomic PTS Projections) Let Π = ⟨V, O, c,
s0, s⋆⟩ be a PPT. The atomic projection to v ∈ V is defined
as Θv(Π) := ⟨D(v), O, c, T v, Gv⟩ where Gv := D(v) if
v /∈ dom(s⋆) and Gv := {s⋆(v)} otherwise, and T v :=
{⟨d, o, δd,o⟩ | v /∈ dom(pre(o)) or d = pre(o)v} where
δd,o(d

′) :=
∑

e∈Ap(V).(v/∈dom(e)∧d′=d)∨e(v)=d′ Pro(e).

This definition generalizes the definition of the transition re-
lation in the most natural way while keeping all other com-
ponents the same as in the traditional framework. In classical
planning, Θ(Π) can be reconstructed from the atomic pro-
jections by computing the synchronized product. Therefore,
the atomic projections yield a suitable initialization of the
factored TS maintained during the algorithm. Regrettably,
this guarantee is lost in presence of stochastic operators.

As an example, consider a parameterized PPT Πp with
p ∈ [0, 1

4 ]. Πp has two boolean variables v, w ∈ V and a
single operator o ∈ O. Denoting the effect {v 7→ x,w 7→ y}
with exy , o has the precondition pre(o) = e00 and effect
probabilities Pro(e00) = p, Pro(e01) = Pro(e10) =

1
4 − p

and Pro(e11) = 1
2 + p. The induced PTS Θ(Πp) is de-

picted in Figure 2a and the atomic projections Θv(Πp) and
Θw(Πp) are depicted in Figure 2b, where transitions are also
annotated with the effects that contribute a positive probabil-
ity. These annotations are not part of the state space model
and are only depicted for demonstrative purposes. As we can
see, Θv(Πp) and Θw(Πp) are completely independent from
the parameter p, whereas Θ(Πp) is not. Therefore, atomic
projections do not contain enough information to uniquely
determine and thus reconstruct the induced PTS of a plan-
ning task, which makes the definition of a reconstructing
synchronized product impossible.

The problem is that we lose information about the indi-
vidual outcomes of the operators when we build an atomic
projection. If we want to synchronize the atomic projections
correctly, we must not only make sure that the same opera-
tor is applied in all atomic projections, but also that the out-
comes are synchronized and happen with the same probabil-
ity. Regrettably, a transition in an atomic projection is still
associated with its original operator that induced it, but can
correspond to multiple distinct outcomes with an identical
effect on the projection variable. The individual probabilities
of these outcomes are lost, so synchronization is impossible.

In order to synchronize on the individual operator out-
comes, we henceforth keep track of them in our underlying
state space model. To this end, we integrate a set of label ef-
fects E, which are opaque identifiers for the outcomes of an
operator and annotate the transitions with them accordingly.
We additionally track the probability of each label effect.
This leads to the following refinement of our model.

Definition 5 (Annotated PTS) An annotated PTS (APTS)
is a tuple A = ⟨S,L, c, E,D, T,G⟩ where E is a set of label
effects, D = (Dℓ)ℓ∈L is a family of probability distributions
over E, T ⊆ S × L × (E → S) is a set of transitions and
all other components are the same as for PTS.

The probabilities are now encoded in the label effects instead
of the transitions. Thus, we only store a successor mapping



α : E → S from label effects to corresponding succes-
sors. Given a transition ⟨s, ℓ, α⟩, the intuition is that effect
e occurs with probability Dℓ(e) and leads to state α(e). If
Dℓ(e) = 0, the associated successor is impossible and could
be formally omitted by using partial mappings instead. We
choose not to do so to keep the notation simple.

Of course, in the context of a transition with label ℓ, we
can always cast a successor mapping α : E → S to a suc-
cessor distribution δℓ(α) ∈ D(S) defined as δℓ(α)(t) :=∑

e∈α−1(t)Dℓ(e), dropping the additional information. Do-
ing this for every transition, we obtain the natural interpreta-
tion as a PTS. Formally, given A = ⟨S,L, c, E,D, T,G⟩
we define this PTS as Θ(A) := ⟨S,L, c, T ′, G⟩ where
T ′ := {⟨s, ℓ, δℓ(α)⟩ | ⟨s, ℓ, α⟩ ∈ T}.

We now revisit the state space reconstruction problem
and solve it by employing the new state space model.
First, we define the induced APTS A(Π) := ⟨A(V), O, c,
E,D, T,G⟩ of a PPT Π = ⟨V, O, c, s0, s⋆⟩ in the natural
way. The label-effects E :=

⋃
o∈O supp(Pro) correspond to

the possible effects of the operators on the state variables, the
label effect probabilities Do(e) := Pro(e) match with the
effect probabilities for the respective operator and the tran-
sition relation is defined by T := {⟨s, o, αs⟩ | s |= pre(o)}
where αs(e) := sJeK. The state space in Figure 2a can now
be seen as a depiction of the induced APTS A(Πp) of the
aforementioned planning task Πp. The atomic APTS projec-
tion with respect to v ∈ V is defined analogously as follows.

Definition 6 (Atomic APTS Projection) Let Π = ⟨V, O,
c, s0, s⋆⟩ be a PPT. The atomic APTS projection to v ∈ V
is defined as Av(Π) := ⟨D(v), O, c, E,D, T v, Gv⟩ where
E :=

⋃
o∈O supp(Pro), D := (Pro)o∈O, Gv := D(v) if

v /∈ dom(s⋆) and Gv := {s⋆(v)} otherwise, and T v :=
{⟨d, o, αd⟩ | v ∈ dom(pre(o)) implies d = pre(o)v} with
αd(e) := d if v /∈ dom(e) and αd(e) := ev otherwise.

As an example, reconsider the previously defined parame-
terized task Πp. Figure 2c depicts the atomic APTS projec-
tions Av(Πp) and Aw(Πp) for Πp. Compared to the atomic
PTS projections Θv(Πp) and Θw(Πp) in Figure 2b, each
outcome of the operator o is now associated with its own
transition, and the probabilities are maintained.

Lastly, we define the synchronized product. The intu-
ition should be clear at this point: We synchronize transi-
tions annotated with both the same label and label effect.
To formalize this idea, for a family of successor mappings
α = (αi)i∈I where αi : E → Si, we define the synchro-
nization

⊗
α : E →×i∈I Si by (

⊗
α)(e) := (αi(e))i∈I .

This leads to the following definition.

Definition 7 (Synchronized Product of APTS) The syn-
chronized product of a family of APTS F = (Ai)i∈I

where Ai = ⟨Si, L, c, E,D, Ti, Gi⟩ for i ∈ I is the
APTS

⊗
F := ⟨×i∈I Si, L, c, E,D, T⊗,×i∈I Gi⟩ with

T⊗ := {⟨s, ℓ,
⊗

i∈I αi⟩ | ∀i ∈ I. ⟨si, ℓ, αi⟩ ∈ Tv}.

If we apply the synchronized product to Av(Πp) and
Aw(Πp) depicted in Figure 2c, we can see that this results
exactly in A(Πp) as depicted in Figure 2a, as desired. We
conclude this section by verifying that this holds in general.

Theorem 4 Let Π be a probabilistic planning task with
variables V . Then A(Π) =

⊗
v∈V Av(Π).

Proof. The labels, label effects, label effect probabilities and
the cost function coincide because they are unaffected by
the product. The argument for the (goal) states matches the
classical proof. Before we focus on the transitions, we note
that αs =

⊗
v∈V αsv for all states s ∈ A(V).

“⊆” Let ⟨s, o, α⟩ ∈ A(Π). By definition of A(Π), α = αs

and s |= pre(o). Hence, we have sv = pre(o)v for all v ∈
dom(pre(o)). By definition of the Av(Π), ⟨sv, o, αsv ⟩ ∈
Av(Π) for all v ∈ V . By definition of the product, we have
⟨s, o,

⊗
v∈V αsv ⟩ = ⟨s, o, αs⟩ ∈

⊗
v∈V Av(Π).

“⊇” Let ⟨s, o, α′⟩ ∈
⊗

v∈VA
v(Π). By definition of the

product, there is α with α′ =
⊗

α such that ⟨sv, o, αv⟩ ∈
Av(Π) for v ∈ V . By definition of Av(Π), αv = αsv and
sv = pre(o)v for all v ∈ dom(pre(o)). Ultimately, s |=
pre(o) and ⟨s, o, αs⟩ = ⟨s, o,

⊗
v∈V αsv ⟩ ∈ A(Π). □

Merge-and-Shrink Transformations
As we have just seen, APTS are expressive enough to formu-
late an appropriate synchronous product. We will now use
this state space model as a foundation to formally describe
our merge-and shrink framework for probabilistic planning.

As the underlying factored representation of the state
space, we maintain a family of APTS F = (Ai)i∈I where
I is a finite index set. F implicitly represents the APTS⊗

F . We call F a factored APTS (FAPTS) and its elements
the factors of F . All factors share the same labels, label
effects, label effect probabilities and cost function. Given
a task Π with variables V , we start with the initialization
F = (Av(Π))v∈V , as justified by Theorem 4. Clearly, each
Av(Π) is constructible in time polynomial in the size of Π.

To define the basic merge-and-shrink transformations, we
first introduce APTS transformations in the same way as for
probabilistic transition systems. A transformation of APTS
A with states S and labels L into A′ with states S′ and labels
L′ is a tuple τ = ⟨A,A′, σ, λ⟩ where A is the original APTS,
A′ is the transformed APTS and σ and λ are again state and
label mappings. The composition τ ′ ◦ τ of two APTS trans-
formations τ and τ ′ is defined analogously. The FAPTS F is
subject to factored transformations into some other FAPTS
F ′, analogously defined as tuples ⟨F, F ′,Σ, λ⟩ where Σ is
an F2FM. Such a factored transformation induces the non-
factored transformation ⟨

⊗
F,

⊗
F ′, JΣK, λ⟩.

The main purpose of the APTS model is to enable syn-
chronization of the factors and hence to enable a definition
of merge transformations with appropriate guarantees, as we
will see. When we want to compute a heuristic from a factor
A, we do however not need the additional information and
compute the heuristic values from the induced PTS Θ(A).
Therefore, for an APTS transformation τ = ⟨A,A′, σ, λ⟩,
we define the induced heuristic hτ

A(s) := hτPTS
Θ(A)(s), where

τPTS := ⟨Θ(A),Θ(A′), σ, λ⟩ is the induced PTS transfor-
mation of τ . Since we define hτ

A directly in terms of τPTS,
we simply say that τ satisfies a syntactic property of Defini-
tion 2 iff τPTS satisfies it and obtain the equivalent of Theo-
rem 2 for APTS transformations.
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Figure 3: A counter-example illustrating inexactness of PTS bisimulation-based shrinking. Here, both labels have unit cost. The
single effect of ℓ2 is not explicitly drawn. On the left, two factors A1 and A2 and on the right, their implicitly represented APTS
A1 ⊗A2 are depicted. While s1 and s′1 are clearly bisimilar in Θ(A1), shrinking them would cause the states s1s2 and s′1s2 to
be merged in A1 ⊗A2. This would decrease the optimal cost-to-goal of s′1s2 in A1 ⊗A2 from 2 to 1.5.

We now carry over three of the four factored transforma-
tions used in merge-and-shrink — Shrinking, Merging, La-
bel Reduction — to our setting and show that fundamen-
tal properties still apply. We also investigate more advanced
instantiations of these transformations which yield stronger
guarantees for the constructed merge-and-shrink heuristic.

Shrink Transformations
Shrink transformation are conceptually unchanged. A shrink
transformation applies some local abstraction on one of the
factors. To this end, let A = ⟨S,L, c, E,D, T,G⟩ be an
APTS and let σ : S → S′ be a total state mapping. We will
denote with Aσ the APTS ⟨S′, L, c, E,D, T ′, σ(G)⟩ where
T ′ := {⟨σ(s), ℓ, σ ◦ α⟩ | ⟨s, ℓ, α⟩ ∈ T} in the following.

Definition 8 (Shrink Transformation) Let F = (Ai)i∈I

be a FAPTS and let σ be a total state mapping on some Ak ∈
F . The shrink transformation for σ and Ak is the factored
transformation ⟨F, F ′,Σ, id⟩ where F ′ = (Ai)i∈I\{k} ∪·
{k 7→ Aσ

k} and Σ = (πi)i∈I\{k} ∪· {k 7→ Atom(k, σ)}.

In the classical merge-and-shrink framework, shrink
transformations are generally induced and conservative. For-
tunately, this property naturally extends to our framework.

Theorem 5 Shrink transformations are ind. abstractions.

Proof (sketch). The proofs for the properties CONSS+L+C+G
and INDS+L+C+G are identical in the classical theory. For
CONST and INDT, we extend the corresponding classical
proof for transition systems in a straightforward manner by
substituting every occurrence of a successor state with a suc-
cessor mapping. □

An interesting classical class of shrinking strategies is
based on bisimulation (Milner 1990). Bisimulation-based
shrinking strategies are prominent in classical planning (Nis-
sim, Hoffmann, and Helmert 2011) because they yield exact
transformations. In Theorem 3, we have shown a similar re-
lationship between PTS bisimulations and exact transforma-
tions. The natural extension of this strategy is then to shrink
states in the selected factor Ak ∈ F according to a PTS
bisimulation on Θ(Ak). Unfortunately, unlike in classical
planning, this transformation is not exact, as such a shrink
transformation may not correspond to a PTS bisimulation
on

⊗
F . A counter-example is depicted in Figure 3.

The problem is that in the APTS A1 in Figure 3, the tran-
sitions with label ℓ1 have bisimilar successor distributions
in Θ(A1), but do not lead to bisimilar states for a fixed la-
bel effect. By adding this requirement, we could recover ex-
actness. However, we will consider a slightly more general
approach. We say that two label effects e1 and e2 are lo-
cally equivalent for label ℓ in A if ⟨s, ℓ, α⟩ ∈ A implies
α(e1) = α(e2). In the context of a FAPTS F , we say that
two label effects e1, e2 are A-combinable for ℓ iff they are
locally equivalent for ℓ in every other factor A′ ∈ F \ {A}.
We write e1 ≃A,ℓ e2 when e1 and e2 are A-combinable for
ℓ. Note that ≃A,ℓ is an equivalence relation. Now, instead of
enforcing bisimilar successors for each label effect, we only
require that the successor distributions are bisimilar under
the condition that a fixed but arbitrary class of A-combinable
effects is triggered. This leads to the following definition.

Definition 9 (APTS Bisimulation) Let F be a FAPTS. An
APTS bisimulation on a factor A = ⟨S,L, c, E,D, T,G⟩
of F is an equivalence relation ∼ ⊆ S × S such that for
all s1, s2 ∈ S with s1 ∼ s2, (i) if s1 ∈ G then s2 ∈ G
and (ii) if ⟨s1, ℓ, α1⟩ ∈ T then there is ⟨s2, ℓ, α2⟩ ∈ T
with α1 ∼ α2, where α1 ∼ α2 iff

∑
e∈D∩α−1

1 (C) Dℓ(e) =∑
e∈D∩α−1

2 (C) Dℓ(e) for all equivalence classes C ∈ S/∼
and D ∈ E/≃A,ℓ.

Theorem 6 APTS bisimulation-based shrinking is exact.

Proof (sketch). Let τ = ⟨F, F ′,Σ, id⟩ be a shrink transfor-
mation for σ and Ak ∈ F . The idea is to show that ∼JΣK is
a PTS bisimulation on Θ(

⊗
F ) if ∼σ is an APTS bisimula-

tion on Ak. Exactness then follows by Theorem 3. □

Merge Transformations
Merge transformations are also conceptually identical to
their classical variant. They replace two factors by their syn-
chronous product.

Definition 10 (Merge Transformation) Let F = (Ai)i∈I

be a FAPTS and let j, k ∈ I, j ̸= k. The merge transforma-
tion for j and k is the factored transformation ⟨F, F ′,Σ, id⟩
where F ′ := (Ai)i∈I\{j,k} ∪· {⟨j, k⟩ 7→ Aj ⊗ Ak} and
Σ := (πi)i∈I\{j,k} ∪· {⟨j, k⟩ 7→ Merge(πj , πk, id)}.



In classical planning, a merge transformation is not only
exact, but

⊗
F and

⊗
F ′ are even identical up to renaming

of states. Transformations with this property are also called
isomorphisms. To show the analogous property for our set-
ting, we define isomorphisms on APTS as transformations
τ = ⟨A,Aσ, σ, id⟩ such that σ is bijective. It is straightfor-
ward to see that isomorphisms are composable, exact trans-
formations as in classical planning.

Theorem 7 Merge transformations are isomorphisms.

Label Reduction
Lastly, we consider label reduction. In contrast to classical
label reduction, it is harder to give a general definition for
this transformation in our setting, since we also need to ex-
plain how to unify the label effects of the labels, and also
unify their probabilities. Remember that a label effect is just
a token that identifies a possible outcome for a specific la-
bel. The alphabet of tokens is shared across labels, but the
semantics of a label effect in only defined in the context of a
label, and is independent of other labels.

For label reductions, we assume a label mapping λ : L →
L′ that maps each label ℓ ∈ L of the FAPTS F to a reduced
label λ(ℓ) ∈ L′. To be able to interpret an outcome of ℓ as an
outcome of the reduced label λ(ℓ), we additionally param-
eterize the reduction by a family of label effect mappings
ϵ = (ϵℓ)ℓ∈L. Each ϵℓ : E → E′ bijectively maps from the
old label effects E of F to a set of new label effects E′. We
say that ϵ unifies label ℓ1 and ℓ2 iff for every e1, e2 ∈ E,
ϵℓ1(e1) = ϵℓ2(e2) implies Dℓ1(e1) = Dℓ2(e2), i. e., label
effects that map to the same new label effect have the same
probability. Given a label mapping λ, we say that ϵ is a uni-
fier for λ iff λ(ℓ1) = λ(ℓ2) implies that ϵ unifies ℓ1 and ℓ2.

Now, given the total and surjective label mapping λ :
L → L′ and a unifier ϵ = (ϵℓ)ℓ∈L for λ with ϵℓ : E →
E′, we define the label reduced APTS of A by Aλ,ϵ :=
{S,L′, c′, E′, D′, T ′, G} where D′

ℓ′ := Dℓ ◦ ϵ−1
ℓ for any

ℓ ∈ λ−1(ℓ′). Moreover, c′(ℓ′) := minℓ∈λ−1(ℓ′) c(ℓ) and
T ′ := {⟨s, λ(ℓ), α ◦ ϵ−1

ℓ ⟩ | ⟨s, ℓ, α⟩ ∈ T}. With this, la-
bel reduction transformations are defined as follows.

Definition 11 (Label Reduction) Let F = (Ai)i∈I be a
FAPTS with labels L. Let λ be a total, surjective label map-
ping defined on L and let ϵ be a label effect unifier for λ.
The label reduction transformation for λ and ϵ is the fac-
tored transformation ⟨F, (Aλ,ϵ

i )i∈I , (πi)i∈I , λ⟩.

We can show that our formalization of label reduction sat-
isfies the same syntactic properties as in the classical case.

Theorem 8 Label reductions are abstractions and satisfy
INDS+L+C+G and REFG. Furthermore, they satisfy REFC if
and only if only labels with the same costs are reduced and
satisfy INDT if and only if they satisfy REFT.

Proof (sketch). The proofs for properties CONSS+L+C+G,
INDS+L+C+G and REFG, and the necessary and sufficient
condition of REFC are given in the classical theory. Since

JΣK = id we have
⋂

s∈JΣK−1(s′) indτ (T (s)) = indτ (s
′) and

so INDT and REFT collapse to a common statement.
For CONST, let ⟨s, ℓ, δ⟩ ∈ Θ(

⊗
F ). By definition of

Θ(A) and the product, there is some α such that δ =
δℓ(

⊗
i∈I αi) and ⟨si, ℓ, αi⟩ ∈ Ai for all i ∈ I . By def-

inition of Aλ,ϵ
i , we get ⟨si, λ(ℓ), αi ◦ ϵ−1

ℓ ⟩ ∈ Aλ,ϵ
i for

all i ∈ I . By definition of the product and Θ(A), ⟨s,
λ(ℓ), δλ(ℓ)(

⊗
i∈I αi ◦ ϵ−1

ℓ )⟩ ∈ Θ(
⊗

F ′). It is left to show
that δℓ(

⊗
i∈I αi) = δλ(ℓ)(

⊗
i∈I αi◦ϵ−1

ℓ ). Due to space rea-
sons, we give a proof of this claim in the techincal report. □

Last but not least, we propose an exact label reduction
strategy. To this end, we only consider atomic label reduc-
tions, which only reduce exactly two labels. Recall that in
classical planning, it is NP-hard to decide whether a non-
atomic label reduction is exact, however, exactness of atomic
label reductions can be characterized in terms of the notions
of label subsumption and Θ-combinability. We will extend
these notions to our setting by integrating the label effect
mapping ϵ of a label reduction into these concepts.

For an APTS A, a label ℓ of A and a unifier ϵ for λ, we
define Tϵ(A, ℓ) := {⟨s, α ◦ ϵ−1

ℓ ⟩ | ⟨s, ℓ, α⟩ ∈ A}. If there
is no transition ⟨s, ℓ, α⟩ ∈ A, then we say ℓ is dead in A.
We say that ℓ1 ϵ-subsumes ℓ2 in A iff ϵ unifies ℓ1 and ℓ2 and
if Tϵ(A, ℓ1) ⊆ Tϵ(A, ℓ2). If ϵ-subsumption holds in both di-
rections, we say l1 and l2 are ϵ-equivalent in A. Lastly, given
a FAPTS F we say l1 and l2 are (A, ϵ)-combinable iff l1 and
l2 are ϵ-equivalent in every other factor A′ ∈ F \ {A}. With
this, we state the following sufficient condition for exactness
of atomic label reduction. In contrast to its classical counter-
part, we do not claim that this condition is necessary.

Theorem 9 A label reduction of a FAPTS F that combines
exactly two labels ℓ1, ℓ2 of F is exact if c(ℓ1) = c(ℓ2) and
either (A) ℓ1 ϵ-subsumes ℓ2 in all A ∈ F or vice versa, (B)
ℓ1 and ℓ2 are (A, ϵ)-combinable for some A ∈ F or (C) ℓ1
and ℓ2 are dead for some A ∈ F .

Proof (sketch). The proof is an extension of the correspond-
ing exactness proof in the classical theory. First, we show
that each of the conditions (A), (B) and (C) imply the sub-
sumption

×
i∈I

⋃
ℓ∈λ−1(ℓ′)

Tϵ(Ai, ℓ) ⊆
⋃

ℓ∈λ−1(ℓ′)

×
i∈I

Tϵ(Ai, ℓ).

In a second step, we can then show that this inclusion is
sufficient to prove INDT by contraposition. Exactness then
follows directly from Theorem 8. □

Conclusion
We presented an extension of Merge-and-Shrink as a com-
positional theory of transformations tailored for probablistic
planning. We have shown that our extension properly gen-
eralizes important properties of the classical theory and pro-
vides a new way of constructing admissible SSP abstraction
heuristics. Possible future work in this direction includes a
formalization of pruning transformations, as well as an ex-
perimental evaluation of Merge-and-Shrink as a construc-
tion technique for admissible SSP heuristics.
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