Trial-based Heuristic Tree Search for Finite Horizon MDPs

Thomas Keller
University of Freiburg
Freiburg, Germany
tkeller @informatik.uni-freiburg.de

Abstract

Dynamic programming is a well-known approach for solv-
ing MDPs. In large state spaces, asynchronous versions like
Real-Time Dynamic Programming have been applied suc-
cessfully. If unfolded into equivalent trees, Monte-Carlo Tree
Search algorithms are a valid alternative. UCT, the most pop-
ular representative, obtains good anytime behavior by guiding
the search towards promising areas of the search tree. The
Heuristic Search algorithm AO* finds optimal solutions for
MDPs that can be represented as acyclic AND/OR graphs.
We introduce a common framework, Trial-based Heuristic
Tree Search, that subsumes these approaches and distin-
guishes them based on five ingredients: heuristic function,
backup function, action selection, outcome selection, and
trial length. Using this framework, we describe three new
algorithms which mix these ingredients in novel ways in an
attempt to combine their different strengths. Our evaluation
shows that two of our algorithms not only provide superior
theoretical properties to UCT, but also outperform state-of-
the-art approaches experimentally.

Introduction

Markov decision processes (MDPs) offer a general frame-
work for decision making under uncertainty. Early research
on the topic has mostly focused on Dynamic Programming
algorithms that are optimal but only solve MDPs with very
small state spaces. Value Iteration (Bellman 1957) and Pol-
icy Iteration (Howard 1960), two representatives of this kind
of algorithm, need the whole state space in memory to even
get started and hence do not scale well. One step towards
solving MDPs with large state spaces are asynchronous ver-
sions of Value Iteration that do not search the state space ex-
haustively. Trial-based Real-Time Dynamic Programming
(RTDP) (Barto, Bradtke, and Singh 1995), for example, uses
greedy action selection and an admissible heuristic com-
bined with Monte-Carlo samples, and only updates the states
that were visited in the trial with Bellman backups.

A finite-horizon MDP induces an acyclic AND/OR graph
which can be solved by the AO* algorithm (e.g. Nilsson
1980). This Heuristic Search approach gradually builds an
optimal solution graph, beginning from the root node rep-
resenting the initial state. It expands a single tip node in

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Malte Helmert

University of Basel

Basel, Switzerland
malte.helmert @unibas.ch

the current best partial solution graph, which is the sub-
graph that can be reached by applying only greedy actions.
It assigns admissible heuristic values to the new tip nodes
and propagates the collected information through the acyclic
graph to the root. These steps are repeated until all tip nodes
in the best partial solution are terminal nodes.

The UCT algorithm (Kocsis and Szepesvari 2006) is the
most popular representative of Monte Carlo Tree Search
(MCTS) (Browne et al. 2012). It differs from Dynamic Pro-
gramming and Heuristic Search in two important aspects:
first, Monte-Carlo backups are used to propagate informa-
tion in the search tree. While this allows the use of MCTS
when only a generative model of state transitions and re-
wards is available, it is not necessary for this work as we
are interested in solving finite horizon MDPs with declara-
tive models. Even worse, it is not possible to determine if a
state is solved, and sampling the same trial over and over is
necessary for convergence towards an optimal policy. Sec-
ond, the greedy action selection strategy used in Dynamic
Programming and Heuristic Search is replaced by a method
that balances exploration and exploitation by applying the
UCBI formula used to solve multi-armed bandit problems
(Auer, Cesa-Bianchi, and Fischer 2002). This allows the
usage of non-admissible heuristic functions, according to
Bonet and Geffner (2012) a possible reason why UCT has an
edge over RTDP in anytime optimal planning even though it
also means that potential pruning effects inherent to greedy
action selection with admissible heuristics are lost. Anytime
algorithms avoid the calculation of a policy that is defined
over all states that can be reached with non-zero probabil-
ity by interleaving planning for a single current state with
execution of the taken decision.

Despite the differences, these approaches actually have
much in common. After defining the theoretical background
in the next section, we present a framework for Trial-based
Heuristic Tree Search algorithms (THTS). We show how al-
gorithms can be specified in the framework by describing
only five ingredients: heuristic function, backup function,
action selection, outcome selection, and trial length. This
is followed by the main part of this paper, where we use
THTS to combine attributes of UCT, RTDP and AO* step
by step in order to derive novel algorithms with superior
theoretical properties. We merge Full Bellman and Monte-
Carlo backup functions to Partial Bellman backups, and gain



a function that both allows partial updates and a procedure
that labels states when they are solved. DP-UCT combines
attributes and theoretical properties from RTDP and UCT
even though it differs from the latter only in the used Par-
tial Bellman backups. Our main algorithm, UCT* adds a
limited trial length to DP-UCT that ensures that parts of the
state space that are closer to the root are investigated more
thoroughly. The experimental evaluation shows that both
DP-UCT and UCT* are not only superior to UCT, but also
outperform PROST (Keller and Eyerich 2012), the winner of
the International Probabilistic Planning Competition (IPPC)
2011 on the benchmarks of IPPC 2011.

Background

An MDP (Puterman 1994; Bertsekas and Tsitsiklis 1996) is
a4-tuple (S, A, P, R), where S is a finite set of states; A is a
finite set of actions; P : S x A x S — [0, 1] is the transition
function, which gives the probability P(s’|a, s) that apply-
ing action a € A in state s € S leads to state s’ € S; and
R : S x A — Ris the reward function. Sometimes a cost
function replaces the reward function, but as the problems
of minimizing costs and maximizing rewards are equivalent
we use reward-based MDPs in this paper.

Usually, a solution for an MDP is a policy, i.e. a mapping
from states to actions. As a policy is already expensive to de-
scribe (let alone compute) in MDPs with large state spaces,
we consider algorithms in this paper that do not generate the
policy offline, but interleave planning for a single current
state so € S and execution of the chosen action. This pro-
cess is repeated H times, where H € N is the finite horizon.
In the first step of a run, sg is set to a given initial state. In
each other step, it is set to the outcome of the last action exe-
cution. We estimate the quality of an algorithm by sampling
a fixed number of runs.

We define states such that the number of remaining
steps is part of a state in the finite-horizon MDP M =
(S, A, P,R, H,sg), and denote it with s[h] for a state s € S.
A state with s[h] = 0is called terminal. As the number of re-
maining steps must decrease by one in each state transition,
i.e. P(s'|a,s) = 0if s'[h] # s[h] —1, each finite-horizon
MDP induces a directed acyclic graph.

We demand that ), ¢ P(s'|a, s) = 1 for all state action
pairs s, a unless s[h] = 0, i.e. that all actions are applicable
in all non-terminal states, a property owed to the [IPPC 2011
benchmark set that is used for our experiments. We transfer
this constraint to our theoretical framework as it ascertains
elegantly that there are no dead ends in M, that each path
So, - - -, sy with H action applications therefore yields a fi-
nite accumulated reward R as the sum of H finite immediate
rewards R = 21}[:1 R(s;—1,a,s;), and that all policies are
proper in M.

All algorithms considered in this paper have access to a
declarative model of the MDP, i.e. transition probabilities
and reward function are revealed to the algorithm. This does,
of course, not mean that each algorithm must take this infor-
mation into account: an algorithm that is able to cope with
generative models can simply use the declarative model to
generate state transitions and immediate rewards.

Even though we do not evaluate our algorithms in terms
of the expected reward of a policy m in MDP M with initial
state sq, it is important for our notion of anytime optimal
backup functions later in this paper. We define it in terms of
the state-value function V7™ as V™ (M) := V™ (sq) with

0 if s is terminal
Q7 (m(s),s) otherwise,

V7™ (s) := {
where the action-value function Q7 (a, s) is defined as

Q™ (a,s) := R(a,s) + Z P(s'|a,s)- V(5.

s'eS

The optimal policy 7* in M can be derived from the re-
lated Bellman optimality equation (Bellman 1957; Bertsekas
1995), which describes the reward for selecting the actions
that yield the highest expected reward:

Vi) = 0 if s is terminal
| max,eaQ*(a,s) otherwise,

Q*(a,s) = R(a,s)+ > g P(s'|a,s) - V*(s').

Trial-based Heuristic Tree Search

All algorithms that are considered in this paper can be de-
scribed in terms of the THTS framework presented in Al-
gorithm 1. Some well-known algorithms reduce to other al-
gorithms in finite-horizon MDPs, and others differ slightly
from their original version. Reasons include that they im-
plement a method that deals with dead ends or cycles, both
of which do not exist in finite-horizon MDPs; that they im-
plement a sophisticated procedure to label search nodes as
solved, which can be replaced in our tree-based framework
with a very simple method based on successor and leaf nodes
only; or that we adapt them to fit the online scenario by
adding a timeout-based termination criterion. Among the al-
gorithms that reduce to others are HDP (Bonet and Geffner
2003a) and LRTDP (Bonet and Geffner 2003b), which dif-
fer from Depth First Search and RTDP only in how states are
labeled as solved, and LAO* (Hansen and Zilberstein 2001),
which is a modification of AO* for cyclic graphs.

The THTS schema bridges the gap between Dynamic
Programming, MCTS, and Heuristic Search algorithms for
finite-horizon MDPs. Algorithm 1 shows THTS as a tree
search algorithm, even though a version that does not unfold
the directed acyclic graph into an equivalent tree is more
efficient. In the directed acyclic graph search version, du-
plicate searches are avoided if the same state can be reached
along different paths. Nevertheless, both versions solve the
same class of problems. Moreover, some precaution must be
taken for the adaption of our base algorithm UCT to directed
acyclic graphs (Childs, Brodeur, and Kocsis 2008; Saffidine,
Cazenave, and Méhat 2012), which would detract from the
focus of this paper. For these reasons, we only present the
tree search version here.

THTS algorithms maintain an explicit tree of alternating
decision and chance nodes. Decision nodes are tuples ng =
(5, V), where s € Sis astate and V¥ € R is the state-value
estimate based on the k first trials. Chance nodes are tuples



Algorithm 1: The THTS schema.

1 THTS(MDP M, timeout T'):

ng < getRootNode(M)

while not solved(no) and time() < T do
visitDecisionNode(no)

return greedyAction(ng)

visitDecisionNode(Node n4):
if nq was never visited then initializeNode(n4)
N <« selectAction(ngq)
for n. € N do
10 visitChanceNode(n.)
11 backupDecisionNode(nq)
):

2 visitChanceNode(Node n.
13 N <« selectOutcome(n.)
14 forng € N do

15 visitDecisionNode(ng)
16  backupChanceNode(n.)

2
3
4
5
6
7
8
9

—

ne = (s,a, Qk’>, where s € S is a state, a € A is an action,
and Q" € R is the action-value estimate based on the k first
trials. In the following, we denote decision nodes with ng,
chance nodes with n., and the set of successor nodes of n in
the explicit tree with S(n). We abbreviate R(s(n.),a(n.))
with R(n.) and P(s(nq)|a(n.), s(n.)) with P(ng|n.).
Initially, the explicit tree contains only the root node ny,
a decision node with s(ng) = sp. Each trial consists of
phases: in the selection phase, the explicit tree is traversed
by alternatingly choosing successor nodes according to ac-
tion and outcome selection. When a previously unvisited
decision node (i.e. a tip node in the explicit graph) is en-
countered, the expansion phase starts. A child is added to
the explicit tree for each action, and a heuristic value is as-
signed to all estimates. This leads to the same situation as
in the selection phase, where all successor nodes of the cur-
rently visited node have action-value estimates. THTS algo-
rithms therefore switch back to the selection phase and alter-
nate between those phases until an empty set of successors
is selected (which determines the trial length). All visited
nodes are updated in reverse order in the subsequent backup
phase. If a node is reached in this process with children that
were selected earlier but not visited yet in the current trial,
the selection phase starts again. A trial finishes when the
backup function is called on the root node. This process is
repeated until time constraints do not allow for another trial.

Our framework bears some obvious similarities with other
schemata. The initialization of estimates of nodes with a
heuristic function is borrowed from Heuristic Search meth-
ods. The MCTS schema can be derived from THTS by re-
placing the initialization of novel nodes with a simulation
phase (Browne et al. 2012). A heuristic function that re-
sembles the simulation phase therefore allows to model any
MCTS algorithm within our framework. Moreover, THTS
is related to Bonet and Geffner’s (2003a) FIND-and-REVISE
schema. The selection phase of THTS can be regarded as
a FIND step, and the REVISE step corresponds roughly to
our backup phase. THTS is tailored to finite-horizon MDPs,
though, and exploits the fact that the search space is a tree.

Despite the commonalities, a framework subsuming Dy-
namic Programming, MCTS and Heuristic Search has not
been described before. An THTS algorithm can be specified
in terms of five ingredients: heuristic function, backup func-
tion, action selection, outcome selection, and trial length. In
the following, we will discuss these attributes and show how
several algorithms can be modeled in the framework.

Heuristic Function

Algorithms that compute heuristic estimates have received
much attention in recent years. In this work, we are not
interested in the methods themselves — even though previous
work has shown their crucial influence in THTS algorithms
(Gelly and Silver 2007; Eyerich, Keller, and Helmert 2010)
— but only briefly discuss the properties that influence the
choice of ingredients. It is common terminology to call a
heuristic function admissible if it never underestimates the
reward, and blind if it always maps to the same constant.

We consider two possible answers to the question which
successors of a previously unvisited decision node ny are
initialized. In action-value or (Q-value initialization, a
heuristic h : S x A +— R calculates an estimate that is
used to initialize the action-value estimates of the succes-
sors of ng. If state-value initialization is used, a heuristic
value h : S +— R is assigned to the state-value estimates of
the grandchildren of ng.

Backup Function

The backup function defines how the knowledge on state-
value estimates V*(n ) and action-value estimates Q" (n..)
that is gathered in the trials is propagated through the tree.
Depending on the algorithm, any number of additional val-
ues might be updated, e.g. the variable that counts the num-
ber of visits in UCT, or a solve label that indicates that a
node’s estimate has converged. In the THTS framework,
nodes are updated only based on values of some or all of
their successor nodes. As we also consider problems with
a huge number of outcomes, we use the decomposed repre-
sentation for chance nodes of the PROST planner (Keller and
Eyerich 2012). It ensures that each chance node has only 2
successors by representing 2™ possible outcomes as a chain
of n chance nodes, thereby allowing efficient backups.

Even though it is not mandatory for algorithms in the
THTS framework, this work focuses on algorithms that are
anytime optimal, i.e. yield reasonable results quickly, im-
prove when more trials are available and eventually con-
verge towards the optimal decision. One way to guaran-
tee optimality in the limit is to demand that the backup
function is such that estimates converge towards the opti-
mal value functions, i.e. Q*(n.) — Q*(a(n.),s(n.)) and
VE(ng) — V*(s(ng)) for all ng, n. and k — oo.

We distinguish between full and partial backup functions.
Full backup functions can only be computed for a node if
each of its children in the MDP is also represented in the
explicit tree, i.e. S(ng) = {(s(ng),a,Q*)|la € A} and
> nsesne) Pnalne) = 1. With the ingredients discussed
in this work, full backup functions can only be paired with
state-value initialization, as action-value initialization does



not ascertain that all children of all nodes that are visited
in a trial are explicated (it does for decision nodes). Partial
backup functions require only one child, so action-value es-
timates can be calculated even if only one outcome is in the
explicit tree (and the selected one always is).

A backup function induces a contributing subtree, which
is the subtree of the explicit tree that contains all nodes that
contribute to the state-value estimate of the root node. The
contributing subtree is either identical to the explicit tree or
to the best partial solution graph (as induced by AO*) in
the backup functions considered in this paper. The former
is given for backup functions that calculate state-value esti-
mates by aggregating over action-value estimates, while the
latter is true in functions that maximize instead.

Monte-Carlo backup The MCTS algorithms UCT and
BRUE (Feldman and Domshlak 2012) are based on Monte-
Carlo backups, a partial backup function which extends the
current average with the latest sampled value (Sutton and
Barto 1998). As probabilities of outcomes are not used to
calculate Monte-Carlo backups, they are the predominant
backup function in scenarios where only a generative model
of the MDP is available (e.g. in Reinforcement Learning).
Let C*(n) be the number of times node n has been visited
among the first k trials. State-value estimate and action-
value estimate are calculated with Monte-Carlo backups as

. 0 if s(ng) is terminal
V¥(na) = ches(nd)ck(”c)'Qk(nc) .
CFna) otherwise,
> nues(ng CF(na) - VF(ng)

Q%(n.) = R(n.) +

Cck (ne)

The contributing subtree is identical to the explicit tree as
both functions aggregate over all children. This causes a po-
tential pitfall: if a node n4 in the best solution graph has a
child n, that yields a very low reward compared to an opti-
mal sibling, a single trial over n, can bias V*(ng4) dispro-
portionately for many trials.

Given the right mix of ingredients, Monte-Carlo backups

nevertheless converge towards the optimal value function.

k
Then the outcome selection strategy must be s.t. g % E"d) —
ne)

P(ngl,n.) for k — oo, and the action selection strategy s.t.

g:ngg — 1 for k — oo, where n} = (s,m*(s),QF) is
the successor of ng4 in the optimal policy 7* (we assume for
simplicity and w.l.o.g. that there is exactly one optimal pol-
icy). It is often not trivial to prove that Monte-Carlo backups
converge, but it was shown by Kocsis and Szepesvari (2006)

for the UCT algorithm.

Full Bellman backup Another prominent method to prop-
agate information in the tree are Full Bellman backups:

Vk(nd)Z{
Q"(ne) = R(ne) + Y P(nalne) - VF(na).

ng€S(ne)

0 if s(ng) is terminal
max, es(n,)@*(ne) otherwise,

As the name implies, they are the full backup function de-
rived from the Bellman optimality function. The pitfall de-
scribed in the context of Monte-Carlo backups is not given in
algorithms that use Full Bellman backups, as state-value es-
timates are updated based on the best successor. That means
that the contributing subtree is the best partial solution tree.
Moreover, such an algorithm can be equipped with a proce-
dure that labels nodes as solved. Obviously, each algorithm
that is based on Full Bellman backups and selects actions
and outcomes among unsolved nodes is anytime optimal, as
all states will eventually be visited with & — co.

Action Selection

The variation regarding the action selection strategy is sur-
prisingly small in the literature and can mostly be divided
in two camps. On the one hand are algorithms like AO* or
RTDP that always act greedily, i.e. they select the successor
node with the highest action-value estimate. On the other
hand are algorithms like UCT and AOT, which balance ex-
ploration and exploitation by applying techniques borrowed
from the multi-armed bandit problem (Berry and Fristedt
1985): AOT applies e-greedy action selection, where the
greedy successor is selected with a given probability, and
the successor with the biggest potential impact otherwise.
UCT selects the child that maximizes the UCB1 formula,
a strategy that minimizes the regret in multi-armed ban-
dit problems by favoring successor nodes that were visited
rarely (exploration) or led to promising results in previous
trials (exploitation). An attempt to enhance this technique is
BRUE, where action selection follows an alternating schema
of applying the UCB1 formula and sampling uniformly.

Successful anytime optimal algorithms that use greedy ac-
tion selection like RTDP or AO* pair it with an admissi-
ble heuristic. To obtain equivalents of these algorithms with
the ingredients discussed in this paper, they must addition-
ally be paired with a full backup function and, subsequently,
a state-value initialization. This is because it is necessary
for convergence of greedy algorithms that all children of all
nodes that are visited in a trial contain admissible values at
all times. Otherwise, the optimal choice might never be se-
lected. Note that it is possible to design backup functions
for optimal greedy algorithms where partial backup func-
tions and action-value initialization are sufficient, e.g. with
a common upper bound for unvisited outcomes. We are not
aware of an optimal algorithm that uses such an initializa-
tion, though. GLUTTON (Kolobov et al. 2012), the LRTDP-
based runner-up at IPPC 2011, uses subsampling to deal
with this situation, but it loses optimality in the process.

Greedy and balanced action selection also use slightly dif-
ferent labeling procedures. Greedy action selection can en-
tail considerable pruning effects (if paired with the afore-
mentioned ingredients), as a node can be labeled as solved
if it is a leaf or if its greedy successor is solved, i.e. it is
possible that the tree is not searched exhaustively. Balanced
action selection does not come with this advantage. There,
a node can only be labeled as solved if it is a leaf or if all its
children are solved. If paired with a backup function that al-
lows for labeling, obviously only unsolved successor nodes
are considered for action selection in THTS algorithms.



Note that our framework also allows the selection of more
than one action, as we believe this might be an opportunity
for future research. As an anytime optimal algorithm must
not spend too much time in a single trial, a lot of precau-
tion is necessary when designing such a selection method,
though. Due to this, we do not consider algorithms like
Value Iteration, Depth-First Search, or Learning Depth-First
Search (Bonet and Geffner 2006) in this paper even though
they can be specified within this framework.

Outcome Selection

After an action has been chosen, the outcome of applying
that action must be determined (again, selecting multiple
is possible but not considered here). There is only little
research dealing with outcome selection. Almost all al-
gorithms we are aware of perform Monte-Carlo sampling,
i.e. they choose an outcome according to its probability or, in
algorithms that label states as solved, according to its proba-
bility biased by solved siblings. The only algorithm that ex-
plicitly uses a method different from Monte-Carlo sampling
is AOT, where the outcome is selected that has the biggest
potential impact. Bonet and Geffner (2012) state that their
method is superior to Monte-Carlo sampling, especially in
the absence of informed heuristics.

Trial Length

Obviously, all algorithms finish a trial when a leaf node is
reached, and many, including RTDP and its variants, only
determine the trial length based on this criterion. There is
also a variant of RTDP that finishes trials after each heuristic
calculation — it is commonly referred to as AO*. As only tip
nodes are important in these global search algorithms, it is
rather unusual to describe a method like AO* in a trial-based
framework. If the trial length is determined such that new
information is propagated to the root node right away they
can easily be modeled within the THTS framework, though.

UCT has also been described in both versions. In its
original form (Kocsis and Szepesvari 2006), it starts the
backup phase when a previously unvisited node is visited
like a global search algorithm. A version that finishes a
trial only when a leaf is encountered has been described for
the Canadian Traveler’s Problem (Papadimitriou and Yan-
nakakis 1991) by Eyerich, Keller, and Helmert (2010). The
PROST planner is a domain-independent version of this idea,
which additionally limits the search depth artificially by con-
sidering a decreased horizon. PROST thereby loses opti-
mality, and a good value for the search depth limitation is
domain specific and can, following Kolobov, Mausam, and
Weld (2012), only be based on a guess.

Remotely related to the trial length are reverse iterative
deepening search versions of THTS algorithms, as incorpo-
rated for example in GLUTTON. These cannot be modeled
within our framework, but a simple driver routine that calls
THTS with an increasing number of remaining steps in the
initial state is sufficient to support them. As all iterations but
the last have to solve the root state, reverse iterative deep-
ening search is independent from the underlying algorithm
barring pruning effects. While such algorithms raise inter-
esting questions, they are beyond the scope of this paper.

Algorithms

We investigate now how THTS ingredients can be grouped
in novel ways to derive stronger algorithms for MDPs with
a comparably small set of actions (at most 50 in our experi-
ments) yet potentially many outcomes (up to 2°0 in our ex-
periments). In such MDPs, it is desirable to use an algorithm
that supports ()-value initialization, as the number of chil-
dren of a decision node is equal to the number of actions,
while the number of its grandchildren can be as large as that
number multiplied with the size of the state space — an ex-
treme case that actually occurs in the benchmarks used for
evaluation in this paper.

Bonet and Geffner (2012) argue that greedy action selec-
tion has poor anytime properties, mostly because it does not
allow the use of non-admissible heuristic functions which
are usually cheaper to compute yet similarly informative.
The success of algorithms that balance exploration and ex-
ploitation seems to prove them right, and we also follow
this approach in our algorithms. UCT seems like a good
base algorithms which additionally supports non-admissible
heuristics and @)-value initialization. It bases its action se-
lection on balancing exploration and exploitation with the
UCBI1 formula for the multi-armed bandit problem. UCT
chooses the successor node 7. in node n, that maximizes

log C*(ng) .
B- \/ W + Qk(nc)7

where C¥(n) is the number of visits of node n during the
first k trials, and B is a bias parameter that is set to V*(ng)
in our experiments as in the PROST planner.

Even though we believe that there might be even better
action selection strategies for finite-horizon MDP planning
than the regret minimization based strategy of UCT, it would
be beyond the scope of this paper to derive one. All algo-
rithms that are described in the following therefore base ac-
tion selection on the UCB1 formula. The same reasoning ap-
plies to the Monte-Carlo sampling that is used for outcome
selection. The heuristic function is the third ingredient that
is not the focus of this work. We use the non-admissible Q-
value initialization of the PROST planner. It is based on an
iterative deepening search on the most-likely outcome deter-
minization, which terminates when a timeout or a satisfying
degree of informativeness is reached (for details, see Keller
and Eyerich 2012).

Of course, UCT also incorporates some properties that
can be improved in the setting we are dealing with. Most
notably, we are interested in using a backup function that
supports a solve labeling procedure. Our experimental eval-
vation will show that it is a severe drawback if it is not
possible to determine when the estimate of a node has con-
verged. Moreover, the ability to compute provably optimal
policies is a theoretical property that is desirable to have. As
Full Bellman backups cannot be used with non-admissible
heuristics, we derive a novel backup function that combines
the strengths of both functions in two steps.

MaxUCT The only ingredient that distinguishes the Max-
UCT algorithm from UCT is the used backup function. We



|

| ELEVATORS | SYSADMIN [ RECON [ GAME | TRAFFIC

| CROSSING | SKILL | NAVIGATION || Total |

UCT 0.93 066 | 099 088 0.84 085 ] 093 0.81 || 0.86
MaxUCT 0.97 071 088 09 0.86 096 | 0.95 0.66 || 0.86
DP-UCT 0.97 065 | 089 089 0.87 096 | 098 098 | 09
UCT* 0.97 10| 083 098 0.99 098 | 0.97 0.96 || 0.97
[PROST | 093 | 082] 099] 093] 093] 082 ] 097 ] 055 || 0.87 |

Table 1: Score per domain and total scores for the IPPC 2011 benchmarks. Best results (£0.02) are highlighted in bold.

perform a first step in combining Monte-Carlo and Full Bell-
man backups by merging the action-value backup function
of the former with the state-value backup function of the lat-
ter. In other words, we update decision nodes based on the
value of its best child rather than aggregating over all chil-
dren. Formally, we define Max-Monte-Carlo backups as:

VE(ng) = {

0 if s(ng) is terminal
maXnCeS(nd)Qk(nc) otherwise,

Y naes(ne CF(na) - VF(na)
Ck(n(:) '

Kocsis and Szepesvari’s (2006) proof of optimality for UCT
also holds for MaxUCT as the action selection method
UCBI1 never stops exploring, and as all outcomes will be
sampled proportionately to their probability for £ — oo.
The pitfall discussed in the context of Monte-Carlo back-
ups does not apply anymore for MaxUCT because the con-
tributing subtree of Max-Monte-Carlo backups is identical
to the best partial solution tree. Moreover, Max-Monte-
Carlo backups are both partial and do not rely on a gener-
ative model of the MDP, so they can be used in the same
scenarios as UCT.

Qk(nC) = R(”C) +

DP-UCT While Max-Monte-Carlo backups are a first step
towards merging Monte-Carlo and Full Bellman backup
functions, a solve labeling procedure is not supported.
Therefore, it is necessary to exploit the declarative model by
considering probabilities in the backups of action-value esti-
mates. Or, from a different point of view, we are looking for
a partial version of Full Bellman backups that does not rely
on all successor nodes in the MDP. To calculate an estimate,
we weight the outcomes that are part of the tree proportion-
ally to their probability and to the missing outcomes:

0 if s(ny) is terminal
VE(ng) = {max . (a)
neeS(na)@"(ne)  otherwise,
anGS(nc) P(nd|nc) : Vk(nd)
Pk(ne) ’

Qk(nC) = R(”C) +

where Pk(n.) = 2onges(ny) P(nalne) is the sum of the
probabilities of all outcomes that are explicated. Intuitively,
we expect estimates of outcomes that are not part of the
explicit tree to be comparable to the probability weighted
outcomes that are explicated. Partial Bellman backups con-
verge towards the Bellman optimality equation under selec-
tion strategies that explore the whole tree, as P*(n.) — 1
and Q% (n.) — Q*(a(n.), s(n.)) for k — oo. Full Bellman

backups can be seen as the special case of Partial Bellman
backups where all outcomes are explicated in the tree.

DP-UCT, the algorithm that uses Partial Bellman back-
ups rather than Monte-Carlo backups, combines properties
of Dynamic Programming and UCT. It resembles MCTS as
it incorporates the advantages of partial backup functions,
balanced action selection and the usage of non-admissible
heuristic functions. The fact that the backup function takes
probabilities into account and allows solve labeling and ter-
mination when the root node is solved is just like in Dynamic
Programming approaches. To our knowledge, this theoret-
ical property was never incorporated into an algorithm that
selects actions based on the UCB1 formula.

UCT* The balanced action selection strategy of UCT,
which guides the search towards parts of the state space that
have been rarely visited or that led to promising results in
previous trials, is a key factor of the algorithm’s good any-
time behavior. It leads to an asymmetric tree that is skewed
towards more important regions of the search space. While
the direction of search is thereby taken into account, the
depth of search is not. After all, we are not interested in
complete policies but only in the next decision. As the un-
certainty grows with the number of simulated steps, states
that are far from the root often have only little influence on
that decision, even if they are part of the optimal solution
or crucial for some future decision. Therefore, investigat-
ing the state space close to the root more thoroughly might
improve action selection with short time windows.

DP-UCT benefits a lot from the balanced action selection
strategy at the beginning of each trial, but the further from
the root the lesser the benefit. We therefore alter another in-
gredient, the trial length, and combine DP-UCT with a prop-
erty inherent to Heuristic Search. These global search algo-
rithms finish a trial whenever a tip node is expanded — a nat-
ural way to focus the search on states close to the root that
maintains optimality in the limit. The resulting algorithm,
UCT?, still produces the asymmetric search trees that spend
more time in promising parts of the tree, but it does build
them in a way that resembles Breadth-First Search more than
Depth-First Search. It thus makes sure that it takes the time
to also investigate parts that turn out to be different than what
they looked like at first glance.

Experimental Evaluation

We evaluate the algorithms MaxUCT, DP-UCT and UCT*
by performing experiments on 2.66 GHz Intel Quad-Core
Xeon computers, with one task per core simultaneously and



PROST ===

score

0.65 L L
0.1 1

time per decision in seconds

Figure 1: Total scores on the benchmarks of IPPC 2011 with
increasing time per decision.

a memory limit of 2.5 GB. We use the finite-horizon MDPs
from the IPPC 2011 benchmarks, a set of eight domains with
ten problems each. Each instance is a finite-horizon MDP
with a horizon of 40. Each algorithm is evaluated based on
100 runs on each problem rather than the 30 of IPPC 2011
to obtain statistically significant results.

There is a notable implementation difference between
UCT and PROST on the one hand and the three novel algo-
rithms on the other: we implemented two versions of each of
the five algorithms, one where the values from the Q)-value
initialization are only considered for action selection, and
one where the heuristic is additionally used in the backup
operation of the parent node (i.e. it is propagated through
the tree). We observed that propagating the heuristic drasti-
cally improves the behavior of the algorithms that maximize
over all children in the state-value backup functions, and the
other way around in those that use the sum. It seems that
not propagating the heuristic leads to trees where an insuffi-
cient amount of information is used in nodes close to the root
for MaxUCT, DP-UCT and UCT*. And propagating heuris-
tic estimates from all nodes that have ever been initialized
through the tree diminishes the influence of the information
that is actually important in UCT and PROST. All results
presented in this paper are from the respective version that
performed better in total.

The comparison of our algorithms is based on the time
per decision, with time windows of 2¢ seconds for i €
{—=6,...,1} (from =~ 0.015 to 2 seconds). All algorithms
are implemented in the framework of the PROST planner,
so they also use the sound reasonable action pruning and
reward lock detection methods that are described by Keller
and Eyerich (2012). The PROST planner that was used in
IPPC 2011 is equivalent to our UCT base implementation,
except that it uses a fixed search depth limitation of 15. Both
an unlimited UCT version and PROST are included in our
evaluation, the latter being the only algorithm in our com-
parison that is not anytime optimal.

We evaluate the algorithms based on several aspects de-
rived from this experiment. The results in Table 1 are
achieved with the highest timeout of 2 seconds. They are

obtained by converting the averaged accumulated rewards
of the 100 runs to relative scores on a scale from 0 to 1 for
each problem, and then calculating the average over these
values from all instances for each domain. A relative score
of 0 is assigned to an artificial minimum policy taken from
IPPC 2011, and the score of 1 is given to the planner that
achieved the highest reward. The total result is calculated
as the average over all domains. We performed the same
experiment also with blind versions where all nodes n, are
initialized with a constant heuristic that sets Q*(n.) to 0.
Note that this is non-admissible in the IPPC 2011 domains
due to the presence of positive and negative rewards. We
will use some of those results in the following discussion,
but omit detailed results for space reasons.

Figure 1 shows total scores for increasing timeouts. The
rightmost points on the curve therefore correspond to the to-
tal results in Table 1. Regardless of the timeout, all results
are normalized with the same minimum policy and the best
result among all algorithms and timeouts. Figure 2 shows
the average number of remaining steps in the first root state
that was labeled as solved in a run for DP-UCT and UCT™,
the algorithms that use a labeling procedure. It indicates how
early in a run an algorithm started to make optimal decisions
(i.e. the closer to the horizon the better). Figure 3 shows the
average runtime in percent of the runtime of our base algo-
rithm UCT. Again, only DP-UCT and UCT* are depicted, as
differences in runtimes are mostly due to solved states, and
as only those algorithms support solve labeling.

MaxUCT The MaxUCT algorithm differs from UCT only
in that it uses Max-Monte-Carlo backups. Therefore, it
builds its estimates on the best partial solution graph, which
is a theoretical improvement over Monte-Carlo backups.
Our experimental results back up the expectations at least
partially. In comparison with the baseline UCT algorithm, it
yields the same total score over all domains, yet with some
numbers shifted between the scores for domains.

There are two domains with clearly inferior results com-
pared to UCT. RECON is a special case where all algorithms
that propagate heuristic values perform worse than the other
algorithms. We believe that the quality of the heuristic func-
tion is more important in algorithms that propagate those
values, and that the PROST heuristic gives rather poor es-
timates in RECON. This is backed up by the fact that the
blind versions yield results that are similar to the informed
ones. The same applies to NAVIGATION, but it becomes
only apparent in MaxUCT as the solve labeling procedure
of DP-UCT and UCT* more than compensates for it.

The results in all other domains are in favor of MaxUCT.
CROSSING TRAFFIC and ELEVATORS are good examples
where the altered backup function pays off. Both are do-
mains where long sequences of actions have to be planned
in advance, and where the difference between good and bad
choices is highest — clearly a setting where maximizing over
successors to compute state-value estimates is favorable.

DP-UCT Rather than weighting outcomes by sampling
them according to the probability and averaging over all tri-



40 —
30

20

) HH [ 1=

%60 &o‘? ;\{" &@% Qo% @\»\' 43\0
& & O S § ¥
C}- @3’ é\o %*% s
<

Figure 2: Average number of remaining steps in the first
solved root state of a run for DP-UCT (light gray) and UCT*
(dark gray).

als, the given probabilities are directly used to calculate es-
timates in DP-UCT. As it takes several trials until an action-
value has converged with averaging over outcomes, one
would expect that DP-UCT has the edge over UCT espe-
cially early on, and Figure 1 shows that the difference be-
tween the two is indeed highest with lower timeouts and a
significant improvement regardless of the timeout.

Besides the RECON domain, where DP-UCT also suffers
from the comparably bad heuristic, it is always at least on par
with UCT, and it vastly outperforms the baseline algorithm
in the NAVIGATION domain. Figure 2 is a good indicator
for why this is the case. The first root state that is labeled
as solved is a state with 39.0 remaining steps in average.
In the IPPC 2011 setting with a horizon of 40, it is thereby
an optimal solver for most of the 10 problems (in average,
only the first decision is not a provably optimal choice). The
solve labeling also allows DP-UCT to save time compared
to UCT. Not only does it yield a significantly higher reward,
Figure 3 shows that it does so in only 14.7% of the time.

Especially the improvement in the NAVIGATION domain
makes DP-UCT an algorithm with superior total results.
Solve labeling not only leads to better results, but also al-
lows for more than 20% time savings in total by computing
provably optimal policies. The results clearly show that con-
sidering probabilities in the backup function pays off.

UCT* The results of our main algorithm, UCT*, impres-
sively reflect the theoretical results: it outperforms all other
algorithms, including PROST, on all domains but RECON,
almost always yielding the best score among our algorithms.
Its advantages become especially apparent in the domains
where DP-UCT does not have an edge over the other al-
gorithms. The improvement in the domains SYSADMIN,
GAME OF LIFE, and TRAFFIC, where states close to the
root are most influential, shows that it pays off to search the
state space close to the root more thoroughly. Moreover, the
result in CROSSING TRAFFIC, where the lookahead that is
needed for good policies is among the highest of the IPPC
2011 problems, shows that it also performs well if a higher

140 —

120 ([

1001 —

80

60

40 H H

2

" (m
%%6& &O%C’ v§& xoé Qoé @\V & Yfgx O&v\’

Q‘*O & %v & S
< é

Figure 3: Average total runtime of DP-UCT (light gray) and
UCT* (dark gray) in percent of the runtime of UCT.

horizon must be considered. This is a clear sign that the
asymmetric form of the search tree with the majority of vis-
its in the promising parts of the search space is preserved.

As UCT* updates all visited states in a trial whenever a
node is expanded, it must perform more backup steps than
DP-UCT. Figure 2 and 3 indicate that the overhead of addi-
tional backups is negligible. In fact, the total time savings
of 26.4% are even higher for UCT*. We believe that this is
because “good” states are reached more often in execution
due to the improved policy. Last but not least, UCT* also
shines regarding the anytime behavior. It achieves the best
result among all algorithms regardless of the time per deci-
sion. Figure 1 shows that UCT* provided with only 0.125
seconds already achieves better results than the PROST plan-
ner with 2 seconds (i.e. in -= of the time), and better results
even than DP-UCT, the second best performing algorithm,
if provided with 0.25 seconds.

Conclusion

We have presented a novel algorithmic framework, Trial-
based Heuristic Tree Search, which subsumes Monte-Carlo
Tree Search, Dynamic Programming, and Heuristic Search.
We have identified five ingredients that distinguish different
algorithms within THTS: heuristic function, backup func-
tion, action selection, outcome selection, and trial length.
We described several existing algorithms within this frame-
work and derived three novel ones.

By combining Monte-Carlo and Full Bellman backups to
Partial Bellman backups, we were able to derive the Max-
UCT and DP-UCT algorithms. The latter inherits the ability
to solve states by considering probabilities from Dynamic
Programming, and the use of non-admissible heuristics, the
good anytime behavior and the guidance to promising parts
of the search space from UCT. Adding the trial length from
Heuristic Search led to UCT*, an algorithm that distributes
its resources even better in the search space. Our empiri-
cal evaluation shows that DP-UCT and UCT* not only per-
form significantly better on the benchmarks of IPPC 2011,
but also in less time than any other considered algorithm,
including the winner of IPPC 2011, PROST.



Acknowledgments

This work was supported by the German Aerospace Center
(DLR) as part of the Kontiplan project (50 RA 1221).

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning 47:235-256.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to Act Using Real-Time Dynamic Programming. Artificial
Intelligence (AlJ) 72(1-2):81-138.

Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.

Berry, D., and Fristedt, B. 1985. Bandit Problems. Chap-
mann and Hall.

Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.

Bertsekas, D. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.

Bonet, B., and Geffner, H. 2003a. Faster Heuristic Search
Algorithms for Planning with Uncertainty and Full Feed-
back. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI), 1233—-1238.

Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the Convergence of Real-Time Dynamic Programming.
In Proceedings of the 13th International Conference on Au-
tomated Planning and Scheduling (ICAPS), 12-21.

Bonet, B., and Geffner, H. 2006. Learning Depth-First
Search: A Unified Approach to Heuristic Search in Deter-
ministic and Non-Deterministic Settings, and Its Applica-
tion to MDPs. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS),
142-151.

Bonet, B., and Geffner, H. 2012. Action Selection for
MDPs: Anytime AO* Versus UCT. In Proceedings of the
26th AAAI Conference on Artificial Intelligence (AAAI). To
Appear.

Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions Computa-
tional Intelligence and Al in Games 4(1):1-43.

Childs, B. E.; Brodeur, J. H.; and Kocsis, L. 2008. Trans-
positions and Move Groups in Monte Carlo Tree Search.
In Proceedings of the 2008 IEEE Symposium on Computa-
tional Intelligence and Games (CIG), 389-395.

Eyerich, P,; Keller, T.; and Helmert, M. 2010. High-Quality
Policies for the Canadian Traveler’s Problem. In Proceed-
ings of the 24th AAAI Conference on Artificial Intelligence
(AAAI), 51-58.

Feldman, Z., and Domshlak, C. 2012. Online Planning in
MDPs: Rationality and Optimization. CoRR abs/1206.3382.
Gelly, S., and Silver, D. 2007. Combining Online and Off-
line Knowledge in UCT. In Proceedings of the 24th Interna-
tional Conference on Machine Learning (ICML), 273-280.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence (AlJ) 129(1-2):35-62.

Howard, R. 1960. Dynamic Programming and Markov Pro-
cesses. MIT Press.

Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 119-127. AAAI Press.

Kocsis, L., and Szepesvari, C. 2006. Bandit Based Monte-
Carlo Planning. In Proceedings of the 17th European Con-
ference on Machine Learning (ECML), 282-293.

Kolobov, A.; Dai, P.; Mausam; and Weld, D. 2012. Reverse
Iterative Deepening for Finite-Horizon MDPs with Large
Branching Factors. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 146-154.

Kolobov, A.; Mausam; and Weld, D. 2012. LRTDP vs.
UCT for Online Probabilistic Planning. In Proceedings of
the 26th AAAI Conference on Artificial Intelligence (AAAI),
1786-1792.

Nilsson, N. 1980. Principles of Artificial Intelligence. Mor-
gan Kaufmann Publishers Inc.

Papadimitriou, C. H., and Yannakakis, M. 1991. Short-
est Paths Without a Map. Theoretical Computer Science
84(1):127-150.

Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.

Saffidine, A.; Cazenave, T.; and Méhat, J. 2012. UCD :
Upper Confidence bound for rooted Directed acyclic graphs.
Knowledge Based Systems 34:26-33.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.



