
A Polynomial All Outcome Determinization for Probabilistic Planning

Thomas Keller and Patrick Eyerich
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{tkeller,eyerich}@informatik.uni-freiburg.de

Abstract
Most predominant approaches in probabilistic planning uti-
lize techniques from the more thoroughly investigated field
of classical planning by determinizing the problem at hand.
In this paper, we present a method to map probabilistic oper-
ators to an equivalent set of probabilistic operators in a novel
normal form, requiring polynomial time and space. From
this, we directly derive a determinization which can be used
for, e. g., replanning strategies incorporating a classical plan-
ning system. Unlike previously described all outcome deter-
minizations, the number of deterministic operators is not ex-
ponentially but polynomially bounded in the number of par-
allel probabilistic effects, enabling the use of more sophisti-
cated determinization-based techniques in the future.

Introduction
Most probabilistic planning systems that have successfully
participated in the International Probabilistic Planning Com-
petition, e.g. FF-Replan (Yoon, Fern, and Givan 2007), FPG
(Buffet and Aberdeen 2007) or RFF-(BG/PG) (Teichteil-
Königsbuch, Infantes, and Kuter 2008), invoke a procedure
called determinization of the probabilistic planning task.

Two classes of determinization strategies have been de-
scribed: Single outcome determinizations choose one possi-
ble outcome for each probabilistic operator, accepting that
solvable tasks might become unsolvable in the determiniza-
tion, while all outcome determinizations preserve solvabil-
ity by generating all potential outcomes. The only all out-
come determinization used in practice generates one oper-
ator for each potential outcome, possibly leading to expo-
nentially many operators in the determinization (Rintanen
2003). While Rintanen briefly mentions a solution to this
problem, it has never been described in detail, a shortfall
made up for with this paper by introducing the forked nor-
mal form (FNF) and a polynomial determinization based on
FNF where operators are split into several deterministic ones
that are applied sequentially to simulate one outcome.

After presenting our formal framework, we show how to
split operators while preserving task equivalence, and how
to generate a set of operators in FNF with size polynomial
in the number of probabilistic effects. We continue by dis-
cussing the derived determinization, and finally point out the
benefit with a short experiment.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Probabilistic Planning
Definition 1. A (fully-observable) probabilistic planning
task T is a 4-tuple 〈V, s0, S?, O〉, where V is a set of finite-
domain state variables v with domain Dv; s0, the initial
state, is a valuation over V ; S?, the goal, is a condition
over V , a logical formula over atoms of the form v=d
(v ∈ V, d ∈ Dv); and O is a set of operators, 3-tuples
o = 〈pre(o), eff(o), c(o)〉 with precondition pre(o), a con-
dition over V ; effect eff(o); and cost c(o) ∈ N0. Effects of
operators o ∈ O are recursively defined by:
• > is the empty effect.
• v�x with v ∈ V, x ∈ Dv is an atomic effect.
• e1 ∧ e2 is an conjunctive effect if e1 and e2 are effects.
• c� e is a conditional effect if c is a condition and e is an

effect.
• p1e1| . . . |pnen is a probabilistic effect if e1, . . . , en are

effects, 0 < p1, . . . , pn ≤ 1, and
∑n
i=1 pi = 1.

An effect e without probabilistic effects is deterministic.
An effect e is in unary conditionality normal form (UCNF) if
e′ is atomic for all c� e′ in e; it is in unary non-determinism
normal form (1ND) if e is of the form p1e1| . . . |pnen with
deterministic e1, . . . , en (Rintanen 2003), the normal form
the most common all outcome determinization is based on.
We prohibit effects that assign multiple values to the same
v as semantics might become ambiguous. To measure plan
quality we use costs, but our results also hold for planning
problems based on rewards (Condon 1992). In the follow-
ing, we refer to valuations s over V as the states of T .

The successor set suc(s, o) of applying an operator o in a
state s is a set of state/probability pairs defined as in Rinta-
nen’s definition of operator application (2003).
Definition 2. A probabilistic transition system T is a 5-tuple
〈S,O,∆, s0, G〉 where S is a set of states; O is a set of
operators; for each o ∈ O there is a δo ∈ ∆ that is a partial
function mapping states to probability distributions over S;
s0 ∈ S is the initial state; and G ⊆ S is the set of goal
states. States with more than one applicable operator are
called decision states dec(T), and sucdec(s) = (suc(s) ∩
dec(T)) ∪ {sucdec(s

′)|s′ ∈ suc(s) \ dec(T)} ⊆ dec(T) is
the recursively defined set of decision successors.

A planning task T = 〈V, s0, S?, O〉 induces a transition
system T = 〈S,O,∆, s0, G〉, where S is the set of states of

V ; for each o ∈ O there is a δo ∈ ∆ defined for all states
s where s |= pre(o) mapping s to a probability distribution
induced by suc(s, o); and G = {s ∈ S|s |= S?}. A policy π
is a mapping from states to operators. We refer to the set of
all policies in a transition system T as Π(T).

Since we compare planning tasks where the application
of an operator in one task is matched to the application of a
sequence of operators in the other (i.e. there is no one-to-one
correspondence between transitions), we need our definition
of equivalence to be more general than usual. We achieve
this by exploiting the fact that a policy π naturally induces a
probability distribution over costs απ(s) for each state s:
Definition 3. Two transition systems T1 and T2 are equiv-
alent (T1≡T2) if there are two bijective mappings σ :
dec(T1) � dec(T2) and θ : Π(T1) � Π(T2) s.t. for all
π ∈ Π(T1) and s ∈ dec(T1) we have απ(s) = αθ(π)(σ(s)).

Operator Splitting
A determinization based on 1ND leads to exponentially
many operators if conjunctions of probabilistic effects are
present. The main idea of our determinization is to split
these, creating one operator per conjunctive element. In this
section, we show how to split deterministic operators and
enforce their sequential application, and how to prevent non-
equivalent transformation due to conditional effects.

Operator splitting leads to intermediate states in the trans-
formed task where only parts of the original operator’s ef-
fects have been applied. To control correct operator appli-
cation we introduce a variable vaux and extend all precondi-
tions of operators such that vaux=0 is requested. In interme-
diate states we require different, unique values for vaux and
thereby enforce sequential application in an equivalence-
preserving way for effects not containing conditional effects.
Note that intermediate states are no decision states due to the
uniqueness of the values for vaux, a property that also holds
in the rest of this paper.
Example 1. An operator o = 〈v0=2, v1�4 ∧ v2�0, c(o)〉
can be split into o′1 = 〈v0=2∧vaux=0, v1�4∧vaux�1, c(o)〉
and o′2 = 〈vaux=1, v2�0 ∧ vaux�0, 0〉.

This transformation can lead to a non-equivalent task if a
variable v occurs both in an effect condition c and an atomic
effect, and if that operator is split s.t. the assignment of v is
applied before c is checked. To avoid this, we show how to
transform a planning task T = 〈V, s0, S?, O〉 into an equiv-
alent planning task T� = 〈V ∪ V � ∪ {vaux}, σ(s0), S? ∪
{vaux=0}, O� ∪ O?〉, where no variable occurs both in ef-
fect conditions and atomic effects.
Theorem 1. All planning tasks can be normalized in poly-
nomial time and space to equivalent planning tasks where no
variable occurs both in effect conditions and atomic effects.
Proof: Let # : O → {1, . . . , |O|} ⊂ N be bijective, V �

be a set of variables with one variable v� for each v ∈ V ,
and the operators o� = 〈pre(o�), eff(o�), c(o)〉 and o? =
〈pre(o?), eff(o?), 0〉 for each o ∈ O be s.t.

pre(o�) = pre(o) ∧ vaux=0

eff(o�) =
∧
v∈V

v��val(v) ∧ vaux�#(o)

pre(o?) = vaux=#(o)

eff(o?) = eff(o)[V/V �] ∧ vaux�0

where val(v) ∈ Dv is the value of v and eff(o)[V/V �] is
equal to eff(o) except that all occurrences of all v ∈ V in
effect conditions are replaced by their corresponding v� ∈
V �. As polynomial time and space transformation from T
to T� is obvious we focus on the proof of equivalence with

σ(s) = s ∪ {(v, 0)|v ∈ V � ∪ {vaux}}, and
θ(π)(σ(s)) = o� ⇔ π(s) = o

in the following. To show that σ is bijective, it is suf-
ficient to show that σ(s1) 6= σ(s2) unless s1 = s2 for
s1, s2 ∈ dec(T) and that dec(T �) ⊆ {σ(s)|s ∈ dec(T)}.
The former follows directly from the definition of σ, while
the latter is not as obvious: We prove it by showing that
there is no s� ∈ dec(T �) for which there is no s ∈ dec(T)
with σ(s) = s�. Following the definition of σ, we must
thus show that s�(v) = 0 for all v ∈ V � ∪ {vaux} and all
s� ∈ dec(T �). Let s� ∈ S� be a state with s�(v) 6= 0 for
some v ∈ V � ∪ {vaux}. The definition of pre(o�) directly
shows that s� 6|= pre(o�) for all o� ∈ O�. Additionally, if
s� |= pre(o?) it follows that s� 6|= pre(o′?) for o?, o′? ∈ O?
by definition of #(o) and pre(o?). For this reason there is at
most one operator o with s� |= o, and thus s� /∈ dec(T �).

The bijectivity of θ on dec(T) and dec(T�) is given as
π(s�) /∈ O? for all s� ∈ dec(T �) because s� 6|= o? for
all o? ∈ O? for all policies π. To verify that T≡T�, we
first show that for each policy π in T it holds that απ(s) =
αθ(π)(σ(s)) for all states s ∈ dec(T), which is given iff for
all s ∈ dec(T) and all sequences of operators leading from
s to any s′ ∈ sucdec(s), there is a sequence of operators
from σ(s) to σ(s′) that induces the same probability and
cost (and vice versa). Let o1, . . . , ok ∈ O be the sequence of
operators to reach an s′ from s with probability p and cost
c. Then the sequence o1�, o

1
?, . . . , o

k
�, o

k
? leads from σ(s)

to σ(s′) with probability p, as the o� are deterministic and
the transition probabilities from the o? and o are equal, and
cost c, as c(o) = c(o�) + c(o?) by definition of the cost
functions of o� and o?. As all sequences of operators in T�

from any s� ∈ dec(T) to any s′� ∈ sucdec(s�) must be of
the form o1�, o

1
?, . . . , o

k
�, o

k
? by definition of eff(o�), pre(o?)

and #(o), the opposite direction holds as well.

Forked Normal Form
So far we restricted our analysis to deterministic operators,
but the procedure to normalize operators with conditional
effects is applicable to operators with probabilistic effects
as well, resulting in a set of deterministic operators O� and
a set of arbitrary operators O?. Without loss of generality,
we also assume that eff(o?) is in UCNF for all o? ∈ O?

(possible in polynomial time and space: Rintanen 2003), and
that all instances of the left-hand side of the equivalence

p1(p
′
1e

′
1| . . . |p′je′j)| . . . |piei ≡ p1p′1e′1| . . . |p1p′je′j | . . . |piei

are additionally replaced by the right-hand side (obviously
possible in polynomial time and space), resulting in effects
of the form ∧

i

pi1ei1| . . . |pinieini ∧
∧
j

ej ,

where the eik are effects of that form themselves and the ej
are conditional effects ej = c� e′ with atomic effects e′.
Definition 4. An effect e is in forked normal form (FNF) if
it is deterministic or of the form

(p1e1| . . . |piei| . . . |pnen) ∧
∧
j

ej ,

where all ei and ej are conditional effects c�e′ with atomic
effects e′. An operator o is in FNF if eff(o) is in FNF.

While there are effects that cannot be transformed into a
single effect in FNF, it is interesting nevertheless as there is a
polynomial time algorithm to transform a planning task T�

(created from an arbitrary planning task T) into an equiv-
alent planning task Tψ = 〈V ∪ V � ∪ {vaux}, σ(s0), S? ∪
{vaux=0}, O�∪Oψ〉, where all operators are in FNF, and the
number of operators is polynomially bounded in the number
of probabilistic effects in o? ∈ O?.

All oψ ∈ Oψ that are created by Algorithm 1 from o? ∈
O? have 3 important commonalities besides being in FNF:
• pre(oψ) = vaux=#(oψ), where #(oψ) is unique.
• eff(oψ) =

∧
i ei ∧ (p1vaux�x1| . . . |pnvaux�xn), where

x1, . . . , xn ∈ N are pairwise distinct.
• c(o) = 0 (costs are covered by the procedure described earlier).
To create an operator oψ we need to know its determinis-
tic effects ei, its index #(oψ), the probabilities pi, and the
values xi assigned to vaux. While the first three pieces of
information are known when an effect is met the first time
(lines 2–4), the last is not available before all children have
been created as their index corresponds to these values. Due
to this, Algorithm 1 maintains a directed acyclic graph of
FNF-nodes that correspond to the operators in FNF, as de-
picted in Figure 1. Once all children have been generated
recursively (lines 6–8) they are appended to all leaves (lines
9–10) and oψ is added (line 11).
Theorem 2. Each planning task can be normalized in poly-
nomial space and time to an equivalent planning task where
all operators are in FNF.
Proof sketch: Our procedure creates one operator for each
probabilistic outcome, needing polynomial space, and is ob-
viously computable in polynomial time. Equivalence of T�

and Tψ can be shown analogously to the proof of Theorem
1 by using the same mappings σ and θ and the same proper-
ties of decision states. Due to limited space, we sketch the
algorithm’s behavior in an example instead.
Example 2. Consider the following eff(o?) for o? ∈ O?:(

0.5(s�0 ∧ (0.3 t�1 | 0.7u�3) ∧ (0.6 v�0 | 0.4w�4))
∣∣

0.5(x�1)
)
∧ (0.5 y�2 | 0.5 z�1) ∧ q�2

Let 1 be the first generated index. The effects in FNF, cre-
ated from the directed acyclic graph in Figure 1, include:

eff(o1ψ) = q�2 ∧ (0.5vaux�2|0.5vaux�7)

eff(o2ψ) = s�0 ∧ (0.3vaux�3|0.7vaux�4)

eff(o3ψ) = t�1 ∧ (0.6vaux�5|0.4vaux�6)

eff(o4ψ) = u�3 ∧ (0.6vaux�5|0.4vaux�6)

. . .

eff(o9ψ) = z�1 ∧ vaux�0

Algorithm 1: Algorithm creating a set of operators in FNF.

def buildFNF(effect)1
if effect is conditional then2

return FNFNode({effect},nextIndex())3
result = FNFNode(effect.detEffs(),nextIndex())4
for eff in effect.probEffs() do5

children = {}6
for out in eff.outcomes() do7

children.add(〈buildFNF(out), eff.prob(out)〉)8
for leaf in result.leaves() do9

leaf.setChildren(children)10
createOperator(leaf,children)11

return result12

q�2
11

s�0

22

x�1

27

0.
5

0
.5

t�1

43

u�3

44

0.
3

0.7

v�0

55

w�4

56

0
.6

0.4

0.
6

0
.4

y�2
38

z�1

39

0
.5

0.5

0.
5

0
.5

0
.5

0
.5

Figure 1: Directed acyclic graph created by Algorithm 1 for
eff(o?) in Example 2, each FNF-node corresponding to an opera-
tor in FNF and containing its deterministic effects. Numbers in the
upper left corner denote the values of vaux in preconditions, and la-
bels give transition probabilities. Numbers in the upper right corner
denote the values of vaux in preconditions in the determinization.

Determinization
A deterministic planning task is a planning task in which
all operators are deterministic. Our definition of a deter-
minization, which transforms a probabilistic planning task
to a deterministic one, captures the same semantics as that
of a compilation by Little and Thiébaux (2007).

Definition 5. A sequence t = 〈o0, . . . , on〉 of operators oi ∈
O is a trajectory in T = 〈S,O,∆, s0, G〉, if o0 is applicable
in s0 and there are states si ∈ S s.t. δoi−1

(si−1)(si) > 0 for
1 ≤ i ≤ n+ 1 and sn+1 ∈ G and oi is applicable in si. The
cost of t is cost(t) =

∑n
i=0 c(oi).

Definition 6. A planning task T d = 〈V d, sd0, Sd? , Od〉 is a
determinization of a planning task T = 〈V, s0, S?, O〉 if it
is deterministic and for each trajectory td in T d there is a
trajectory t in T s.t. cost(td) = cost(t). If there also is a
trajectory td in T d for each trajectory t in T s.t. cost(t) =
cost(td), T d is an all outcome determinization of T .

Given a planning task Tψ as created by Algorithm 1, we
can directly generate an all outcome determinization T d of
Tψ. Due to limited space we only give a brief description

of the determinization process. Operators o� ∈ O� are al-
ready deterministic, and all operators oψ ∈ Oψ are either
deterministic or it holds that pre(oψ) = vaux=#(oψ) and
eff(oψ) =

∧
i ei ∧ (p1vaux�x1| . . . |pnvaux�xn). Note that

assignments of the form vaux�0 only occur in deterministic
operators which remain unchanged.

Let Ep be the set that contains the probabilistic part ep
of eff(oψ) for all oψ ∈ Oψ, i.e., assignments of the form
(p1vaux�x1| . . . |pnvaux�xn) (note that ep is equal for oψ ∈
Oψ that were created from FNF-nodes that share their chil-
dren). Furthermore, let #det : Ep � {1, . . . , |Ep|} be bijec-
tive. To determinize we simple replace the probabilistic part
ep of each operator oψ ∈ Oψ with the deterministic effect
vaux�#det(ep), thereby creating a deterministic operator.
Example 3. In Figure 1, the numbers on the upper right cor-
ner of the nodes indicate the new values of vaux when apply-
ing this procedure to Example 2, creating amongst others:

eff(o1d) = q�2 ∧ vaux�2

eff(o2d) = s�0 ∧ vaux�4

eff(o3d) = t�1 ∧ vaux�5

eff(o4d) = u�3 ∧ vaux�5
The resulting planning task T d is an all outcome deter-
minization of Tψ and thus, with our former results, of T .

Experiments
While the standard benchmarks of the latest IPPCs do not
make intensive use of parallel probabilistic effects, we be-
lieve this feature to be significant in probabilistically inter-
esting planning problems. One example is the Canadian
Traveler’s Problem (CTP), a path planning problem in an
undirected graph where each edge has a weight and a prob-
ability of being traversable (Papadimitriou and Yannakakis
1991). Whether an edge is blocked or not is revealed to
the agent only if it is located in an adjacent node, so the
agent has to reason about the expected cost of paths. Re-
cently, several high-quality domain-dependent strategies for
solving the CTP have been proposed (Eyerich, Keller, and
Helmert 2010). With the help of parallel probabilistic effects
we can encode the CTP very concisely in PPDDL, requiring
only one schematic operator changing both the agent’s loca-
tion and determining presence or absence of roads.

Table 1 compares the determinizations based on Rinta-
nen’s 1ND normal form (1NDD) and on the forked normal
form proposed in this paper (FNFD). For three instances of
the CTP with an increasing number of nodes and operators
we denote the number of generated deterministic operators,
the blowup factor relative to the number of probabilistic op-
erators (indicated by � in the table), and the average number
of conditional or atomic effects in the generated operators.

It can be seen that FNFD generally generates far fewer op-
erators than 1NDD. Since 1NDD is exponential in the num-
ber of parallel probabilistic effects it highly depends on aver-
age and maximal branching factor, which explains why the
blowup factor in the problem with 50 nodes (standard devi-
ation of 4.8) is larger than in the problem with 100 nodes
(standard deviation of 3.7). In contrast to that, FNFD de-
pends only linearly on the average number of parallel prob-
abilistic effects.

Nodes/Ops # Roads Det. Ops �Effects

20/98 4.9± 3.7
1122 �11.4 3.7
6008 �61.3 21.9

50/278 5.56± 4.8
3550 �12.8 3.7

29744 �107.0 25.3

100/568 5.68± 3.7
7348 �12.9 3.7

55160 �97.0 23.7

Table 1: Determinizations based on 1ND (white) and FNF (light
gray) on three instances of the CTP with different number of nodes,
operators and adjacent roads (with the standard deviation). We
state the number of generated deterministic operators (the blowup
factor relative to the number of original operators is indicated by �)
and the average number of effects of the generated operators.

Furthermore, the deterministic operators generated by
1NDD contain a lot of redundancy which is reflected in their
average number of effects. In contrast to that, the operators
generated by FNFD have a constant average number of ef-
fects (3.7) for all problems in the CTP.

Conclusion
In this paper, we have presented FNF, a normal form for
probabilistic planning, and a polynomial time and space pro-
cedure to map planning tasks to equivalent tasks where all
operators are in FNF. Each generated operator can directly
be transformed into a single deterministic operator, thereby
gaining an all outcome determinization without the expo-
nential blowup resulting from previous determinizations.
The results of our experiment emphasize the advantages of
our FNF-based determinization.

We will further use FNF to implement a UCT-based
domain-independent planning system, providing us with a
second advantage: The structure of the graph depicted in
Figure 1 can be used in the UCT rollouts to quickly generate
nodes that correspond to intermediate states and where prob-
abilistic outcomes are sampled sequentially, thereby avoid-
ing the generation of the possibly exponentially many suc-
cessor nodes when applying an operator that is not in FNF.

References
Buffet, O., and Aberdeen, D. 2007. FF + FPG: Guiding a policy-
gradient planner. In ICAPS, 42–48.
Condon, A. 1992. The Complexity of Stochastic Games. Informa-
tion and Computation 96(2):203–224.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-Quality Poli-
cies for the Canadian Traveler’s Problem. In AAAI, 51–58.
Little, I., and Thiébaux, S. 2007. Probabilistic Planning vs. Re-
planning. In ICAPS Workshop on IPC.
Papadimitriou, C. H., and Yannakakis, M. 1991. Shortest Paths
Without a Map. TCS 84(1):127–150.
Rintanen, J. 2003. Expressive Equivalence of Formalisms for Plan-
ning with Sensing. In ICAPS, 185–194.
Teichteil-Königsbuch, F.; Infantes, G.; and Kuter, U. 2008. RFF: A
Robust, FF-Based MDP Planning Algorithm for Generating Poli-
cies with Low Probability of Failure. IPPC Planner Abstract.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A Baseline
for Probabilistic Planning. In ICAPS, 352–359.

