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Abstract. The merge-and-shrink framework is a powerful tool for
constructing state-of-the-art admissible heuristics in classical plan-
ning. Recent work has begun generalizing the complex theory be-
hind this framework to probabilistic planning in forms of stochastic
shortest-path problems (SSPs). There however remain two important
gaps. Firstly, although the previous work makes substantial efforts,
the probabilistic merge-and-shrink theory is still incomplete, lacking
in particular prune transformations, i.e., transformations discarding
uninteresting states, effectively reducing the size of the abstraction
without losing relevant information. Secondly, an actual implementa-
tion and experimental evaluation of the merge-and-shrink framework
for SSPs is so far missing. Here, we round off the previous work by
contributing both a theoretical analysis of prune transformations, as
well as an empirical evaluation of merge-and-shrink heuristics. Our
results show that merge-and-shrink heuristics outperform previous
single abstraction heuristics, but do not quite reach the performance
of state-of-the-art additive combinations of such heuristics yet.

1 Introduction

Fully observable probabilistic planning is commonly viewed as a
stochastic shortest-path problem (SSP) [2], where one aims to find
a policy that guarantees achieving the goal with the lowest expected
cost possible. The current state of the art for solving SSPs optimally
is using heuristic search algorithms [e.g., 7] guided with admissi-
ble probabilistic-abstraction heuristics [34, 16, 15]. Such heuristics
derive lower bounds on the expected cost-to-goal by abstracting the
SSP, collapsing together states so to make an exhaustive analysis fea-
sible. In recent years, many different methods have been proposed to
generate such abstractions automatically, the roots typically going
back to classical planning, including pattern databases [5, 8, 15, 17]
and counterexample-guided cartesian abstractions [25, 18].

Merge-and-shrink abstractions have also received significant at-
tention in classical planning research [10, 11, 12, 28]. Merge-and-
shrink is a generic framework for constructing highly informative
abstractions, which is based on a factored representation of transition
systems and operations on this representation, called transformations
[28]. Merge-and-shrink constructs admissible abstraction heuristics,
as long as only transformations are used which preserve specific
compositional properties, regardless of their application order.

Recently, this framework has been generalised to probabilistic
planning [19], by defining a suitable factored representation for prob-

abilistic transition systems alongside suitable extensions of the core
transformations: merge, shrink, and label reduction transformations.
Klößner et al. [19] showed that these transformations preserve com-
positional properties needed to guarantee correctness of the abstrac-
tion construction. However, two gaps remain open. On the one hand,
their theory did not cover prune transformations, which remove un-
interesting (e.g., unreachable) states from the abstraction, effectively
reducing the size of the abstraction without harming informativeness
of the resulting abstraction heuristic. On the other hand, they pro-
vide no implementation and no empirical evaluation, so the practical
applicability of this type of abstraction remains unknown.

In this paper, we round off the previous work. We formally intro-
duce prune transformations, which in general no longer preserve the
admissibility guarantee of the constructed heuristic. Nevertheless, we
derive sufficient conditions for admissibility, and furthermore show
that it suffices to preserve admissibility on alive states, (i.e., states
that are part of a policy which guarantees to reach the goal with cer-
tainty), in order for standard SSP heuristic search algorithms to retain
their completeness and optimality guarantees. We derive prune trans-
formations that detect non-alive states, strengthening the heuristic,
while preserving the optimality guarantee of the heuristic search.

Moreover, we implemented the merge-and-shrink framework, in-
cluding merge, shrink, label reduction and prune transformations.
We compare merge-and-shrink heuristics against other state-of-the-
art abstraction heuristics for probabilistic planning. Our experiments
show that this framework can derive informative heuristics, compet-
itive with both PDB heuristics and cartesian abstraction heuristics.

The paper is structured as follows. We first give an overview over
our probabilistic planning setting and the probabilistic merge-and-
shrink framework in Section 2. In Section 3, we re-consider the
heuristic properties needed to ensure optimality of SSP heuristic
search algorithms, and introduce relaxed properties that allow for the
pruning of uninteresting states. In Section 4, we define prune trans-
formations, embed them into the compositional theory of merge-and-
shrink, and develop practical strategies for pruning. We conclude
with an experimental evaluation of our approaches in Section 5.

2 Background

We introduce the following notation. A partial function from X to Y ,
written f : X ⇀ Y , is associated with its domain dom(f) ⊆ X . If
dom(f) = X , we write f : X → Y . The set of stochastic functions



over X is given by Dist(X) := {δ : X → [0, 1] |
∑

x∈X δ(x) =
1}. Likewise, the set of sub-stochastic functions over X is given by
SDist(X) := {δ : X → [0, 1] |

∑
x∈X δ(x) ≤ 1}. The support of

δ ∈ SDist(X) is defined by supp(δ) := {x | δ(x) > 0}.

2.1 Probabilistic Transition Systems

A probabilistic transition system (abbreviated as TS) is a tuple Θ =
⟨SΘ, LΘ, CΘ, TΘ, IΘ, GΘ⟩ consisting of a set of states SΘ, a set of
action labels LΘ, a label cost function CΘ : LΘ → R+

0 , a set of
probabilistic transitions TΘ ⊆ T all

Θ := SΘ×LΘ×Dist(SΘ), a set of
initial states IΘ ⊆ SΘ and a set of goal states GΘ ⊆ SΘ. All sets are
finite. For a state s ∈ SΘ, we define TΘ(s) := {⟨s, ℓ, δ⟩ ∈ TΘ}. To
ease notation, we define CΘ(T) := CΘ(ℓ) for the cost and δT := δ
for the successor distribution of a transition T = ⟨s, ℓ, δ⟩ ∈ TΘ.

A finite path of Θ is a finite alternating sequence p = s0T0 . . . sn
of states s0, . . . , sn ∈ SΘ and transitions T0, . . . ,Tn−1 ∈ TΘ. We
define last(p) := sn as the last state and Cost(p) :=

∑n−1
i=0 CΘ(Ti)

as the cost of such a finite path p. The set of finite paths of Θ is
denoted by FPaths(Θ). Analogously, infinite paths are infinite al-
ternating sequences p = s0T0 . . . for which last is undefined and
with their cost defined as Cost(p) :=

∑∞
i=0 CΘ(Ti).

Usually, stationary and deterministic (SD for short) policies π :
SΘ ⇀ TΘ are used in the context of SSPs to model an agent
who selects a transition π(s) (if any) to execute next only based
on the current state of the environment s ∈ SΘ. Unfortunately,
such policies are not expressive enough for our developments, as
we will see later. We consider history-dependent and stochastic poli-
cies π : FPaths(Θ) → SDist(TΘ) with the following semantics. If
p ∈ FPaths(Θ) is the execution history so far, π executes the tran-
sition T next with probability π(p)(T), and terminates with proba-
bility termπ(p) := 1 −

∑
T∈TΘ

π(p)(T). Only transitions of the
current state may be chosen, i.e., supp(π(p)) ⊆ TΘ(last(p)). Given
a starting state s ∈ SΘ, π induces a probability space over the fi-
nite and infinite paths (i.e., possible executions) of Θ [1]. The event
space is the σ-algebra generated by all of the cylinder sets Cyl(p) :=
{p′ | p is a prefix of p′}, for p ∈ FPaths(Θ). The probability mea-
sure Prπs over the paths is the unique extension of the pre-measure
P[Cyl(s0 . . . sn)] := [s0 = s] ·

∏n−1
i=0 π(s0 . . . si)(Ti) · δTi(si+1)

(defined using Iverson brackets) to the full σ-algebra.
Let T ⊆ SΘ be a set of target states. Let FinishΘ(T ) := {p ∈

FPaths(Θ) | last(p) ∈ T} be the set of paths of Θ ending in T .
The solutions of the state s ∈ SΘ for T are denoted SolsΘ(s, T ) :=
{π | Prπs [FinishΘ(T )] = 1}. The expected cost of a policy π for a
state s is denoted Jπ

Θ(s) := Eπ
s [Cost]. The optimal expected cost-to-

goal of s is given by J∗Θ(s) := infπ∈SolsΘ(s,GΘ) J
π
Θ(s). A solution

π ∈ SolsΘ(s,GΘ) is optimal for s if Jπ
Θ(s) = J∗Θ(s). If a solution

exists, there is also an optimal SD policy [2, 24]. We want to find an
optimal initial state s0 ∈ argmins∈IΘ J∗Θ(s) and an optimal policy
for s0, if existent.

2.2 Heuristics & Transformations

A heuristic is a function h : SΘ → R+
0 ∪ {∞} that is used by a

heuristic search algorithm to estimate J∗Θ. h is admissible if h(s) ≤
J∗Θ(s) for every state s ∈ SΘ, goal-aware if h(s) = 0 for every
goal state s ∈ GΘ, consistent if h(s) ≤ CΘ(ℓ) +

∑
t∈SΘ

δ(t) · h(t)
for every transition ⟨s, ℓ, δ⟩ ∈ TΘ and finally safe if h(s) ̸= ∞ for
every state s such that SolsΘ(s,GΘ) ̸= ∅. Every heuristic that is
consistent, goal-aware, and safe is also admissible.

A TS transformation [19] is a tuple τ = ⟨Θ,Θ′, σ, λ⟩, consisting
of a concrete TS Θ, a transformed TS Θ′, and the state and label
mappings σ : SΘ ⇀ SΘ′ and λ : LΘ ⇀ LΘ′ . We call states of
Θ concrete states and states of Θ′ transformed states (similarly for
labels, etc.). The transformation heuristic induced by τ is given by
hτ (s) := J∗Θ′(σ(s)) if s ∈ dom(σ) and hτ (s) := ∞ otherwise.

Every function f : X ⇀ Y can be lifted to a function lift [f ] :
Dist(X) ⇀ Dist(Y ) with the domain dom(lift [f ]) := {δ |
supp(δ) ⊆ dom(f)} by defining lift [f ](δ)(y) :=

∑
x∈f−1(y) δ(x).

By making use of this, the state mapping σ can be naturally lifted to a
state distribution mapping lift [σ] : Dist(SΘ) ⇀ Dist(SΘ′). Consult-
ing the associations σ, λ and lift [σ] and applying them component-
wise yields the transition transformation ttrτ : TΘ ⇀ T all

Θ′ with the
domain dom(ttrτ ) := dom(σ) × dom(λ) × dom(lift [σ]) given
by ttrτ (⟨s, ℓ, δ⟩) := ⟨σ(s), λ(ℓ), lift [σ](δ)⟩. Based on this, Klößner
et al. [19] define the following conservativeness properties:

CONSS σ is total on SΘ

CONSL λ is total on LΘ

CONSC ∀ℓ ∈ dom(λ). CΘ′(λ(ℓ)) ≤ CΘ(ℓ)
CONST ttrτ (TΘ) ⊆ TΘ′

CONSG σ(GΘ) ⊆ GΘ′

They also introduce other properties, but we omit them here as we
do not deal with them formally. We treat such transformation proper-
ties as sets, writing τ ∈ X if τ satisfies the property X. To ease nota-
tion, we also write τ ∈ CONSS+L instead of τ ∈ CONSS ∩ CONSL

for example. If two transformations τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ =
⟨Θ′,Θ′′, σ′, λ′⟩ satisfy property X from above, then their composi-
tion τ ′ ◦ τ := ⟨Θ,Θ′′, σ′ ◦ σ, λ′ ◦ λ⟩ also satisfies X. For every
conservative transformation τ , i.e., τ ∈ CONSS+L+C+T+G, hτ is goal-
aware, consistent and safe, and admissible.

2.3 The Merge-and-Shrink Framework

The probabilistic merge-and-shrink framework [19] applies transfor-
mations on a factored TS representation. Such an annotated transi-
tion system (ATS) is a tuple A = ⟨SA, LA, CA, EA, DA, TA, IA,
GA⟩. Here, EA is a finite set of effect labels modelling different ac-
tion outcomes, DA : LA → Dist(EA) maps each action label to
a probability distribution over effect labels and TA ⊆ SA × LA ×
(EA ⇀ SA) consists of annotated transitions ⟨s, ℓ, α⟩ ∈ TA asso-
ciating each possible effect label e ∈ supp(DA(ℓ)) of ℓ with a suc-
cessor α(e) ∈ SA. An ATS is able to distinguish between different
action outcomes leading to the same state. Dropping this informa-
tion yields the ordinary TS Θ(A) := ⟨SA, LA, CA, TΘ(A), IA, GA⟩
with TΘ(A) := {⟨s, ℓ, lift [α](DA(ℓ))⟩ | ⟨s, ℓ, α⟩ ∈ TA}. For the
transitions of Θ(A), the probability of a successor state is the total
probability of all effect labels leading to this successor.

The framework maintains a factored ATS, which is a tuple F =
⟨Ai⟩i∈I of ATSs (its factors) where I is some finite index set. All
factors have the same action labels LF , effect labels EF , effect prob-
abilities DF and costs CF . Such a factored ATS implicitly repre-
sents the synchronised product of its factors defined as

⊗
F :=

⟨×i∈I SAi , LF , CF , EF , DF , T⊗
F ,×i∈I IAi ,×i∈I GAi⟩, where

T⊗
F := {⟨⟨si⟩i∈I , ℓ, α⟩ | ∀i ∈ I. ⟨si, ℓ, αi⟩ ∈ TAi ∧ α(e) =

⟨αi(e)⟩i∈I}. The factors representing an ATS of interest can be con-
structed from a probabilistic finite-domain representation [34].

Since the underlying TS is only implicitly represented by a fac-
tored ATS F = ⟨Ai⟩i∈I , merge-and-shrink transformations are
specified on factored ATS. To this end, a factored mapping (FM)



from F to a set D is a function σ : S⊗
F ⇀ D that is either an

atomic FM Atomi,α(s) := α(s(i)) for factor index i ∈ I and α :
SAi ⇀ D, or a merge FM Mergeσ1,σ2,α

(s) := α(σ1(s), σ2(s)) for
child FMs σi : S⊗

F ⇀ Di, i ∈ {1, 2} and α : D1 ×D2 ⇀ D. A
factored-to-factored mapping from F to another factored ATS F ′ =
⟨Aj⟩j∈J is a tuple Σ = ⟨σj⟩j∈J of FMs σj : S⊗

F ⇀ SAj , repre-
senting the function JΣK : S⊗

F → S⊗
F ′ , JΣK(s) := ⟨σj(s)⟩j∈J .

A factored transformation is a tuple ⟨F, F ′,Σ, λ⟩ where F is the
original factored ATS, F ′ is the transformed factored ATS, Σ is a
factored-to-factored mapping from F to F ′ and λ : LF ⇀ LF ′ is a
label mapping. Such a factored transformation implicitly represents
the TS transformation ⟨Θ(

⊗
F ),Θ(

⊗
F ′), JΣK, λ⟩. Properties like

CONSS are said to hold for a factored transformation, if they hold
for this corresponding TS transformation.

3 Revisiting SSP Heuristic Properties

In forward heuristic search, one will only ever encounter states
reachable from the initial state. For the completeness and optimality
properties of the search, the behaviour of the heuristic on unreachable
states is hence irrelevant. Classical planning literature has exploited
this observation through according relaxations of heuristic properties
like admissibility, which allowed constructing higher quality heuris-
tics [6, 28]. Here, we generalise these ideas to SSP heuristic search.

To be able to formulate these relaxed heuristic properties, we first
define some additional concepts and notation, then follow up with an
example that showcases the new definitions. In the following, let Θ
be a TS, let π be a policy, and let S ⊆ SΘ and T ⊆ SΘ be a set of
starting states and target states, respectively.

We write s
π
; t if there is a path p = s . . . t with Prπs [Cyl(p)] >

0, and s ; t if there is a policy π with s
π
; t. The states forward

reachable from S and backward reachable from T under π are de-
noted Reach→Θ,π(S) := {t | ∃s ∈ S. s

π
; t} and Reach←Θ,π(T ) :=

{s | ∃t ∈ T. s
π
; t} respectively. Likewise, the set of all forward

respectively backward reachable states are denoted Reach→Θ (S) :=
{t | ∃s ∈ S. s ; t} and Reach←Θ (T ) := {s | ∃t ∈ T. s ; t}.

The set of dead ends for the targets T is given by DeadΘ(T ) :=
SΘ \ Reach←Θ (T ), and denotes states which cannot reach T under
any circumstance. A state s is solvable for T if it has a solution π ∈
SolsΘ(s, T ). The set of states solvable for T is denoted SolvΘ(T ).
Lastly, we say that a state u is alive for S and T , if there is a state
s ∈ S and a solution π ∈ SolsΘ(s, T ) such that s π

; u. The set of
all states alive for S and T is given by AliveΘ(S, T ). All alive states
are forward reachable from S and solvable, as π ∈ SolsΘ(s, T ) and
s

π
; u implies π ∈ SolsΘ(u, T ).
The sets Reach→Θ (S) and Reach←Θ (T ) can be computed by a

simple exhaustive forward/backwards exploration of Θ from S or
T respectively. SolvΘ(T ) can be computed by repeatedly pruning
dead ends until a fixpoint is reached. [1]. To this end, the pro-
jection of Θ onto a state set K ⊆ SΘ is given by Θ|K :=
{K,LΘ, TΘ|K , CΘ, IΘ∩K,GΘ∩K}, where TΘ|K := {⟨s, ℓ, δ|K⟩ |
⟨s, ℓ, δ⟩ ∈ TΘ∧s ∈ K∧supp(δ) ⊆ K}. Starting with Θ0 := Θ, one
iteratively computes the TS Θi+1 := Θi|Reach←Θi

(T ) until Θi+1 =

Θi. The solvable states are the remaining states of the final transition
system Θk. Furthermore, we have AliveΘ(S, T ) = Reach→Θk

(S).
In the following, we mostly use the above definitions with respect

to the set of source states S = IΘ and the target states T = GΘ

in the context of a TS Θ. We therefore use the corresponding short-
hand notations Reach→(Θ) := Reach→Θ (IΘ) and Reach←(Θ) :=
Reach←Θ (GΘ), and analogously Dead(Θ), Solv(Θ) and Alive(Θ).
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Figure 1. Transition system Θ used in Example 1.

Example 1. In the transition system Θ depicted in Fig. 1, we can see
that Reach→(Θ) = {s0, s1, s2, s3, s4, s5, s6, s9} and Dead(Θ) =
{s5, s8}. To determine the solvable states of Θ, we first compute
Θ1 = Θ|Reach←(Θ), which is the TS from which the dead ends of
Θ and transitions leading to them are removed (drawn with dot-
ted lines in Fig. 1). Repeating the procedure, we next prune the
dead end s2 and the transitions leading to s2 (drawn with dashed
lines) to obtain Θ2. Finally, Θ2 has no dead ends, so the algo-
rithm terminates with the set of solvable states Solv(Θ) = SΘ2 =
{s0, s1, s3, s4, s6, s7, s9}. In particular, s2 is neither solvable nor
a dead end, as we can reach the goal from s2, but not with cer-
tainty. The set of alive states for s0 can be computed as Alive(Θ) =
Reach→(Θ2) = {s0, s3, s4, s9}. In particular, the states s1 and s6
are forward reachable from s0 and solvable, but not alive for s0, be-
cause no policy that reaches these states from s0 can reach the goal
with certainty. Note that s9 can be reached by a history-dependent
solution that first goes to s9 from s0 and then behaves like a solu-
tion for s0 after one step. However, an SD policy reaching s9 from
s0 would produce an infinite cycle due to always repeating the same
choice in s0 regardless of the history. Since s9 would also be alive
from the view of the classical theory in the deterministic TS restricted
to the states {s0, s3, s4, s9}, we would not obtain a proper generali-
sation of this concept if we only considered SD policies.

As in classical planning, SSP heuristic search algorithms retain
their correctness properties regardless of the heuristic estimates for
unreachable states. It however turns out that for SSPs, one can even
further relax the heuristic properties.

Definition 1. A heuristic h : SΘ → R ∪ {∞} for the TS Θ is

a) alive-goal-aware if h(s) = 0 for every s ∈ Alive(Θ) ∩GΘ,
b) alive-consistent if h(s) ≤ CΘ(ℓ) +

∑
t∈SΘ

δ(t) · h(t) for every
⟨s, ℓ, δ⟩ ∈ TΘ with s ∈ Alive(Θ) and supp(δ) ⊆ Alive(Θ),

c) alive-safe if h(s) ̸= ∞ for every s ∈ Alive(Θ),
d) alive-admissible if h(s) ≤ J∗Θ(s) for every s ∈ Alive(Θ) and
e) alive-perfect if h(s) = J∗Θ(s) for every s ∈ Alive(Θ) and

h(u) = ∞ for every u /∈ Solv(Θ) such that there exists
⟨t, ℓ, δ⟩ ∈ TΘ with t ∈ Alive(Θ) ∧ u ∈ supp(δ).

As usual, the heuristic value h(s) = ∞ is used to signal the
search to discard s from consideration. For alive-perfection 1e), we
want the heuristic to effectively restrict the search to the alive states
only, which is guaranteed if the unsolvable successors of alive states
are detected as such. When pruned, beyond those unsolvable states,
no other non-alive states will be visited, making their heuristic es-
timate irrelevant. Note that, as is the case for the unrestricted ver-
sions, if a heuristic is alive-admissible, it is also alive-goal-aware
and alive-safe. If a heuristic is alive-goal-aware, alive-safe, and alive-
consistent, then it is alive-admissible. If a heuristic is alive-perfect,
then it satisfies also all the other properties. Importantly, the alive
properties leave the correctness properties of heuristic search intact:



Theorem 1. Let A be an optimal SSP heuristic search algorithm
applied on the TS Θ with initial state sI , and let h be the search
heuristic. If h is alive-safe, then A returns a solution for sI , if exis-
tent. If h is even alive-admissible, this solution is optimal.

Proof (Sketch). Pruning non-alive states does not affect the set of
possible solutions, which suffices for the first claim. For the second
part, since A always returns an optimal solution with an admissible
heuristic, A will also find an optimal solution if we make all sub-
optimal choices look worse than they actually are; intuitively, this can
only make the optimal choices look better. As h is only inadmissible
for states not part of any solution, h can only result in pessimistic
estimations of suboptimal choices, concluding the proof.

Our argument applies to most popular heuristic search algorithms
for SSPs, including LAO∗ [7], LRTDP [3], and i-dual [33].

4 A Theory of Prune Transformations
In this section, we formally define prune transformations on a fac-
tored ATS and embed them into the compositional theory of merge-
and-shrink. As we will see, all interesting prune transformations are
not conservative. We will therefore replace some of the conservative-
ness properties with relaxed structural properties. First, we demon-
strate that these are still sufficient to enforce the relaxed heuristic
properties introduced in Section 3. Afterwards, we will prove that
these properties are preserved under composition under specific as-
sumptions which hold for prune transformations. Finally, we will de-
fine practical prune strategies which respect our new properties.

We start by defining a pruning operation on a single annotated TS.

Definition 2. Let A be an ATS and let K ⊆ SA be a set of kept
states. The pruned ATS A|K for A and K is defined as A|K :=
{K,LA, CA, EA, DA, TA|K , IA ∩ K,GA ∩ K}, where TA|K :=
{⟨s, ℓ, α⟩ ∈ TA | s ∈ K ∧ α(supp(DA(ℓ))) ⊆ K}.

With this, prune transformations on a factored ATS are defined as
transformations that prune states from one specific factor.

Definition 3 (Prune Transformations). Let F = ⟨Ai⟩i∈I be a fac-
tored ATS. Let k ∈ I be a factor index and let K ⊆ SAk be a set
of kept states. Lastly, let idX be the identity function for domain X .
The prune transformation for Ak and K is the factored transforma-
tion ⟨F, ⟨A′i⟩i∈I , ⟨σi⟩i∈I , idLF ⟩ where

A′i :=

{
Ai i ̸= k

Ai|K i = k
σi :=

{
Atom(i, idSAi

) i ̸= k

Atom(i, idK) i = k

One can easily show that prune transformations satisfy all con-
servativeness properties except CONSS, which is only satisfied if
K = ∅, i.e., no states are pruned at all. Unsurprisingly, they can yield
inadmissible transformation heuristics. To nevertheless obtain suffi-
cient criteria for admissibility, consistency, etc., we replace CONSS

with weaker properties inspired by the classical theory [28].

Definition 4. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a TS transformation. We
define the following transformation properties on τ .

CONSI σ(IΘ) ⊆ IΘ′

CLOS AliveΘ(SΘ, dom(σ)) ⊆ dom(σ)
CLOSALV AliveΘ(IΘ, dom(σ)) ⊆ dom(σ)
KEEPG GΘ ⊆ dom(σ)
KEEPALV

G Alive(Θ) ∩GΘ ⊆ dom(σ)

Obviously, CONSS (SΘ = dom(σ)) is stronger than any of the
properties CLOS, CLOSALV, KEEPG and KEEPALV

G . The property
CLOS requires that, if a state s is able to reach a set of kept states
K ⊆ dom(σ) with probability one, then s needs to be kept as
well. For deterministic transition systems, this property guarantees
that dom(σ) is closed under predecessors, which matches the defini-
tion of the corresponding property denoted CLOSpred in the classical
case. The property CLOSALV is even weaker and requires only that
if there is a policy that reaches a set of kept states K ⊆ dom(σ)
with certainty from an initial state, then all states reached by this pol-
icy must also be kept. It matches the classical property CLOS→pred .
Moreover, KEEPG requires that all goal states are kept, whereas the
weaker KEEPALV

G preserves only alive goal states. For deterministic
transition systems, KEEPALV

G keeps forward reachable goal states,
thus matching KEEP→G in the classical theory.

4.1 Heuristic Guarantees

First, we make the connection between the transformation properties
of Definition 4 and the heuristic properties introduced in Section 3, in
the context of the transformation heuristic hτ . As shown by Klößner
et al. [19], hτ is goal-aware, consistent and safe if τ is conservative.
The new transformation properties replace CONSS so that hτ still
remains with these properties, or the corresponding weaker variants
as defined in Definition 4, depending on the replacement properties.

Theorem 2. Let τ be a transformation. Then hτ is

a) goal-aware, if τ ∈ CONSG ∩ KEEPG

b) consistent, if τ ∈ CONSL+C+T ∩ CLOS
c) safe, if τ ∈ CONSL+T+G ∩ CLOS ∩ KEEPG

d) alive-goal-aware, if τ ∈ CONSG ∩ KEEPALV
G

e) alive-consistent, if τ ∈ CONSL+C+T ∩ CLOSALV ∩ KEEPALV
G

f) alive-safe, if τ ∈ CONSL+T+G ∩ CLOSALV ∩ KEEPALV
G

Proof. Let τ = ⟨Θ,Θ′, σ, λ⟩. Theorems 2a) and 2d) are straight-
forward. For the other statements, we first argue that (A) CLOS +
KEEPG implies Solv(Θ) ⊆ dom(σ) and (B) CLOSALV+KEEPALV

G
implies Alive(Θ) ⊆ dom(σ). Regarding (A), we have Solv(Θ) =
SolvΘ(GΘ) ⊆ SolvΘ(dom(σ)) ⊆ dom(σ), where the first inclu-
sion follows from KEEPG and the second follows from CLOS. For
(B), first acknowledge that Alive(Θ) = AliveΘ(IΘ,Alive(Θ) ∩
GΘ). We conclude Alive(Θ) ⊆ AliveΘ(IΘ, dom(σ)) ⊆ dom(σ),
where the inclusions similarly follow from KEEPALV

G and CLOSALV.
Consider Theorem 2b). Let ⟨s, ℓ, δ⟩ ∈ TΘ. We assume supp(δ) ⊆

dom(σ), as otherwise the right-hand side of the consistency inequa-
tion evaluates to ∞, making it trivial. We then have s ∈ dom(σ) as
well due to CLOS, since we can reach dom(σ) with certainty from
s via this transition. We also have ℓ ∈ dom(λ) due to CONSL. Due
to CONST, it follows that ⟨s′, ℓ′, δ′⟩ := ⟨σ(s), λ(ℓ), lift [σ](δ)⟩ ∈
TΘ′(σ(s)). The following inequality concludes the proof.

J∗Θ′(s
′) ≤ CΘ(ℓ

′) +
∑

t′∈SΘ′

δ′(t) · J∗Θ′(t′) (consistency of J∗Θ′ )

≤ CΘ(ℓ) +
∑

t′∈SΘ′

∑
t∈σ−1(t′)

δ(t) · J∗Θ′(t′) (def. lift [σ])

= CΘ(ℓ) +
∑
t∈SΘ

δ(t) · J∗Θ′(σ(t)) (supp(δ) ⊆ dom(σ))

Next, consider Theorem 2c). Let s ∈ Solv(Θ). Consider the
transformation τ ′ = ⟨Θ|Solv(Θ),Θ

′, σ|Solv(Θ), λ⟩. Because τ ∈



CONSL+T+G and Solv(Θ) ⊆ dom(σ) by (A), it is easy to see
that τ ′ ∈ CONSS+L+T+G, which implies that hτ ′ is safe [19]. Since
s ∈ Solv(Θ) = Solv(Θ|Solv(Θ)), we conclude σ(s) ∈ Solv(Θ′) by
safety of hτ ′ and therefore hτ (s) ̸= ∞.

Now, consider Theorem 2e). Let ⟨s, ℓ, δ⟩ ∈ TΘ, s ∈ Alive(Θ) and
supp(δ) ⊆ Alive(Θ). We conclude s ∈ dom(σ) and supp(δ) ⊆
dom(σ) using (B). The proof continues analogous to Theorem 2b).

Lastly, Theorem 2f) is analogous to Theorem 2c), when substitut-
ing Solv(Θ) with Alive(Θ) and (A) with (B).

4.2 Policy Transformation & Compositionality

Next, we will show that our new properties are compositional under
minor restrictions. To this end, we will first develop a construction
that will support us in this issue. In the classical theory of transfor-
mations, given a transformation τ = ⟨Θ,Θ′, σ, λ⟩, there is a useful
construction that transforms a concrete path p = s0T0 . . . sn of the
original TS Θ to a transformed path of Θ′. This path transformation
is given by tpathτ (p) := σ(s0)ttrτ (T0) . . . σ(sn), and is defined
for p if s0, . . . , sn ∈ dom(σ) and T0, . . . ,Tn−1 ∈ dom(ttrτ ). To
be able to show compositionality, we will generalise this path trans-
formation, yielding a notion of policy transformation. Since a path
has an integrated starting state, which a policy does not, we have to
explicitly assume one in the context of this transformation.

Definition 5. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let s ∈
SΘ be a starting state and let π be a policy for Θ. The transformed
policy tpolτ,s(π) of π for s is defined by tpolτ,s(π)(p

′)(T′) := 0 if∑
p∈tpath−1

τ (p′) Pr
π
s [Cyl(p)] = 0 and otherwise

tpolτ,s(π)(p
′)(T′) :=

∑
p∈tpath−1

τ (p′)

Prπs [Cyl(p)] ·
∑

T∈ttr−1
τ (T′)

π(p)(T)∑
p∈tpath−1

τ (p′)
Prπs [Cyl(p)]

.

To compute the probability to choose the transition T′ after the
history p′ was observed, the construction calculates a conditional
probability: Given that the original policy π generated some un-
known corresponding concrete path p ∈ tpath−1

τ (p′) so far, what
is the probability that π chooses a corresponding concrete transition
T ∈ ttr−1

τ (T′) next? The term
∑

T∈ttr−1
τ (T′) π(p)(T) calculates

the probability that π chooses a corresponding concrete transition
for a given path p. Since we only know that π generated some path
p ∈ tpath−1

τ (p′), but not which one, we embed this term into a sum
such that it is weighted with the probability of the path it is based on.
Finally, we normalise by the total probability of these paths, since we
know that such a path has been generated. Note that all probabilities
depend on the initial state s from which π is run. If no concrete path
p ∈ tpath−1

τ (p′) is possible, the policy terminates.
We will use this construction to transform solutions in Θ to solu-

tions in Θ′. This can be done under mild conservativeness assump-
tions, notably label and transition conservativeness (CONSL+T), and
under the requirement that all states reachable from the considered
starting state s by the original policy π are kept by the transforma-
tion (Reach→Θ,π(s) ⊆ dom(σ)). In this case, for each concrete state
t that the original policy π reaches from s, the transformed policy
tpolτ,s(π) will reach the corresponding transformed state σ(t) from
σ(s). Vice versa, for each transformed state t′ that tpolτ,s(π) reaches
from σ(s), π reaches some concrete state t ∈ σ−1(t′). Formally, we
have the following statement. Due to space limitations, which we
prove this statement in our proof appendix [21].

Theorem 3. Let τ = ⟨Θ,Θ′, σ, λ⟩ be a transformation, let π be a
policy, let s ∈ SΘ be a starting state and let T ⊆ SΘ be a set of
target states. If τ ∈ CONSL+T and Reach→Θ,π(s) ⊆ dom(σ), then

a) Reach→Θ,tpolτ,s(π)(σ(s)) = σ(Reach→Θ,π(s)) and
b) If π ∈ SolsΘ(s, T ), then tpolτ,s(π) ∈ SolsΘ′(σ(s), σ(T )).

Next, we will prove compositionality of the properties defined in
Definition 4 under mild side conditions by using this construction.
The side conditions we have to assume to this end are analogous
to the side conditions under which compositionality holds for their
respective classical properties.

Theorem 4. Let τ = ⟨Θ,Θ′, σ, λ⟩ and τ ′ = ⟨Θ′,Θ′′, σ′, λ′⟩ be
two transformations. For the following properties X, if τ, τ ′ ∈ X,
then τ ′ ◦ τ ∈ X under the following additional side requirements:

a) CLOS requires τ ∈ CONSL+T

b) CLOSALV requires τ ∈ CONSL+T+I

c) KEEPG requires τ ∈ CONSG

d) KEEPALV
G requires τ ∈ CONSL+T+I+G ∩ CLOSALV

Proof. For Theorem 4c), we refer to Sievers and Helmert [28].
Consider Theorem 4a). Let s ∈ AliveΘ(SΘ, dom(σ′ ◦ σ)). Then

there is a policy π solving s for dom(σ′ ◦ σ) ⊆ dom(σ). Then we
also have Reach→Θ,π(s) ⊆ AliveΘ(SΘ, dom(σ)) ⊆ dom(σ) due to
CLOS. Applying Theorem 3 with the assumption τ ∈ CONSL+T, we
conclude that tpolτ,s(π) solves σ(s) for the target states σ(dom(σ′◦
σ)) ⊆ dom(σ′). Thus, σ(s) ∈ AliveΘ(SΘ′ , dom(σ′)). With τ ′ ∈
CLOS, we obtain σ(s) ∈ dom(σ′) and ultimately s ∈ dom(σ′ ◦σ).

Consider Theorem 4b). Let s ∈ AliveΘ(IΘ, dom(σ′ ◦ σ)). Then
there is a policy π with s0

π
; s that solves an initial state s0 ∈ IΘ

for dom(σ′ ◦ σ) ⊆ dom(σ). We also have Reach→Θ,π(s0) ⊆
AliveΘ(IΘ, dom(σ)) ⊆ dom(σ) due to τ ∈ CLOSALV. Apply-
ing Theorem 3 with the assumption τ ∈ CONSL+T, we conclude
that tpolτ,s0(π) solves σ(s0) for σ(dom(σ′ ◦ σ)) ⊆ dom(σ′), and
σ(s0)

tpolτ,s0
(π)

; σ(s). Since we have σ(s0) ∈ IΘ′ due to CONSI,
we get σ(s) ∈ AliveΘ(IΘ′ , dom(σ′)) ⊆ dom(σ′) by CLOSALV.

Lastly, Theorem 4d). Let s ∈ Alive(Θ) ∩GΘ. As s ∈ Alive(Θ),
there is an initial state s0 ∈ IΘ and π ∈ SolsΘ(s0) with s0

π
; s.

We have Reach→Θ,π(s0) ⊆ Alive(Θ) ⊆ AliveΘ(IΘ, dom(σ)) ⊆
dom(σ) due to KEEPALV

G and CLOSALV. Applying Theorem 3 with
the assumption τ ∈ CONSL+T, we obtain that tpolτ,s0(π) solves
σ(s0) and σ(s0)

tpolτ,s0
(π)

; σ(s). Since σ(s0) ∈ IΘ′ by CONSI, we
have σ(s) ∈ Alive(Θ′). Finally, σ(s) ∈ GΘ′ due to CONSG.

4.3 Prune Strategies

Finally, we discuss how the set of kept states K of a prune trans-
formation can be practically chosen so that either the properties
KEEPG and CLOS, or alternatively KEEPALV

G and CLOSALV are
satisfied. Since prune transformations always satisfy CONSL+T+C+I+G

and are refinable, these two categories will yield perfect or alive-
perfect heuristics, respectively, by Theorem 2. Furthermore, compos-
ing such transformations with each other or with exact transforma-
tions also yields perfect or alive-perfect heuristics by Theorem 4.

Theorem 5. Let F = ⟨Ai⟩i∈I be a factored ATS and let τ be a
prune transformation for Ak and K ⊆ SAk .

a) If K = Reach←(Θ(Ak)), then τ ∈ CLOS ∩ KEEPG.
b) If K = Reach→(Θ(Ak)), then τ ∈ CLOSALV ∩ KEEPALV

G .



Proof. Let Θ := Θ(
⊗

F ), Θ′ := Θ(
⊗

F ′) and Θi := Θ(Ai) for
i ∈ I in the following. We need to consider the TS transformation
⟨Θ,Θ′, σ, id⟩, where s ∈ dom(σ) if and only if s(k) ∈ K.

Let K = Reach←(Θk). For KEEPG, note that s ∈ GΘ =

×i∈I GΘi , clearly implies s(k) ∈ GΘk ⊆ Reach←Θ (GΘk ) = K.
For CLOS, let s ∈ AliveΘ(SΘ, dom(σ)). Then s must necessar-
ily be backwards reachable from a state t ∈ dom(σ). Concludingly,
s(k) is backwards reachable from t(k) ∈ K = Reach←Θ (GΘ). By
transitivity, s(k) ∈ Reach←Θ (GΘk ) = K.

Now, let K = Reach→(Θk). For KEEPALV
G , let s ∈ Alive(Θ) ∩

GΘ. Then s must be forward reachable from an initial state s0 ∈
IΘ = ×i∈I IΘi . Concludingly, s(k) must be forward reachable
from s0(k) ∈ IΘk , which shows s(k) ∈ K. Since GΘ =

×i∈I GΘi , we also have s(k) ∈ GΘk . For CLOSALV, let s ∈
AliveΘ(IΘ, dom(σ)). Then, s is forward reachable from s0 ∈ IΘ.
By repeating the arguments as above, we conclude s(k) ∈ K.

Theorem 5 establishes two reachability-based prune strategies. In
practice, the backwards-reachable or forward-reachable states of a
factor are easy to compute, but may not lead to substantial prun-
ing depending on the topology of the state space. We can however
extend this result to obtain stronger prune strategies at the expense
of additional computation time. Note that we can simulate a prune
transformation on factor Ak with K = Solv(Θ(Ak)), keeping only
solvable states, via a series of prune transformations with K =
Reach←(Θ(Ak)). Likewise, to simulate K = Alive(Θ(Ak)), we
can apply a prune transformation with K = Solv(Θ(Ak)), followed
by a prune transformation with K = Reach→(Θ(Ak)). By compo-
sitionality (Theorem 4) and the obvious facts CLOS ⊆ CLOSALV

and KEEPG ⊆ KEEPALV
G , we conclude the following.

Corollary 1. Let F = ⟨Ai⟩i∈I be a factored ATS and let τ be a
prune transformation for Ak and K ⊆ SAk .

a) If K = Solv(Θ(Ak)), then τ ∈ CLOS ∩ KEEPG.
b) If K = Alive(Θ(Ak)), then τ ∈ CLOSALV ∩ KEEPALV

G .

5 Experiments
We conclude with an empirical evaluation of M&S heuristics for
SSPs, implemented in our version of Probabilistic Fast Downward
[32]. The implementation is publicly available [20]. We started with
the classical Fast Downward [9, 27] implementation and adjusted it
only where necessary. The top-level algorithm takes an abstract state
limit M as a parameter, as well as a merge, shrink, prune and a label
reduction strategy. Initially, the atomic factors of the input planning
task are constructed, with uninteresting states discarded by the prune
strategy. In each iteration, two factors to be merged are selected by
the merge strategy. Afterwards, label reduction is applied, and both
factors are shrunk by the shrink strategy, such that the merge results
in a new factor with at most M states. Afterwards, both factors are
merged. After each merge, the prune strategy discards uninteresting
states from the resulting factor. The process continues until only one
factor remains and has no time limit. The overall factored transfor-
mation is maintained and the corresponding heuristic is extracted by
computing J∗ for the final factor using a variant of topological value
iteration [4] that supports zero cost actions and unsolvable states.

Regarding shrink strategies, we implemented ATS bisimulation
shrinking as described by Klößner et al. [19]. To compute an ATS
bisimulation, we follow the classical Fast Downward implementation
of bisimulation shrinking, which runs a partition refinement algo-
rithm. Initially, all states with the same J∗ value are put into the same

equivalence class, with goal states being in a distinct class. To this
end, J∗ is maintained for all factors, analogous to h∗ in the classical
implementation. The procedure iteratively splits equivalence classes
until the underlying relation is an ATS bisimulation. To respect the
state limit, the refinement stops early if splitting an equivalence class
would result in more than M classes, and does not split the class at
all in this case. In that case, the shrink transformation will not be ex-
act. For label reduction, we implemented exact label reduction based
on (A, ϵ)-combinability. Here, we keep an ordering of the possible
effects of each label, and unify only labels with the same amount
of possible effects and for which the effect probabilities according to
this order match. Finally, we implemented a prune strategy that keeps
only solvable states, and one that keeps only alive states of a factor.

We compare SSP M&S heuristics with other heuristics in the con-
text of heuristic search to compute an optimal policy for a given
stochastic shortest-path problem. We focus on improved LAO⋆ [7]
as the heuristic search algorithm in our experiments, extended with a
trap-elimination procedure [22] to support zero-cost actions.

The experiments were run with Downward Lab [26] on a cluster
with Intel Xeon E5–2650 v3 processors CPUs @2.30 GHz. We used
a memory limit of 4GiB and a time limit of 30 minutes for all config-
urations. We use the benchmark set by Klößner et al. [18], containing
9 probabilistic PDDL domains with 20 problems each, some of them
containing traps or unsolvable states.

5.1 SSP M&S Versus Determinization-based M&S

First, we compare SSP M&S heuristics with their classical counter-
part to assess the benefit of taking the stochasticity into account. To
this end, we apply the all-outcomes determinization on the given
task to obtain a classical planning problem, and then compute a
classical M&S heuristic to be used for the heuristic search. While
determinization-based heuristics are faster to construct, they discard
all probabilities, trading construction time for heuristic accuracy.

We ran both M&S variants with an abstract state limit of 50k,
which turned out to be effective in preliminary experiments. Both
variants use their respective notion of exact bisimulation shrinking.
We selected two merge strategies from classical planning: The re-
verse level linear merge strategy [23] which orders variables closer to
the root of the causal graph first and the state-of-the-art strategy SCC-
DFP [30]. For label reduction, we use exact label reduction based on
Θ-combinability [29], respectively (A, ϵ)-combinability [19]. Here,
we sequentially select each factor as the pivot for the combinability
relation, and then collapse all combinable labels. This is done until
no more labels can be combined. Finally, we consider three prune
strategies: Keeping all, only solvable and only alive states.

Table 1 shows the coverage table. Here, the superscript M&S rep-
resents the SSP variant, while dM&S represents the classical vari-
ant. The subscripts All, Solv and Aliv denote the prune strategy. SSP
M&S heuristics consistently cover more instances than their classi-
cal relatives for matching algorithm configurations. Looking at the
number of evaluated states for our best configurations in Fig. 2a, we
see that there are many problems for which our variant generates a
significantly smaller search space, while the opposite is rare. How-
ever, the SSP variant takes considerably longer in most problems, as
we can see in Fig. 2b, since the factored representation contains more
information that needs to be maintained during each transformation,
and solving an SSP is considerably more expensive than solving a
classical planning problem. Despite being about an order of magni-
tude slower in many instances of BLOCKSWORLD, the construction
pays off for larger instances (see Fig. 2c) and the SSP heuristic is



Linear Reverse Level SCC-DFP

Domains hM&S
Aliv hM&S

All hM&S
Solv hdM&S

Aliv hdM&S
All hdM&S

Solv hM&S
Aliv hM&S

All hM&S
Solv hdM&S

Aliv hdM&S
All hdM&S

Solv hblind hPDB
10k hCart

10k hroc hPDB
HC

BLOCKSWORLD 9 9 9 7 7 7 9 9 9 7 7 7 7 7 7 7 9
BOXWORLD 7 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4 6
ELEVATORS 18 18 18 18 18 18 18 18 18 18 18 18 13 15 14 12 18
PROB-PARC-PRINTER 14 15 15 12 13 13 16 14 12 12 10 9 8 8 8 20 16
RANDOM 12 11 11 12 12 12 12 11 11 12 12 12 14 17 16 15 18
SCHEDULE 11 11 11 11 11 11 11 10 10 11 11 11 12 12 12 11 12
SYSADMIN 11 12 11 12 12 12 11 11 11 11 11 12 11 11 11 11 11
TRIANGLE-TIREWORLD 7 7 7 6 6 6 8 6 8 7 7 7 5 8 6 7 8
ZENOTRAVEL 9 9 9 8 8 8 9 9 9 8 8 8 5 8 8 7 10

Sum (180) 98 99 98 93 94 94 101 95 95 93 91 91 79 90 86 94 108

Table 1. Coverage results for all tested configurations. Each number reports the number of solved instances for the respective domain and configuration. The
highest coverage per domain is highlighted in boldface. All domains have 20 problem instances.
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Figure 2. Probabilistic hM&S
Aliv (x-axis) versus deterministic hdM&S

Aliv (y-axis), both using the SCC-DFP merge strategy.

able to solve two additional instances in this domain. In TRIANGLE-
TIREWORLD, the trade-off also becomes more favourable as the size
of the problem grows, which results in one additional solved in-
stance.

The bottlenecks of the algorithm vary greatly across different con-
figurations and search problems. The maintenance of J∗ for all
factors consistently contributes to the runtime, taking a moderate
amount of time. The time spent computing the label abstraction for
label reduction is negligible in 6 domains, but becomes dominant
in the domains RANDOM and TRIANGLE-TIREWORLD, where it is
the most expensive process by far. The time spent computing ATS
bisimulations is usually on the lower end of the spectrum, the high-
est relative overhead for the SCC-DFP variant of hM&S

Aliv is introduced
in BLOCKSWORLD with 29% of the algorithm runtime (similarly for
other configurations). The actual transformations take negligible time
in relation to these processes.

5.2 SSP M&S Versus other SSP Abstraction Heuristics

Next, we compare our approach against previously considered SSP
abstraction heuristics. We consider SSP pattern database (PDB)
heuristics [15], SSP cartesian abstraction heuristics [18] and the oc-
cupation measure heuristic hroc [34]. We construct single-abstraction
PDB and cartesian abstraction heuristics via policy-based counter-
example guided abstraction refinement, with a limit of 10k states for
the final abstraction. In preliminary experiments, we observed worse
results for higher limits. We also include a state-of-the-art configura-
tion that computes the canonical PDB heuristic over multiple PDBs
constructed via hill-climbing search over the space of PDB collec-
tions (hPDB

HC ) [17]. We run hill-climbing for 180 seconds, with a col-
lection size limit of 10 million abstract states.

The coverage is reported in Table 1. Overall, all SSP M&S con-
figurations achieve a higher coverage than their single-abstraction
sibling heuristics, as well as hroc, showing that the expressiveness of
the framework is highly beneficial. Yet, they do not quite reach the
performance of the state-of-the-art heuristic hPDB

HC . However, in con-
trast to hPDB

HC , our configurations do not use a construction time limit
to ensure that the search always starts, as the strictness of the time
limit for the M&S algorithm is hard to enforce and may affect com-
parability of the M&S configurations. This leads to three timeouts of
our best configuration in problems solved by blind search. Moreover,
hPDB

HC uses multiple abstractions. The combination of multiple M&S
heuristics has already been considered in classical planning [31], and
achieves a better performance overall than the single-abstraction ap-
proach. It is likely that these developments can be extended to the
SSP setting to achieve state-of-the-art performance.

6 Conclusion
In this paper, we rounded off the existing theory of SSP M&S with a
formal analysis of prune transformations. We have established trans-
formation properties that generalise those considered by Sievers and
Helmert [28] in the context of prune transformations and proved their
correctness using a notion of policy transformation. We propose sev-
eral prune strategies that trade off computational effort with over-
all effectiveness. Our experiments show that SSP M&S heuristics
perform better than their determinization-based variant, as well as
previously considered SSP single-abstraction heuristics. Our work
leaves room for many possible continuations following the footsteps
of classical planning research on this topic, e.g., an exploration of
merge or shrink strategies [14, 13, 30], or the construction of an cost-
partitioned ensemble of M&S heuristics [31].
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