A Theory of Merge-and-Shrink for Stochastic Shortest Path Problems

Thorsten Klößner, Álvaro Torralba, Marcel Steinmetz, Silvan Sievers

ICAPS 23, July 12

SAARLAND UNIVERSITY

SAARBRUCKEN GRADUATE SCHOOL OF
COMPUTER SCIENCE

AALBORG
UNIVERSITY

Overview of this Paper

Based on compositional theory of M\&S in classical planning (Sievers and Helmert 2021)

Contributions

- Formalization of transformations of probabilistic TSs with desirable properties
- Contribution of a suitable factored representation for M\&S
- Formalization of Merge-and-Shrink transformations on this representation

Background: Probabilistic Planning Tasks

Compact representation of TS as prob. planning task: $\Pi=\langle V, O, I, G\rangle$

- Finitely many variables V with finite domains $\mathcal{D}(v), v \in V$
- Finitely many operators O where each $o \in O$:
- has a non-negative cost cost(o)
- has a precondition pre(o) (partial variable assignment)
- has finitely many effects $\operatorname{eff}_{\mathrm{i}}(o)$ (partial variable assignments) with associated probability p_{i}
- Initial state I is a variable assignment
- Goal state G is a partial variable assignment

Background: Probabilistic Transition Systems

Background: Probabilistic Transition Systems

Cost: $\frac{23}{12}$

Transformations

Transformed TS Θ^{\prime}

Original TS Θ

+ State Mapping $\sigma+$ Label Mapping λ

Transformations

Transformed TS Θ^{\prime}

Original TS Θ

+ State Mapping $\sigma+$ Label Mapping λ

Transformation Classes

CONS $_{s} \sigma$ is total on S
CONS $_{\mathbf{L}} \lambda$ is total on L
CONS $_{c} \quad \forall \ell \in \operatorname{dom}(\lambda) \cdot c^{\prime}(\lambda(\ell)) \leq c(\ell)$
$\operatorname{CONS}_{T} \operatorname{ind}_{\tau}(T) \subseteq T^{\prime}$
CONS $_{G} \sigma\left(S_{\star}\right) \subseteq S_{\star}^{\prime}$
IND $_{\mathbf{S}} \quad \sigma$ is surjective on S^{\prime}
IND $_{\mathrm{L}} \quad \lambda$ is surjective on L^{\prime}
IND $_{\mathrm{C}} \quad \forall \ell^{\prime} \in L^{\prime} \cdot \exists \ell \in \lambda^{-1}\left(\ell^{\prime}\right) \cdot c(\ell)=c^{\prime}\left(\ell^{\prime}\right)$
$\operatorname{IND}_{\mathbf{T}} \quad \operatorname{ind}_{\tau}(T) \supseteq T^{\prime}$
IND $_{\mathrm{G}} \quad \sigma\left(S_{\star}\right) \supseteq S_{\star}^{\prime}$
REF $_{C} \quad \forall \ell^{\prime} \in L^{\prime} . \forall \ell \in \lambda^{-1}\left(\ell^{\prime}\right) \cdot c(\ell)=c^{\prime}\left(\ell^{\prime}\right)$
$\mathrm{REF}_{\mathbf{T}} \quad \forall s^{\prime} \in S^{\prime} . T^{\prime}\left(s^{\prime}\right) \subseteq \bigcap_{s \in \sigma^{-1}\left(s^{\prime}\right)} \operatorname{ind}_{\tau}(T(s))$
REF $_{G} \quad \sigma^{-1}\left(S_{\star}^{\prime}\right) \subseteq S_{\star}$

Conservative Transformations (aka Abstractions)

Induced Transformations

Refinable Transformations

From Syntactic Properties to Heuristic Guarantees

Heuristic Guarantees

- Conservative transformations (aka abstractions) result in admissible heuristics
- Refinable transformations result in pessimistic heuristics
- Exact (conservative + refinable) transformations result in perfect heuristics

Composability

Merge-and-Shrink - Factored Representation

Merge-and-Shrink - Factored Representation

- Classical Planning: Synchronize on operators
- Probabilistic Planning: Synchronize on operators and probabilistic outcomes

Merge-and-Shrink - Factored Representation

Merging

Shrinking

Shrinking: Properties

Properties of Shrink Transformations

- conservative and induced transformation
- exact if based on extension of bisimulation

Label Reduction

Label Reduction: Properties

Properties of Label Reduction

- conservative transformation
- exact iff induced/refinable and only labels with same cost are merged
- atomic label reduction exact if based on extension of Θ-combinability

Conclusion

- Purely theoretic paper on the foundations of merge-and-shrink for SSPs
- Introduces a new factored representation suitable for merge-and-shrink
- Generalizes many results from the classical theory
- Not covered in this theory yet: Pruning transformations

References I

Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A Compositional Theory of Transformations of Factored Transition Systems. 71: 781-883.

