
Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät
der Albert-Ludwigs-Universität Freiburg im Breisgau

Anytime Optimal MDP Planning with
Trial-based Heuristic Tree Search

Thomas Keller

2015

Dean:
Prof. Dr. Georg Lausen, University of Freiburg, Germany

PhD advisor and first reviewer:
Prof. Dr. Bernhard Nebel, University of Freiburg, Germany
Second reviewer:
Prof. Dr. Wolfram Burgard, University of Freiburg, Germany
Examination committee:
Prof. Dr. Bernd Becker (co-chair), University of Freiburg, Germany
Prof. Dr. Wolfram Burgard, University of Freiburg, Germany
Prof. Dr. Bernhard Nebel, University of Freiburg, Germany
Prof. Dr. Matthias Teschner (chair), University of Freiburg, Germany

Date of disputation:
July 7, 2015

To Catherine & Jonathan.

Abstract

Planning and acting in a dynamic environment is a challenging task for an
autonomous agent, especially in the presence of uncertain and exogenous
effects, a large number of states, and a long-term planning horizon. In this
thesis, we approach the problem by considering algorithms that interleave
planning for the current state and execution of the taken decision. The main
challenge of the agent is to use its tight deliberation time wisely.

One solution are determinizations, which simplify the Markov Decision
Process that describes the uncertain environment to a deterministic planning
problem. We introduce an all-outcomes determinization where, unlike in com-
parable methods, the number of deterministic actions is not exponentially but
polynomially bounded in the number of parallel probabilistic effects. We dis-
cuss three algorithms that base their decision solely on the solution to a de-
terminization, and show that they have fundamental limitations that prevent
optimal behavior even if provided with unlimited resources.

The main contribution of this thesis, the Trial-based Heuristic Tree Search
(THTS) framework, allows the description of algorithms in terms of only six
ingredients that can be mixed and matched at will. We present a selection
of ingredients and analyze theoretically which combinations yield asymptot-
ically optimal behavior. Our implementation of the THTS framework, the
probabilistic planner PROST, not only allows to evaluate all anytime optimal
algorithms empirically on the benchmarks of the International Probabilistic
Planning Competition (IPPC), but furthermore emphasizes the potential of
THTS by being the back to back winner of the competition in 2011 and 2014.

In the final chapter, we introduce the MDP-Evaluation Stopping Problem,
the optimization problem faced by participants of IPPC 2014. We show how
it can be constructed formally, discuss three special cases that are solvable in
practice, and present approximate algorithms that are based on techniques
that are derived from the solutions for the special cases. Finally, we show the-
oretically and empirically that all proposed algorithms improve significantly
over the application of the state-of-the-art approach.

iii

Zusammenfassung

Planen und Handeln in einer dynamischen Umgebung ist eine große Heraus-
forderung für einen autonomen Agenten, insbesondere unter Unsicherheit,
vielen Zuständen sowie einem langfristigen Planungshorizont. Wir gehen das
Problem in dieser Thesis mit Algorithmen an, die abwechselnd für den mo-
mentanen Zustand planen und die resultierende Aktion ausführen. Die wich-
tigste Herausforderung eines Agenten liegt darin, die begrenzte Zeit zur Ent-
scheidungsfindung sinnvoll zu nutzen. Determinisierungen kompilieren den
die unsichere Umgebung modellierenden Markov’schen Entscheidungsprozess
in ein deterministisches Planungsproblem. Wir präsentieren eine Determini-
sierung, in welcher alle möglichen Ausgänge erhalten bleiben und die Anzahl
der deterministischen Aktionen erstmals nicht exponentiell sondern polyno-
miell in der Anzahl paralleler probabilistischer Effekte begrenzt ist.

Wir stellen drei Algorithmen vor die ihre Entscheidung ausschließlich auf
Basis einer Determinisierung treffen. Allerdings haben diese fundamentale
Schwächen die dazu führen dass sie selbst mit unbegrenzten Ressourcen nicht
optimal sind. Der Hauptbeitrag dieser Thesis, das Trial-based Heuristic Tree
Search (THTS) Framework, erlaubt die Beschreibung von Algorithmen durch
sechs Zutaten welche beliebig gemischt werden können. Wir präsentieren eine
Auswahl von Zutaten und analysieren theoretisch welche zu asymptotisch op-
timalen Rezepten kombiniert werden können. Unsere Implementierung des
THTS Frameworks, der probabilistische Planer PROST, erlaubt nicht nur die
Evaluierung aller optimaler Algorithmen auf den Benchmarks des Internatio-
nalen Probabilistischen Planungswettbewerbs (IPPC), sondern zeigt auch die
Stärken von THTS durch den wiederholten Gewinn des IPPC 2011 und 2014.

Im letzten Kapitel beschreiben wir das Optimierungsproblem aller Teilneh-
mer des IPPC 2014, das MDP-Evaluation Stopping Problem. Wir zeigen wie es
formal konstruiert werden kann, diskutieren drei Spezialfälle die auch in der
Praxis gelöst werden können und präsentieren darauf basierende, näherungs-
weise Verfahren. Schließlich zeigen wir theoretisch und empirisch dass unsere
Algorithmen eine deutliche Verbesserung zum naiven Ansatz darstellen.

v

Acknowledgments

In the time it takes to write a thesis there is a large number of people that
contribute to a successful outcome in one way or another, and it is my plea-
sure to thank all those wonderful people. First of all, I would like to thank
my advisor Bernhard Nebel for offering me the possibility to be part of his
research group. I am grateful that he gave me the freedom to pursue my own
ideas while pushing me in the right moments to get the work done. Plenty
of amazing opportunities have arisen due to his efforts. Most notably, they
allowed me to travel to conferences and work meetings all around the world,
which led to valuable input of researchers I met on those trips. He managed
to establish a relaxed and productive atmosphere in his research group, and
it has always been a pleasure to be part of the group.

I also thank all other members from the research group. Roswitha Hilden
and Petra Geiger have been the two persons one could turn to with any prob-
lem, and the day has yet to come that one remains unsolved. Uli Jakob did
not only keep the computer infrastructure run smoothly (his support with the
grid has been crucial for the empirical part of this thesis), he has also made
sure that I never lost my spirit by providing me with numerous headsets and
by maintaining the coffee machine. I thank all three of them for everything
they did for me.

I do not want to miss the opportunity to thank my colleagues Alexan-
der Kleiner, Christian Becker-Asano, Christian Dornhege, Florian Geißer, Gabi
Röger, Johannes Aldinger, Johannes Löhr, Michael Brenner, Moritz Göbel-
becker, Stefan Wölfl, and Tim Schulte for many scientific and non-scientific
discussions that made the research group such a great place to work. There
are also some former colleagues that I collaborated especially closely with. Se-
bastian Kupferschmid supervised my Studienarbeit, which was a crucial point
during my studies as it sparked my enthusiasm for AI, and I still benefit from
his advice on good coding habits. Robert Mattmüller always made me remem-
ber that, while writing comprehensible papers is an important aim, formal
correctness must not suffer from it.

vii

viii

I was fortunate enough to have Malte Helmert as a colleague. He willingly
shared his knowledge and experience with me in numerous discussions that
were key to many of my publications. Having Malte as a mentor has simplified
my research significantly, and I owe him my deepest gratitude. And finally, I
would like to single out Patrick Eyerich. I remember countless late nights
working side by side with him, trying to make some robot clean up a table
or pick up a cup, our planning system produce reasonable policies, or finish
up a paper for a deadline that was approaching way faster than what we
anticipated. I no doubt have greatly benefited from our collaboration and have
grown both professionally and personally. Most importantly, it has always
been a great pleasure to work with Patrick, and I am truly grateful for that.

I would also like to thank Florian Geißer, Patrick Eyerich, and Robert
Mattmüller for proofreading this thesis very carefully. Their comments have
been of extremely high value.

Luckily, life is not always about AI, and I would like to thank all the people
who enrich my life in those moments where I am not (primarily) a computer
scientist. Spending time with my friends, especially with Alexander Kirschner,
Andreas Rau, Daniel Kurreck, Florian Mutschelknaus, Holle Bergmann, Jasper
Kittel, Regina Kurreck, Tilman Schieber, and Toffer Risch, has often given me
much needed distraction, joy, and happiness.

The last couple of months prior to finishing this thesis have been special
in several ways, but most importantly due to the birth of my son Jonathan.
Becoming a father has influenced me like nothing before, and it has made
my life so much more joyful. However, it also meant additional duties that
complicated the process of writing significantly. Without the incredible sup-
port of my parents-in-law, Wiebke and Franz, it would not have been possible
to finish this thesis. The time I spent with my brother-in-law Philip and his
girlfriend Sabine has always been a refreshing experience that allowed me to
motivate myself for whatever challenge lay ahead.

My father Wolfgang, my sister Sabrina with her husband Oli and her
daughter Emma, and my aunt Hermine and her family have always provided
me with unconditional support and love, and I am grateful to have such won-
derful persons in my life. I have saved the last word of acknowledgment for
my wife Catherine. Due to the sacrifices you were willing to accept, especially
in the last couple of months, your merits concerning this thesis cannot be put
in words. Thank you for your love, support, patience, and encouragement,
and for sharing the best moments of life with me!

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-
fertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Insbeson-
dere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- oder Be-
ratungsdiensten (Promotionsberaterinnen oder Promotionsberater oder ande-
rer Personen) in Anspruch genommen. Niemand hat von mir unmittelbar oder
mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang
mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit wurde bisher
weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen
Prüfungsbehörde vorgelegt.

Freiburg, April 2015 (Thomas Keller)

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Relevant Publications . 4
1.3 Awards . 5

2 Markov Decision Processes 7
2.1 Preliminaries . 7
2.2 Compact Description . 14
2.3 Solutions . 26

3 Determinization 31
3.1 Preliminaries . 31
3.2 Syntactical All-outcomes Determinizations 38

4 Suboptimal Policies 53
4.1 Optimism . 53
4.2 Hindsight Optimization . 57
4.3 Optimistic Rollout . 59
4.4 Theoretical Evaluation . 61
4.5 Empirical Evaluation . 64

5 Trial-based Heuristic Tree Search 69
5.1 Preliminaries . 69
5.2 The Framework . 85

6 THTS Ingredients 95
6.1 Initialization . 95
6.2 Outcome Selection . 97
6.3 Backup Functions . 98
6.4 Trial Length . 114

x

CONTENTS xi

6.5 Action Selection . 114
6.6 Recommendation Functions 126

7 Theoretical Evaluation 129
7.1 Convergence . 129
7.2 Optimal Behavior . 141

8 Empirical Evaluation 147
8.1 THTS vs. Suboptimal Algorithms 147
8.2 THTS Recipes . 150

9 The MDP-Evaluation Stopping Problem 165
9.1 The MDP-ESP . 166
9.2 Theoretical Analysis . 168
9.3 Strategies for the MDP-ESP 170
9.4 Experimental Evaluation . 174
9.5 Discussion . 177

10 Conclusion 179

A Experimental Results 183

List of Figures 189

List of Tables 191

List of Algorithms 193

Bibliography 195

CHAPTER 1
Introduction

One of the defining properties of intelligence of autonomous agents is their
ability to plan which action to execute in which situation in order to reach a
desired situation. The corresponding field of research, automated planning, is
one of the fundamental and most widely studied problems in the AI literature.
However, most planning formulations make strong assumptions regarding the
agent’s control over the world. In particular, all effects of executed actions are
considered to be deterministic, and there are no exogenous influences that
alter the world state independently of the agent’s behavior. In applications
where computer programs are applied in a controlled environment or where
embodied agents are carefully separated from sources of uncertainty, it is not
necessary to take unexpected events into account in the decision-making pro-
cess and such a formulation therefore suffices.

However, this is in stark contrast to the current progress in the develop-
ment of autonomous agents. Household robots are about to clean up kitchens
or do the laundry, self-driving cars bring passengers to their desired destina-
tion, autonomous aircrafts deliver urgent parcels, and smart homes interact
with the energy market or order groceries for their inhabitants. All of these
“next-generation” applications that involve intelligent, autonomous agents
have in common that the agents operate in the real world. In order to make
sure that the technological progress is a safe progress for us – the people who
share their environment with autonomous agents – it is necessary that the
agents are able to consider the possibility that unexpected events occur.

However, planning in a complex, uncertain environment is a challenging
task. Early attempts take all contingencies of all actions into account and
compute a complete policy that describes the best action in each possible situ-
ation. Even though such a policy leads to optimal behavior upon execution, it
is intractable in practice, as the curse of dimensionality leads to a prohibitively
large number of situations an agent can face. Online algorithms, on the other
hand, incorporate a concept that allows their computation in practice: they
spend some time to plan for the situation the agent faces at a given moment

1

2 CHAPTER 1. INTRODUCTION

and execute the taken decision thereafter. By repeating this process in each
subsequent state, an agent that is equipped with an online algorithm is able
to restrict the policy computation only to states that are actually encountered
during execution. Moreover, an agent that plans online can adapt to altered
circumstances easily.

Determinization-based replanning approaches are a popular strategy to
compute online policies. They are based on the idea that all non-determinism
is removed from the representation of the agent’s environment, and a planner
from the more thoroughly studied field of classical planning is used to derive
a plan in the determinization. Most of these replanning algorithms use a
determinization that preserves all possible outcomes by replacing each action
with a set of actions (one for each outcome). The state-of-the-art method to
compute such an all-outcomes determinization suffers from the problem that
the number of actions can get out of hand easily in the presence of parallel
probabilistic effects. We describe a method that allows the computation of all-
outcomes determinizations in polynomial time and space in Chapter 3. There
are not only different techniques to compute determinizations, but also a wide
variety of algorithms that base their decisions exclusively on computing and
solving determinizations and applying the solution to the original problem. In
Chapter 4, we apply three such algorithms to a path planning problem with
stochastic information about the roadmap. The problem resembles the task
that is faced by a robot who wishes to navigate in unknown terrain with access
only to a map that is derived from a (blurry) satellite image. An empirical
evaluation shows significant improvement over the state-of-the-art, which is
based on the assumption that all parts of the roadmap are traversable unless
the agent knows differently.

In the main part of this thesis, which spans the Chapters 5 through 8, we
introduce the Trial-based Heuristic Tree Search framework. It is a framework
for online algorithms that allows the specification of a large number of algo-
rithms for planning under uncertainty, including some that are well-known
and many novel ones. Algorithms in the Trial-based Heuristic Tree Search
framework are not based on a determinization (they use them for heuristic
guidance, though), but it suffices nonetheless to consider only a fraction of
the reachable states in the planning process to derive a near-optimal decision
after short deliberation time. We show that many algorithms in the frame-
work are even anytime optimal, which means that the decision making pro-
cess can be interrupted at any time, but converges towards optimal behavior
in the limit. Combined, this allows for agents that adapt their deliberation
time dynamically and in dependence of the urgency of the task at hand. Our
development focuses on two aspects of algorithms in the Trial-based Heuristic
Tree Search framework: the used action selection, which is the most impor-
tant tool that defines which states are relevant for the current decision; and
the backup function, which describes how information that is collected in the
planning process is combined to take an informed decision.

1.1. CONTRIBUTIONS 3

Our implementation of the Trial-based Heuristic Tree Search framework
has been published as the probabilistic planning system PROST. It is publically
available at http://www.prost.informatik.uni-freiburg.de. PROST has
participated at the International Probabilistic Planning Competitions in 2011
and 2014 with two different Trial-based Heuristic Tree Search algorithms, and
has demonstrated the potential of the framework by winning both competi-
tions. The final part of this thesis is on the MDP-Evaluation Stopping Problem,
a variant of an optimal stopping problem that arose at the competition in
2014. We show that it can be modelled as a meta-MDP and demonstrate that
it is possible to evaluate an MDP solver such that its expected reward is higher
than the expected reward of an optimal solver if the MDP-Evaluation Stopping
Problem is taken into consideration.

1.1 Contributions

The key contributions of this thesis in the field of planning and acting under
uncertainty are as follows:

• Chapter 3 describes a method that computes an all-outcomes deter-
minization of a finite-horizon, factored MDP. In contrast to the state-
of-the-art, our approach is polynomial in time and space and can also be
applied to problems that contain parallel probabilistic effects.

• Chapter 4 applies well-known algorithms for MDP planning to a path
planning problem with stochastic information about the roadmap and
empirically shows significant improvement over the state-of-the-art.

• Chapter 5 proposes the Trial-based Heuristic Tree Search framework,
which not only subsumes most well-known algorithms for MDP plan-
ning but also allows to derive novel algorithms by mixing and matching
ingredients such that the whole is more than the sum of its parts.

• Chapter 6 presents a selection of ingredients for the Trial-based Heuris-
tic Tree Search framework with a focus on action selection and backup
functions. Most ingredients are novel or have never been applied to
MDP planning before.

• Chapter 7 provides a theoretical analysis of the Trial-based Heuristic
Tree Search framework and determines 115 anytime algorithms with
asymptotically optimal behavior that can be described with the pre-
sented ingredients.

• Chapter 8 evaluates the anytime optimal algorithms on the benchmark
suite of the International Probabilistic Planning Competitions 2011 and
2014. Our implementation, the probabilistic planning system PROST,

4 CHAPTER 1. INTRODUCTION

impressively demonstrates the potential of the Trial-based Heuristic Tree
Search framework by winning both competitions.

• Chapter 9 introduces the MDP-Evaluation Stopping Problem as an opti-
mization problem that resembles both MDP planning and optimal stop-
ping problems. An evaluation of the algorithms that are derived from an
analysis of practically tractable special cases shows significant improve-
ment over the state-of-the-art.

1.2 Relevant Publications

This thesis is partially based on the following publications:

• Patrick Eyerich, Thomas Keller and Malte Helmert. High-Quality Policies
for the Canadian Traveler’s Problem. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI 2010).

• Thomas Keller and Patrick Eyerich. A Polynomial All Outcome Deter-
minization for Probabilistic Planning. In Proceedings of the 21st Inter-
national Conference on Automated Planning and Scheduling (ICAPS
2011).

• Thomas Keller and Patrick Eyerich. PROST: Probabilistic Planning Based
on UCT. In Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS 2012).

• Thomas Keller and Malte Helmert. Trial-based Heuristic Tree Search for
Finite Horizon MDPs. In Proceedings of the 23rd International Confer-
ence on Automated Planning and Scheduling (ICAPS 2013).

• Thomas Keller and Florian Geißer. Better Be Lucky Than Good: Exceed-
ing Expectations in MDP Evaluation. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI 2015).

The following papers have been published during the author’s doctoral
process but are not covered by this thesis:

• Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg, Mi-
chael Brenner and Bernhard Nebel. Semantic Attachments for Domain-
Independent Planning Systems. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS 2009).

• Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael Brenner
and Bernhard Nebel. Coming Up with Good Excuses: What To Do When
No Plan Can be Found. In Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2010).

1.3. AWARDS 5

• Thomas Keller, Patrick Eyerich and Bernhard Nebel. Task Planning for an
Autonomous Service Robot. In Proceedings on the 33rd Annual German
Conference on Artificial Intelligence (KI 2010).

• Danijel Skocaj, Matej Kristan, Alen Vrecko, Marko Mahnic, Miroslav Jan-
icek, Geert-Jan M. Kruijff, Marc Hanheide, Nick Hawes, Thomas Keller,
Michael Zillich and Kai Zhou. A System for Interactive Learning in Dia-
logue With a Tutor. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2011).

• Andreas Hertle, Christian Dornhege, Thomas Keller and Bernhard Nebel.
Planning with Semantic Attachments: An Object-Oriented View. In Pro-
ceedings of the European Conference on Artificial Intelligence (ECAI
2012).

• Johannes Löhr, Patrick Eyerich, Thomas Keller and Bernhard Nebel. A
Planning Based Framework for Controlling Hybrid Systems. In Proceed-
ings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS 2012).

• Florian Geißer, Thomas Keller and Robert Mattmüller. Past, Present, and
Future: An Optimal Online Algorithm for Single-Player GDL-II Games. In
Proceedings of the 21st European Conference on Artificial Intelligence
(ECAI 2014).

• Andreas Hertle, Christian Dornhege, Thomas Keller, Robert Mattmüller,
Manuela Ortlieb and Bernhard Nebel. An Experimental Comparison of
Classical, FOND and Probabilistic Planning. In Proceedings of the 37th
German Conference on Artificial Intelligence (KI 2014).

• Tim Schulte and Thomas Keller. Balancing Exploration and Exploitation
in Classical Planning. In Proceedings of the 7th Annual Symposium on
Combinatorial Search (SoCS 2014).

• Florian Geißer, Thomas Keller and Robert Mattmüller. Delete Relax-
ations for Planning with State-Dependent Action Costs. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence (IJCAI
2015).

1.3 Awards

The following awards have been received during the author’s doctoral process
for work that is part of this thesis:

• July 2010: Best Poster Presentation Award for the paper High-Quality
Policies for the Canadian Traveler’s Problem (Extended Abstract) at SOCS
2010 in Atlanta, USA (with Patrick Eyerich and Malte Helmert).

6 CHAPTER 1. INTRODUCTION

• April 2011: Winner of the Boolean MDP Track for the probabilistic
planning system PROST at the 4th International Probabilistic Planning
Competition at ICAPS 2011 in Freiburg, Germany (with Patrick Eye-
rich).

• May 2013: Best Student Paper Award for the paper Trial-based Heuris-
tic Tree Search for Finite Horizon MDPs at ICAPS 2013 in Rome, Italy
(with Malte Helmert).

• May 2014: Winner of the Boolean MDP Track for the probabilistic
planning system PROST at the 5th International Probabilistic Planning
Competition at ICAPS 2014 in Portsmouth, USA (with Florian Geißer).

CHAPTER 2
Markov Decision Processes

In order to discuss problems that arise when an agent aims to plan and act un-
der uncertainty, we first have to provide a definition of the theoretical frame-
work that is considered in this thesis. The following Section 2.1 introduces
Markov Decision Processes (MDPs), discusses different models of optimal be-
havior in MDPs and establishes the one that is used over the course of this
thesis. Section 2.2 shows how the MDPs we are interested in can be described
compactly by using a factored representation, and how a finite horizon in-
duces an MDP that is acyclic. The concluding Section 2.3 defines what an
optimal solution of a finite-horizon, factored MDP looks like, and introduces
a simple (yet in practice intractable) baseline procedure for its computation.

2.1 Preliminaries

Sequential planning and acting under uncertainty is a problem that is faced
by an agent that interacts with a dynamic environment. In each step of the
interaction, the agent receives the state from the environment (we only con-
sider the case of fully observable states here), and the agent decides which
action to execute next. The execution of an action changes the state of the
environment, and the agent obtains a reward for the performed state transi-
tion. The agent’s behavior should pursue the objective of maximizing the sum
over the obtained reward values. The interaction between an agent and an
environment is depicted schematically in Figure 2.1.

Planning and acting under uncertainty is an important research area both
in the closely related Reinforcement Learning (RL) and Planning communities,
but the focus in the considered scenarios diverges significantly. Both scenarios
differ mostly in the a-priori model of the environment that can be accessed by
the agent: a learning agent has no initial knowledge on how its actions alter
the environment and when it can expect a positive reward signal, and it has
to improve its behavior by learning from interaction with the environment. A

7

8 CHAPTER 2. MARKOV DECISION PROCESSES

environmentagent
model

reward, next state

action

Figure 2.1: Interaction between agent and environment.

planning agent, on the other hand, has a slightly simpler task as it is provided
with an initial intuition (a generative model) or a clear picture (a declarative
model) of the influence of his actions on the environment. Even though the
focus of this thesis is the planning scenario, we are interested in both due
to the influence of popular learning methods on algorithms for probabilistic
planning.

The framework that is considered in this thesis is based on the formal
concept that is known as a Markov Decision Process (MDP). Literature on
MDPs goes as far back as the seminal work of Bellman (1957), and MDPs have
been the topic of well-known textbooks (e.g., Puterman, 1994; Bertsekas,
1995) and plenty of research ever since.

Definition 1 (Markov Decision Process). A Markov Decision Process is a
tuple M = 〈S,A, T ,R, s0〉, where S is a finite set of states; A is a finite set
of actions; T : S × A × S → [0, 1] is the transition function, a probability
distribution that gives the probability PT [s′ | s, a] that applying a ∈ A in s ∈ S
leads to s′ ∈ S; R : S ×A → [R−,R+] is the reward function with lower and
upper bound R−,R+ ∈ R; and s0 ∈ S is the initial state.

The transition function of an MDP induces the successor set of a state s ∈
S and an action a ∈ A as succ(s, a) := {s′ ∈ S | PT [s′ | s, a] > 0}. If
succ(s, a) 6= ∅, we call a applicable in s, and we denote the set of applicable
actions in s with A(s). If A(s) = ∅, we say that s is a dead-end. We call each
s′ ∈ succ(s, a) an outcome of a in s, and say that a is deterministic in s iff there
is exactly one outcome in succ(s, a), and probabilistic in s iff a is applicable in
s and not deterministic. If an action a is deterministic in all s ∈ S where a is
applicable, we call it deterministic, and if all a ∈ A are deterministic we say
that the MDP is deterministic. Sampling an outcome s′ ∈ succ(s, a) of a state
s and an action a that is applicable in s according to the transition function T
is denoted with s′ ∼ succ(s, a), and when we know that a is deterministic in s
we write s′ = succ(s, a).

Let us also specify some notational conventions that are used throughout
this thesis. When we refer to all state-action pairs in an MDP, we mean all

2.1. PRELIMINARIES 9

pairs (s, a) for s ∈ S and a ∈ A such that a is applicable in s. When we
specify a discrete probability distribution D over a set X (like, for instance, a
transition function), we give it as D = {(p1 :x1) , . . . , (pn :xn)}, and we mean
the probability distribution that assigns a probability of pi with 0 ≤ pi ≤ 1 to
xi ∈ X for all i ∈ {1, . . . , n}, and a probability of 0 to all x ∈ X \ {x1, . . . , xn}.
When we specify a tuple without mentioning its elements explicitly, we as-
sume implicitly that all its elements share the superscript that is also used in
the tuple specification, e. g., an MDP M′ consists implicitly of a set of states
S ′, a set of actions A′, etc. If no superscript is used, the corresponding ele-
ments go without superscript as well. We also regard mathematical objects
that share the same superscript as associated with each other if there is a
one-to-one relationship between objects of their kind. For instance, the set of
policies (see Definition 2) of an MDPMd is (implicitly defined as) Πd.

Example 1. Figure 2.2 depicts an example MDP. As in all MDP figures in this the-
sis, states are depicted as (blue) rectangles and actions as (green) circles. Actions
have exactly one incoming edge that is labeled with the reward of applying the
action in the connected state, and one or more outgoing edges that are connected
with possible outcomes and labeled with the probability that the corresponding
outcome takes place (rewards of 0 and probabilities of 1 are omitted). The MDP
〈S,A, T ,R, s0〉 that is shown in Figure 2.2 is described by

• a set of states S = {s0, s1, s2, s3};

• a set of actions A = {a1, a2, a3};

• and a transition function T and a reward function R that are such that

– T (s0, a1) = {(1
3 : s0), (2

3 : s3)} R(s0, a1) = −1

– T (s0, a2) = {(1
2 : s1), (1

2 : s2)} R(s0, a2) = +1

– T (s1, a1) = {(1
3 : s1), (2

3 : s3)} R(s1, a1) = +6

– T (s1, a3) = {(1 : s0)} R(s1, a3) = +4

– T (s2, a1) = {(1
3 : s2), (2

3 : s3)} R(s2, a1) = −2

– T (s2, a3) = {(1 : s0)} R(s2, a3) = +2

– T (s3, a1) = {(1 : s3)} R(s3, a1) = +1.

The behavior of an agent is described in terms of a policy. Puterman
(1994) defines a policy as a function that maps states and the whole interac-
tion history of the agent to a probability distribution over applicable actions,
which is sufficient for most scenarios involving MDPs one can come up with.
In this thesis, we prefer a more restricted and simpler definition, where we
require policies to be deterministic and stationary. A deterministic policy does
not select an action according to a probability distribution but always picks
the same action given the same input. And a stationary policy does not use

10 CHAPTER 2. MARKOV DECISION PROCESSES

s0

s1

s3

s2

a1

a2

a1

a1

a3

a1

a3−1

+1

+1

+6

1
3

2
3

+4

1
3

2
3

12

1
2

+2

−2

1
3

2
3

Figure 2.2: An example MDP with 4 states and 3 actions.

the agent’s history to make a decision, but always selects the same action in
the same state independently from the path that leads to the state.

Definition 2 (Policy). Given an MDPM = 〈S,A, T ,R, s0〉, a policy is a map-
ping π : S → A ∪ {⊥} such that π(s) ∈ A(s) ∪ {⊥} for all s ∈ S. Let Sπ(s)
be the set of reachable states from s under π, which is defined recursively as
the smallest set satisfying the rules s ∈ Sπ(s) and succ(s′, π(s′)) ⊆ Sπ(s) for all
s′ ∈ Sπ(s) where π(s′) 6= ⊥. We call π executable in s iff π(s′) 6= ⊥ for all
s′ ∈ Sπ(s), and executable iff π is executable in s0. A policy π where π(s) 6= ⊥
for all s ∈ S is called complete. We denote the set of all policies in an MDP with
Π.

We allow a policy to be undefined on some states, and call it executable
if it is guaranteed that no state can be reached during its execution where it
is undefined. Since complete policies are defined for all states, they are also
executable in all states.

Example 2. Consider the following state-action mappings for our example MDP:

• π1 selects an applicable action uniformly at random in each state.

• π2 is such that π2(s0) = a2, π2(s1) = a3, and π2(s2) = a3.

• π3 is such that π3(s) = a1 for all s ∈ S.

• π4 is such that π4(s0) = a2.

2.1. PRELIMINARIES 11

Apart from π1, which is not deterministic, all of these mappings are policies in the
sense of Definition 2. Policy π2 is not complete but executable since s3 6∈ Sπ2(s0)
and π2(s) 6= ⊥ for all other states s, and π3 is complete and hence also executable.
Finally, π4 is neither complete nor executable since π4(s1) = ⊥ and s1 ∈ Sπ4(s0).

The interaction between an agent and the environment is formalized as
a run of finite or infinite length. It is derived by applying the policy that
describes the agent’s behavior, starting from the current state of the environ-
ment. In each state that is encountered, a finite reward value according to the
MDP’s reward function is obtained. A run yields an accumulated reward that
corresponds to the sum of the obtained reward values.

Definition 3 (Agent-Environment Interaction). LetM = 〈S,A, T ,R, s0, 〉 be
an MDP and π be a policy that is executable in s0. A run of length n ∈ N ∪ {∞}
under π is a sequence of states and actions φπ = (s0, a0, . . . , sn−1, an−1, sn)
such that at = π(st) and st+1 ∼ succ(st, at) for all t ∈ {0, . . . , n−1}. The
accumulated reward of a run φπ of finite length n isR(φπ) :=

∑n−1
t=0 R(st, at).

Example 3. Consider the following runs in our example MDP:

• φπ2 = (s0, a2, s1, a3, s0)

• φπ3
1 = (s0, a1, s0, a1, s0, a1, s0, a1, s0)

• φπ3
2 = (s0, a1, s0, a1, s3, a1, s3, a1, s3, . . .)

φπ2 is a run of length 2 under π2 with accumulated reward R(φπ2) = +5, and
φπ3

1 and φπ3
2 are two different runs under π3. The length of φπ3

1 is 4 and its
accumulated reward is R(φπ3

1) = −4, and the accumulated reward of φπ3
2 is not

defined since it is of infinite length.

Initially, we have described that an agent should aim for a behavior that
pursues the objective of maximizing the sum over the obtained reward val-
ues. Before we can turn the description into a well-defined model of optimal
behavior (Kaelbling et al., 1996), which describes the criterion that specifies
an optimal policy, there are some decisions to be made. In particular, we have
to decide how an agent takes future rewards into account in the decisions it
is about to make now. An important influence on this decision is the con-
sidered horizon. It describes a criterion for the termination – or, if infinite,
non-termination – of a policy’s execution, and hence the number of action ap-
plications that are considered to determine the quality of a policy. We compare
four different models of optimal behavior in the following. For illustration, we
show their assessment of the policies π2 and π3 from Example 2. The results
are summarized in Table 2.1. We think it is intuitive to state that the quality of
policy π3 should be higher than the quality of policy π2, since π3 continually
traverses the two cycles s0 – s1 – s0 and s0 – s2 – s0 which yield a reward of
+5 and +3 over the course of two steps, respectively. Policy π3, on the other

12 CHAPTER 2. MARKOV DECISION PROCESSES

Optimality Model π2 π3

Undiscounted Infinite Horizon ∞ ∞
Discounted Infinite Horizon ≈ 10 ≈ 2.27

Average Reward 2 1

Finite Horizon 40 ≈ 17

Table 2.1: Summary of the expected quality evaluations of the policies π2

and π3 of our example MDP in the discussed models of optimal behavior. A
discount factor of γ = 0.8 (for the values in the second column) and a finite
horizon of H = 20 (for the values in the last column) are assumed.

hand, receives a reward of −1 in each step as long as it remains in s0, and
even after it proceeds to s3 it only collects a reward of +1 in each step.

Let us first consider the case of an infinite horizon, and let us assume that
we aim to execute the policy that maximizes the expected accumulated reward

E

[∞∑
t=0

R(st, at)

]
that can be achieved in a run φπ = (s0, a0, s1, a1, s2, . . .). However, if there is
a positive reward cycle (e. g., a set of states where all paths lead back to the
same state, and where the sum of obtained rewards is greater than zero in
all paths) in the MDP, all policies that have a non-zero chance that the agent
enters that cycle and remains in it with probability 1 will be considered equally
good as the expected sum over the obtained reward values of those policies is
infinite. In our example MDP, this is the case both for π2 (which ends up in s0

every other step regardless of action outcomes) and for π3 (which ends up in
s3 eventually, where only the deterministic action a1 that leads back to s3 is
applicable). Therefore, both π2 and π3 have an infinite expected accumulated
reward and are considered equally good in terms of the proposed model of
optimal behavior.

Unfortunately, this contradicts our initial intuition. Well-defined models of
optimal behavior therefore ensure a finite optimization quantity. Surprisingly,
the model that is considered most often in the context of MDPs considers an
infinite horizon nonetheless. Instead of limiting the horizon to a finite value,
it is such that the influence of decisions decreases the further they are in the
future. To obtain this, a discount factor γ with 0 < γ < 1 is used to discount
rewards such that they have less influence the further they are obtained in the
future. The optimization criterion is then the maximization of the expected
discounted reward

E

[∞∑
t=0

γt ·R(st, at)

]

2.1. PRELIMINARIES 13

of a run φπ of infinite length. If rewards are discounted with a discount factor
of, for instance, γ = 0.8, the quality of our example policy π2 converges to a
value that is close to 10, while π3 only achieves a quality of roughly 2.27 – a
result where π2 is superior to π3, just as one would expect.

While the relative order of the quality of policies with an expected dis-
counted reward is as desired, the quality values themselves are fairly unintu-
itive. An alternative way that also achieves a finite optimization criterion in
an infinite horizon setting is the maximization of the average reward

lim
n→∞

E

[
1

n
·
n−1∑
t=0

R(st, at)

]

that can be achieved by the agent in a run φπ. The average reward of policy π2

in our example MDP is 2 because half of all typical runs are described by the
sequence (s0, a2, s2, a3, s0) with an average reward of 3

2 , and the other half can
be expected to correspond to the sequence (s0, a2, s1, a3, s0) with an average
reward of 5

2 . The average reward of policy π3 is dominated by the endless
application of a1 in s3, since applying a1 in s0 will yield to the outcome s3

after a finite number of steps, and from then on the reward will always be 1
(and the average reward hence converges towards 1).

Unfortunately, the evaluation of policies that are achieved by maximiz-
ing the expected discounted reward or the average reward is difficult. The
computation of both quality values is intractable in non-trivial MDPs, and the
simulation of a run is obviously impossible if an infinite horizon is consid-
ered. We therefore prefer an approach where a finite horizon H specifies the
number of future decisions that are considered in the current decision, i. e.,
where a policy is considered to be optimal iff it maximizes the finite expected
accumulated reward (or simply expected reward in the following)

E

[H−1∑
t=0

R(st, at)

]

of a run (φπ) of length H. This allows us to approximate the expected reward
of a policy π given a (sufficiently large) sequence of runs (φπ1 , . . . , φ

π
n) under

π of length H as the average of all accumulated rewards, since

lim
n→∞

1

n

n∑
k=1

R(φπk) = E [R(φπ)] ,

due to the law of the large numbers.
This is the simplest and – in our opinion – also a very elegant model of

optimal behavior that both ensures a well-defined optimization criterion and
allows the simulation of runs to approximate the quality of a policy. If we
assume a finite horizon of H = 20, the expected reward of applying policy

14 CHAPTER 2. MARKOV DECISION PROCESSES

π2 is 40 for the same reason that the average reward in each step is 2, while
it is approximately 17 for π3. Note that there is an alternative where the
specification of a set of goal states that must be reached allows the usage of
undiscounted accumulated rewards as well. However, in order to obtain a
well-defined optimality criterion for such a Stochastic Shortest Path problem
(Bertsekas and Tsitsiklis, 1991), the set of goal states must be absorbing (a
state s is absorbing iff succ(s, a) = s for all a ∈ A(s)) and the reward function
such that R(s, a) = 0 for all goal states s and applicable actions a. Addition-
ally, the Stochastic Shortest Path problem has to be acyclic or restricted to
costs, i. e., have a reward function where R(s, a) ≤ 0 for all state-action pairs.
Also, the existence of a policy that reaches a goal state with certainty in a finite
number of steps must be guaranteed to exclude infinite expected costs. The
finite-horizon setting can be used to model Stochastic Shortest Path problems
by assigning a reward of 0 to the application of an action in a goal state, and
of the applied operator’s cost to all other state-action pairs (Condon, 1992).
Of course, a reasonable bound on the horizon H which is such that the goal
can be reached within H steps with certainty must be known.

2.2 Compact Description

Since learning is complex already in small MDPs, a lot of early research in RL
considers an MDP syntax that corresponds to the flat representation that is
also used in Example 1 where states and transitions between states are listed
explicitly (e.g., Bellman, 1957; Howard, 1960). An alternative is the descrip-
tion of MDPs with large state spaces in a compact manner as Factored MDPs
(Boutilier et al., 2000). Factored MDPs incorporate an idea that has been cen-
tral to most research in the planning community already when STRIPS (Fikes
and Nilsson, 1971) was designed as a modeling language for deterministic
planning problems. By lifting the domain to a compact description, it is pos-
sible to describe large state spaces syntactically with exponentially smaller
space requirements. The transition function can be described compactly with
actions that allow a systematic computation of the probability distribution
over successor states. In combination with the finite horizon that is required
by our model of optimal behavior, these are used to induce an MDP from a
finite-horizon, factored MDP.

2.2.1 Variables and States

Helmert (2008) describes a formalism that is based on SAS+ (Bäckström and
Nebel, 1995), where finite-domain variables replace a representation that is
restricted to Boolean variables. Mattmüller (2013) adapts the formalism to
a nondeterministic environment, which we extend in the following to fit the
probabilistic setting.

2.2. COMPACT DESCRIPTION 15

Definition 4 (Finite-domain Variable). A finite-domain state variable (or
simply variable) is a mathematical object v, associated with a finite set of values,
the domain Dv of v. We call the set D+

v := Dv ∪ {⊥} the extended domain of
v, where ⊥ /∈ Dv is the undefined value.

Since we only consider fully observable environments in this thesis, states
can be described as valuations of variables over a given set of finite-domain
variables.

Definition 5 (State). A partial variable assignment over a finite set of vari-
ables V is a mapping s : V → ⋃

v∈V D+
v such that s[v] ∈ D+

v for all v ∈ V. The
scope of s is the set of variables where s does not have the undefined value ⊥; it
is denoted as vars(s) := {v ∈ V | s[v] 6= ⊥}. A partial variable assignment s is
called a state iff vars(s) = V.

Often, we use variables with a domain that consists of the first n natural
numbers Dv = {0, . . . , n} ⊂ N. Even though arithmetic operations on variable
values are not considered in principle, we use addition and subtraction for
abbreviation purposes in cases where it is obvious that the result of the opera-
tion is such that it remains in the variable’s domain. For binary variables with
domain Dv = {true, false}, we furthermore simplify the notation of variable
assignments and write v rather than v = true and ¬v instead of v = false.

The finite horizon that is considered in our model of optimal behavior
leads to the unfortunate property that optimal behavior not only depends on
the state but also on the depth of a state s (the number of action applications
that were necessary to reach s from s0) or, alternatively, on the steps-to-go (the
horizonH reduced by the depth). For instance, in the MDP from Example 1, it
is preferable to execute action a3 in s1 if the horizon is large since the positive
reward cycle between s0 and s1 or s2 promises a better long-term reward than
applying a1 in s3. However, if there are only one or two steps-to-go, it is better
to go with the reward of +6 that is gained when a1 is applied in s1 than with
the immediate reward of +4 that is gained when action a3 is applied instead.

Not only policies must take the steps-to-go into account, but many defi-
nitions and algorithms that can be found in this thesis have to consider it in
addition to a state, often withdrawing attention from what is truly important.
We take an alternative approach where we require a steps-to-go variable h as
part of the set of variables that is used to describe the set of states of an MDP
compactly. Its domain is Dh = {0, . . . ,H}, it equals H in the initial state and
its value decreases by one in each action application. We call a state s where
s[h] = 0 a terminal state. Furthermore, it is sometimes more convenient to
describe a state s in terms of its depth, which we denote with s[d] and which
we define in terms of the steps-to-go variable as s[d] := H−s[h].

Example 4. One advantage of factored MDPs is that they allow the specifica-
tion of complex environments in a compact manner. Let us therefore use a more

16 CHAPTER 2. MARKOV DECISION PROCESSES

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X Y

Figure 2.3: Initial state of the EARTHOBSERVATION example instance.

elaborate example domain for this part of the thesis. In the EARTHOBSERVA-
TION domain, which has been part of our experimental evaluation of different
planning formalisms (Hertle et al., 2014), there is a satellite that surrounds
Earth on a circular, non-stationary orbit that is not inclined and with a constant
orbit height. Its ground track is equal to the equator, which is traversed with
a constant ground speed from west to east (the ground speed covers both the
satellite’s relative movement and the rotation of earth). The agent’s task is to
take pictures of predefined observation patches within a region of interest with
an on-board camera.

The camera is nadir-pointed in its base orientation, i.e., such that it focuses
on the projection of the satellite position on the ground track. To take images
of patches that are north or south of the equator, the satellite can move its cam-
era orthogonally to the direction of flight. Moving the camera north or south
therefore means to slew it such that the instrument’s line of sight moves north
or south. The camera cannot be slewed in or against the satellite’s direction of
movement, and its focal point – the intersection of its line of sight and the surface
of earth – will hence automatically move eastwards with constant speed due to
the (uncontrollable, external) movement of the satellite from west to east. Since
the satellite surrounds earth, the landscape is wrapped around a cylindrical pro-
jection of the earth surface, i. e., we end up at the western end of the map after
leaving it in the east.

An example state with a region of interest that covers the largest part of
the island of Borneo is depicted in Figure 2.3. (We chose Borneo for its fairly
identifiable coastal line and the fact that it is separated by the equator in two
more or less equally sized halves.) To simplify the task, we represent the area of
interest as a grid. The satellite’s ground track is depicted as a green, dashed line,
and the grid cell that is marked with the blue crosslines is the initial focal point
of the on-board camera. The small blue circles mark grid cells that contain an
observation patch. We refer to each grid cell by the letter in the upper left corner

2.2. COMPACT DESCRIPTION 17

of Figure 2.3 – e. g., the grid cell that is the initial focal point of the camera, is
referred to as grid cell K, and the set of all grid cells is Z = {A, . . . , Y}.

The set of variables V that is used to model a state in an instance of the
EARTHOBSERVATION domain contains

• a single variable cam-pos that describes the current focal point of the cam-
era with domain Dcam-pos = Z;

• for each grid cell z ∈ Z a binary variable target-z that describes if the
respective grid cell is a remaining observation patch (e. g., s[target-C] is
true iff grid cell C is a remaining observation patch in state s); and

• with a planning horizon of H = 20, the steps-to-go variable h ∈ V is such
that Dh = {0, . . . , 20}.

The state s0 that is depicted in Figure 2.3 is described with the variables in V as

s0 ={cam-pos = K, target-C, target-J, target-L, target-U} ∪{
¬target-z | z ∈ Z \ {C, J, L, U}

}
∪ {h = 20}.

2.2.2 Actions

Variables not only allow the compact description of states, but also of tran-
sitions between states that are given indirectly by actions that consist of a
precondition and an effect. The formalism that is presented in the following is
inspired from PPDDL (Younes and Littman, 2004), the probabilistic dialect of
PDDL (McDermott et al., 1998) that has been the input language of the IPPC
prior to 2011. However, we do not provide a mapping of PPDDL keywords
to the structure of effects, but we believe that the mapping is trivial. Also, it
should be mentioned that PPDDL allows the description of a large number of
actions with a schematic description that contains variables that are instan-
tiated with provided constants (objects) to obtain actions like those that are
considered here. Since all algorithms in this thesis are defined in terms of in-
stantiated actions, we provide definitions for instantiated formulas only. Apart
from the partial observability, we follow the definition of Rintanen (2003) for
effects of actions:

Definition 6 (Action). An action over a set of variables V is a tuple a =
〈pre, eff〉, where pre is a Boolean formula over V and eff is an effect that is
recursively defined by the following rules:

• > is the empty effect;

• v�x for v ∈ V, x ∈ Dv is an atomic effect;

• e ∧ e′ is a conjunctive effect if e and e′ are effects;

18 CHAPTER 2. MARKOV DECISION PROCESSES

• c � e is a conditional effect if c is a Boolean formula over V and e is an
effect; and

• (p1 :e1) | · · · | (pn :en) is a probabilistic effect if e1, . . . , en are effects,
0 < p1, . . . , pn ≤ 1, and

∑n
i=1 pi = 1.

We use the same abbreviations for effects on binary variables that were
introduced for variable assignments earlier and write v and ¬v instead of
v�true and v�false. The precondition of an action a = 〈pre, eff〉 is used
to encode the applicability of a. We say that an action a is applicable in a
state s if s |= pre. The only constraint we impose on preconditions is that the
resulting MDP must be dead-end free, i. e., it may not be the case that a state
can be reached where no action is applicable. As the detection of dead-ends
is hard and not the focus of this thesis, we assume in the remainder of this
work that a problem specification is well-defined in the sense that it leads to
a dead-end free MDP. We furthermore assume that the Boolean formula that
encodes a precondition is such that the computational cost of its evaluation
in a state is negligible. It is then possible to compute the set of applicable
actions A(s) in a state s efficiently (as long as |A| is manageable, which we
assume). An effect that does not contain a probabilistic effect is deterministic.
When an action assigns the value that variable v′ ∈ V assumes in the current
state to another variable v ∈ V (with Dv′ ⊆ Dv), we use the abbreviation
v�s[v′] :=

∧
x∈Dv′

(v′ = x) � v�x.

Example 5. Our description of the EARTHOBSERVATION domain already men-
tions all kinds of actions the satellite can take: it must be able to take images
of observation patches, and it has the ability to slew the camera to the north or
south. The uncertainty in the EARTHOBSERVATION domain stems from a fail-
ure probability for all of these maneuvers. In the case that a failure happens,
the successor state does not reflect the desired outcome of the taken action and
only the exogenous event that moves the satellite’s focal point to the east takes
place. In the formal description, we use the following three functions to describe
connections between grid cells:

• east : Z → Z is such that for all z ∈ Z, east(z) is the cell that is the
neighbor cell to the east of z (e. g., east(H) = I)

• south : Z → Z ∪ {⊥} is such that south(z) = ⊥ for z ∈ {U, . . . , Y}, and
the cell to the south-east of z otherwise (e. g., south(M) = S)

• north : Z → Z ∪ {⊥} is such that north(z) = ⊥ for z ∈ {A, . . . , E}, and
the cell to the north-east of z otherwise (e. g., north(J) = A)

We distinguish between four types of actions:

2.2. COMPACT DESCRIPTION 19

• For each z ∈ Z, there is an action noop-z that lets the satellite be idle
for one step (this has no effect apart from the automatic movement of the
focal point from west to east). There is no restriction on the applicability
of an action noop-z apart from the fact that the current focal point of the
camera must be z.

• For each z ∈ Z, there are actions slew-north-z and slew-south-z that
slew the camera to the north or south if the execution is successful, and they
have the same effect as the corresponding noop-z otherwise. The actions
are applicable if the current focal point of the camera is z and if there is a
grid cell in the corresponding direction of the current focal point.

• For each z ∈ Z, there is an action take-image-z that takes a picture if
execution is successful, and it is idle in the failure case.

The preconditions of these actions are, for all z ∈ Z, formalized as follows:

pre(noop-z) := cam-pos = z

pre(slew-north-z) := cam-pos = z ∧ ¬(north(z) = ⊥)

pre(slew-north-z) := cam-pos = z ∧ ¬(south(z) = ⊥)

pre(take-image-z) := cam-pos = z ∧ target-z

As each action requires that the focal point of the camera is a certain grid cell,
all preconditions are such that for all states there is at most one action of each
type that is applicable (namely the one that is indexed with the focal point of the
camera). This allows us to omit the index in the following whenever the camera’s
current focal point is clear from the context. The corresponding effects for all
z ∈ Z are modeled as:

eff(noop-z) := cam-pos�east(z)

eff(slew-north-z) := (0.9:cam-pos�north(z)) | (0.1:cam-pos�east(z))

eff(slew-south-z) := (0.9:cam-pos�south(z)) | (0.1:cam-pos�east(z))

eff(take-image-z) := (0.8:(cam-pos�east(z) ∧ ¬target-z)) |
(0.2:cam-pos�east(z))

An additional effect of all actions that is not listed here is the decrease of the steps-
to-go variable by one. All effects eff(a) that are given above are hence assumed
to be eff(a) ∧ h�(s[h]−1).

Rintanen (2003) also defines several normal forms for actions, two of
which are used in Chapter 3 and hence briefly repeated here. We say that an
effect e is in unary conditionality normal form if e′ is atomic for all c� e′ in e,
and it is in unary non-determinism normal form if e is of the form (p1 :e1) | · · · |
(pn :en) with deterministic e1, . . . , en. For every effect e there is an equivalent

20 CHAPTER 2. MARKOV DECISION PROCESSES

one in unary conditionality normal form. It can be constructed by replacing
the left-hand-side of the equivalences on effects

c� (e1 ∧ · · · ∧ en) ≡ (c� e1) ∧ · · · ∧ (c� en) (2.1)

c� (c′ � e) ≡ (c ∧ c′) � e (2.2)

c� ((p1 :e1) | · · · | (pn :en)) ≡ (p1 :c� e1) | · · · | (pn :c� en) (2.3)

with the right-hand-side until e is in unary conditionality normal form, a trans-
formation that is possible in polynomial time and space according to Rintanen
(2003). An effect e can be translated into unary non-determinism normal
form by first translating it to unary conditionality normal form, and then by
replacing the left-hand-side of the equivalences on effect formulas

e ∧ ((p1 :e1) | · · · | (pn :en)) ≡ (p1 :e ∧ e1) | · · · | (pn :e ∧ en) (2.4)(
p1 :
[(
p′1 :e′1

)
| · · · |

(
p′j :e′j

)])
| (p2 :e2) | · · · | (pn :en) ≡(

p1 ·p′1 :e′1
)
| · · · |

(
p1 ·p′j :e′j

)
| (p2 :e2) | . . . | (pi :ei) (2.5)(

(p1 :e1) | · · · | (pn :en)
)
∧
((
p′1 :e′1

)
| · · · |

(
p′k :e′k

))
≡(

p1 ·p′1 :e1 ∧ e′1
)
| · · · |

(
pn ·p′k :en ∧ e′k

)
(2.6)

with the right-hand-side until e is in unary non-determinism normal form.
However, the compilation of an effect formula to unary non-determinism nor-
mal form can increase the size of the resulting effect formula exponentially
due to the application of Equivalence 2.6.

Before we continue with a compact representation of the reward function,
we show how the transition function T of an MDPM can be derived from a
set of actions. Let the effect set [e]s of an effect e in state s over V be a set
of pairs 〈p, w〉, where p is a probability 0 < p ≤ 1 and w is a partial variable
assignment. The effect set [e]s is obtained recursively as

[>]s = 〈1.0,∅〉, (2.7)

[v�x]s = 〈1.0, {v�x}〉, (2.8)

[e ∧ e]s =
⋃

〈p,w〉∈[e]s

⋃
〈p′,w′〉∈[e′]s

{〈p·p′, w ∪ w′〉}, (2.9)

[c� e]s =

{
[e]s if s |= c

〈1.0,∅〉 otherwise, and
(2.10)

[(p1 :e1) | · · · | (pn :en)]s =

n⋃
i=1

{〈pi ·p, w〉 | 〈p, w〉 ∈ [ei]s}. (2.11)

We assume that the union operators of Equations 2.9 and 2.11 are such that
pairs with the same partial variable assignment are combined by adding their
probability, i. e., each pair of pairs 〈p, w〉 and 〈p′, w〉 is merged to a single pair

2.2. COMPACT DESCRIPTION 21

〈p+p′, w〉. Moreover, we assume that the union that merges partial variable
assignments w and w′ in 2.9 is unambiguous for all actions i. e., there is no
variable v ∈ V where v�x ∈ w and v�x′ ∈ w′ for x, x′ ∈ Dv. Let s′ =
app([e]s, s) be the state that is such that s′(v) = [e]s(v) for all v ∈ vars([e]s)
and s′(v) = s(v) for all v /∈ vars([e]s). Then, a set of actions A over a set of
variables V induces a transition function T that is such that for all s, s′ ∈ S
and a = 〈pre, eff〉 ∈ A

T (s, a, s′) =

{∑
{〈p,w〉∈[eff]s|app([eff]s,s)=s′} p if s |= pre

0 otherwise.
(2.12)

Please observe that this implies that it is not possible to compute succ(s, a)
of a state-action pair (s, a) efficiently as the effect set [e]s can be exponential
in the number of state variables (i. e., each state can be an outcome of an
action execution). On a side note (and since the IPPCs 2011 and 2014 play
an important role in our empirical evaluation), it is an interesting fact that it
is possible to compute succ(s, a) efficiently with the subset of RDDL that was
used at IPPC 2011 and 2014. The subset is less expressive than the formal-
ism that is considered here due to the independence assumption of parallel
probabilistic effects in RDDL. An input language that is able to encode the
same set of transition functions can be derived if interm-fluents are allowed
in addition. However, all of our algorithms are designed such that an efficient
computation of succ(s, a) is not required.

2.2.3 Reward Function

We also use variables for the compact description of an MDP’s reward func-
tion by specification of a set of factored reward functions. In a finite-horizon,
factored MDP, there is a factored reward function Ra(s) for each of its ac-
tions a ∈ A that is an arithmetic function over the set of variables v ∈ V and
R. Arithmetic operations that include variables are made possible by the use
of Iverson brackets (Graham et al., 1994), where I

[
s[v] = x

]
evaluates to 1

if v ∈ V assumes the value x ∈ Dv in s and to 0 otherwise. However, fac-
tored reward functions are not important for this thesis, and we hence do not
specify their structure any further. It is only important that a factored reward
function can be evaluated efficiently for all state-action pairs. In most plan-
ning formalisms, including STRIPS, SAS+, or the formalism that is given by
PPDDL, each action induces a constant cost that is independent from the state
in which the action is applied. Rewards are typically considered in the context
of MDPs. They are more general than costs and rely on both the current state
and the applied action1.

1In parts of the literature, rewards additionally depend on the applied actions’ outcome.
We opt for the simpler version that is considered in the benchmarks of IPPC 2011 and 2014.

22 CHAPTER 2. MARKOV DECISION PROCESSES

Example 6. Let the factored reward functions be such that each cell that is
marked as an observation target in a state s yields a reward of −1. The applica-
tion of a noop action does not incur any further cost and is hence

Rnoop-z(s) = 0−
∑
y∈Z

I
[
s[target-y]

]
.

The application of all other actions a ∈ A\{noop-z | z ∈ Z} incurs an additional
cost of 1:

Ra(s) = (−1)−
∑
z∈Z

I
[
s[target-z]

]
.

2.2.4 Finite-horizon, Factored MDP

Now that all components have been defined, we can compound them to our
definition of finite-horizon, factored MDPs.

Definition 7 (Finite-horizon, Factored MDP). A finite-horizon, factored
MDP is a tuple 〈V,A, {Ra | a ∈ A}, s0〉, where V is a set of variables that
includes the steps-to-go variable h; A is a set of actions; {Ra | a ∈ A} is a set
that contains a factored reward function Ra for each a ∈ A; and s0 is the initial
state over V. The finite-horizon is given implicitly by s0[h] and denoted with H.

A finite-horizon, factored MDP 〈V,A, {Ra | a ∈ A}, s0〉 induces an MDP
〈S,A, T ,R, s0〉 with a set of states S that contains all states that can be de-
scribed by the variables in V, with R(s, a) = Ra(s) for all state-action pairs
(s, a), and with a transition function as described by Equation 2.12. The line
between a finite-horizon, factored MDP and the MDP it induces is often blurry
in this work, and drawing a clearer line does not provide additional value. If
the factored reward functions do not play a role, we specify a finite-horizon,
factored MDP by a tuple 〈V,A,R, s0〉 where the reward function R is given
directly. Moreover, when we specify an MDP indirectly via a finite-horizon,
factored MDP M, we do not distinguish between the induced MDP and the
finite-horizon, factored MDP, but regard both as the same mathematical ob-
jectM with assigned set of states, reward function and transition function on
the one hand and set of variables, factored reward functions and actions that
consist of preconditions and effects on the other.

Example 7. Figure 2.4 shows a part of the MDP that is induced by the descrip-
tion of the EARTHOBSERVATION via a finite-horizon, factored MDP that has been
given over the course of this section. All states that are reachable from the initial
state within two action applications are depicted. States show the focal point of
the camera and the remaining observation patches in the grid (which are identi-
cal in all states but the one state that is second from the left in the bottom row).
The steps-to-go variable is equal for all states within the dotted lines that parti-
tion the search space. The state at the top of Figure 2.4 is the same initial state
s0 that is also depicted in detail in Figure 2.3.

2.2. COMPACT DESCRIPTION 23

s(h) 7→ 20

s(h) 7→ 19

s(h) 7→ 18

−5 −4 −5

.9 .1 .1 .9

−5 −4 −5

.9 .1 .1

.9

−5 −5−4−5

.9

.1

.8

.2

.9
.1

−5 −4 −5

.9

.1 .1

.9

Figure 2.4: The part of the EARTHOBSERVATION example instance that can be
reached with at most two action applications.

There are three applicable actions inA(s0): from left to right, the icons repre-
sent the actions slew-south (an arrow that points to the south-east), noop (an
hourglass), and slew-north (an arrow that points to the north-east). The fourth
type of action of our example domain, take-image, is depicted with a camera
symbol as in the center of Figure 2.4.

A property of finite-horizon, factored MDPs that is essential for this thesis
is the fact that the induced MDP is acyclic. This is due to fact that the steps-
to-go variable decreases by one in each step regardless of the applied action,
which makes it impossible to encounter the same state twice in a run (recall
that the steps-to-go variable is treated like any other variable here, and states
are only equal if the values of all variables, including the steps-to-go variable,
are equal). It is also important that the factored description allows the com-
pact definition of a large number of states and action outcomes, while actions
have to be specified explicitly and are hence expected to be comparably few.

24 CHAPTER 2. MARKOV DECISION PROCESSES

There is related work where the action space is large (e.g., Raghavan et al.,
2012) or even infinite (e.g., Antos et al., 2008), but all algorithms in this the-
sis are built on the assumption that the number of actions is such that their
definition by enumeration is possible.

Before we discuss solutions of finite-horizon, factored MDPs in the next
section, we require a notion of the equivalence of two finite-horizon, factored
MDPs. We define it with the help of trajectories, which are similar to runs (in
fact, each run induces a trajectory), but we do not use them in the context of
the interaction between an agent and the environment. They differ from a run
in the fact that they can start in any state, that they have to be of finite length,
and that the outcome of an action is not necessarily sampled according to the
underlying probability distribution. (It is not important how the outcome s′

of a state-action pair (s, a) is generated in a trajectory, it only matters that
s′ ∈ succ(s, a).)

Definition 8 (Trajectory). LetM = 〈V,A,R, s0〉 be a finite-horizon, factored
MDP. A finite sequence of states and actions θ = (s1, a1, . . . , sn−1, an−1, sn) is a
trajectory of length (n−1) in M iff at ∈ A(st) and st+1 ∈ succ(st, at) for all
t ∈ {1, . . . , n−1}. A trajectory θ = (s, a, s′) of length 1 is called a transition. The
accumulated reward of θ isR(θ) :=

∑n−1
t=1R(st, at), and the combined prob-

ability of θ is P[θ] :=
∏n−1
t=1 PT [st+1 | st, at]. We denote the set of all trajectories

inM with Θ, and define the set of all minimal trajectories between states of a set
S ′ ⊆ S as ΘS′ := {(s, a, s1, . . . , sn, an, s

′) ∈ Θ | s, s′ ∈ S ′ and s1, . . . , sn 6∈ S ′}.

It is usually sufficient to define the equivalence of two finite-horizon, fac-
tored MDPs by requiring a bijective mapping between state-action pairs such
that all corresponding action applications yield the same reward and occur
with the same probability. Since we have to be able to compare MDPs where
the application of a single action in one MDP is matched to the application of
a sequence of actions in the other (i.e. there is no one-to-one correspondence
between transitions), we require a more general definition of equivalence.

Definition 9 (Equivalence). Let the set of decision states of a finite-horizon,
factored MDPM be Sdec = {s0} ∪ {s ∈ S | |A(s)| > 1} ∪ {s ∈ S | s[h] = 0},
and let Adec =

⋃
s∈Sdec

A(s) be the set of decision actions. Two finite-horizon,
factored MDPsM andM′ are equivalent (M≡M′) iff there are bijective map-
pings σ : Sdec → S ′dec, α : Adec → A′dec, and τ : ΘSdec → Θ′S′dec

such that there
is a trajectory θ′ = (σ(s1), α(a), s′′1, a

′′
1, . . . , s

′′
n, a
′′
n, σ(s2)) ∈ Θ′S′dec

for each trajec-
tory θ = (s1, a, s

′
1, a
′
1, . . . , s

′
n, a
′
n, s2) ∈ ΘSdec with τ(θ) = θ′, R(θ) = R′(θ′), and

P[θ] = P[θ′].

Our equivalence relation is, as usual, symmetric and transitive. Moreover,
it is such that two complete policies π and π′ inM andM′, respectively, yield
the same expected reward ifM ≡M′ and α(π(s)) = π(σ(s)) for all decision
states s ∈ Sdec.

2.2. COMPACT DESCRIPTION 25

s0

s1

s3

s2

s4s5

a2

a1

a2

a2

a3

a2

a3

a1
a4

−1

+
1

+1

+6

1
3

2
3

+5

1
3

2
3

12

1
2

+2

±0

−
1

−2

1
3

2
3

Figure 2.5: An MDP that is equivalent to the MDP in Figure 2.2.

Example 8. Let M be the example MDP from Figure 2.2 and M′ be the MDP
that is depicted in Figure 2.5. Even though they are no finite-horizon, factored
MDPs, they can be used to illustrate the key concepts of our equivalence relation.
First observe that, if we ignore the two trajectories θ1 = (s1, a3, s0) and θ2 =
(s1, a1, s3) inM and θ′1 = (s1, a3, s5, a4, s0) and θ′2 = (s1, a2, s4, a1, s3) for the
moment, both “remaining” MDPs are equivalent since they are identical apart
from swapping the names of the actions a1 and a2. Now consider the functions
σ(s) = s for s ∈ S, α(a1) = a2, α(a2) = a1, and α(a3) = a3, and τ such that

• τ ((s, a, s′)) = (σ(s), α(a), σ(s′)) for all (s, a, s′) ∈ ΘS \ {θ1, θ2},

• τ(θ1) = θ′1, θ′1 = (σ(s1), α(a3), s5, a4, σ(s0)), and

• τ(θ2) = θ′2, θ′2 = (σ(s1), α(a2), s4, a1, σ(s3)).

With σ, α, and τ , we can see thatM≡M′ according to our equivalence defini-
tion since

• σ, α and τ are bijections as s4 and s5 are no decision states and a4 not in
the set of decision actions;

• R ((s, a, s′)) = R (σ(s), α(a), σ(s′)) for all (s, a, s′) ∈ ΘS \ {θ1, θ2};

• R(θ1) = 4 = 5− 1 = R′(θ′1) and P[θ1] = 1 = 1·1 = P[θ′1]; and

• R(θ2) = 6 = 6 + 0 = R′(θ′2) and P[θ2] = 2
3 = 2

3 ·1 = P[θ′2].

26 CHAPTER 2. MARKOV DECISION PROCESSES

2.3 Solutions

We have selected a model of optimal behavior where the quality of a given
policy π is described in terms of the expected accumulated reward, but we
have not yet discussed how to compute E [φπ], the reward that can be expected
in a run φπ under π in an MDPM. The answer is surprisingly simple: in any
state s ∈ S, we can expect the immediate reward R(s, π(s)) (since we are
about to apply the action π(s) in s) plus the sum of the rewards that can be
expected in the possible successor states s′ ∈ succ(s, π(s)), each weighted with
the probability PT [s′ | s, π(s)] that we end up in that specific successor state
s′. A formalization of this intuition applied to all states s and all state-action
pairs (s, a) leads to the sets of state-value functions Vπ(s) and action-value (or
Q-value) functions Qπ(s) of an MDP. The expected reward of φπ in an MDP
M is the unique solution of the state-value function in the initial state s0,
i. e.E [φπ] := V π(s0).

Definition 10 (Value functions). LetM be an MDP, s ∈ S be a state and π be
a policy that is executable in s. The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s is terminal
Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, a) under π is defined as

Qπ(s, a) := R(s, a) +
∑

s′∈succ(s,a)

(
PT
[
s′ | s, a

]
· Vπ(s′)

)
for all state-action pairs (s, a).

Iterative policy evaluation (Sutton and Barto, 1998) is a baseline algorithm
to compute the unique solution of V π(s0). It treats the state-value functions of
Definition 10 as assignment operators, and applies them iteratively to update
the state-values of all states until all values have converged. However, itera-
tive policy evaluation needs to iterate only due to the fact that it can also be
used to optimizes the discounted reward over an infinite horizon in a cyclic
MDP. The computation of the expected reward is eased significantly in our
formalism by the fact that we consider acyclic MDPs only. This allows us to
order all state-value functions such that we start with the computation of Vπ
for terminal states and continue with solving those state-value functions that
only depend on state-value functions that have already been solved earlier
in the process. This is equivalent to ordering the state-value functions such
that states with fewer steps-to-go are served earlier. We can thereby compute
all state-value functions in a single iteration with the acyclic policy evaluation
algorithm that is depicted in Algorithm 1.

However, we are usually not interested in the expected reward of a given
policy π, but we are interested in deriving an optimal policy π? (as usual, the

2.3. SOLUTIONS 27

Algorithm 1: Acyclic policy evaluation

1 acyclic_policy_evaluation(M, π):
2 for s ∈ S with s[h] = 0 do Vπ(s)�0;
3 for t = 1, . . . , s0[h] do
4 for s ∈ S with s[h] = t do
5 Vπ(s)�R(s, π(s)) +

∑
s′∈succ(s,π(s))

(
PT [s′ | s, a] · Vπ(s′)

)

star hints at optimality in this thesis). Let arg maxx∈X φ(x) be the subset of
X that contains all elements that are maximal among all elements of X with
respect to φ, i. e.,

arg max
x∈X

φ(x) := {x ∈ X | ∀x′ ∈ X : φ(x) ≥ φ(x′)}.

We say that a policy π? is optimal if it is among those policies with the highest
expected reward, i. e., if

π? ∈ arg max
π∈Π

Vπ(s0).

If we talk about the optimal policy π?, we mean any optimal policy. It could,
for instance, be drawn uniformly at random (in the following, we denote the
process of drawing an element x from a set X with x ∼ U(X), e.g. in this case
π? ∼ U (arg maxπ∈Π Vπ(s0))). In combination with acyclic policy evaluation,
this already provides us with a first naïve algorithm for the computation of
the optimal policy: we can use acyclic policy evaluation to compute Vπ(s0)
for all π ∈ Π, and select any of the policies π with the highest state-value of
s0 under π. However, the number of policies in an MDP is in O

(
|A||S|

)
and

hence exponential in a number that is itself exponential in the number of state
variables. This is clearly intractable for all but the smallest MDPs. An alterna-
tive computation of the optimal policy is described by the Bellman optimality
equation (Bellman, 1957; Bertsekas, 1995), an equation that is related to the
state- and action value functions.

Definition 11 (Optimal Policy). Let the Bellman optimality equation for a
state s be the set of equations that describes V?(s), where

V?(s) :=

{
0 if s is terminal
maxa∈A(s)Q?(s, a) otherwise,

Q?(s, a) := R(s, a) +
∑

s′∈succ(s,a)

(
PT
[
s′ | s, a

]
· V?(s′)

)
.

A policy π? is an optimal policy if π?(s) ∈ arg maxa∈A(s)Q?(s, a) for all s ∈ S.

28 CHAPTER 2. MARKOV DECISION PROCESSES

Algorithm 2: Acyclic value computation

1 acyclic_value_computation(〈V,A,R, s0〉):
2 for s ∈ S with s[h] = 0 do V?(s)← 0;
3 for t = 1, . . . , s0[h] do
4 for s ∈ S with s[h] = t do
5 for a ∈ A(s) do
6 Q?(s, a)← R(s, a) +

∑
s′∈succ(s,a)

(
PT [s′ | s, a]·V?(s)

)
7 V?(s)← maxa∈A(s)Q?(s, a)

The state-value V?(s) of a state s under a policy that is a solution to the
Bellman optimality equation π? is also called the state-value of s, and Q?(s, a)
the action-value (or Q-value) of a in s. Bellman (1957) showed that an op-
timal, deterministic and stationary policy exists for each MDP, and there is
hence a π? ∈ arg maxπ∈Π Vπ(s0) that satisfies the Bellman optimality equa-
tion and V?(s0) = maxπ∈Π Vπ(s0). Note that it is not the case that all policies
in arg maxπ∈Π Vπ(s0) satisfy the Bellman optimality equation, as the behav-
ior in states that cannot be reached from s0 is irrelevant for the value of
Vπ(s0). However, all policies in arg maxπ∈Π Vπ(s0) satisfy the Bellman opti-
mality equation for all reachable states and state-action pairs, which suffices
for our needs. We hence use the state-value of a state V?(s) and Q?(s, a) as
abbreviations of Vπ?(s) and Qπ?(s, a), respectively.

Similar to the relation between the value functions of a policy and the
computation of expected rewards, we can use the Bellman optimality equa-
tion to compute the optimal policy in MDPs by regarding the equations of
Definition 11 as assignment operators (an operation that we call a Full Bell-
man backup later in this thesis) and iterate until all state- and action-values
have converged. This algorithm is called value iteration (Bellman, 1957), and
it is one of the most fundamental algorithms for MDPs. However, it is again
possible to exploit the acyclic structure of the search space of finite horizon
MDPs, thereby deriving the non-iterative acyclic value computation algorithm
(e.g., Dai et al., 2011) that is depicted in Algorithm 2. Unlike value iteration,
it computes the optimal policy in a single sweep over the state space. There-
fore, not only value iteration but also other fundamental base algorithms like
policy iteration (Howard, 1960; Puterman, 1994) and linear programming
(e.g., Derman, 1970; Kallenberg, 1994) that are typically used to solve MDPs
are not relevant for our needs since their advantages are irrelevant in acyclic
search spaces.

The fact that acyclic value computation has advantages in our formalism
over the approaches that also solve cyclic MDPs does not make it an algo-
rithm that is tractable in practice, though: it computes a number of state-
and action-values that is equal to the number of states and state-action pairs,
respectively, for a total of (|S|·(|A|+1)) operations. Unfortunately, it is not

2.3. SOLUTIONS 29

possible to design efficient algorithms that compute an executable policy of
high quality as the number of reachable states is exponential in the horizon.
We are therefore interested in algorithms that compute decision online and
interleave planning for a single current state with execution of the computed
decision. A special case of online algorithms are anytime algorithms, which
can additionally be interrupted at any time and return a decision quickly. Our
anytime algorithms achieve this by basing their decisions on state- and action-
value estimates that are improved over time in an iterative process. We denote
the state-value estimate of a state s after the k-th iteration with V̂ k(s), and
the action-value estimate of a state-action pair (s, a) with Q̂k(s, a). Please ob-
serve that the superscript of estimates denotes the number of iterations that
have been performed by an anytime optimal algorithm, while a superscript
of state- and action-values (under a policy) always refers to the superscript
of the corresponding MDP. In both cases, indices refer to the policy π that is
used to compute the values or estimates. Finally, an important subclass of
anytime algorithms are anytime optimal algorithms, which additionally have
in common that their decisions are optimal if the algorithm is provided with
unrestricted resources (run time and memory).

CHAPTER 3
Determinization

In the previous chapter, we have presented acyclic value computation, a sim-
ple procedure that allows the computation of optimal policies in an MDP.
However, solving MDPs with algorithms that require the entire MDP explic-
itly in memory is intractable in the majority of practical applications. Most
successful approaches therefore simplify the given MDP, solve the simplifica-
tion, and then either combine execution of the derived policy with replanning
or derive a heuristic from the computed policy that guides a search proce-
dure in the original search space such that considering only a fraction of all
states is sufficient for good behavior. A popular simplification strategy re-
moves all uncertainty from an MDP. The general idea of so-called determiniza-
tions is discussed in Section 3.1, and three determinizations – the all-outcomes
determinization, the most-likely determinization and the weather – are pre-
sented. Section 3.2 introduces a method that allows the computation of an
all-outcomes determinization for finite-horizon, factored MDPs, where, unlike
in previously described all-outcomes determinizations, the number of deter-
ministic actions is not exponentially but polynomially bounded in the number
of parallel probabilistic effects.

3.1 Preliminaries

The usage of determinizations has always been a popular strategy in MDP
planning, but the success of FF-Replan (Yoon et al., 2007) in the stochastic
setting of IPPC 2004 was still surprising due to the simplicity of the approach
that neglects probabilistic information entirely: FF-Replan converts the MDP
to a classical planning problem, computes a plan (i. e., a trajectory from the
current state to a goal) with the heuristic search planner FF (Hoffmann and
Nebel, 2001) and executes actions until an outcome occurs that is not ac-
counted for in the plan. In this case, the FF planner is used to find a new plan
from the current state and start execution anew until a goal is reached.

31

32 CHAPTER 3. DETERMINIZATION

The results of the two subsequent IPPCs were similar: the top performer in
2006 was FPG (Buffet and Aberdeen, 2007), a planning systems that uses FF-
Replan to learn reasonable behavior, and RFF-(BG/PG) (Teichteil-Königsbuch
et al., 2010) won IPPC 2008 with an approach where an initial policy is com-
puted with FF and step-by-step expanded with results of additional plans that
are found with FF. All of these planners have in common that a compilation
of the MDP to a classical planning problem is required, which is called a de-
terminization in this thesis.

Definition 12 (Determinization). A tuple 〈Md, δ〉 with deterministic MDPMd

and surjective mapping δ : Ad → A is a determinization of an MDPM iff

• Sd = S

• sd
0 = s0

• for each state-action pair (s, a) inM there is a state-action pair (sd, ad) in
Md with δ(ad) = a; and

• Rd(s, ad) = R(s, δ(ad)) for all state-action pairs (s, ad).

We callMd the determinization1 ofM.

In other words, the determinization of an MDPM is a deterministic MDP
Md with the same set of states and at least one action ad for each a ∈ A.
However, there can be any number of actions in Ad that map to the same
action in A. In the following, we call an action ad ∈ Ad a determinization of
a ∈ A iff δ(ad) = a.

The example we use in this chapter is the CANADIAN TRAVELER’S PROB-
LEM (CTP), a path planning problem with imperfect information about the
roadmap (Papadimitriou and Yannakakis, 1991). It has drawn considerable
attention from researchers in AI search (Nikolova and Karger, 2008; Bnaya
et al., 2009; Dey et al., 2014) and is closely related to navigation tasks in
uncertain terrain that are considered in the robotics literature (e.g., Koenig
and Likhachev, 2002; Ferguson et al., 2004). One practical application is out-
door navigation of autonomous robots with the help of a rough map based
on a satellite image or a map constructed from previous scans of the environ-
ment (Likhachev and Stentz, 2006). The policies that are discussed in this
chapter have been applied to the CTP by Eyerich et al. (2010), but they are
presented in a generalized, domain-independent form that is applicable to all
finite-horizon, factored MDPs.

Namesake of the CANADIAN TRAVELER’S PROBLEM is a scenario with the
objective to drive a truck from an initial location to a goal location on a road
network that is given as an undirected weighted graph. This is complicated

1Should the difference matter, we make sure that it is clear if we refer to the whole tuple
or only to the deterministic MDP with the term “determinization”.

3.1. PRELIMINARIES 33

v0 v1 v3

v2

v4

v5

v∗

v6

−10

−20

−100

.1 : −60

.1 : −60

.1
: −6

0

.5 : 0

.5 : 0

.5 : 0

.02 : −40

.05 : −70 .99
: 0

Figure 3.1: CTP example instance with truck location v0 and goal location v?.

by the fact that roads may be blocked due to snow. The traversability of a
road can only be observed from the two incident locations. Usually, the CTP is
modeled as a partially observable MDP (POMDP). However, the weather re-
mains static during the agent’s traversal of the graph, so once a road has
been observed, its status is known with certainty. CTP instances are therefore
deterministic POMDPs where the only source of uncertainty is incomplete in-
formation about the initial state (Littman, 1996; Bonet, 2009). Deterministic
POMDPs are less complex than general POMDPs in that they always have a
finite set of reachable belief states, and they can be modeled as a stochas-
tic MDP (of exponential size), which is the representation we consider here.
Therefore, an instance of the CTP is a 6-tuple 〈V,E, p, c, v0, v?〉, where

• 〈V,E〉 is a connected, undirected graph (the roadmap) with vertex set
V (the locations) and edge set E (the roads),

• p : E → [0, 1) defines the blocking probabilities of roads,

• c : E → N0 defines the travel costs of roads, and

• v0, v? ∈ V are the initial and goal locations.

Example 9. Figure 3.1 shows a small example instance of the CTP with eight
locations v0, . . . , v6, v?. The initial location is v0, and the goal is to find a path
with low expected cost to the goal location at v? by using only on roads that
are traversable. In all figures that depict a roadmap of the CTP, we depict un-
known roads as dashed and labeled with their blocking probability and travel
cost. Traversable roads are solid and labeled with their travel cost.

34 CHAPTER 3. DETERMINIZATION

The simplest mapping of a CTP instance to an MDP yields a Stochastic
Shortest Path Problem where goal states are all states where the agent is lo-
cated in the goal location. However, it can also be modeled as a finite-horizon,
factored MDP if macro actions are considered that bring the agent from its
current location to a previously unvisited location on the border of the known
subgraph. The macro actions are based on the observation that all reasonable
policies (Eyerich et al., 2010) are such that the agent never moves arbitrary
within the known subgraph. Instead, it selects a location in each decision
steps that

1. is reachable on roads that are known to be traversable, and

2. has adjacent roads with unknown status,

and moves to such a location on the shortest path within the known subgraph.
With an encoding where macro actions are considered, it is then guaranteed
that the goal is reached within at most |V |−1 macro action applications which
allows to derive an appropriate finite horizon. However, the only parts of
the finite-horizon, factored MDP 〈V,A,R, s0〉 that encodes a CTP instance
〈V,E, p, c, v0, v?〉 that are relevant in this chapter are:

• the set of variables V contains the variable loc with Dloc = V for the
truck’s current location, and the variables statxy for each road (vx, vy) ∈
E with domain Dstatxy = {u, t, b} that describes if the road is traversable
(t), blocked (b), or if the status is unknown (u);

• the set of actions A contains actions movexy that change loc from vx to
vy if the agent’s current location is vx, vy has not been visited before and
if there is a path from vx to vy that involves only roads that are known
to be traversable. The transition probabilities of all state-action pairs
are determined according to the blocking probabilities of all roads with
unknown status that involve vy. (See Figure 3.2 for an example.)

A state in the CTP domain can hence be represented by the agent’s cur-
rent location on the roadmap and a partition of the roads into three disjoint
sets: the roads known to be traversable, the roads known to be blocked, and
the roads that have not been observed yet. In a CTP instance with roadmap
〈V,E〉, there are therefore |V |·3|E| states, which clearly shows that the CTP is
a challenging domain.

Example 10. Instead of showing the techniques that are discussed in this Chap-
ter on the whole example CTP instance of Figure 3.1, we restrict to the action
where the truck moves from v0 to v1. Apart from the (deterministic) effect that
the current location of the truck changes to v1, the status of the three adjacent
roads (v1, v2), (v1, v3), and (v1, v4) is determined. The corresponding part of
the finite-horizon, factored MDP, which is depicted in Figure 3.2, shows that the

3.1. PRELIMINARIES 35

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4
-10

.001

.00
9

.0
09

.0
09

.081
.081

.081

.729

Figure 3.2: The part of the MDP that is induced by the CTP example instance
that is depicted in Figure 3.1 where the truck moves from v0 to v1 (only the
relevant part of the roadmap is depicted in the states).

application of move01 in s0 can lead to eight states that differ only in the status
of the three roads adjacent to v1.

We consider three determinizations in this thesis: the all-outcomes deter-
minization, where each outcome of each applicable action is maintained in
the determinization, and two single-outcome determinizations where only a
single outcome of each applicable action persists in the determinization.

All-outcomes Determinization The all-outcomes determinization is the de-
terminization that is used most often in practice. If combined with a suitable
search algorithm, it allows an optimistic interpretation of the environment’s
uncertainty (see Section 4.1 for details). As the name implies, each (stochas-
tic) outcome in the original MDP is converted to a (deterministic) action in
the determinization.

Definition 13 (All-Outcomes Determinization). The all-outcomes deter-
minization of an MDPM is a determinization 〈Md, δ〉 such that for all s, s′ ∈ S

36 CHAPTER 3. DETERMINIZATION

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v41

2

3

4 5

6

7

8

-10

-1
0

-1
0

-1
0 -10

-10
-10

-10

Figure 3.3: All-outcomes determinization of the move01 action with eight de-
terministic actions (each depicted by a truck symbol with unique index).

and a ∈ A with T (s, a, s′) > 0 there is an ad ∈ Ad with δ(ad) = a and
T d(s, ad, s′) = 1.

The all-outcomes determinization of a given MDP can be created by re-
placing each stochastic outcome of each action in the original MDP with a
deterministic action that connects the same two states in the determinization.
The all-outcomes determinization of our example action is depicted in Figure
3.3 (different indices next to the truck symbol indicate different actions).

Single-outcome Determinization The difference between the all-outcomes
determinization and a single-outcome determinization is, as the name implies,
that only a single outcome is maintained for each state-action pair in the latter.

Definition 14 (Single-outcome Determinization). Let M be an MDP and
〈Md, δ〉 be a determinization ofM. 〈Md, δ〉 is a single-outcome determiniza-
tion ofM iff δ is bijective.

An advantage of single-outcome determinizations is that they are (in prac-
tice) often easier to solve as the branching factor is typically smaller. We
also exploit this fact in the heuristic of the PROST planner that is used for our

3.1. PRELIMINARIES 37

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

-10

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

-10

Figure 3.4: Two single-outcome determinizations of the move01 action. The
left one is the most-likely determinization. Furthermore, it is a weather that is
selected with probability .729, while the right one is a weather that is selected
with probability .009.

empirical evaluation in Chapter 8. It is based on the popular most-likely deter-
minization, a single-outcome determinization where the outcome that occurs
with the highest probability persists. (For the sake of simplicity, we assume
there is only one outcome with highest probability. In practice, we select one
of the outcomes that are tied for highest probability uniformly at random.)

Definition 15 (Most-likely Determinization). The most-likely determiniza-
tion of an MDPM is a single-outcome determinization 〈Md, δ〉 such that

T d(s, ad, s′) = 1⇒ T (s, δ(ad), s′) ≥ T (s, δ(ad), s′′)

for all s, s′, s′′ ∈ S, a ∈ A, and ad ∈ Ad.

The outcome that manifests with highest probability in our example state
transition is the one where all roads are traversable. It is therefore the left
partial MDP of Figure 3.4 that depicts the most-likely determinization of our
example action.

Another single-outcome determinization that is considered in this thesis is
what we call a weatherMw of an MDPM. Even though the term “weather”
stems from our work on the CTP domain originally, we also use it for general
MDPs as it conveys the intuition nicely. A weather is not defined in terms of a
specific deterministic MDP – in fact, any single-outcome determinization is a
weather – but it is the procedure that creates a single-outcome determinization
that defines a weather, namely the procedure that selects one outcome for
each state-action pair according to the outcome’s probability. As this thesis

38 CHAPTER 3. DETERMINIZATION

considers only acyclic MDPs, each weather reflects the circumstances an agent
faces during a run with the probability that the weather is selected (this is not
true in cyclic MDPs where the same state-action pair can be executed more
than once and with different outcomes). We denote the set of all weathers in
an MDPM withW.

3.2 Syntactical All-outcomes Determinizations

There are several applications where it is not sufficient to have a compilation
schema that allows the construction of a determinization by altering the graph
that is an MDP directly. Successful probabilistic planning systems of the IPPC
like the aforementioned FF-Replan (Yoon et al., 2007), FF-Hindsight (Yoon
et al., 2008, 2010), or RFF-(BG/PG) (Teichteil-Königsbuch et al., 2010) use
the classical FF planner of Hoffmann and Nebel (2001) as an external tool,
which must be provided with a determinization of the MDP on the syntactical
level. In the case of the FF planner, an input in PDDL, the deterministic version
of PPDDL, is required. In this section, we discuss two different methods – one
that is typically used in practice, and one that has been described in an earlier
article of us (Keller and Eyerich, 2011) – to compute a syntactical all-outcomes
determinization of an MDP.

Determinization via Unary Non-determinism Normal Form

To our knowledge, there is only one all-outcomes determinization that is used
in practice, which is based on a compilation to unary non-determinism normal
form (Rintanen, 2003) to create a determinization. Recall from the previous
chapter that an MDP is in unary non-determinism normal form if the effect of
each action a = 〈pre, eff〉 ∈ A has the form eff = (p1 :e1) | · · · | (pn :en) with
deterministic effects ei. In this form, the all-outcomes determinization can
simply be derived by creating deterministic actions ad

1, . . . , a
d
n for each action

a ∈ A such that ad
i = 〈pre, ei〉 for all i ∈ {1, . . . , n}.

Even though the compilation via unary non-determinism normal form is,
to our knowledge, the only practically relevant method to create a (syntacti-
cal) all-outcomes determinization, it can be prohibitively inefficient: if there
are independent probabilistic effects in the effect of an action before its trans-
lation to unary non-determinism normal form, the translation leads to a prob-
abilistic effect that contains a number of elements that is exponential in the
number of independent probabilistic effects (Rintanen, 2003). Consequen-
tially, the procedure generates exponentially many actions in the all-outcomes
determinization as well.

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 39

Example 11. The effect of the move01 action of Figure 3.2 can be modeled by[
stat12 7→ u�

(
(0.9 : stat12�t) | (0.1 : stat12�b)

)]
∧[

stat13 7→ u�
(
(0.9 : stat13�t) | (0.1 : stat13�b)

)]
∧[

stat14 7→ u�
(
(0.9 : stat14�t) | (0.1 : stat14�b)

)]
∧

loc�v1 ∧ h�h−1.

The three independent probabilistic effects of move01 lead to eight – i. e., exponen-
tially many – conjunctive elements when translated to unary non-determinism
normal form:[(

0.729 :(stat12 7→ u� stat12�t) ∧ (stat13 7→ u� stat13�t)∧
(stat14 7→ u� stat14�t)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.081 :(stat12 7→ u� stat12�t) ∧ (stat13 7→ u� stat13�t)∧
(stat14 7→ u� stat14�b)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.081 :(stat12 7→ u� stat12�t) ∧ (stat13 7→ u� stat13�b)∧
(stat14 7→ u� stat14�t)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.081 :(stat12 7→ u� stat12�b) ∧ (stat13 7→ u� stat13�t)∧
(stat14 7→ u� stat14�t)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.009 :(stat12 7→ u� stat12�t) ∧ (stat13 7→ u� stat13�b)∧
(stat14 7→ u� stat14�b)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.009 :(stat12 7→ u� stat12�b) ∧ (stat13 7→ u� stat13�t)∧
(stat14 7→ u� stat14�b)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.009 :(stat12 7→ u� stat12�b) ∧ (stat13 7→ u� stat13�b)∧
(stat14 7→ u� stat14�t)

)
∧ loc�v1 ∧ h�s[h]−1 |(

0.001 :(stat12 7→ u� stat12�b) ∧ (stat13 7→ u� stat13�b)∧
(stat14 7→ u� stat14�b)

)
∧ loc�v1 ∧ h�s[h]−1

]
.

Note that an action in unary non-determinism normal form has one prob-
abilistic statement for each possible outcome, which allows a straightforward
procedure for the creation of the all-outcomes determinization.

Determinization via Forked Normal Form

The main idea of the all-outcomes determinization via forked normal form
(which is introduced later in this section) is to split a single action into several
subactions (formally, subactions do not differ from actions, but we use the term
to indicate an action that has been created by splitting another action). The
task compilation is such that their sequential application is enforced, an idea
that is inspired from the work on (different) compilations of Nebel (2000).
It takes four subsequent steps, the first three of which transform the finite-
horizon, factored MDP in equivalence-preserving ways, and only the last step

40 CHAPTER 3. DETERMINIZATION

MDP

splittable

normal

form

unary

condition.

normal

form

forked

normal

form

all-

outcomes

determ.

Figure 3.5: Process flowchart that shows the creation of an all-outcomes de-
terminization via forked normal form. The first three steps are equivalence-
preserving transformations of the finite-horizon, factored MDP, and the final
step creates the all-outcomes determinization.

creates the determinization. The process is depicted in Figure 3.5. In the first
step, all actions are converted to splittable normal form, which makes sure
that subactions can be applied sequentially such that the sequence leads to
the same states with the same transition probabilities even in the presence of
conditional effects. The result in splittable normal form is then converted to
unary conditionality normal form, a normal form that has been introduced
in the previous chapter and is hence not discussed here. The forked normal
form incorporates the idea of splitting all actions such that independent prob-
abilistic effects of all actions are applied sequentially one at a time. Finally, an
all-outcomes determinization that is based on forked normal form can be de-
rived such that actions are split into several deterministic ones that are applied
sequentially to simulate one outcome.

Splittable Normal Form We have seen that a determinization via unary
non-determinism normal form leads to exponentially many actions in the pres-
ence of conjunctions of probabilistic effects. The main idea of the compilation
via forked normal form is to split the conjunction such that only a single action
per conjunctive element is created, and to enforce the sequential application
of the subactions. The advantage is that, due to the independence of the par-
allel probabilistic effects, each can be compiled to a single subaction, and the
exponential blowup can hence be avoided. We start by showing the general
idea with an example. Splitting of action effects in this way leads to inter-
mediate states in the corresponding MDP. In intermediate states, only a part
of the original action’s effects have been applied (by application of some of
the created subactions). To control the application of a sequence of actions
a1, . . . , an in the correct order, we introduce a variable vaux and extend all
preconditions of actions in a first step such that vaux 7→ 0 is required in addi-
tion to all other preconditions. In intermediate states, we make sure that only
a single action is applicable by requiring different, unique values for vaux to
enforce sequential application in an equivalence-preserving way.

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 41

Example 12. Consider a finite-horizon, factored MDPM′ where the subactions

move1
01 = 〈pre(move01) ∧ vaux 7→ 0, loc�v1 ∧ h�s[h]−1 ∧ vaux�1〉

move2
01 = 〈vaux 7→ 1, vaux�2 ∧ stat12 7→ u�

(
(0.9 : stat12�t) | (0.1 : stat12�b)

)
〉

move3
01 = 〈vaux 7→ 2, vaux�3 ∧ stat13 7→ u�

(
(0.9 : stat13�t) | (0.1 : stat13�b)

)
〉

move4
01 = 〈vaux 7→ 3, vaux�0 ∧ stat14 7→ u�

(
(0.9 : stat14�t) | (0.1 : stat14�b)

)
〉

replace the move01 action in the MDPM from Example 11:

• V ′ = V ∪ {vaux};

• A′ = {a′ | a ∈ A\{move01}}∪{move1
01, . . . , move

4
01}, where a′ = 〈pre(a)∧

vaux 7→ 0, eff(a)〉 for each a ∈ A;

• R′a′(s) = Ra(s) for all a ∈ A \ {move01}, R′move1
01

(s) = Rmove01(s), and
R′movei01

(s) = 0 for i = 2, 3, 4; and

• s′0 = s0 ∪ {vaux 7→ 0}.

The MDPs that are induced byM andM′ are equivalent under the func-
tions σ(s) = s ∪ {vaux 7→ 0}; α(a) = a′ for all a ∈ A \ {move01} and
α(move01) = move1

01, both of which are bijections between the respective sets
of decision states and decision actions; and τ such that

τ(s, move01, s
′) = (σ(s), move1

01, s
′
1, move

2
01, s

′
2, move

3
01, s

′
3, move

4
01, σ(s′))

and τ(s, a, s′) = τ(σ(s), α(a), σ(s′)) otherwise. It is also easy to see that two
MDPs are equivalent if they only differ in the fact that all transitions that
correspond to what is depicted in Figure 3.2 are replaced with transitions
as shown in Figure 3.6 as the root and the leaves of both partial MDPs are
equivalent and as all intermediate states are no decision states.

Figure 3.6 is also well-suited to show the main idea of our determiniza-
tion: in an all-outcomes determinization of M′, the number of created ac-
tions grows by two per additional parallel probabilistic effects and does not
double as it does if M is determinized. In the example, the number of cre-
ated deterministic actions is seven, which is not that different from the eight
that were created by the all-outcomes determinization that is derived from
a compilation to unary non-determinism normal form, but a fourth parallel
probabilistic effect (i. e., a fourth unknown road) would lead to 16 action in
unary non-determinism normal form and to nine with the proposed method.
In general, n roads lead to 2n actions in unary non-determinism normal form,
but only to 2·n+1 with our method.

However, it cannot be guaranteed that splitting an action results in an
equivalent MDP in the presence of conditional effects as it is possible that one
subaction has an effect on a variable that is part of the effect condition of

42 CHAPTER 3. DETERMINIZATION

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

.

v0 v1

v2

v3

v4

v0 v1

v2

v3

v4

1

2

3 3

4 4

-10

.9 .1

.9
.1 .9

.1

.9
.1 .9

.1

Figure 3.6: The CTP example action move01 after splitting it to four subactions
move1

01, . . . , move
4
01.

another subaction that is applied later in the sequence. Consider, for instance,
an action with effect a ∧ (¬a) � b (with two Boolean variables a and b). If the
action is split such that the subaction with effect a is applied first, the second
subaction will never have an effect. However, it is possible to compile all
actions in an MDP such that splitting is possible even with conditional effects.
The idea is to introduce a new variable for each variable that is only used to
memorize the value of all variables while a sequence of subactions is applied.

Definition 16 (Splittable Normal Form). LetM be a finite-horizon, factored
MDP and idx : A → N+ be a function that maps each action to a unique value.
We say that an MDPM� is the splittable normal form ofM if it is such that

• V� = V ∪ {v� | v ∈ V \ {h}} ∪ {vaux};

• A� = {a` | a ∈ A}︸ ︷︷ ︸
=A`

∪{aa | a ∈ A}︸ ︷︷ ︸
=Aa

, where for all a ∈ A

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 43

– pre(a`) = pre(a) ∪ {v 7→ 0 | v ∈ V� \ V}
– eff(a`) = vaux�idx(a) ∧ h�s[h]−1 ∧∧v∈V v

��s[v]

– pre(aa) = {vaux 7→ idx(a)}
– eff(aa) = eff(a)[v/v�] ∧∧v∈V�\V v�0

• R� = R` ∪ Ra, where R`
a`

(s�) = R(s, a) for s� = s ∪ {v 7→ 0 | v ∈
V� \ V}) and R`

a`
(s�) otherwise, and Raa(s�) = 0;

• s�
0 = s0 ∪ {v 7→ 0 | v ∈ V� \ V},

where eff(a)[v/v�] denotes the effect that is equal to eff(a) apart from the effect
on the steps-to-go variable h (which is already considered in the corresponding
eff(a`)), and except that all occurrences of all v ∈ V in conditions of conditional
effects are replaced by their corresponding v�.

The idea of the splittable normal form uses the idea of splitting actions
in several subactions itself by creating a head subaction (which is denoted
with a`) and a body subaction (aa). The head subaction takes care of all
the technical details that are required to split the body subaction (later in
this section) safely even in the presence of conditional effects: it assigns the
value of each v to the corresponding v�; it assigns a unique value to vaux that
ensures that only the corresponding body subaction is applicable; and it yields
the reward of the original action and decreases the steps-to-go variable, so we
can ignore both when we discuss how the body action can be compiled to
forked normal form later in this section.

Theorem 1. Each finite-horizon, factored MDP can be normalized in polynomial
time and space to an equivalent finite-horizon, factored MDP in splittable normal
form.

Proof: It is not hard to see that the size of M� is polynomial in the size of
M since the number of variables and actions doubles at most, and the size of
the description of preconditions and effects increases by no more than O(|V|).
Additionally, the transformation is possible in polynomial time since idx is a
simple counter function and the replacement of all v ∈ V with their respective
v�(v) is possible in constant time. For the proof of equivalence, we consider
the mappings

σ(s) = s ∪ {v 7→ 0 | v ∈ V� ∪ {vaux}}
α(a) = a`

for all s ∈ S and a ∈ A in the following, which are bijections between the
respective sets of decision states and decision actions as states where a v ∈
V� ∪ {vaux} does not map to 0 are no decision states and as all a ∈ Aa are
applicable only in non-decision states.

44 CHAPTER 3. DETERMINIZATION

It remains to show that there is a bijection τ between transitions inM and
trajectories inM� such that accumulated rewards and combined probabilities
match and that all intermediate states in the trajectories are no decision states.
Let us therefore consider the function τ to be such that it maps each transition
θ = (s1, a, s2) in M to a sequence θ� = (σ(s1), α(a), s′, aa, s2) in M�. Each
θ� is a valid trajectory inM�, since

• α(a) = a` is applicable in σ(s1) iff the following two conditions hold:
1., pre(a) ⊆ σ(s1), which holds since pre(a) ⊆ s1 (otherwise, a is not
applicable in s1 and θ no transition in M); and 2., {v 7→ 0 | v ∈ V� \
V} ⊆ σ(s1), which holds due to the definition of σ;

• aa is applicable in s′ as the action’s only precondition vaux 7→ idx(a) is a
deterministic effect of a`; and

• σ(s2) ∈ succ(s′, aa) since s2 ∈ succ(s1, a) and since eff(a)[v/v�] is identi-
cal to eff(a) except for the swapped variables in effect conditions, which
do not alter action application since s′[v] = s′[v�(v)] for all v ∈ V due to
the effect of a`.

The intermediate state s′ is no image of a state s ∈ S with respect to σ because
vaux does not map to 0 in s′ due to the effect of a` and the definition of
idx(a). Since no action apart from aa is applicable in s′ due to the uniqueness
assumption in the definition of idx(a), we can conclude that the proposed
function is a bijection. Finally, R(θ) = R�(θ�) and P[θ] = P[θ�] since

R(θ) = Ra(s1) = R`a`(σ(s1))︸ ︷︷ ︸
=Ra(s1)

+Raaa(s′)︸ ︷︷ ︸
=0

= R�(θ�))

P[θ] = PT [s2 | s1, a] = PT � [s′ | σ(s1), a`]︸ ︷︷ ︸
=1

·PT � [σ(s2) | s′, aa]︸ ︷︷ ︸
=PT [s2|s1,a]

= P[θ�].

We call a finite-horizon, factored MDP that has been created with this
procedure a finite-horizon, factored MDP in splittable normal form because
conjunctive effects of all actions in the MDP can be split safely even in the
presence of conditional effects.

Forked Normal Form So far, we have shown how to compile the finite-
horizon, factored MDP we aim to determinize to splittable normal form, and
we have even sketched a schema how effects can be split. However, our split-
ting schema only works in the absence of nested probabilistic effects, a form
that can in general only be obtained by a compilation that incurs exponential
blowup. The process flowchart of Figure 3.5 shows that our procedure con-
tinues with a conversion of all body subactions to unary conditionality normal

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 45

form (which has been introduced in Section 2.2). In unary conditionality nor-
mal form, each effect e can be written as

e =
∧
i

(ci � ei)︸ ︷︷ ︸
Ed

∧
∧
j

(
(pj1 :ej1) | · · · |

(
pjnj :ejnj

))
︸ ︷︷ ︸

Ep

, (3.1)

with a deterministic part Ed that is a conjunction of conditional effects ci � ei
with atomic effects e′ (and possibly empty conditions ci); and a probabilistic
part Ep that is a conjunction of probabilistic effects where each effect ejk is
an effect of the form of Equation 3.1 itself. In the following, we also write
e = 〈Ed, Ep〉 for an effect e in unary conditionality normal form, where Ed
and Ep are as given by Equation 3.1. Let us now introduce the forked normal
form, a normal form for actions that is used to split effects in a way that allows
the computation of an efficient all-outcomes determinization.

Definition 17 (Forked Normal Form). An effect e is in forked normal form
iff it is of the form (∧

i

ei

)
∧
(
(p1 : e′1) | · · · | (pn : e′n)

)
,

where all ei and e′1, . . . , e
′
n are conditional effects c � e′′ with atomic effect e′′.

An action is in forked normal form iff its effect is in forked normal form, and
a finite-horizon, factored MDP is in forked normal form iff all its actions are in
forked normal form.

While there are effects that cannot be transformed into a single effect in
forked normal form, it is interesting nevertheless as there is a polynomial
time and space algorithm that transforms a finite-horizon, factored MDP M
into an equivalent finite-horizon, factored MDP Mψ where all actions are
in forked normal form and where |Aψ| is polynomial in |A|. The algorithm
is given in Algorithm 3. It creates an FNF-DAG for each action, which is a
directed acyclic graph F = 〈VF , EF , v0〉 with vertices v = 〈Edet, idx〉 with
assigned deterministic effect Edet =

∧
j ej and an unique index idx; with edges

e = 〈v, v′, p〉 from vertex v to v′ that are labeled with a probability p ∈ [0; 1];
and with root node v0 ∈ VF . The FNF-DAG is created by recursively calling
the procedure build_fnf_dag for each effect e = 〈Ed, Ep〉 that is in the form
of Equation 3.1 until e is deterministic. Each created FNF-DAG that reflects a
parallel probabilistic effect is connected with the append_fnf_dags function
to all leaves of the current FNF-DAG, such that each path from the root to a
leaf in the created structure corresponds to one possible set of effects that take
place when the action is applied.

Let us have a look at an example to showcase Algorithm 3. As our running
example for this chapter, the instance of the CANADIAN TRAVELER’S PROBLEM,
does not contain nested effects, we use an abstract example instead.

46 CHAPTER 3. DETERMINIZATION

Algorithm 3: Compilation of actions to forked normal form

1 translate_to_forked_normal_form(Aa):
2 Aψ ← {}
3 for aa ∈ Aa do
4 Aψ

aa
← translate_to_forked_normal_form(aa)

5 Aψ ← Aψ ∪ Aψ
aa

6 return Aψ

7 translate_to_forked_normal_form(aa):
8 Aaa ← {}
9 〈VF , EF , v0〉 ← build_fnf_dag(eff(aa))

10 for v ∈ VF do
11 if v is a leaf then eψ ← Edet(v) ∧ vaux�0;
12 else eψ ← Edet(v) ∧

∣∣
〈v,v′,p〉∈EF

(p :vaux�idx(v′));

13 Aaa ← Aaa ∪ {〈{vaux 7→ idx(v)}, eψ〉}
14 return Aaa
15 build_fnf_dag(〈Ed, Ep〉):
16 v ← 〈Ed, generate_index()〉,F ← 〈{v}, {}, v〉
17 for ep ∈ Ep do
18 Fep ← {}
19 for (p : e′) ∈ ep do
20 Fep ← Fep ∪ {〈build_fnf_dag(e′), p〉}
21 F ← append_fnf_dags(F ,Fep)
22 return F
23 append_fnf_dags(〈VF , EF , v0〉, {〈F1, p1〉, . . . , 〈Fn, pn〉})
24 Let LF be the set of leaves of 〈VF , EF , v0〉
25 for 〈〈V ′, E′, v′0〉, p′〉 ∈ {〈F1, p1〉, . . . , 〈Fn, pn〉} do
26 VF ← VF ∪ V ′
27 EF ← EF ∪ E′
28 for v ∈ LF do
29 EF ← EF ∪ 〈(v, v′0), p′〉
30 return 〈VF , EF , v0〉

Example 13. Consider the action a with eff(a) = e such that

e = (q�2) ∧
(
(0.5 : e1) | (0.5 : e2)

)
∧
(
(0.5 : e3) | (0.5 : e4)

)
,where

e1 = (s�0) ∧
(
(0.3 : t�1) | (0.7 : u�3)

)
∧
(
(0.6 : v�0) | (0.4 : w�4)

)
,

e2 = (x�1),

e3 = (y�2) ∧ (0.4 : z�0 | 0.6 : z�2), and

e4 = (z�1).

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 47

q�2
1

F

s�0
2

F(e1)

t�1
3

u�3
4

v�0
5

w�4
6

.3 .7

.6
.4.6

.4

x�1
7

F(e2)

y�2
8

F(e3)

z�0
9

z�2
10

.4 .6

z�1
11

F(e4)

Figure 3.7: Intermediate FNF-DAGs that are created by Algorithm 3 for the
action of Example 13. Numbers to the left of each node give the values of vaux
in preconditions, and labels give transition probabilities.

Let the k-th generated index be k. Algorithm 3 starts by creating an FNF-DAG
that only contains a single vertex with effect q�2 in line 16, which is depicted as
F on the left of Figure 3.7. In the first iteration of the loop in lines 17–21, the
FNF-DAGs for e1 and e2 are created as illustrated in Figure 3.7 and appended
to F by connecting all leaves of F with the roots of F(e1) and F(e2). In the
second iteration, the FNF-DAGs F(e3) and F(e4) are created and appended to
all leaves of the result of the first step. The final result is depicted in Figure 3.8,
where the small graph shows how the partial FNF-DAGs F ,F(e1), . . . ,F(e4) are
connected to obtain the complete FNF-DAG in the right part of the figure. The
actions aψ1 , . . . , a

ψ
11 in forked normal form that are derived from the FNF-DAG in

Figure 3.8 are:

aψ1 = 〈{vaux 7→ 1}, q�2 ∧ (0.5 : vaux�2 | 0.5 : vaux�7)〉
aψ2 = 〈{vaux 7→ 2}, s�0 ∧ (0.3 : vaux�3 | 0.7 : vaux�4)〉
aψ3 = 〈{vaux 7→ 3}, t�1 ∧ (0.6 : vaux�5 | 0.4 : vaux�6)〉
aψ4 = 〈{vaux 7→ 4}, u�3 ∧ (0.6 : vaux�5 | 0.4 : vaux�6)〉
aψ5 = 〈{vaux 7→ 5}, v�0 ∧ (0.5 : vaux�8 | 0.5 : vaux�11)〉
aψ6 = 〈{vaux 7→ 6}, w�4 ∧ (0.5 : vaux�8 | 0.5 : vaux�11)〉
aψ7 = 〈{vaux 7→ 7}, x�1 ∧ (0.5 : vaux�8 | 0.5 : vaux�11)〉
aψ8 = 〈{vaux 7→ 8}, y�2 ∧ (0.4 : vaux�9 | 0.6 : vaux�10)〉
aψ9 = 〈{vaux 7→ 9}, z�0 ∧ vaux�0〉
aψ10 = 〈{vaux 7→ 10}, z�2 ∧ vaux�0〉
aψ11 = 〈{vaux 7→ 11}, z�1 ∧ vaux�0〉

Now that we have seen an example compilation of an action to forked

48 CHAPTER 3. DETERMINIZATION

e

e1 e2

e3 e4

q�2
1

s�0
2

x�1
7

.5

.5

t�1
3

u�3
4

.3 .7

v�0
5

w�4
6

.6
.4.6

.4

y�28
z�1

11

.5

.5

.5
.5

.5

.5

z�0
9

z�2
10

.4 .6

Figure 3.8: The final FNF-DAG that is created by Algorithm 3 for the action of
Example 13 by connecting the components of Figure 3.7 as indicated by the
small graph.

normal form with the help of an FNF-DAG, we show that the procedure is
applicable in polynomial time and space to all actions.

Theorem 2. Each finite-horizon, factored MDP can be normalized in polynomial
time and space to an equivalent finite-horizon, factored MDP in forked normal
form.

Proof: We have already covered the first two steps of the normalization,
where the initial finite-horizon, factored MDP M is translated to a finite-
horizon, factored MDP M� = 〈V�,A` ∪ Aa,R�, s�

0 〉 in splittable normal
form, and where all actions aa ∈ Aa are in unary conditionality normal form.
We have also discussed that both procedures take polynomial time and space.
It remains to show how to translateM� to an equivalent finite-horizon, fac-
tored MDPMψ where Vψ = V�; Aψ = A` ∪ {Aψ

aa
| a ∈ Aa}; and sψ0 = s�

0 .
The only non-trivial part of the compilation is the generation of a set of ac-
tions Aψ

aa
for each aa ∈ Aa, which is given by Algorithm 3. There is no need

to translate A` since all a` ∈ A` are already in forked normal form according
to Definition 16.

It is easy to see that most parts of Algorithm 3 can be computed in polyno-
mial time and space. Exceptions are the collection of the leaves of an FNF-DAG

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 49

(in line 24) and the recursive call that builds the FNF-DAG (in line 20). Here,
the important argument is that the size of the FNF-DAG of an action is bound
by the number of effects of the form of Equation 3.1 in the action’s effect,
which is linear in the input size of the MDP. As each recursion step creates
exactly one vertex and as the collection of leaves depends on the size of the
FNF-DAG, both can be computed in polynomial time.

Equivalence of Mψ and M can be shown by using the same mappings σ
and α as in the proof of Theorem 1. The trajectories that replace the transi-
tions ofM are all trajectories that are induced by the created actions in forked
normal form (prepended by the corresponding a`). Due to the uniqueness of
vaux, all are such that there is only one applicable action in each intermediate
state, and that there is no s ∈ S where σ(s) = s′ because vaux 7→ 0 /∈ s′ for
all intermediate states s′. Accumulated rewards of transitions and trajectories
match for the same reason they match in Theorem 1 (rewards are taken care
of by a`). Finally, effects and combined probabilities of mapped transitions
and trajectories match because each pair of probabilistic effect and probabil-
ity in an action’s effect is appended to the FNF-DAG such that each trajectory
has to sample the outcome on that variable according to its probability.

Determinization The computation of an all-outcomes determinization Md

of a given finite-horizon, factored MDP M is simple once M has been by
converted to a finite-horizon, factored MDPMψ in forked normal form. Since
all actions a` ∈ A� are already deterministic, only the actions aψ ∈ Aψ must
be determinized. They have in common that pre(aψ) = {vaux 7→ k} for some
unique k > 0 and

eff(aψ) =
∧
i

ei︸︷︷︸
Ed

∧
(

(p1 :vaux�x1) | · · · | (pn :vaux�xn)
)︸ ︷︷ ︸

Eaux

with x1, . . . , xn ≥ 0 (a value of 0 is assigned to vaux only iff aψ is deterministic,
though). As in the all-outcomes determinization that is derived by compiling
the MDP to unary non-determinism normal form, we replace the probabilistic
transition to a successor state with a representation that is such that the path
can be selected. All we have to do is to replace the probabilistic effect Eaux
over vaux with a deterministic one, and we have to assign new values to the
variable vaux that determines which actions can be applied at what point in
the sequence.

Example 14. The all-outcomes determinization of the action from Example 13

50 CHAPTER 3. DETERMINIZATION

Locations/Actions Roads Det. Actions �Effects

20/98 4.9± 3.7
1122 �11.4 3.7

6008 �61.3 21.9

50/278 5.56± 4.8
3550 �12.8 3.7

29744 �107.0 25.3

100/568 5.68± 3.7
7348 �12.9 3.7

55160 �97.0 23.7

Table 3.1: Statistics on all-outcomes determinizations from a compilation to
unary non-determinism normal form (white) and forked normal form (gray)
on three instances of the CTP with different number of locations, actions and
average number of adjacent roads per location. We state the number of gener-
ated deterministic actions (including the blowup factor relative to the number
of original actions, which is indicated by �) and the average number of effects
of the generated actions.

is given as a set of actions that contains exactly the following actions::

ad
1 = 〈vaux 7→ 1, q�2 ∧ vaux�2〉 ad

2 = 〈vaux 7→ 2, s�0 ∧ vaux�3〉
ad

3 = 〈vaux 7→ 3, t�1 ∧ vaux�4〉 ad
4 = 〈vaux 7→ 3, u�3 ∧ vaux�4〉

ad
5 = 〈vaux 7→ 4, v�0 ∧ vaux�5〉 ad

6 = 〈vaux 7→ 4, w�4 ∧ vaux�5〉
ad

7 = 〈vaux 7→ 2, x�1 ∧ vaux�5〉 ad
8 = 〈vaux 7→ 5, y�2 ∧ vaux�6〉

ad
9 = 〈vaux 7→ 6, z�0 ∧ vaux�0〉 ad

10 = 〈vaux 7→ 6, z�2 ∧ vaux�0〉
ad

11 = 〈vaux 7→ 5, z�1 ∧ vaux�0〉

Experimental Evaluation One of the main criticism of the International
Probabilistic Planning Competitions before 2011 was their lack of probabilis-
tically interesting problems (Little and Thiébaux, 2007) and hence also their
lack of parallel probabilistic effects. Even though this changed with IPPC
2011, there are no standard benchmarks that can be used to evaluate our
method empirically as the input language of IPPC 2011 and 2014, RDDL (San-
ner, 2010), differs significantly from PPDDL such that a determinization via
forked normal form cannot be computed. We therefore use the CTP instances
that were created for our work on policies for the CTP domain (Eyerich et al.,
2010), where independent probabilistic effects play an important role.

Table 3.1 compares the two all-outcomes determinizations that were pre-
sented in this section. For three (hand-selected but typical) instances of the

3.2. SYNTACTICAL ALL-OUTCOMES DETERMINIZATIONS 51

CTP with an increasing number of locations and ground actions, we denote the
number of generated deterministic actions in the all-outcomes determiniza-
tion, the blowup factor relative to the number of probabilistic actions (indi-
cated by � in the table), and the average number of conditional or atomic
effects in each of the generated actions.

It can be seen that the all-outcomes determinization that is based on forked
normal form generates significantly less actions than the determinization via
unary non-determinism normal form. The number of actions in the deter-
minization that is derived by compilation to forked normal form is approx-
imately 12 times the number of actions in the probabilistic MDP, while it is
between roughly 60 and 110 times that number for the compilation via unary
non-determinism normal form. The large difference for the latter is due to its
exponential dependency on the number of independent probabilistic effects:
the more of those, the larger the blowup factor, which also explains why the
blowup factor in the problem with 50 locations (standard deviation of 4.8) is
larger than in the problem with 100 locations (standard deviation of 3.7). In
contrast to that, an all-outcomes determinization from an MDP in forked nor-
mal form depends only linearly on the average number of independent proba-
bilistic effects and incurs a similar blowup factor over problems of all sizes. As
a side effect, the deterministic actions that are created by the determinization
with forked normal form are also much smaller than those that are created
from an MDP in unary non-determinism normal form – the former contain an
average number of 3.7 atomic effects, independently from the problem size,
while the latter are a conjunctive effect with up to 25.3 elements.

We finish our discussion of determinization techniques with this encour-
aging result and turn our attention to MDP algorithms that entirely base their
decisions on determinzations that can be computed as efficiently as the ones
that have been presented over the course of this chapter.

CHAPTER 4
Suboptimal Policies

Now that we have the preliminaries and basic concepts of planning under
uncertainty behind us, we are ready to start our discussion of different al-
gorithms for finite-horizon, factored MDPs. In this chapter, we present three
methods that are, despite being suboptimal, among the state-of-the-art in a
variety of applications. The first one is the optimistic policy, which is pre-
sented in Section 4.1. It computes an all-outcomes determinization in each
step, and executes the action that corresponds to the optimal decision in the
determinization. Hindsight optimization, which is introduced in Section 4.2,
is a popular algorithm that takes at least some uncertainty into account: it
repeatedly generates a weather of the MDP, and computes action value es-
timates by averaging over action values in the determinization. In Section
4.3, we present optimistic rollout, an algorithm that overcomes the assump-
tion of clairvoyance that causes hindsight optimization to fail under certain
circumstances by simulating trials where it follows the optimistic policy. The
theoretical evaluation in Section 4.4 shows that neither of the presented meth-
ods achieves optimal behavior even with unlimited resources. However, the
empirical data on the CANADIAN TRAVELER’S PROBLEM that is presented in
Section 4.5 nonetheless emphasizes that there is a (positive) correlation be-
tween the performance of each algorithm and the amount of uncertainty it
takes into account.

4.1 Optimism

The first algorithm for planning and acting under uncertainty that is consid-
ered in this thesis – apart from the practically intractable acyclic value compu-
tation that was presented in Section 2.3 – is the optimistic policy (OMT). Recall
that all algorithms that are considered in this thesis are online algorithms that
do not compute a complete policy but alternatingly plan a decision for the cur-
rent state and execute the corresponding action. The optimistic policy does so

53

54 CHAPTER 4. SUBOPTIMAL POLICIES

by compiling the input MDP M to an all-outcomes determinization 〈Md, δ〉.
The simplified task Md is then solved, often by invoking an external, classi-
cal planning system like FF (Hoffmann and Nebel, 2001) or Fast Downward
(Helmert, 2006). The action-value of an action a ∈ A(s0) under the opti-
mistic policy QOMT(s0, a) corresponds to the maximum over all action-values
Qd
?(s0, a

d) of all deterministic actions ad ∈ Ad that are a determinization of a:

QOMT(s0, a) = max
ad∈{ad∈Ad|δ(ad)=a}

Qd
?(s0, a

d).

Optimism is a popular approach for many MDP applications, and is es-
pecially popular in the area of robotic motion planning in uncertain envi-
ronments, where many papers focus on efficient implementations of the opti-
mistic policy (e.g., Stentz, 1994; Koenig and Likhachev, 2002). In fact, a large
percentage of the work on path planning under uncertainty considers the op-
timistic policy to the exclusion of everything else, so it is a natural baseline for
all other algorithms that are presented over the course of this thesis. One of
the reasons for the popularity of optimism in path planning problems under
uncertainty is that the optimistic policy can be computed with a simpler and
much more efficient method than by computing and solving an all-outcomes
determinization of the MDP that is induced by the problem instance: it suffices
to alter the roadmap graph according to what is called the free space assump-
tion in the robotics literature: as long as we have not observed that a road is
blocked, we assume that it is traversable. We call the (deterministic) roadmap
that is created by replacing all roads with unknown status with traversable
roads the optimistic roadmap. The action-value estimate QOMT(s, a) of an ac-
tion a ∈ A in state s ∈ S can then be computed as the distance from the
agent’s location in s to the goal state in the optimistic roadmap.

Finding shortest paths in the optimistic roadmap is a standard shortest
path problem without uncertainty, and QOMT can hence be computed effi-
ciently. A sophisticated implementation might use algorithms like D? LITE

(Koenig and Likhachev, 2002) to speed up the distance computations by ex-
ploiting that, over the course of a run, an agent solves a sequence of similar
path planning problems, allowing reuse of information. Since the focus of the
evaluation of our algorithms in Section 4.5 is on the quality of the different
policies, which is not affected by how the optimistic policy is computed, our
implementation simply uses Dijkstra’s algorithm.

Example 15. We have introduced an example CTP instance in the previous chap-
ter in Figure 3.1. The optimistic roadmap of that instance, which is depicted in
Figure 4.1, differs from the original roadmap only in the fact that all roads with
unknown status (which are depicted as dashed edges) are replaced by traversable
roads (which are depicted as solid edges). The action-value estimates of the
three applicable actions that move the agent to v1, v5, or v? that are computed
by the optimistic policy correspond to the cost of the shortest path in the op-
timistic road map. They are QOMT(s0, move05) = −60 (on the path via v6),

4.1. OPTIMISM 55

v0 v1 v3

v2

v4

v5

v∗

v6

−10

−20

−100

−60

−60

−60

0

0

0

−40

−70
0

Figure 4.1: The optimistic roadmap of the CTP example instance that was
introduced in Figure 3.1 in Chapter 3.

QOMT(s0, move01) = −70 (on any of the three paths over v2, v3, or v4), and
QOMT(s0, move0?) = −100. The first step that is taken by the optimistic policy
in our example instance is hence move05. While this first step is conform with
the optimal decision, it will try to follow the path via v6 even though the road
between v6 and v? is blocked with high probability.

The term “optimistic policy” derives from a property of optimal policies in
an all-outcomes determinization: since there is a deterministic action for each
outcome of a probabilistic action, an algorithm that solvesMd has full control
over the outcomes of actions and can hence always choose the outcome that
takes place. According to Definition 11, an optimal solver computes a policy
that is such that V d

? (s0) is maximal. It will hence always select deterministic
actions where only the effects take place that reflect the best outcome of the
probabilistic actions inM – or, in other words, it is optimistic that all random
events will turn out in its favor. It should come as no surprise that the opti-
mistic policy can be led astray easily in all but the simplest applications, and
Example 15 shows that the optimistic assumption can indeed be inherently
poor.

Despite the liability of the optimistic policy to adhere to a plan that has
an unrealistically low probability of success, it is a popular algorithm in many
applications. Little and Thiébaux (2007) argue that determinization-based re-
planning algorithms like the optimistic policy are popular in applications that
have uncertain outcomes but which are not probabilistically interesting. They
argue that a problem falls in this category if, e. g., non-deterministic actions
can be repeated until they succeed or because there are no alternative action

56 CHAPTER 4. SUBOPTIMAL POLICIES

Algorithm 4: Optimistic policy

1 optimistic_policy(M):
2 〈Md, δ〉 = compute_all_outcomes_determinization(M)

3 return deterministic_policy(M, 〈Md, δ〉, π?)
4 deterministic_policy(M, 〈Md, δ〉, π):
5 for a ∈ A(s0) do
6 QDetPol(s0, a)← maxad∈{ad∈Ad|δ(ad)=a}Q

d
π(s0, a

d)

7 aOMT ∼ U
(

arg maxa∈A(s0)QDetPol(s0, a)
)

8 return aOMT

sequences that lead to a goal state. It is not hard to see that the optimistic pol-
icy is a reasonable algorithm for such a task, since there is usually no better
policy than one that is built on the assumption that all action outcomes will
be as desired. However, we will see from our empirical results that both the
benchmarks of the last two installments of the IPPC and the CTP are domains
where reasoning over uncertainty pays off.

We have seen in Example 15 that computing QOMT in the CTP reduces to
the comparably simple problem of finding a shortest path in the roadmap.
However, this can not be generalized to arbitrary MDPs, where it is usually
not only intractable to solve the MDP itself, but also impossible to compute
an optimal solution to the MDPs’ all-outcomes determinization in practice.
There are two possibilities to adjust the problem at hand that make it more
likely that the resulting optimization problem is solvable in practice. The first
is to drop the requirement that the determinization is solved optimally. This
is, for instance, the strategy of the FF-Replan version of 2008 (Yoon et al.,
2007), which uses the satisficing (and hence not necessarily optimal) FF plan-
ner to determine approximate action-values in the all-outcomes determiniza-
tion. Other than that, FF-Replan is identical to our description of the optimistic
policy, i. e., action-value estimates for all actions are derived from the corre-
sponding action-values in determinization. The second option is the usage
of a determinization that can be solved faster (in practice, not in terms of
complexity) than an all-outcomes determinization. The FF-Replan version of
2006 won the IPPC with a combination of both strategies, i. e., it used the FF
planner to compute approximate action-values in the determinization, which
was a most-likely determinization rather than the all-outcomes determiniza-
tion that was used two years later (the branching factor, which is given by the
number of applicable actions, is usually significantly smaller in the most-likely
determinization than in the all-outcomes determinization, and it can hence be
solved faster in practice).

While the FF-Replan version of 2008 still computes a policy that can be
regarded as an optimistic policy (just a suboptimal version of it), this is no

4.2. HINDSIGHT OPTIMIZATION 57

Algorithm 5: Hindsight optimization

1 hindsight_optimization(M, n):
2 for a ∈ A(s0) do Q̂0

HOP(s0, a)← 0;
3 for k = 1, . . . , n do
4 〈Mw, δ〉 = sample_weather(M)
5 for a ∈ A(s0) do

6 Q̂kHOP(s0, a)← Q̂k−1
HOP(s0, a) +

Qw
? (sw

0 ,δ(a))−Q̂k−1
HOP(s0,a)

k

7 aHOP ∼ U
(

arg maxa∈A(s0) Q̂
n
HOP(s0, a)

)
8 return aHOP

longer the case for the FF-Replan version of 2006 where outcomes are se-
lected according to their probability and not according to outcome prefer-
ences. The approaches are related nevertheless and can be described in terms
of the common algorithmic framework that is given as the deterministic policy
family in Algorithm 4. Different members of the family are distinguished by
two parameters: first, a determinization 〈Md, δ〉 of the input MDP M; and
second, the solver π that is used to compute action-value estimates for all
applicable actions in Md. Choosing an all-outcomes determinization and an
optimal solver for both parameters leads to the optimistic policy. FF-Replan
2008 is derived as the determinization-based replanning algorithm that uses
an all-outcomes determinization and the FF-Planner, and FF-Replan 2006 by
choosing the most-likely determinization and the FF-planner as respective pa-
rameters. Even though we are not aware of other members in the family of
determinization-based replanning algorithms that are used in practice, many
other combinations are possible. We restrict our analysis in the following to
the most popular member of the family, the optimistic policy, though.

4.2 Hindsight Optimization

The optimistic policy is indeed exceedingly optimistic: if we look at it from a
different angle, all of its action-value estimates are such that they correspond
to the maximal possible reward in the best possible weather. An alternative ap-
proach that is less optimistic but still allows the reduction of the action-value
estimation to solving (a series of) deterministic MDPs is hindsight optimization
(HOP). The hindsight optimization approach samples and solves a series of n
weathers of the MDP, and computes its action-value estimates Q̂nHOP as the
average of the action-values in the sampled weathers. The number of weath-
ers that is used for the computation of the action-value estimates of hindsight
optimization is a parameter of the algorithm. More trials require more time,
but tend to produce more stable action-value estimates. The algorithm (with
an iterative computation of the average) is given as Algorithm 5.

58 CHAPTER 4. SUBOPTIMAL POLICIES

v0 v1 v3

v2

v4

v5

v∗

v6

−10

−20

−100

−60

−60

0

0

−40

Figure 4.2: Roadmap of an example weather of the CTP example instance that
was introduced in Chapter 3.

An alternative and fairly descriptive name for hindsight optimization is
averaging over clairvoyance (Russell and Norvig, 1995). For each weather we
consider, we assume that the agent is “clairvoyant”, i. e., knows ahead of time
the result of all random events. Since we do not know the actual weather,
we average over several weathers (that are obtained through stochastic sam-
pling, see Chapter 3 for details). Hindsight optimization has attracted con-
siderable interest in the stochastic planning community, where it was used
for network scheduling problems (Chong et al., 2000), for task and motion
planning of robots (e.g., Godoy et al., 2014; Kiesel and Ruml, 2014), or as
the basis of the highly efficient, domain-independent planning system FF-
Hindsight (Yoon et al., 2008, 2010). To our knowledge, policies based on
hindsight optimization for the CTP have not been considered prior to our
work (Eyerich et al., 2010). However, Bnaya et al. (2008) independently
suggested essentially the same idea for the sensing decisions in an algorithm
for the CTP with remote sensing. (Their movement decisions are based on
the optimistic policy, though.) Hindsight optimization has furthermore been
successfully used for dealing with hidden information in card games, includ-
ing the single-player game Klondike Solitaire (Bjarnason et al., 2009) and the
two-party games Bridge (Ginsberg, 1999) and Skat (Buro et al., 2009). Like
the determinization-based replanning framework of the previous section, the
algorithms that are used in these applications actually span a whole family of
related algorithms that share the computation of action-value estimates and
differ only in the solver that is used to compute a solution of the sampled
weather. Replacing the optimal deterministic solver that computes π? with
a solver that is provided by a parameter extends Algorithm 5 from hindsight

4.3. OPTIMISTIC ROLLOUT 59

optimization to the respective family of algorithms. It would, for instance,
include the popular FF-Hindsight planner (Yoon et al., 2008, 2010).

Example 16. As in the computation of the optimistic policy for the CTP, we
can use domain-specific knowledge and simplify the computation of a policy in a
weather of the CTP by computing a shortest path in a roadmap instead of solving
a (determinized) MDP: it corresponds to the cost of the shortest path between
the location of the current state and the goal location. Please note that it is
possible that a weather is such that there is no path from the current location to
the goal location. In our work on the CTP (Eyerich et al., 2010), we excluded
this case by ensuring with the good weather assumption that there is always
a traversable path to the goal location. In this thesis, where we consider finite-
horizon, factored MDPs instead of Stochastic Shortest Path Problems, a give-up
action can be used instead that is applicable only if the current location and the
goal location are not connected and which incurs a high, constant cost. Since
both assumptions lead to well-defined state- and action-values, and since our
running example is such that the road v0 – v? is always traversable, we ignore
this subtlety in the remainder of our discussion.

An example weather Mw of the CTP example instance is depicted in Figure
4.2. The action-values in the weather are Qw

? (sw
0 , δ(move05)) = −110 due to the

path v0 – v5 – v0 – v1 – v4 – v?, Qw
? (sw

0 , δ(move01)) = −70 on the direct path over
v4, and Qw

? (sw
0 , δ(move0?)) = −100. Hindsight optimization repeatedly samples

weathers, computes the shortest paths in the corresponding roadmap graph and
maintains an average value Q̂kHOP for all applicable actions. After n trials have
been performed in this way, the action with the highest action-value estimate
Q̂nHOP is executed.

Despite the success of hindsight optimization in a large number of applica-
tions, the approach has well-known theoretical weaknesses: it often converges
to a suboptimal policy as the number of trials approaches infinity. Frank and
Basin (2001) give an example of this for the game of Bridge, and Russell
and Norvig (1995) describe a very simple MDP where hindsight optimization
fails. Instead of repeating the example of Russell and Norvig, we discuss the
algorithms of this chapter in the context of the CTP domain in the theoretical
evaluation in Section 4.4, and give an example of the suboptimality of the
hindsight optimization policy for the CTP.

4.3 Optimistic Rollout

The assumption of clairvoyance is the Achilles heel of the hindsight optimiza-
tion approach. Our next algorithm, optimistic rollout (ORO), addresses this
issue by performing a sequence of iterations called trials1. A trial differs from

1The name “optimistic rollout” comes from our initial work on the topic (Eyerich et al.,
2010) where trials were called rollouts.

60 CHAPTER 4. SUBOPTIMAL POLICIES

Algorithm 6: Optimistic rollout

1 optimistic_rollout(M, n):
2 for a ∈ A(s0) do Q̂0

ORO(s0, a)← 0;
3 for k = 1, . . . , n do
4 〈Mw, δ〉 = sample_weather(M)
5 for a ∈ A(s0) do
6 r ← perform_trial(Mw, δ(a))

7 Q̂kORO(s0, a)← Q̂k−1
ORO(s0, a) +

r−Q̂k−1
ORO(s0,a)

k

8 aORO ∼ U
(

arg maxa∈A(s0) Q̂
n
ORO(s0, a)

)
9 return aORO

10 perform_trial(Mw, a0):
11 r ← 0
12 s = succw(sw

0 , a0)
13 while s is not terminal do
14 r ← r +Rw(s, πOMT(s))
15 s = succw(s, πOMT(s))

16 return r

a run only in the fact that the former is simulated while the latter is executed.
Optimistic rollout is similar to hindsight optimization in that it computes the
action-value estimates Q̂nORO by performing a sequence of n trials (where n is
a parameter of the algorithm), each in a sampled weather, and by averaging
over the different action-value estimates that were achieved in the trials. The
difference between the two algorithms is hidden in the computation of the
action-value estimates: rather than using the clairvoyant goal distance in a
weatherMw, optimistic rollout simulates the execution of the optimistic policy
onMw and uses the resulting accumulated reward of the trial to update the
action-value estimate Q̂nORO. Optimistic rollout achieves this behavior by pre-
tending not to know the sampled weather in its policy computation, i. e., by
following the shortest path in the optimistic roadmap that is consistent with
the information that has been collected in the current rollout. The sampled
weather is used only to determine outcomes of simulated actions.

Example 17. In the CTP, each trial of the optimistic rollout algorithm is such
that the agent follows the shortest path in the optimistic graph that is in ac-
cordance with the information about the weather it has collected in the current
trial. When it reaches a road which is blocked in Mw, it recomputes the opti-
mistic distances based on the new information and follows a new path, iterating
in this fashion until it reaches the goal location. The accumulated reward that
was collected in the trial is then used to update the action-value estimate of the
corresponding action.

4.4. THEORETICAL EVALUATION 61

In a trial in the weather that is depicted in Figure 4.2, optimistic rollout has
to decide in its computation of the action-value estimate of the action that moves
the agent to v1 if it tries the path over v3 or v4, since both paths to v? yield
the same reward and appear equally good for optimistic rollout since it does not
have the information that the path over v3 is blocked. Assuming that it decides
to move on to v3, the path it takes is v0 – v1 – v3 – v1 – v4 – v? with a total
reward of Q̂w(sw

0 , δ(move01)) = −190.

Clearly, optimistic rollout is (again) only one representative of a family
of algorithms, as any policy could be used in place of the optimistic policy.
In the CTP, the optimistic policy offers a good trade-off between speed and
quality. However, we will see in the next section that optimistic rollout has
fundamental weaknesses that prevent its convergence to the optimal policy
even if the number of trials is unlimited. It is nevertheless an important step
on the way to anytime optimal algorithms for finite-horizon, factored MDPs
as its core idea – to perform a series of trials that simulate the execution of
a policy – is also crucial for algorithms in the anytime optimal Trial-based
Heuristic Tree Search framework that is presented in Chapter 5.

4.4 Theoretical Evaluation

We have presented three algorithms for MDPs and briefly demonstrated their
behavior in an instance of the CANADIAN TRAVELER’S PROBLEM. In this section,
we analyze their strengths and weaknesses, and determine how accurately
their action-value estimates approximate the true action-values. We begin
with a basic result:

Theorem 3. As the number of weathers that are considered in hindsight op-
timization approaches ∞, the action-value estimates of hindsight optimization
converge in probability, and as the number of trials that are performed by the op-
timistic rollout algorithm approaches∞, the action-value estimates of optimistic
rollout converge in probability.

Proof: The result of each individual action-value computation in the hindsight
optimization and optimistic rollout algorithms given a weather is an indepen-
dent and identically-distributed bounded random variable, so the strong law
of large numbers applies. (Boundedness of the obtained reward in each sam-
ple follows from the finite horizon of the problem.)

Convergence in probability of the action-value estimates implies conver-
gence of the induced policies with probability one for those states that have
a unique action that maximizes the reward in the limit. If the maximizing
action is not unique, the policy in the limit will randomly choose one of the

62 CHAPTER 4. SUBOPTIMAL POLICIES

v0 v1 v3

v2

v4

v5

v∗

v6

−10

−20

−100

ǫ : −60

ǫ : −60

ǫ :
−60

0.5 : 0

0.5 : 0

0.5 : 0

ǫ : −40

ǫ : −70 1−
ǫ
: 0

Figure 4.3: Modified CTP example instance with pitfalls for the optimistic
policy, hindsight optimization, and optimistic rollout. Please observe that the
instance is slightly different from the instance of Figure 3.1.

maximizers, and the resulting policy will still be optimal with respect to the
Bellman optimality equation of Definition 11.

In the rest of this section, we denote the action-value estimates to which
the estimates of hindsight optimization and optimistic rollout converge as the
number of considered weathers or performed trials approaches infinity with
Q̂∞HOP and Q̂∞ORO, and consider the policies in the limit rather than policies
based on a finite number of weathers or trials. Theorem 3 ensures that these
notions are well-defined. We perform the theoretical evaluation of the pro-
posed algorithms on the CTP, but all insights can easily be generalized to
arbitrary MDPs. To motivate the ideas underlying our main result, we use a
slight variation of the example instance that has been used in this and the
previous chapter. It is depicted in Figure 4.3, and such that the used probabil-
ities are slightly different (small probabilities ≤ 0.1 become ε, a value that is
arbitrary close to zero, and the large probability on the road that connects v6

and v? becomes (1−ε), which is arbitrary close to one). This allows us to limit
attention to runs where all roads with blocking probability ε are traversable
and the road with blocking probability (1−ε) is blocked. It shows why the op-
timistic policy, hindsight optimization and optimistic rollout are approximate,
non-optimal algorithms by illustrating the different pitfalls the algorithms fall
prey to.

We have already hinted at the reason why the optimistic policy is subop-
timal in Example 15: it always follows the cheapest path that is traversable
with non-zero probability, no matter how close to zero it is. It is therefore led
astray by the very unlikely path that reaches v? via v6, and follows the path

4.4. THEORETICAL EVALUATION 63

v0–v5–v6–v5–v? for an accumulated reward of −170.
Hindsight optimization successfully identifies the trap the optimistic policy

falls prey to, but chooses wrongly because there is a high probability of a re-
warding goal path via v1 and any of the locations v2, v3, or v4, but it is not clear
which of these three locations to enter. The action-value estimate that is as-
signed to the move0? by hindsight optimization is Q̂∞HOP(s0, move0?) = −100, an
action-value estimate close to Q̂∞HOP(s0, move05) ≈ −90 to move05 (due to path
v0–v5–v?), while the estimated value of move01 is Q̂∞HOP(s0, move01) ≈ −73.75
(which is −(10 + 7

8 ·60 + 1
8 ·90)). It therefore moves to v1 first. The overly

optimistic approximation of move01 comes from the assumption of clairvoy-
ance, which allows hindsight optimization to “see” which of the three paths
over v1 is actually traversable and always select the correct one. At v1, it re-
alizes the suboptimality of its choice and reaches the goal ultimately via path
v0–v1–v0–v5–v? with an accumulated reward of −110.

Optimistic rollout successfully detects the trap that leads hindsight opti-
mization astray and assigns an action-value estimate to the move01 action that
is roughly Q̂∞ORO(s0, move01) ≈ −180 (which is −(1

2·70+ 1
4·190+ 1

8·310+ 1
8·470).

However, it is fooled by the fact that the optimistic policy acts suboptimally
in v5 (since the optimistic policy proposes move56 in each trial over v5), giv-
ing rise to a poor action-value estimate for move05 (approximately −170). It
therefore follows the direct path v0–v? with a reward of −100. The optimal
policy, which follows the path v0–v5–v? with an accumulated reward of −90,
is hence not found by any of the approximate algorithms that are presented in
this chapter. However, we revisit this experiment in Chapter 8, where we also
consider algorithms that converge towards optimal behavior with increasing
deliberation time.

The behavior in the example can be generalized to a result that holds for
all instances in the CTP.

Theorem 4. For all CTP instancesM and state-action pairs (s, a):

QOMT(s, a) ≥ Q̂∞HOP(s, a) ≥ Q?(s, a) ≥ Q̂∞ORO(s, a).

Moreover, there are instances where all inequalities are strict and the ratio be-
tween any two different action-value estimates is arbitrarily large.

Proof: Q?(s, a) ≥ Q̂∞ORO(s, a) holds because each optimistic rollout trial corre-
sponds to an actual run of the CTP instance under the optimistic policy, which
can (in expectation) not result in a higher reward than the true action-value
Q?(s, a). To prove QOMT(s, a) ≥ Q̂∞HOP(s, a) ≥ Q?(s, a), let M be the given
CTP instance, and let Π be the set of all policies inM. We can show that for

64 CHAPTER 4. SUBOPTIMAL POLICIES

the initial state s0:

VOMT(s0) = max
π∈Π

max
Mw

V w
π (sw

0)

V̂∞HOP(s0) = E[max
π∈Π

Vπ(s0)]

V?(s0) = max
π∈Π

E[Vπ(s0)],

where expected values are with respect to the random choice of a weather
Mw. In words, the estimate of the optimistic policy is such that is assumes that
the weather is always the best possible, and it always follows the policy with
the highest reward (in that weather). Weathers are considered by hindsight
optimization with correct probabilities, but its clairvoyance allows it to always
select the policy with the highest reward in that weather. The result for the
action-value estimate follows from this since V?(s) := maxa∈A(s)Q?(s, a), and
the results for s0 follows by simple arithmetic and readily generalizes to all
states. Lastly, to show arbitrary separation between QOMT, Q̂∞HOP, Q? and
Q̂∞ORO, we use augmented versions of the pitfalls for the respective algorithms
as exemplified in Figure 4.3.

4.5 Empirical Evaluation

We have evaluated the algorithms that are discussed in this chapter on in-
stances of the CTP. Our experiments were performed on Delaunay graphs,
following the example of Bnaya et al. (2009). For each algorithm and bench-
mark graph, we performed 1000 runs to estimate the expected rewards of the
policies with sufficient accuracy.

Main experiment. In our main experiment, we generated ten medium-sized
problem instances of the CTP with 50 locations and 133–139 roads and ten
large problem instances with 100 locations and 281–287 roads. (Additional
results on ten small problem instances with 20 locations and 49–52 roads
can be found in the work of Eyerich et al. (2010). As they do not provide
further insight they are omitted here.) All problem instances were generated
from random Delaunay graphs. Bnaya et al. argue that Delaunay graphs are
reasonable models for small-sized road networks. All roads can potentially be
blocked, with blocking probabilities chosen uniformly and independently for
each road from the range [0, 1). Travel costs were generated independently by
assigning a reward of [−50, 1] that was drawn uniformly at random. The initial
location and the goal location were selected such that they are at “opposite
ends” of the graph.

We evaluated all algorithms on these 30 benchmarks with n = 10000
weathers or trials for each applicable action for the hindsight optimization

4.5. EMPIRICAL EVALUATION 65

50 locations 100 locations

OMT HOP ORO OMT HOP ORO

1 -255.5±10 -250.6±9 -214.3±7 -370.9±11 -319.3±9 -326.8±9

2 -467.1±11 -375.4±7 -406.1±8 -160.6±8 -154.5±7 -153.2±7

3 -281.5±9 -294.5±7 -268.5±7 -550.2±18 -488.1±15 -451.3±14

4 -289.8±9 -263.9±7 -241.6±7 -420.1±10 -329.8±7 -348.7±8

5 -285.5±10 -239.5±8 -229.5±7 -397.0±16 -452.4±18 -348.1±13

6 -251.3±10 -253.2±9 -238.3±9 -455.0±12 -487.9±11 -399.9±10

7 -242.2±9 -221.9±7 -209.3±7 -431.4±15 -403.9±14 -370.1±12

8 -355.1±11 -302.2±9 -300.4±8 -335.6±12 -322.0±12 -295.7±11

9 -327.4±13 -281.8±11 -238.1±9 -327.5±14 -366.1±15 -273.8±11

10 -281.6±8 -271.2±7 -249.0±6 -381.5±11 -388.4±11 -347.1±9

∅R -303.7±3 -275.4±3 -259.5±3 -383.0±5 -371.3±4 -331.5±4

∅Trun 0.00 s 6.36 s 28.02 s 0.00 s 20.33 s 124.03 s

∅Tdec 0.00 s 0.42 s 2.39 s 0.00 s 0.88 s 7.71 s

Table 4.1: Average rewards with 95% confidence intervals for 1000 runs on
10 roadmaps with 50 locations (left) and 10 roadmaps with 100 locations
(right) for the optimistic policy (OMT), hindsight optimization (HOP), and
optimistic rollout (ORO). The three last rows show average reward (∅R),
average runtime per run (∅Trun), and average runtime per decision (∅Tdec).

and optimistic rollout algorithms. Tables 4.1 shows the results of the exper-
iment. Optimistic rollout clearly dominates hindsight optimization and the
optimistic policy, always providing the best policy except for three instances
where hindsight optimization performs better. Both algorithms outperform
the optimistic policy (which is still among the state-of-the-art in many appli-
cations) significantly, clearly demonstrating the benefit of taking uncertainty
into account. While our theoretical results already hint at the fact that hind-
sight optimization outperforms the optimistic policy, the relationship between
hindsight optimization and optimistic rollout has not been answered so far.
The experimental evaluation clearly shows that the bias that is incurred by
the under-approximation of the action-values of optimistic rollout is not as
severe as the over-approximation of hindsight optimization in most instances.

While we want to emphasize policy quality and not runtime, Table 4.1
also provides some runtime results. They show that in our implementation,
the runtime of solving the all-outcomes determinization that is needed in the
optimistic policy is barely measurable even though we use Dijkstra’s algorithm
for its computation and not a faster variant for shortest-path computation like
D? LITE (Koenig and Likhachev, 2002). Of course, the optimistic rollout strat-
egy also benefits from the fast computation since it invokes the method that
computes the optimistic policy as a subroutine. However, optimistic rollout

66 CHAPTER 4. SUBOPTIMAL POLICIES

-400

-350

-300

-250

-200

10 10
2

10
3

10
4

10
5

a
v
e

ra
g
e

 r
e
w

a
rd

number of considered weathers or trials

OMT

HOP

ORO

Figure 4.4: Average reward as a function of considered weathers or trials for
benchmark instance 50-9.

nevertheless takes about six times longer on graphs of medium size and about
eight times in the large instances.

Trials and Scalability. To analyze the speed of convergence and scalability
of hindsight optimization and optimistic rollout, we performed additional ex-
periments on individual benchmarks where we varied the number of trials or
considered weathers in the range 10–100000. Figure 4.4 shows the outcome
for (the prototypical) benchmark graph 50-9. We see that both hindsight op-
timization and optimistic rollout improve over the optimistic policy more or
less directly from the beginning where the trials require very little computa-
tion time even for optimistic rollout. Hindsight optimization begins to level
off after about 500 considered weathers, while optimistic rollout continues to
improve until it uses approximately 10000 trials (even though it is barely vis-
ible in the provided figure, there is still a significant improvement between
1000 and 10000 weathers or trials).

Remote Sensing. In our main experiment, we did not compare to other
algorithms than those discussed in this chapter because there is practically
no work in the literature that describes different policies for the CTP with a
focus on policy quality. The major exception to this is the paper by Bnaya
et al. (2009), which introduces and compares four algorithms for a slightly
different problem, the CTP with remote sensing. In this CTP variant, agents

4.5. EMPIRICAL EVALUATION 67

OMT HOP ORO EXP VOI

p=0.1 ∅C -155.2±0.3 -156.8±0.3 -155.0±0.3 -154.9±0.3 -154.9±0.3

∅Trun 0.00 s 5.12 s 12.31 s 0.05 s 15.88 s

∅Tdec 0.00 s 0.54 s 1.38 s 0.00 s 0.86 s

p=0.3 ∅C -216.9±1.0 -234.5±1.1 -212.3±0.9 -219.2±0.9 -218.9±0.9

∅Trun 0.00 s 5.03 s 13.66 s 0.06 s 26.77 s

∅Tdec 0.00 s 0.35 s 1.22 s 0.00 s 1.08 s

p=0.5 ∅C -298.9±1.5 -302.6±1.5 -281.7±1.4 -304.3±1.4 -309.3±1.5

∅Trun 0.00 s 3.23 s 6.25 s 0.07 s 38.60 s

∅Tdec 0.00 s 0.19 s 0.47 s 0.00 s 1.21 s

p=0.6 ∅C -302.4±1.5 -293.8±1.4 -286.0±1.4 -311.4±1.4 -316.4±1.5

∅Trun 0.00 s 2.55 s 4.11 s 0.07 s 39.19 s

∅Tdec 0.00 s 0.17 s 0.30 s 0.00 s 1.24 s

Table 4.2: Results for the CTP with sensing benchmarks of Bnaya et al. (2009)
with fixed sensing cost of 5. The notation is as in Table 4.1. Our algo-
rithms (left half) do not make use of the sensing capabilities, while the others
do. Each block summarizes the results for 30 roadmaps where all roads are
blocked with the same probability p.

may sense the status of roads from a distance, at a cost, and the objective is to
minimize the total of travel cost and sensing cost. The policies Exp and VOI are
the two best performing algorithms that are suggested by Bnaya et al.. Both
implement different strategies for sensing decisions, but use the optimistic
policy for movement decisions.

In our last experiment, we compare the optimistic policy, hindsight opti-
mization, and optimistic rollout approaches to the two best performing algo-
rithms by Bnaya et al. on the CTP with remote sensing. For our approaches,
we treat the CTP with remote sensing instances as regular CTP instances.
Thus, we compare policies that attempt to make use of sensing capabilities
intelligently to ones that never perform remote sensing. We evaluate on 120
problem instances, a subset of the 200 instances used in the original experi-
ments by Bnaya et al.. (The remaining 80 instances could unfortunately not
be made available by the authors.) All instances have 50 locations and were
created from Delaunay graphs. Different from our main experiments, in these
roadmaps all roads have the same blocking probability p, with 30 instances
each for p = 0.1, p = 0.3, p = 0.5, and p = 0.6. Similar to our stochastic
algorithms, the VOI algorithm introduced by Bnaya et al. has a sampling size
parameter, which we set to 50 to keep the runtime of the approach reason-
able. (It should be noted, though, that the implementation of Bnaya et al. is
not optimized with respect to runtime, and no conclusions should be drawn
from the comparatively large runtime of VOI.) The cost for sensing actions

68 CHAPTER 4. SUBOPTIMAL POLICIES

was set to 5 in these experiments, one of three settings considered in the work
of Bnaya et al.

The experimental results in Table 4.2 show that our policies are compet-
itive with the best policies of Bnaya et al. and outperform them on the in-
stances with larger blocking probabilities even though they never perform
any sensing. In fact, in this experiment the algorithms that make use of sens-
ing capabilities do not improve over the optimistic policy on average, which
differs from the results that were reported by Bnaya et al. We do not know
why this is the case and cannot rule out a bug. If there is no bug, our results
are likely more accurate since they consider a much larger number of runs per
algorithm (120000 instead of 200).

Apparently, the idea to simulate a policy in a random weather leads to the
best results over all experiments. On the other side, a practical consequence of
Theorem 4 is that there are MDPs on which the hindsight optimization and op-
timistic rollout policies behave suboptimally no matter how many computing
resources are available, i. e., they have fundamental limitations rather than
just practical limitations caused by limited sampling. The Trial-based Heuris-
tic Tree Search framework that is discussed in the following chapters picks up
the idea of simulating a policy repeatedly, but it improves the simulated pol-
icy while doing so and thereby allows for algorithms that do not share these
fundamental weaknesses.

CHAPTER 5
Trial-based Heuristic Tree Search

So far, we have discussed algorithms for finite-horizon, factored MDPs that
either need the whole state space in memory to even get started (Chapter
2) or have fundamental limitations that prevent optimal behavior even with
unlimited resources (Chapter 4). We now turn our attention to algorithms
that are optimal in the limit, yet also operate under tight time and memory
constraints. The Trial-based Heuristic Tree Search (THTS) framework that is
presented in Section 5.2 is an algorithmic schema that allows the specifica-
tion of algorithms that compute reasonable policies with limited deliberation
time and converge towards optimal decisions if the right mix of ingredients
is used. We lay the ground for THTS by discussing four related optimization
problems, their solutions, and popular algorithms in Section 5.1. Many of the
discussed algorithms find their way into the framework, either as an ingredi-
ent or because there is an equivalent THTS version.

5.1 Preliminaries

There is not only numerous related work in planning and acting under un-
certainty, there is a wide variety of different optimization problems in the
research area as well. Even though their theoretical properties differ signif-
icantly, most are more or less closely related, and comparable methods are
used to find optimal or approximate solutions. We discuss four different opti-
mization problems in this part that influence the algorithms in the Trial-based
Heuristic Tree Search framework that is presented in the subsequent section.
The optimization problems differ only in the a-priori model of the environment
that is revealed to the agent before its interaction with the environment starts.
In all scenarios, the agent can fully observe its current state (including the in-
formation if it is a terminal state) and it knows in every state which options
are available (i. e., it can generate the set of applicable actions A(s) for all
s ∈ S). Given an MDPM, we say that an agent

69

70 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

• has no a-priori model of M iff it is not provided with additional infor-
mation;

• can access a generative model ofM iff it is provided with a randomized
algorithm that, on input of a state s ∈ S and action a ∈ A(s), outputs
R(s, a) and a state s′ ∈ S which is randomly drawn according to the
transition function s′ ∼ succ(s, a); and

• can access the declarative model of M iff it is provided with an explicit
description ofM, which includes, most importantly, access to the tran-
sition probabilities PT [s′ | s, a] and the reward formula R(s, a) for all
s, s′ ∈ S and a ∈ A.

Our notion of planning with a generative model follows the definition of
Kearns et al. (2002). It is important that all three models determine the
a-priori view of the agent on the environment, i. e., they describe the avail-
able knowledge before the interaction with the environment starts. The terms
model-based and model-free algorithm that are often used in RL are not re-
lated to the a-priori model. Instead, they specify whether an agent learns a
model of the MDP by interacting with the environment (model-based), or if it
doesn’t build a model but derives a policy directly (model-free). We have al-
ready touched the topic of different a-priori models of agents at the beginning
of Chapter 2, where we distinguished learning agents (which are not provided
with an a-priori model) from planning agents (with access to a generative or
declarative model), and we continue to use the terms in this sense.

5.1.1 Multi-Armed Bandit

We start our discussion with the smallest possible MDP, the (discrete) Multi-
Armed Bandit (MAB) problem (Robbins, 1952). Figuratively, the agent faces
a slot machine (a bandit) with multiple arms, and it has to decide which
arm to pull based only on the payouts it received so far. Each arm provides
a random reward according to a probability distribution that is specific to
the arm and constant over time, but the agent has no initial information on
the distribution. This picturesque description does, of course, not restrict the
potential applications of MAB to a single gambling scenario. All applications
where actions that were taken in the past have no effect on the (transition and
reward function of the) action that is taken now can be modeled as an MAB,
including clinical trials where the best treatment for a disease is to be found
(Robbins, 1952), scheduling of jobs with different payouts (Gittins, 1979),
online advertising with the aim to figure out what ads a typical user is most
likely to click (e.g., Chakrabarti et al., 2008; Chen et al., 2013), or ranking of
results of a web-based search engine (Radlinski et al., 2008) to give just a few
examples of an ever-growing list of applications.

5.1. PRELIMINARIES 71

s0

al am ar

.5
:+

20

.5
:±

0 .1
:+
10
0 .5

:+
60

.4:+
30

.5
:+

70

.5
:+

30

Figure 5.1: An example MAB problem with three arms. Edges are labeled
with transition probabilities p and rewards r as p :r.

A discrete MAB can be modeled as an MDP where the only non-terminal
state is the initial state s0. Without loss of generality, each action a ∈ A is
applicable in the initial state (i. e., A(s0) = A) and corresponds to pulling
one of the arms of an |A|-armed gambling machine. In the context of MABs,
we omit the state in all notations as s0 is the only relevant state anyway. In
contrast to the rest of this thesis, we consider a stochastic reward function
R(a) that defines a discrete probability distribution for MABs. However, such
an MAB can easily be compiled to an MDP with deterministic reward function
that is in line with our definition of MDPs. We denote the arm that is pulled
in the k-th run φk with ak, the number of times action a was selected among
the first k runs with Lk(a), and the expected reward of the optimal arm a?

with Q?. The action-value estimate of arm a after k pulls is Q̂k(a), and it
corresponds to the average result that has been obtained in runs where a has
been selected.

The main challenge of the MAB lies in the fact that it is an optimization
problem where the agent has no access to an a-priori model of the task. The
central challenge of MABs is the famous exploration-exploitation dilemma: on
the one hand, since the agent has no a-priori knowledge of the environment,
it has to explore its possibilities to learn from the feedback the environment
provides. And on the other, since it aims to maximize the accumulated reward
over all runs, it has an incentive to exploit the knowledge it has gathered by
executing the action it believes to be best. In other words, the agent learns
from its trial-and-error interaction with the environment, and it has to make
sure that the balance between exploration and exploitation is such that it
learns the best action without sacrificing too much reward in early decisions.

Example 18. An example MAB problem with three arms al, am, and ar (for
left, middle and right arm) is depicted in Figure 5.1. Pulling the left (the right)
arm yields a reward of 20 or 0 (70 or 30) with equal probabilities, and playing
the middle arm gives a payout of 100 with probability .1, of 60 with probability

72 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

.5 and of 30 otherwise. It is possible to compute the expected rewards of the
three arms as Q?(al) = 10, Q?(am) = 52 and Q?(ar) = 50 with access to the
declarative model of the MAB. The choice with the highest expected reward, arm
am, is hence slightly better than playing ar, while the left arm is a clearly inferior
choice.

However, even though the computation of the expected values is trivial if the
model can be accessed, the MAB is a challenging problem since the agent has no
a-priori knowledge on the distributions that define the payout. It therefore has to
explore the arms of the machine to obtain a picture what the distributions (or the
expected rewards) look like, and exploit its knowledge if it is sufficiently certain
about its beliefs. If it gives up exploration too early, it might never find the best
arm – consider, for instance, the not unlikely case where the middle option does
not yield the reward of 100 in the first few runs. Its action-value estimate Q̂k(am)
can be expected to be below 50 in that case, and it is likely that ar looks more
promising. Therefore, if the agent commits to its beliefs too early, it will continue
with selecting the right arm even though am is superior. On the other hand, if
it continues to explore for too long, it pulls the suboptimal arms al and ar too
often.

An important implication of the exploration-exploitation dilemma is that
there is no algorithm that can guarantee that it selects the arm with the high-
est expected payout in all runs starting from the very first, and it is hence also
impossible for a learning agent to achieve an expected reward that equals
the action-value of the best arm (that is, unless the choice is irrelevant as all
arms are optimal). However, given a sufficient number of runs, it is simple
to come up with an algorithm that determines the best arm with high proba-
bility. It has become popular as A/B testing in the context of marketing with
two choices. Here, it is called the Explore-then-Exploit (ETE) strategy. The
main idea is to split up the agent-environment interaction in two consecutive
phases, starting with a pure exploration phase of length l with the aim to de-
termine the best arm with high probability, which is followed by a phase that
purely exploits the insights of the first phase. Even though there are different
possibilities how to design the exploration phase, we go with the simplest one
where Explore-then-Exploit applies the uniform action selection (UNI) strategy
where an arm is selected uniformly at random:

akUNI ∼ U (A)

Note that ETE is often described with round-robin (RR) action selection

akRR ∼ U
(
{a ∈ A | Lk−1(a) ≤ Lk−1(a′) for all a′ ∈ A}

)
in place of UNI, which does not make a difference for this thesis since the
behavior in the limit is identical. After the exploration phase has finished,

5.1. PRELIMINARIES 73

Explore-then-Exploit algorithms commit to executing a greedy action

akGRD ∼ U
(

arg max
a∈A

Q̂k−1(a)

)
in run φk for k > l. However, a good value for the length of the exploration
phase can only be found when the number of runs is known in advance. Oth-
erwise, it is impossible to balance the conflicting aims of finding the best arm
with high probability and exploiting the insights sufficiently long.

Let us therefore turn our attention to the question how close an algorithm
can get to an average reward of Q? in expectation. Rather than answering this
with a bound on the average reward that can be achieved, the analysis is usu-
ally performed in terms of an algorithm’s cumulative regret over a sequence of
runs. Berry and Fristedt (1985) define it for a policy π as the difference be-
tween the reward π yields in a sequence of runs (φ1, . . . , φn) and the expected
accumulated reward of a run under π?:

Lnπ =
n∑
k=1

Q? −R(φkπ)

Lai and Robbins (1985) were the first to show that the expected cumula-
tive regret has to grow at least logarithmically in the number of runs, i. e.,

E [Lnπ] ≥ α·lnn

for all n > 0, all policies π ∈ Π, and with a constant α ≥ 1. (To know that such
a constant exists is sufficient for our needs, even though Lai and Robbins pro-
vide a more accurate bound where α is given in terms of the Kullback-Leibler
divergence between the suboptimal arms and the optimal one.) discounted,
infinite They also present policies for discrete MABs that are such that the
incentive to explore an action grows with the uncertainty of the action’s qual-
ity. This drives the agent to try out arms that have not been observed of-
ten until the model of the system is suitably accurate eventually. The main
idea is to update an upper confidence bound Ûk(a) for each action a such that
Q?(a) ≤ Q̂k(a) + Ûk(a) with high probability. The action

ak ∼ U
(

arg max
a∈A

(
Q̂k−1(a) + Ûk−1(a)

))
is then selected for execution in φk. Lai and Robbins show that their policies
achieve the lower bound as the optimal action is executed exponentially more
often than all other actions.

While the policies of Lai and Robbins require the underlying probability
distribution of the MAB to meet certain requirements and guarantee achieve-
ment of the logarithmic cumulative regret only in the limit, improvements
towards general methods were made (e.g., Kaelbling, 1993; Agrawal, 1995)

74 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

until Auer et al. (2002) presented an algorithm, UCB1 (for Upper Confidence
Bounds), that achieves the cumulative regret bound uniformly over the runs
for any bounded probability distribution. The confidence bounds are com-
puted by applying Hoeffding’s inequality, which states (in the context of MABs)
that the probability that the sampled reward of an action differs from its ex-
pected reward by more than a constant is reduced exponentially in the number
of runs. By application of Hoeffding’s inequality to the probability distribu-
tion that is defined by the rewards of an MAB, the famous UCB1 formula is

derived. It computes the upper confidence bound with ÛkUCB1(a) =
√

2·ln(k−1)
Lk−1(a)

,
and hence selects an action according to

akUCB1 ∼ U
(

arg max
a∈A

(
Q̂k−1(a) +

√
2·ln(k−1)

Lk−1(a)

))

in the k-th run. The UCB1 policy is an important part of the work presented
in this thesis, and we revisit the results of Auer et al. later.

Two classical algorithms for action selection in MABs, ε-greedy (ε-G) and
Boltzmann Exploration (BE), only achieve asymptotically cumulative regret
that is linear in the number of runs. However, a surprising study of Kuleshov
and Precup (2010) reveals that both outperform theoretically superior algo-
rithms like UCB1 experimentally. In BE, the probability of selecting action

a ∈ A in the k-th run is proportional to Qk(a) := e
Q̂k−1(a)

τ , where τ > 0 is the
temperature, a parameter that specifies the degree of exploration. Each action
is selected with probability

P[akBE = a] =
Qk(a)∑

a′∈AQk(a′)

in an action selection that is based on Boltzmann Exploration, while ε-G is
such that, given a parameter ε with 0 < ε < 1, the greedy action is selected
with probability (1−ε), and the uniform action selection is applied otherwise:

akε-G =

{
akUNI with probability ε
akGRD otherwise.

Cesa-Bianchi and Fischer (1998) present versions of both policies where a
poly-logarithmic cumulative regret is achieved with a schedule for decreasing
τ - and ε-values, and Auer et al. (2002) enhance on this work and present a
method to decrease ε that achieves logarithmic cumulative regret – though
only under the assumption that the difference between the expected reward
of the best and second best action is known. We pick up the idea in Chapter 6
and discuss several different schemata to decrease the respective parameters.

5.1. PRELIMINARIES 75

s0

al ar

+2
0 +50

s1 s2 s3

.4 .6 .3 .7

a1l a1r a2l a2r a3l a3r

+
10
0

.1

.9

+
10 +

40

.2 .2
.6

+
10

.5
.5

+
30

.9
9 .01

+
20

.8

.2

Figure 5.2: An MDP with horizon H = 2 depicted as four nested MABs (one
per area with dotted border).

5.1.2 Online Reinforcement Learning

Online Reinforcement Learning is the term that is commonly used for the gen-
eralization of MABs to larger state spaces (e.g., Sutton and Barto, 1998), i. e.,
the optimization problem of solving MDPs without access to an a-priori model.
However, Online RL comprises a large variety of similar scenarios that are very
different when examined theoretically. For instance, if there is no finite hori-
zon and no option to restart from the initial state, reachability assumptions
complicate the performance analysis as it becomes disproportionately impor-
tant if a poor initial decision (or bad luck) obstructs a good result (e.g., Bur-
netas and Katehakis, 1997; Tewari and Bartlett, 2008; Jaksch et al., 2010).
We restrict our discussion to episodic settings here where the agent is provided
with the possibility to set its current state to the initial state at any point dur-
ing the execution of a run. The option to stop a run φ = (s0, a0, . . . , al−1, sl)
after l steps at will and start another run that starts in s0 will become the
foundation of the trial length component of the THTS framework in the next
section.

Many algorithms for Online RL approach the problem by regarding the
provided MDP as a structure of nested MABs. A finite-horizon example of this
view is depicted in Figure 5.2. Each of the subgraphs in one of the dashed
boxes can be regarded as an MAB problem that is rooted in s0, s1, s2, or s3

and with a pair of applicable actions with stochastic successor states.

Example 19. Figure 5.2 depicts a small example MDP with emphasis on the
way its structure can be regarded as four nested MABs (each one in an area with

76 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

dotted border). The optimal policy π? is such that π?(si) = ail for i = 1, . . . , 4:
in the states s1, s2, and s3, the immediate reward of all left actions is apparently
higher than the immediate reward of the corresponding actions to the right. And
in the initial state s0, we can compute the action-values (e. g., with the acyclic
value computation algorithm that was presented in Chapter 2) as Q?(s0, al) =
84 and Q?(s0, ar) = 83 and therefore Q?(s0, al) > Q?(s0, ar).

In the previous part on MABs, all action-value estimates Q̂k(a) were com-
puted as the arithmetic mean over all results that were obtained in runs where
awas selected. This backup function is known as the Monte-Carlo (MC) backup
function. Formally, it is such that the action-value estimate of a state-action
pair (s, a) that has been encountered in the k-th run φk = (s0, a0, . . . , al−1, sl)
is updated by applying the recursive formula

Q̂kMC(st, at) = Q̂k−1
MC(a) +

1

Lk(st, at)
·
(
Rt..l(φk)− Q̂k−1

MC(a)
)
,

where Rt..l(φk) :=
∑l−1

i=tR(si, ai) denotes the accumulated reward that was
achieved in the run starting from state st. Applying the MC backup function in
an MAB is reasonable as each action-value estimate converges towards its true
action-value (as long as each arm is selected sufficiently often) independently
from all other decisions.

However, it is not necessarily the case that the computation of the arith-
metic mean is reasonable in Online RL: consider the MDP from Figure 5.2 and
assume that runs are performed by applying the uniform action selection. If
Q̂kMC(s0, al) and Q̂kMC(s0, ar) are updated by applying the MC backup function,
the estimate of the left action will not converge to 84 but to Q̂∞MC(s0, al) = 57
with k → ∞ as a1

l and a1
r on the one hand and a2

l and a2
r on the other are

executed with equal probability in the runs where s1 and s2 are encountered
due to the UNI action selection. Even worse, the action value estimate of ap-
plying ar in s0 converges to Q̂∞MC(s0, ar) = 75, which combines to the wrong
picture that ar is the better action in the initial state. Note that this is not
restricted to the UNI action selection, but holds for several popular action
selection strategies including ε-greedy and Boltzmann Exploration.

One possibility to overcome this problem is to flatten the MDP into an
equivalent MAB. The flattened version of the MDP from Figure 5.2 is depicted
in Figure 5.3. The indices of the actions are such that the first letter of the
index corresponds to the index of the action in s0, then the index of the action
that is taken in the outcome that is depicted to the left in Figure 5.2 and
finally the index of the action that is applied in the outcome to the right.
In a flattened MDP, all action selection strategies for MABs can be applied
such that all action-value estimates converge towards the true action-values
– obviously, as the MDP in Figure 5.3 is an MAB. However, the creation of a
flattened MDP is practically intractable in all but prohibitively small MDPs, as
it requires one arm for each policy. Nevertheless, it illustrates nicely that it is

5.1. PRELIMINARIES 77

alll allr alrl alrr arll arlr arrl arrr

.4
:
12
0 .6

:
60

.4
:
12
0 .6

:
30 .4

:
30

.6
:
60 .4

:
30

.6
:
30 .3

:
90

.7
:
80 .3

:
90

.7
:
70 .3

:
60

.7
:
80 .3

:
60

.7
:
70

Figure 5.3: An MAB that is equivalent to the MDP from Figure 5.2.

possible to use the MC backup function if the action selection is such that a
stationary policy is executed in each step, which is the case for many action
selection strategies in the limit (we use this fact in our theoretical analysis of
THTS algorithms in Chapter 7). Moreover (and following the same logic), if
that policy is the optimal policy π?, Q̂kMC(s, a) even converges to Q?(s, a) with
an increasing number of runs.

There are also other possibilities to combine action selection strategies
and backup functions in MDPs such that the action-values estimates converge
towards the true action values. Singh et al. (2000) discuss the convergence of
combinations of backup functions and action selections, a work we build upon
with our analysis of anytime optimal THTS recipes in Chapter 7. A popular
alternative to MC backups is the backup function that is used in Temporal
Difference Learning (TD) (Sutton and Barto, 1987; Sutton, 1988). Given a run
φk = (s0, a0, . . . , al−1, sl),1 it updates all state-value estimates of states st that
were visited in φk such that

V̂ k
TD(st) = V̂ k−1

TD (st) +
1

Lk(st)
·
(
R(st+1, at+1) + V̂ k−1

TD (st+1)− V̂ k−1
TD (st)

)
An equivalent notion is used in the famous SARSA algorithm (Rummery and
Niranjan, 1994; Sutton, 1996) except that action-value estimates are updated
instead by applying

Q̂kTD(st, at) = Q̂k−1TD (st, at) +
1

Lk(st, at)
·
(
R(st, at) + Q̂k−1TD (st+1, at+1)− Q̂k−1TD (st, at)

)
to all state-action pairs (st, at) that were visited in φk. In this form, it can be

seen that TD backups differ from MC backups only in the fact that the action-
value estimate Q̂k−1

TD (st+1, at+1) of the state-action pair that follows the current
state-action pair (st, at) (and the latest immediate reward) is used rather than

1Actually, TD and (the latter introduced) QL backups are such that it is not necessary that
a run is completed before a backup function is applied, which is of no relevance for our work.

78 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

the accumulated reward of the whole trajectory. The application that made
TD Learning popular beyond the RL community is the Backgammon player
TD-Gammon (Tesauro, 1995), which was one of the first computer programs
to achieve a level of play in a game with chance that is competitive with the
best human players.

The backup function that is considered in Q-Learning (Watkins, 1989) is
closely related to the one that is used in TD. There, the action-value estimates
of all visited state-action pairs are updated by

Q̂kQL(st, at) = Q̂k−1
QL (st, at) +

1

Lk(st, at)
(
R(st, at) + V̂ k−1

QL (st+1)− Q̂k−1
QL (st, at)

)
,

where V̂ k
QL(s) = maxa∈A(s) Q̂

k
QL(s, a) is the action-value estimate of the best ac-

tion in state s after k trials. MC and TD backups are typically described as on-
policy backup functions as the updates are based on rewards that are achieved
with the simulated policy. Q-Learning (QL), on the other hand, is an off-policy
backup function where one policy is simulated and another one (namely the
greedy one) is used to update encountered action-value estimates.

Before we proceed to the next optimization problem, we would like to
discuss how the altered scenario influences the expected cumulative regret
of the aforementioned action selection strategies. As some combinations of
backup function and action selection do not even converge to optimal behav-
ior, it can be expected that the regret bounds are different, which is indeed
the case. The most important reason is that the selection to explore or ex-
ploit in the MAB implies that the whole run is explorative or exploitative. In
MDPs, however, it is possible that an exploitative selection in an early decision
is necessary to prepare an explorative step in the desired region of the MDP.
Moreover, a couple of poor results with the same action in the initial state do
not hint at the fact that the selection is indeed bad, as it is possible that the
decisions following the first selection have been suboptimal. If an algorithm
is too greedy, it is therefore possible that it takes prohibitively long for some
states until they are encountered for the first time, and the regret bounds can
therefore be entirely different. The most famous example where this is the
case is probably the UCT algorithm (Kocsis and Szepesvári, 2006), where the
UCB1 formula of Auer et al. (2002) is used for action selection in an MDP that
is regarded as a tree (UCT is short for Upper Confidence Bounds applied to
Trees). Even though UCT is an algorithm that has been applied successfully
in many applications, Coquelin and Munos (2007) show that its worst case
cumulative regret is not logarithmic as in the MAB, but

E [LnUCT] ∈ Ω
(

exp(exp(. . . (exp(n))))︸ ︷︷ ︸
H−1

)
in an Online RL optimization problem of an MDP with horizon H. The reason
for the poor behavior lies in the fact that UCB1 is too greedy, and it takes

5.1. PRELIMINARIES 79

hence too long until the right actions in states further from the initial state are
even considered for the first time.

5.1.3 Planning with a Generative Model

A major problem of algorithms for Online RL is that it is not possible to de-
sign them in a way that reasonable behavior can be achieved without trying
every single state-action pair several times simply because the agent has to
learn from its interaction with an uncertain environment. If we want to find
algorithms that achieve near-optimal behavior without executing each action
in each state several times, we have to provide it with a model of the MDP. An
optimization problem where the agent has a vague idea of its environment,
which is given in form of a generative model of the MDP, is often called Of-
fline RL in the RL community (e.g., Sutton and Barto, 1998). Since learning
from the interaction with the environment can be replaced by planning on the
provided model, we prefer to call this kind of optimization problem planning
with a generative model (GMPlan) instead.

We start our brief survey on GMPlan algorithms by having a look at how
the techniques we have seen so far can be adapted to the altered scenario. A
first observation is that we can simply ignore the provided model and apply
any Online RL algorithm in a GMPlan scenario. This is not very useful if we
aim for improved performance, though. However, the generative model al-
lows another, simple alternative how Online RL algorithms can be adapted to
the GMPlan scenario: instead of learning by interaction with the environment
(all the while increasing the cumulative regret that is inherent to learning),
it is possible to simulate trials of the algorithm with the help of the model
in an initial planning phase and execute the action that is determined most
promising by a recommendation function. We will meet both trials and rec-
ommendation functions again when we introduce the THTS framework in the
following section.

It is evident that theoretical performance bounds of Online RL algorithms
can only improve when applied in GMPlan in this way. Even though the
exploration-exploitation dilemma is still a central challenge, it is a problem
of efficient simulation rather than a problem that incurs a theoretical upper
bound on optimal behavior that is worse than applying the optimal policy.
This is because the provided model allows the agent to perform exploration
in the planning phase at no cost and without accumulating regret, while it exe-
cutes only actions that are considered best (and therefore exploitative) by a
recommendation function. The regret that is incurred in a planning scenario
and that measures only the regret that is incurred by the executed actions
is typically referred to as the simple regret. To emphasize the difference, let
us compare the cumulative regret of the Explore-then-Exploit algorithm for
MABs that was introduced earlier with the simple regret of the same algo-
rithm in GMPlan. For simplicity, let us assume that the number of runs n is

80 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

known in advance. Busa-Fekete and Hüllermeier (2014) suggest to set the
number of explorative runs to a value l? such that the best arm is known after
the exploration phase has finished with probability of at least (1−1

n), and show
that the cumulative regret (assuming that rewards are in [0, 1]) of this version
of Explore-then-Exploit in Online RL is

E [LnETE] = E
[
Ll

?

UNI

]
︸ ︷︷ ︸
≤l?·1

+ E
[
Ln−l

?

GRD

]
︸ ︷︷ ︸
≤(n−l?)· 1

n
·1

= O (l?+1) .

The cumulative regret is hence dominated by the cumulative regret of the ac-
tion selection strategy that is applied in the exploration phase. However, if the
exploration phase is simulated instead of executed, as it is possible in the GM-
Plan scenario, it is only the expected constant simple regret of E [LnETE] = O(1)
that remains.

Unlike in the learning scenarios and given enough deliberation time, it
is therefore possible to execute the optimal policy π? in the GMPlan scenario
right from the start with probability one, and it is hence also possible to almost
surely achieve no simple regret at all. There is even a connection between the
cumulative and the simple regret of action selection strategies for the MAB.
Bubeck et al. (2009) show that the simple regret is larger the smaller the
cumulative regret. Even though this seems surprising at first glance, it is
actually intuitive: the more we focus on exploitation during simulation, the
more uncertainty is left about the actions we believe to be suboptimal, and
the higher is the probability that our belief about the optimal action is wrong.
In particular, Bubeck et al. show that the simple regret of the UCB1 formula
decreases at best polynomially in the number of runs, i. e.,

LkUCB1 ∈ O(
1

kα
)

for some constant α, while the simple regret of the UNI strategy achieves an
exponential-rate decrease

LkUNI ∈ O(
1

ek
).

Please observe that the simple regret bounds are smaller than in Online RL for
both cases, and that both approach zero with an increasing number of trials.

Even though both our Explore-then-Exploit example and the comparison
of cumulative and simple regret of Bubeck et al. (2009) are good news for our
goal of designing efficient algorithms with near-optimal behavior, it does not
bring us close enough to where we would like to be if deliberation time is lim-
ited and the MDP is large. This is because both techniques have only relocated
the problem that all state-action pairs must be executed multiple times to the
problem that all state-action pairs must be simulated equally often. We there-
fore turn our attention to anytime algorithms that are specifically designed

5.1. PRELIMINARIES 81

for MDPs with a declarative model. One of the most notable pieces of work
in this direction is due to Kearns et al. (2002), who were the first to show
that efficient algorithms exist that are independent from the size of the state
space: their Sparse Sampling algorithm samples each action in the initial state
a constant β number of times (where β is a parameter), which yields at most
β outcomes for each state-action pair. It continues by sampling each action in
all generated outcomes β times until this procedure has built a tree of depth
equal to the horizon that reflects a part of the search space. The main idea of
Sparse Sampling is therefore that a good policy can be derived even if only a
fraction of all possible outcomes is considered. Even though Sparse Sampling
still considers a number of states that is exponential in the problem horizon –
the size of the tree that is build by the Sparse Sampling algorithm is (β ·|A|)H
– it is independent of the size of the state set. Sparse Sampling has been an
influence for a wide variety of publications, and our Trial-based Heuristic Tree
Search framework builds on the ideas of Kearns et al. as well.

Another framework that incorporates the ideas of Sparse Sampling is the
popular Monte-Carlo Tree Search framework. The term Monte-Carlo Tree
Search is, to our knowledge, due to Coulom (2006), who extend an algorithm
described by Chang et al. (2005). Browne et al. (2012) define Monte-Carlo
Tree Search in their seminal monograph as a framework that allows the speci-
fication of algorithms in terms of two policies, a tree policy and a default policy.
Like the Optimistic Rollout approach that was presented in Chapter 4, Monte-
Carlo Tree Search algorithms perform trials. The tree policy specifies how the
search tree that is built iteratively is traversed until a state is encountered that
is not yet represented in the tree. That state is explicated (i. e., it is added to
the tree), and the default policy is applied until a terminal state is reached
(without adding states to the tree). The result of the trial is back-propagated
through the tree by applying Monte-Carlo backups to all explicated states that
were visited in the trial. Monte-Carlo Tree Search algorithms perform trials
until a timeout is reached, and a recommendation function is then used to
decide which action looks the most promising and should be executed.

The most prominent Monte-Carlo Tree Search algorithm is the aforemen-
tioned UCT algorithm (Kocsis and Szepesvári, 2006). UCT uses the UCB1
action selection as tree policy and UNI action selection as default policy. It has
been applied in several scenarios with tremendous success, and has become
famous due to its application to the game of Go (e.g., Gelly and Silver, 2007;
Lee et al., 2009; Gelly and Silver, 2011). Numerous further applications of
UCT and other Monte-Carlo Tree Search variants to games are discussed in
the work of Browne et al. (2012). We have also contributed to the list with
our application of UCT to the Canadian Traveler’s Problem (Eyerich et al.,
2010), and to probabilistic planning with the version of the PROST planner
that participated at IPPC 2011 (Keller and Eyerich, 2012).

Even though the insights of Bubeck et al. (2009) regarding the simple re-
gret of UCB1 only hold in the MAB, it is not surprising that plain UCT performs

82 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

poorly in the GMPlan scenario, a discussion that is led in detail by Domshlak
and Feldman (2013). They also show that the asymptotic reduction rate of
the simple regret of UCT in MDPs is, just like the reduction rate of UCB1 in
MABs, sub-exponential (Feldman and Domshlak, 2012, 2014b). Their solu-
tion to the problem is a whole family of algorithms dubbed BRUE. All BRUE

algorithms are based on the idea of separation of concerns where exploration
and exploitation are decoupled and pursued in subsequent algorithm periods.
The core idea is to start each trial with an explorative part where only uni-
form action selection is applied until a switching point is encountered, from
which on only the greedy action is simulated. The MC backup function is al-
tered such that only those states are updated that were encountered after the
switching point such that only rewards that are obtained under the greedy
policy influence state- and action-value estimates. According to the authors,
all BRUE variants that have been described (Feldman and Domshlak, 2013,
2014a,b) achieve a decrease rate of the simple regret that is exponential. We
pick up the idea to separate concerns in this thesis, generalize it and propose
two variants of the novel selective backup function in Section 6.3.

5.1.4 Planning with a Declarative Model

The final optimization problem that is considered here is planning with a
declarative model (DMPlan). It differs from GMPlan only in the fact that the
exact model of the MDP is given to the agent rather than a blackbox that
produces state transitions and rewards on demand. While the difference ap-
pears small, the consequences are considerable. This is best illustrated with
an example, so let us consider the MAB of Figure 5.1 again. In the learning
scenario, it is necessary to use runs to collect information on rewards and
transition probabilities, all the while acting suboptimally and generating re-
gret. The generative model allows to learn without accumulating regret by
simulating each decision a sufficient number of times until the belief on the
sampled action-value is strong, but it takes several trials until an agent can say
with sufficiently high certainty that it prefers to pull the second arm over the
third, and it takes a large number of trials until the agent is almost certain. In
DMPlan, solving an equation system that consists of three Bellman optimality
equations as given in Definition 11 suffices to compute the expected reward
of each arm, and a DMPlan agent will therefore incur no simple regret even
with little deliberation time.

We have already discussed the computation of optimal policies in MDPs
if the declarative model of the MDP is provided. The acyclic value computa-
tion algorithm is a Dynamic Programming (DP) approach that is a variant of
value iteration (Bellman, 1957) for acyclic MDPs. Value iteration computes
the fixed point V?(s) for all states s ∈ S by iteratively computing estimates
V̂ k(s) that are based on the previous estimate V̂ k−1(s) with the help of the
Bellman optimality equation. The iterations continue until the highest change

5.1. PRELIMINARIES 83

over all states in the latest estimate is smaller than a predefined, small thresh-
old value. However, value iteration – as well as acyclic value computation –
need the whole state space in memory to even get started and hence do not
scale to the problems we are interested in. The same is true for the related
policy iteration (Howard, 1960) algorithm.

A step towards solving MDPs with large state spaces are asynchronous
versions of value iteration that do not search the state space exhaustively.
(Offline, Trial-based) Real-Time Dynamic Programming (RTDP) (Barto et al.,
1995), for example, performs trials like Monte-Carlo Tree Search algorithms,
but it always follows the greedy policy and samples outcomes according to
their probability. In contrast to Monte-Carlo Tree Search, previously unvis-
ited states are not initialized by following a default policy, but the declarative
model is used to compute an admissible heuristic, and all encountered states
are added to the tree until a terminal state is reached. All states that are
visited in a trial are updated with the Full Bellman backup function

V̂ k
FB(s) =

{
0 if s is terminal
maxa∈A(s) Q̂

k
FB(s, a) otherwise,

Q̂kFB(s, a) = R(s, a) +
∑

s′∈succ(s,a)

PT
[
s′ | s, a

]
·V̂ k

FB(s′),

which has the advantage that it is possible to determine (exactly in acyclic
MDPs, otherwise only approximate) when state- and action-value estimates
have converged to the respective V? and Q? values. A popular extension of
RTDP that speeds up this process is Labeled RTDP (Bonet and Geffner, 2003).
In acyclic MDPs as considered here, a simple solve labeling procedure as dis-
cussed in the following chapter suffices.

On the other hand, Full Bellman backups suffer from the problem that an
action-value estimate Q̂kFB(s, a) can only be computed if V̂ k

FB(s′) is available for
each s′ ∈ succ(s, a). As the number of outcomes is not restricted in our formal-
ism, Full Bellman backups are intractable in practice (and in some domains
of the IPPC 2011 and 2014 benchmarks as well). A possible solution is imple-
mented in GLUTTON (Kolobov et al., 2012a) and GOURMAND (Kolobov et al.,
2012b), two planning systems that competed at IPPC 2011 (GLUTTON) and
IPPC 2014 (GOURMAND, yet under the name G-PACK). Both are RTDP-based
planning systems that cope with the challenge of a large number of outcomes
by subsampling of the transition function a predefined number of times. All
outcomes that were not sampled this way are removed from the MDP and
the probabilities of the remaining outcomes are extrapolated. However, both
GLUTTON and GOURMAND lose optimality in the limit by this adaption. An al-
ternative that still allows an optimal algorithm in the limit, the Partial Bellman
backup function, is presented in Section 6.3.

Another popular algorithm for acyclic MDPs is AO? (e.g., Martelli and
Montanari, 1973; Nilsson, 1980; Pearl, 1984), an algorithm that has been ex-

84 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

tended to cyclic MDPs as LAO? (Hansen and Zilberstein, 2001). This heuristic
search approach gradually builds an optimal solution graph, beginning from
the root node representing the initial state. It expands a single tip node in the
current best partial solution graph, which is the subgraph that can be reached
by applying only greedy actions. It assigns admissible heuristic values to the
new tip nodes and propagates the collected information through the acyclic
graph to the root. These steps are repeated until all tip nodes in the best
partial solution are terminal nodes. The main difference between AO? and
RTDP is the termination criterion of a trial: in AO?, trials last until a previ-
ously unvisited node is encountered, while trials end only in terminal states in
RTDP. The THTS framework allows to model both algorithms with identical
ingredients apart from the used trial length component.

The combination of an admissible heuristic and the Full Bellman backup
function in RTDP and AO? allows pruning of parts of the search space, as
all state- and action-value estimates are guaranteed upper bounds on the ex-
pected rewards at all times. To improve the pruning procedure, many exten-
sions of RTDP or AO? compute an additional lower bound on action-value
estimates as, e. g., in Bounded RTDP (McMahan et al., 2005), Focused RTDP
(Smith and Simmons, 2006), Bayesian RTDP (Sanner et al., 2009), or Itera-
tive Bounding AO? (Warnquist et al., 2010). The pruning inherent to RTDP
and AO? is an alternative way of circumventing that the whole state space of
an MDP must be considered for optimal behavior. However, the success of
Monte-Carlo Tree Search algorithms in planning under uncertainty or of our
THTS-based PROST planner at IPPC 2014 indicate that the necessity that an
expensive, admissible heuristic is computed outweighs the possible advantage
of pruning.

Bonet and Geffner (2012) also identify the need for an admissible heuris-
tic as a general problem in anytime optimal planning. Their approach, Any-
time AO?, overcomes the limitations of AO? and can cope with inadmissible
heuristics by replacing the greedy selection of a tip node with an ε-greedy
one. While potential pruning effects inherent to greedy action selection with
admissible heuristics are lost, the idea that it suffices to look at a fraction of
the search space that has been shown with the development of Sparse Sam-
pling is strengthened. However, the most notable property of Anytime AO? is
another one: it does not only make use of the declarative model by support-
ing informed heuristics, but is additionally the only algorithm we are aware
of where outcomes in the simulation are selected with an outcome selection
strategy that is more than just sampling outcomes according to their proba-
bilities. Anytime AO? achieves this by computing the impact of a state on the
current best solution, and by ensuring that the state with the highest impact
is selected.

5.2. THE FRAMEWORK 85

5.2 The Framework

The previous section has sketched a variety of techniques and algorithms that
are used in four related optimization problems. In the part on MABs, we
have seen that different methods for action selection influence the expected
quality of an MAB algorithm significantly. In Online RL, we have seen how
backup functions are a crucial tool to propagate information that is collected
in a run, and how the right choice of a backup function influences the con-
vergence to optimal behavior of an algorithm. GMPlan not only liberated us
from the (complicating) learning scenario, allowing the computation of near-
optimal policies from the start even though only a fraction of the search space
is considered, but it also introduced a recommendation function that generates
a final decision from the collected information. Furthermore, the default pol-
icy of the Monte-Carlo Tree Search framework can also be regarded as a first
attempt to include heuristics into the search. And finally, our discussion of
DMPlan revealed that informed heuristic functions and a labeling procedure
are well-suited to achieve policies of high-quality quickly, that different trial
lengths significantly alter the performance of an algorithm and that sampling
is not the only way for outcome selection in a trial.

In this section, we develop the Trial-based Heuristic Tree Search framework
for planning with a generative or declarative model such that it allows the
description of a large variety of algorithms with only a few ingredients. We
are especially interested in a framework that subsumes the most successful
classes of algorithms for learning and for planning with generative or declar-
ative model: Dynamic Programming, Monte-Carlo Tree Search, Temporal Dif-
ference Learning, and heuristic search algorithms. Our aim is a formalization
that allows the specification of a large number of different algorithms, but
we also want to keep things as simple as possible.We believe that this can be
achieved in a framework that allows the specification of algorithms by provid-
ing the six ingredients action selection, outcome selection, initialization, trial
length, backup function, and recommendation function. All of these were al-
ready briefly introduced in the previous section and are discussed in detail in
Chapter 6. Our view on THTS differs from original work on the topic (Keller
and Helmert, 2013) only in the fact that we have replaced the static greedy rec-
ommendation with the adaptable ingredient of the same name. We decided to
add the ingredient to our framework due to the work of Chaslot et al. (2008),
who yield better results with the Monte-Carlo Tree Search algorithm UCT if
the action that was simulated most often is recommended, and due to Bubeck
et al. (2009), who show that different recommendation strategies lead to dif-
ferent bounds on the simple regret in MABs (and that it is not always the best
decision to recommend the greedy action).

The term “Trial-based Heuristic Tree Search” already summarizes what is
common among all THTS algorithms fairly well: the acyclic MDP is unfolded
to a tree, which is searched in a sequence of trials that are guided by a heuristic.

86 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

d0

c0 c1

+
20

+
50

d1 d2 d3

.4
.6 .3

.7

c2 c3 c4 c5 c6 c7

+
10
0 +

10 +
40

+
10 +

30

+
20

Figure 5.4: Complete AND/OR graph G of the example MDP of Figure 5.2.

Before we discuss possible ingredients in Chapter 6 and recipes that combine
to anytime optimal behavior in Chapter 7, we present the underlying idea of
the framework. Let us start with a look at the search space that is considered
in THTS. We derive it in two steps: first, we show how an AND/OR graph
is induced by an acyclic MDP, and in a second step we show how to convert
the AND/OR graph to an equivalent AND/OR tree. The term AND/OR graph
stems from the fact that it consists of two kinds of vertices (or nodes): AND
nodes (which we call chance nodes) and OR nodes (which go under the name
decision nodes here). The edges connect vertices such that decision and chance
nodes alternate. The root node of an AND/OR graph is always a decision node,
and the leaf nodes are always chance nodes.

Definition 18 (AND/OR-graph). An AND/OR graph is specified by a tuple
G = 〈d0,D,C, E〉 with a set of vertices N = D ∪ C, which is given by the disjunct
sets of decision nodes D and chance nodes C; with root node d0 ∈ D; and
with edges E ⊆ N ×N such that

• 〈N,E〉 is a directed acyclic graph;

• there is a c ∈ C for all d ∈ D such that (d, c) ∈ E; and

• all (n, n′) ∈ E are such that n ∈ D⇒ n′ ∈ C and n ∈ C⇒ n′ ∈ D.

If (n, n′) ∈ E, we call n′ a successor of n and n a predecessor of n′. The set of
all predecessors of n′ is pred(n) ⊆ N . Sequences (n1, . . . , nk) are trajectories
in G if (ni, ni+1) ∈ E for all i = 1, . . . , k−1. We call an AND/OR graph G an
AND/OR tree iff 〈N,E〉 is a tree.

5.2. THE FRAMEWORK 87

Each finite-horizon, factored MDPM induces an AND/OR graph G. Since
we have not excluded unreachable states from MDPs,2 we exclude nodes from
G if the corresponding state is not reachable from s0. While it is not necessary
to do this, it is convenient for a variety of reasons and simplifies the analysis
that follows considerably. Then, for each state s ∈ S that is reachable from
s0, there is a decision node d ∈ D in G with assigned state s(d) = s; for
each state-action pair (s, a) where s is reachable from s0, there is a chance
node c ∈ C with assigned state s(c) = s and assigned action a(c) = a; and
there are no other nodes in N . The edges of G connect nodes according to
the transitions in M: for each transition (s, a, s′) where s is reachable from
s0, there is an edge (d, c) from the unique decision node d with s(d) = s to
the unique chance node c with s(c) = s and a(c) = a; and there is an edge
(c, d′) from c to the unique decision node with s(d′) = s′ unless s′ ∈ S?. Since
acyclic MDPs and AND/OR graphs resemble each other so closely, we use the
following abbreviations that were introduced for states and state-action pairs
earlier in the obvious way for decision nodes and chance nodes as well:

• the successors of a decision node d are A(d) := {c ∈ C | (d, c) ∈ E};

• the successors of a chance node c are succ(c) := {d ∈ D | (c, d) ∈ E};

• the reward in a chance node c is R(c) := R(s(c), a(c));

• the transition probability from c to d is PT [d | c] := PT [s(d) | s(c), a(c)];

• for each trajectory θ1 = (d1, c1, . . . , cn) in G and θ2 = (c1, d2, . . . , cn):

– the accumulated reward is R(θ1) = R(θ2) :=
∑n

t=1R(ct);

– the combined probability is P [θ1] = P [θ2] :=
∏n−1
t=1 PT [dt+1 | ct];

• and the set of leaf nodes is N? := {c ∈ C | s(c)[h] = 1}.

An AND/OR graph G that is induced by a finite-horizon, factored MDPM
differs from M only in a few details: even though it appears differently at
first sight in the figures of MDPs we have seen so far in this thesis, an MDP
does actually not consist of two different kinds of vertices that are connected
by edges, but of a single kind of vertex (representing states) which are con-
nected via hyperarcs. (A closer inspection of the figures reveals that we have
actually taken this fact into account by omitting arrow heads in incoming
edges of “action nodes”, which are thus just a graphical way of representing
hyperarcs.) The AND/OR graph of M, on the other hand, contains a deci-
sion node for each state and a chance node for each state-action pair. The
nodes that are depicted as circles in Figure 5.4, which shows the AND/OR
graph that is induced by the MDP from Figure 5.2, are hence actual vertices in
the AND/OR graph. To illustrate the connection between decision nodes and

2A state s is reachable from s0 iff there is a trajectory θ = (s0, a0, . . . , s) ∈ Θ with P [θ] > 0.

88 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

d0

c0 c1

+2
0 +50

d1 d′2

.4
.6

d′′2 d3

.3
.7

c2 c3 c′4 c′5 c′′4 c′′5 c6 c7

+
10
0 +

10 +
40

+
10 +

40

+
10 +

30

+
20

Figure 5.5: Complete AND/OR tree G of the example MDP of Figure 5.2.

states on the one hand and chance nodes and actions on the other, we use the
same colors and forms for the respective elements in all figures. Other dif-
ferences between the finite-horizon, factored MDP and the induced AND/OR
graph are mostly of technical nature. Terminal states of the finite-horizon, fac-
tored MDP are not represented in the AND/OR graph, which is possible since
they do not entail any information (recall that rewards are independent from
the outcome) and because it allows for simpler and cleaner definitions in the
remainder of this thesis. Therefore, the set of leaf nodes consists of chance
nodes and not of decision nodes. Moreover, even though we have amended
Figure 5.4 (and all other Figures that show AND/OR graphs) with edge labels
that represent transition probabilities and rewards, they are technically not
part of the AND/OR graph but induced by the corresponding MDP (but could,
of course, be added easily as edge labels).

A Trial-based Heuristic Tree Search algorithm does, as the name implies,
not build an AND/OR graph but an equivalent AND/OR tree. It can be derived
from an AND/OR graph by iteratively replacing each subgraph that starts in
a decision node with more than one predecessor with a copy of the subgraph
for each predecessor until the AND/OR graph is an AND/OR tree. In our
example AND/OR graph of Figure 5.4, there is only one decision node with
multiple parents. Cutting the subgraph that is rooted in d2 from the AND/OR
graph removes it along with the nodes c4 and c5, and appending a copy to
both parents c0 and c1 results in the tree that is depicted in Figure 5.5 where
the respective nodes are replaced by a primed and a doubly primed version.
However, this is only a theoretical procedure that allows the description of the
complete AND/OR tree G. We have already emphasized that it is a fundamen-
tal limitation that prevents the ability to scale to large MDPs if an algorithm
requires that the whole MDP is represented in memory. Of course, this is also
the case if the complete AND/OR tree has to be explicated in memory before

5.2. THE FRAMEWORK 89

an algorithm starts its computations.
Each THTS algorithm solves this dilemma by maintaining a version of the

AND/OR tree which is explicated iteratively step by step. The explicit graph
is no static construct while a sequence of trials (θ1, . . . , θn) is simulated, but it
changes over time. We use a superscript to denote with Gk = 〈d0,Dk,Ck, Ek〉
the explicit AND/OR tree at the end of trial θk = (d0, c0, . . . , cl) (as opposed to
the complete AND/OR tree G which goes without superscript). In THTS, all
nodes in the explicit graph can have any number of additional annotations.
However, we restrict ourselves to the following annotations that describe a
node’s property at the end of the k-th trial in this thesis:3

• state-value estimates V̂ k(d) ∈ R for all d ∈ D;

• action-value estimates Q̂k(c) ∈ R for all c ∈ C;

• solve labels ϕk(n) ∈ {true, false} for all n ∈ N ;

• backup counter Bk(n) ∈ N for all n ∈ N ;

• selection counter Lk(n) ∈ N for all n ∈ N ; and

• sets of explicated outcomes succk(c) ⊆ succ(c) for all c ∈ C.

We denote the set of greedy actions of a decision node d at the end of the k-th
trial withAk?(d) ⊆ A(d), which is technically an abbreviation forAk?(d) = {c ∈
A(d) | Q̂k(c) ≥ Q̂k(c′) for all c′ ∈ A(d)} rather than a true annotation (i. e., it
is not maintained in memory explicitly).

The pseudo code of the THTS framework is depicted in Algorithm 7. In-
stances of the framework start building the explicit graph with a graph G0,
an AND/OR tree that consists only the root node d0, a decision node with
s(d0) = s0. The AND/OR tree is built iteratively from a finite-horizon, fac-
tored MDP description M by performing a sequence of trials (θ1, . . . , θn).
The number of trials n can be set directly via a parameter or indirectly via
a timeout parameter in our implementation, and trials stop prematurely if the
root node is labeled as solved. Most trials of an THTS algorithm add nodes
and edges to the explicit graph. Each trial can be described in terms of two
phases: an initial expansion phase which is followed by a backup phase. In the
expansion phase, the explicit tree is traversed starting from the root node by
alternatingly selecting a chance node that represents an action a ∈ A(s(d))
in a decision node d and an outcome s ∈ succ(s(c), a(c)) in a chance node c
according to the action and outcome selection ingredients. Different strate-
gies for action and (to a lesser extent) outcome selection are discussed in the

3The restriction comes from the fact that it is straightforward to extend the framework with
additional (explicit) annotations, but supporting an arbitrary set of annotations complicates the
notation significantly.

90 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

Algorithm 7: Trial-based Heuristic Tree Search

1 THTS(M):
2 G = initialize_explicit_graph(M)
3 while more_trials(d0) do
4 visit_decision_node(M,G, (d0))
5 return ∼ recommend(G)

6 visit_decision_node(M,G, (d0, c0, . . . , dt)):
7 if dt is not expanded then
8 for a ∈ Ak(s(dt)) do add_chance_node(G, dt, a);
9 initialize(G, dt)

10 L(dt)← L(dt) + 1
11 a ∼ select_action(G, dt)
12 visit_chance_node(M,G, (d0, c0, . . . , dt, cn(dt, a)))
13 backup(G, dt)
14 visit_chance_node(M,G, (d0, c0, . . . , ct)):
15 L(ct)← L(ct) + 1
16 if ct is not a leaf and continue_trial(G, (d0, c0, . . . , ct)) then
17 s ∼ select_outcome(G, ct)
18 if dn(ct, s) = ⊥ then add_decision_node(G, ct, s);
19 visit_decision_node(M,G, (d0, c0, . . . , ct,dn(ct, s)))

20 backup(G, ct)

Sections 6.5 and 6.2, respectively. And in the backup phase, one o several
proposed backup functions is applied to all visited nodes in reverse order.

Please note that it is sometimes not sufficient to access the explicit graph
or an annotation at the end of a trial, but at a point in the expansion phase
where only a prefix of the k-th trial θk,t = (d0, c0, . . . , ct) with t ≤ l has been
selected or at a point in the backup phase where only some of the nodes have
been updated. We annotate the explicit AND/OR Graph or an annotation with
an additional superscript, e. g., Gk,t = 〈d0,Dk,t,Ck,t, Ek,t〉, in both cases, and
clarify if we mean the corresponding graph or value during the expansion or
the backup phase if it is not clear from the context.

The THTS framework guarantees that each explicit graph Gk for k > 0 (the
fact that this does not hold in G0 is irrelevant for our discussion) is such that
all chance nodes c ∈ A(d) are explicated when decision node d is explicated.
The result of the action selection is hence that the algorithm proceeds with the
chance node that corresponds to the selected action. This is not the case with
decision nodes that represent a state that is selected by the outcome selection
ingredient. We have to keep track of the states that are explicated at the end
of the k-th trial, and denote the (initially empty) set of explicated outcomes of
a chance node c with succk(c) ⊆ succ(c). Related to this, we abbreviate the

5.2. THE FRAMEWORK 91

Gk Gk+1 Gk+2

Figure 5.6: Example of three consecutive explicit trees Gk, Gk+1, and Gk+2

that are extended in the expansion phase of an THTS algorithm. Thick edges
specify decisions of action and outcome selection, and opaque nodes are ex-
plicated in the current trial. Dashed edges hint at outcomes that have not
been explicated yet.

sum of the probabilities of all explicated outcomes of a chance node c with
P
[
succk(c)

]
:=
∑

d∈succk(c) PT [d | c] and denote with dnk(c, s) the function
that maps to the (only possible) decision node d ∈ succk(c) with s(d) = s if
that node exists, and to ⊥ otherwise; and with cnk(d, a) the unique chance
node c ∈ Ak(c) (which must be explicated in the tree).

If the outcome selection ingredient chooses state s in node c and s(d) 6= s
for all d ∈ succk(c), the THTS framework creates a new node d′ with s(d′) = s
and adds d′ to Dk and (c, d′) to Ek. Furthermore (and this ensures that the
invariant that all successors of decision nodes are explicated holds), the cre-
ated decision node d′ is completely expanded, i. e., a chance node ca with
s(ca) = s(d′) and a(ca) = a is created for each a ∈ A(d′), added to Ck and
connected to d′ by adding (ca, d

′) to Ek. Then the initialization ingredient
initializes the newly created nodes by assigning initial values to all node an-
notations. The process of selecting actions and outcomes and of expanding
the explicit tree is repeated until a leaf node c? is encountered or until the
trial length ingredient decides to terminate the trial.

Example 20. An example of an expansion phase is given in Figure 5.6. Given
that the explicit graph after k trials is the graph to the left (Gk), the (k+1)-th
trial starts with the decision of the action selection that the left action is simu-
lated (as indicated by the thick edge). The outcome selection ingredient decides
that the outcome to the middle is simulated, but the corresponding successor is
not yet explicated (as can be seen by comparing Gk with Gk+1). The respective

92 CHAPTER 5. TRIAL-BASED HEURISTIC TREE SEARCH

7

THTS

6

5

4

3

2

1

Figure 5.7: Example of the backup phase of a THTS algorithm. Thick edges
mark the selected trajectory, and the number next to an (opaque) node gives
the relative position of the node in the backup process (nodes with lower
numbers are updated earlier).

decision node is appended to the tree, as are the two successor nodes that rep-
resent the two actions that are applicable in that node. In trial θk+2, the right
action is selected initially, followed by the left outcome and the left action. As the
only (deterministic) outcome has not been explicated yet, the tree is expanded in
the same vein as in the previous trial by adding a decision node and all of its
successors to the explicit graph.

In the subsequent backup phase, all nodes that were visited during a trial
are updated in reverse order, which allows for an efficient propagation of col-
lected information through the explicit tree. The trial finishes after the backup
function has been applied to the root node, and a new trial starts if desired.

Example 21. The tree in Figure 5.7 shows what has become of the explicit graph
of Example 20 a few trials later. As before, the thick edges indicate the trajectory
that was selected in the expansion phase, which ended in the appendage of the
decision node with the number 1 to its right and of its two successor nodes. In the
backup phase, the nodes that were visited in the trial during the expansion phase
are updated in reverse order, which is given by the numbers next to a subset of
all nodes. The advantage of updates in reverse order is that information that is
collected in the trial can be propagated in the same trial all the way up to the

5.2. THE FRAMEWORK 93

root node. After the seventh call to the backup function, when the root node is
updated, the trial ends and it is determined if another trial is performed.

Once the THTS algorithm decides to stop the simulation of trials, the rec-
ommendation function analyzes the information that is contained in the suc-
cessor nodes of the root node (which represent the actions that are applicable
in the current state of the environment), and executes the action it believes
to be best. Upon receiving the new current state (with a number of step-to-
go that is decreased by one) from the environment, the process is repeated
and the next decision is derived with THTS until a terminal state is reached.
In the following chapter, we continue our discussion of Trial-based Heuristic
Tree Search algorithms by proposing several possible ingredients that allow
the derivation of a large variety of algorithms within our framework.

CHAPTER 6
THTS Ingredients

In the previous chapter, we have presented the Trial-based Heuristic Tree
Search framework, which allows the specification of a large number of al-
gorithms in terms of only six ingredients: initialization, backup function, trial
length, outcome selection, action selection, and recommendation function. In
this chapter, we present a selection of well-known ingredients that are used in
popular algorithms and can be used to derive novel variants within the THTS
framework. The two ingredients that apply the recursive formulas to compute
the annotations of search nodes are the initialization, which is described in
Section 6.1 and the backup function, which is discussed in Section 6.3. The
ingredients that define the expansion phase of a THTS algorithm are the trial
length component (in Section 6.4), the outcome selection (in Section 6.2),
and the action selection (in Section 6.5). Finally, Section 6.6 discusses the
ingredient that is used to derive a final decision based on the results of the
other components, the recommendation function.

6.1 Initialization

We start our discussion of THTS ingredients with the initialization, a compo-
nent that is used to determine the starting values of to the recursive functions
that describe the update rules of a node’s annotations. In particular, an ini-
tialization receives an explicit graph Gk and a decision node d ∈ Dk as input
and initializes its state-value estimate V̂ 0(d), its selection counter L0(d), its
backup counter B0(d), and its solve label ϕ0(d). The THTS framework asserts
that the decision node d must have been expanded right before the initializa-
tion component is invoked – i. e., for all actions a ∈ A that are applicable in
s(d), there is a chance node c ∈ Ck with a(c) = a and an edge (d, c) ∈ Ek.
However, these successors are not yet initialized, so the initialization further-
more initializes the action-value estimate Q̂0(c), the selection counter L0(c),
the backup counter B0(c), and the solve label ϕ0(c) of all c ∈ A(d).

95

96 CHAPTER 6. THTS INGREDIENTS

Definition 19 (Initialization). An initialization is a function I that takes an
explicit graph Gk and a decision node d as input and determines the starting
values V̂ 0(d), Q̂0(c), B0(n), L0(n), and ϕ0(n) of the corresponding recursive
functions for all c ∈ A(d) and n ∈ {d} ∪ A(d).

We consider only a single initialization technique in this thesis, the virtual
trials initialization IVT, which is inspired from our work on the CTP (Eyerich
et al., 2010) and has been adapted to domain-independent probabilistic plan-
ning in the PROST planner (Keller and Eyerich, 2012). In the virtual trials
initialization, an action-value heuristic h : S × A → R is used to compute a fi-
nite heuristic value for each state-action pair (s(c), a(c)). Based on the results
of h, the virtual trials initialization initializes each c ∈ A(d) with

Q̂0(c) = ω ·h(s(c), a(c)), (6.1)

B0(c) = χ,

L0(c) = χ, and

ϕ0(c) = false,

and, subsequently, the parent node d with

V̂ 0(d) = max
c∈A(d)

Q̂0(c),

B0(d) = |A(d)|·χ,
L0(d) = |A(d)|·χ, and

ϕ0(d) = false.

There are two parameters that can be used to adapt the virtual trials initial-
ization. The first, ω > 0, describes the weight of the heuristic. It plays a
somewhat similar role to the weight parameter in the Weighted A? search
algorithm (Pearl, 1984) in the sense that it balances to what extent the al-
gorithm relies on heuristic information rather than the immediate rewards it
has actually obtained during search. However, unlike the weight parameter
in Weighted A?, our parameter ω does not have a clear cut influence on solu-
tion quality as the influence of the heuristic cancels out in combination with
most backup functions (and in particular with all backup functions that are
presented in Section 6.3) over the course of a large number of trials.

The main idea of the virtual trials initialization is reflected by the second
parameter, χ ∈ N+. All annotations of all nodes in the explicit graph are ini-
tialized by treating the heuristic values as if there have been χ virtual trials in
earlier visits of the node, each with a result of ω·h(s(c), a(c)). To complete the
impression that χ (virtual) trials have been performed prior to the initializa-
tion, all backup and selection counters of all chance nodes are set accordingly
as well. The final annotation, the solve label, is set to false initially (if the
chance nodes are leaves, we leave it to the backup function to label the nodes

6.2. OUTCOME SELECTION 97

as solved if desired). Please observe that all annotations are initialized to fi-
nite starting values if the virtual trials initialization is used, a property that is
important in our theoretical evaluation of THTS recipes in Chapter 7.

An advantage of heuristic search algorithms over Monte-Carlo Tree Search
is that it is not necessary to select each child node of a node at least once
before an informed decision can be taken by an action selection ingredient.
Especially when the deliberation time is sparse this has proven to be an sig-
nificant benefit of heuristic search over Monte-Carlo Tree Search. Examples
where virtual trials (or comparable techniques) improve the performance con-
siderably include the winner of the AAAI 2007, 2008, and 2012 General Game
Playing competition CADIA (Finnsson and Björnsson, 2008, 2010, 2011), the
popular Go player of Gelly and Silver (2007, 2011) and PROST (Keller and
Eyerich, 2012), the winner of IPPC 2011 and 2014 that is also the base of our
implementation of the THTS framework.

The third – and likely most influential – way to customize the virtual tri-
als initialization is by the choice of the heuristic function h. Algorithms for
the computation of heuristic estimates have received much attention in re-
cent years, especially in the context of classical planning (e.g., Haslum and
Geffner, 2000; Bonet and Geffner, 2001; Richter et al., 2008; Helmert and
Domshlak, 2009). Even though their work has shown the crucial influence
of powerful heuristics, heuristic functions are not the focus of this thesis.
However, we believe that heuristic functions for probabilistic planning are a
promising research area for future work. In the empirical evaluation of THTS
algorithms in Chapter 8, we use the base heuristic that comes with the imple-
mentation of the PROST planner. It performs an iterative deepening search on
the most-likely determinization of the finite-horizon, factored MDP until the
determinization has been searched exhaustively, or until a timeout is reached
that is determined in a learning step before the interaction between planner
and environment starts. An in-depth discussion of the determinization and
the heuristic can be found in the description of the PROST planner (Keller and
Eyerich, 2012).

6.2 Outcome Selection

While it is not possible to select the outcome of an executed action at will, it
is entirely possible to decide during simulation which outcome of an action
application deserves more attention. The THTS ingredient that is responsible
for this decision is the outcome selection. Depending on the provided model,
it is only possible to select an outcome that was encountered during previous
trials (with a generative model) or to choose an arbitrary outcome (with a
declarative model). However, there is only little work on the topic in the lit-
erature. Apart from the Anytime AO? algorithm of Bonet and Geffner (2012),
who define a measure for the impact of a tip node that influences the outcome

98 CHAPTER 6. THTS INGREDIENTS

selection, we are not aware of any efforts on the development of outcome se-
lections. All other work uses an outcome selection component that samples
among (unsolved) outcomes according to their probabilities (possibly extrap-
olated with the sum over the probabilities of solved outcomes). Even though
the THTS framework is specifically designed to support arbitrary outcome se-
lection strategies, our own work is (unfortunately) no exception. Let

succk¬ϕ(c) = {s′ ∈ succ(s(c), a(c)) | dnk(c, s′) = ⊥ or ¬ϕ(dnk(c, s′))}

be the set of all unsolved successors of a chance node c (this includes outcomes
that are not yet explicated and is hence a set of states rather than a set of
decision nodes). Furthermore, let

Pk¬ϕ[c] =
∑

d∈succk¬ϕ(c)

PT [s(d) | s(c), a(c)]

be the accumulated probability of all unsolved outcomes. These allow the
definition of an outcome selection O in general and of the Monte-Carlo (MC)
outcome selection OMC in particular:

Definition 20 (Outcome Selection). An outcome selection is a function O
that maps an explicit graph Gk,t and a trial θk,t = (d0, c0, . . . , dt, ct) that is such
that succk¬ϕ(ct) 6= ∅ to a probability distribution over succk¬ϕ(ct).

Given a trial θk = (d0, c0, . . . , dt, ct), the MC outcome selection selects each
state s ∈ succk¬ϕ(ct) in chance node ct with probability

PMC(s(dt+1) = s) =
PT [s | s(ct), a(ct)]

Pk¬ϕ[ct]

and proceeds the trial in the node that corresponds to the selected successor
state dt+1.

6.3 Backup Functions

In the previous chapter, we have seen that the role of the backup function is
the propagation of information that is gathered in a trial or run. The most
important difference between any two backup functions is the way how the
new information is incorporated into the state- and action-value estimates of
all decision and chance nodes that are affected by the current trial. Other
annotations that are updated by the backup function are the backup counter
Bk(n) and the solve label ϕk(n) of all visited nodes n.

Definition 21 (Backup Function). A backup function is a function B that
takes an explicit graph Gk,t and a decision or chance node n as input, and com-
putes the values of the annotations V̂ k(n) (iff n ∈ D), Q̂k(n) (iff n ∈ C), Bk(n),
and ϕk(n).

6.3. BACKUP FUNCTIONS 99

The backup function of all considered annotations is given as a recursive
formula with starting value that is determined by the initialization, and it is
invoked for all nodes of the current trial θk = (d0, c0, . . . , dl, cl) in reverse order.
An annotation Xk(n) describes the value of annotation X ∈ {V̂ , Q̂,B, ϕ} of
node n at the end of the k-th trial. The recursive equation that allows the
computation of the value Xk(n) in the t-th timestep of the k-th trial may
depend (for practical reasons) only on the latest values of all annotations at
the moment the update takes place. In particular, for a node nt ∈ {dt, ct} that
was visited in the current trial, this means that an annotation Xk(nt) may be
updated (apart from parameters, constants, and information on the current
trial like the accumulated reward) only based on (1) the value of annotations
that belong to the same node with the values of the end of the previous trial
(i. e., Q̂k−1(nt) or V̂ k−1(nt), Bk−1(nt), and ϕk−1(nt)) and (2) on the (already
updated) values Q̂k(n′) or V̂ k(n′), Bk(n′), and ϕ(n′) of all nodes n′ that are
part of the subgraph that is rooted at nt. (As we are interested in anytime
algorithms which must ensure that trials do not take prohibitively long, we
restrict ourselves even further and consider only backup functions that depend
on nodes that were visited in the current trial and on their direct successor
nodes.) The dependencies reflect the fact that annotations are updated in
an order that is given by an increasing number of trials (1) and within a trial
from the leaves to the roots (2), and that they are updated in-place in practice,
which we believe to be important for efficient implementations.

We nevertheless make one exception (yet for convenience of notation
only), and assume that the backup counter Bk(n) is updated before Q̂k(n)
and V̂ k(n) for all n ∈ N and can hence additionally be used in the recursive
formulas for the computation of state- and action-value estimates. All backup
functions that are considered in this thesis have in common that state-value
estimates, backup counter and solve labels are updated by applying the equa-
tions

V̂ k(d) = max
c∈A(d)

Q̂k(c) (6.2)

Bk(n) = Bk−1(n) + 1 (6.3)

ϕk(n) = false (6.4)

to all decision nodes dt and all nodes nt ∈ {dt, ct} for 0 ≤ t ≤ l that are
updated in the backup phase of a THTS trial θk = (d0, c0, . . . , dl, cl). The
update of the action-value estimate differs between all backup functions, and
the two remaining annotations that were introduced in the previous chapter,
the selection counter Lk(n) and the set of explicated outcomes succk(c), are
maintained by the framework directly.

We have already seen some examples of backup functions in previous parts
of this thesis. Chapter 2.3 presented the Bellman optimality function and
showed how to turn it into an assignment operator (the Full Bellman backup

100 CHAPTER 6. THTS INGREDIENTS

d0

c0

+20

d1 d2

.4 .6

c1 c2

±0 ±0

d3 d4

c3 c4 c5 c6

+1
00 +10 +4

0 +10

2,7 5 1, 4, 6 3

Figure 6.1: Explicit AND/OR tree that is used for the running example of
this section: a number x below the chance nodes c3, . . . , c6 specifies that we
assume that the x-th trial ends in the corresponding node in the first example
scenario (trial two and five are interchanged in the second example scenario).

function) that is used in the acyclic value computation algorithm, and we
have met the same idea again in our discussion of algorithms for planning
with declarative model in Section 5.1.4. However, we have also determined
that Full Bellman backups are no tractable option in THTS as all successors
of a chance node must be explicated for their computation, which can be a
number that is exponential in the number of state variables in our framework.
While there are possibilities to deal with this problem, e. g., by using a com-
mon estimate for all outcomes that are not yet explicated, we are not aware
of an anytime optimal solver that uses a variant of Full Bellman backups. The
GLUTTON and GOURMAND planners of Kolobov et al. (2012a,b) use a vari-
ant where a fixed number of outcomes is subsampled a-priori, but they lose
anytime-optimality in the process. In this thesis, we do therefore not consider
Full Bellman backups nor any other kind of full backup function.

Example 22. We demonstrate the propagation of information with different
backup functions with the help of an example MDP that is similar to the left arm
of the MDP that was used to introduce Online RL, AND/OR graphs and AND/OR

6.3. BACKUP FUNCTIONS 101

trees in Chapter 5. It differs only in the fact that we introduced additional deci-
sion nodes d1 and d2 (with a single applicable action) and (deterministic) chance
nodes c1 and c2. The relevant part is depicted in Figure 6.1, along with markings
(at the bottom) that describe the first seven trials that are considered in this ex-
ample (they are such that θ1 = (d0, c0, d2, c2, d4, c5), θ2 = (d0, c0, d1, c1, d3, c3),
etc.). To simplify the example, we assume that all chance nodes are initialized
with an initialization function that sets Q̂0(ci) = 0 for i ∈ {0, 1, 2, 3, 6}, and
Q̂0(c4) = Q̂0(c5) = ε for some ε > 0. The value for ε is sufficiently close to 0 that
we can treat it as 0 when action-value estimates are updated, but it allows us
to regard a(c4) and a(c5) as the initial greedy choice in d3 and d4, respectively.
(This detail is only relevant in Examples 26 and 27).

An overview on the resulting action-value estimates Q̂k(c0) with all backup
functions that are presented over the course of this section for the first seven trials
is given in Table 6.1, along with the action-value estimates in an alternative set
of trials where the second and fifth trial are exchanged. (To distinguish both
sets of trials, we refer to them with first and second example scenario in the
following.) Action-value estimates for node c0 for the first and second example
scenario are furthermore depicted graphically in Figures 6.2 and 6.3, respectively.
For comparison, it might be interesting that the true action value estimate of the
action that leads to c0 is Q?(c0) = 20 + (.4·100) + (.6·40) = 84. The performance
of the individual backup functions in the set of example trials is discussed over
the course of this section.

6.3.1 Monte-Carlo Backups

The most popular backup function in many applications for learning and plan-
ning under uncertainty is the Monte-Carlo backup function. We have al-
ready seen in Section 5.1 that MC backups maintain action-value estimates
Q̂kMC(c) for all chance nodes c that are updated such that the current aver-
age is extended with the result of the latest trial. More formally, given a trial
θk = (d0, c0, . . . , dl, cl) and with Rt..l(θk) :=

∑l
i=tR(ci), the backup function

Q̂kMC(ct) =

R(ct) if t = H−1

Q̂k−1
MC(ct) +

Rt..l(θk)−Q̂k−1
MC (ct)

Bk−1(ct)+1
otherwise

(6.5)

is used to update all visited chance nodes ct for t = 0, . . . , l.

Example 23. For the leaf nodes of Figure 6.1, the average result is equal to
the immediate reward in that node starting from the trial where the node was
visited first, i. e., Q̂kMC(c5) = 40 for all k ≥ 1, Q̂kMC(c3) = 100 for all k ≥ 2,
Q̂kMC(c6) = 10 for all k ≥ 3, and Q̂kMC(c4) = 10 for all k ≥ 5. The seven
subsequent estimates (without Q̂0

MC) for c1 are 0 - 100 - 100 - 100 - 55 - 55 - 70
(in that order) and 40 - 40 - 25 - 30 - 30 - 32.5 - 32.5 for c2 in the first example
scenario. The evolution of the action-values estimates Q̂kMC(c0) for chance node c

102 CHAPTER 6. THTS INGREDIENTS

is given in Table 6.1. After seven trials, the estimate is Q̂kMC(c0) = 684
7 and hence

still quite far from the true action value Q?(c0) = 84. This is mostly due to the
fact that the average result of the three trials over c1 is 70 instead of 110, which
is owed to the explorative fifth trial in that part of the search tree.

If MC backups are used, the action-value estimate of a chance node ct is
influenced by each performed trial that visits ct with the same weight. While
this does not matter as long as trials follow the optimal policy, it becomes a
problem when trials explore other options as well – our first glimpse at MC
backups in Section 5.1 hinted at the fact that this can even lead to suboptimal
behavior in the limit. Our theoretical evaluation in Chapter 7 shows that
there are nevertheless combinations with other ingredients that are such that
the resulting THTS algorithm converges towards the true action values. As
we will see, the main idea is that this is the case for action selection strategies
that are greedy in the limit, i. e., such that (almost) only the optimal policy is
simulated after a while.

However, it often takes a prohibitive number of trials until that point is
reached in practice. On the other hand, one can observe that most action
selection strategies do not switch their behavior all the sudden but resemble
the optimal policy in more and more decision nodes with an increasing num-
ber of trials. It is therefore a popular idea to give trials that were performed
later a higher weight and decrease the influence of early trials over time. We
allow this by considering a learning rate ηk(c) for MC backups, which is used
to weight the result of the latest trial in c. The resulting backup function

Q̂kMC(ct) =

{
R(ct) if t = H−1

Q̂k−1
MC(ct) + ηk(ct)·

(
Rt..l(θk)− Q̂k−1

MC(ct)
)

otherwise
(6.6)

is equivalent to Equation 6.5 iff the learning rate is set to ηk(ct) = 1
Bk(ct)+1

.
We call this learning rate the sample-average learning rate. It is a well-known
fact that MC backups converge in many applications if the learning rate is
such that

∞∑
k=0

ηk(ct) =∞, and

∞∑
k=0

(
ηk(ct)·ηk(ct)

)
= α

for some finite constant α (see, for instance, Sutton and Barto, 1998). Put
simply, the first condition is necessary to guarantee that the learning rate is
high enough to overcome a poor initial value or poor decisions in early trials,
and the second asserts that the learning rate becomes small enough eventually
to allow convergence.

6.3. BACKUP FUNCTIONS 103

k 1 2 3 4 5 6 7

R(θk)
60 120 30 60 30 60 120

60 30 30 60 120 60 120

Q̂k
MC(c0)

60 90 70 671
2 60 60 684

7

60 45 40 45 60 60 684
7

Q̂k
MC(0.5)(c0)

60 100 65 63 52 542
7 705

7

60 40 35 45 70 671
7 80 5

14

Q̂k
TD(c0)

60 90 75 683
4 70 67 1

12 70 3
14

60 45 45 461
4 52 52 1

12 57 5
12

Q̂k
LS-MC(c0)

60 60 60 60 60 60 75

60 45 45 50 50 521
2 66

Q̂k
LS-TD(c0)

60 60 60 60 60 60 75

60 45 45 50 50 521
2 60

Q̂k
ES-MC(c0)

60 90 90 80 80 75 84

60 45 45 50 671
2 66 75

Q̂k
QL(c0)

60 90 80 75 84 80 855
7

60 45 50 521
2 66 65 726

7

Q̂k
MaxMC(c0)

60 90 80 75 84 80 855
7

60 45 50 521
2 84 80 855

7

Q̂k
PB(c0)

60 84 84 84

60 48 48 84

Table 6.1: Action-value estimates Q̂k(c0) under different backup functions at
the end of the k-th trial. The gaps of Q̂kPB(c0) are because the corresponding
trials are not performed with PB backups due to the solve labeling procedure.

Learning rates that are determined by progressive decay comply with these
restrictions: they are such that the learning rate is determined based on a
parameter ηd (with 0 < ηd ≤ 1), the learning rate decay, as

ηk(ct) =
1

(ηd ·Bk(ct)) + 1
(6.7)

for chance node c, which can be used to model the sample-average learning
rate by considering ηd = 1.1

1A second parameter η0, the initial learning rate, is often used in place of the constant
numerator of ηk(ct). Considering the learning rate decay suffices for our purposes, though.

104 CHAPTER 6. THTS INGREDIENTS

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7

Q
k
(c

0
)

k

MC

MC(0.5)

TD

MaxMC, QL

PB

LS(MC/TD)

ESMC

Figure 6.2: Action-value estimates Q̂k(c0) of different backup functions at the
end of the k-th trial in the first example scenario.

Example 24. The action-value estimates of a THTS algorithm that uses MC
backups with a learning rate that is determined by progressive decay (with ηd =
0.5) are denoted with Q̂kMC(0.5) in our example. It can be observed that the action-
value estimates tend to oscillate stronger in the direction of the latest sample
than Q̂kMC. Unlike in MC backups with ηd = 1, where the relative order of trials
is irrelevant, the different relative order of both trial sequences leads to different
final action value estimates: the final result is a better estimate of the true value
if good decisions are taken later during the trials, as can be seen in the fact that
the second example scenario, where the explorative selection in d3 occurs already
in the second instead of the fifth trial, yields a final result that is closer to the
true action value of 84.

6.3.2 Temporal Difference Backups

The introduction of a learning rate that is determined by progressive decay in
MC backups is a first step towards a backup function that allows fast conver-
gence towards true action values. However, MC backups that use progressive
decay suffer from the problem that it takes several exploitative actions to com-
pensate the error that is caused by an explorative one. In our example sce-
nario, this is most obvious in the fifth trial (the second in the second example
scenario), where the explorative selection of a(c4) leads to a large decrease
of the involved action-value estimates. In the first example scenario, this is

6.3. BACKUP FUNCTIONS 105

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7

Q
(c

0
)

trial

MC

MC(0.5)

TD

MaxMC

QL

PB

LSMC

LSTD

ESMC

Figure 6.3: Action-value estimates Q̂k(c0) of different backup functions at the
end of the k-th trial in the second example scenario.

barley compensated by the selection of a(c3) in the seventh trial, leading to a
final estimate that is only little better than the estimate of MC backups with
ηd = 1.

Unfortunately, this is not an artificial case that never occurs in practice: in
domains where the initialization is such that the relative order of actions is
reasonable2, it is the case with many action selection strategies that early and
late trials are such that the optimal action is selected (the early ones due to
a good initialization, and the late ones due to informative decisions), while
suboptimal actions are selected in the trials in between (due to the necessity
to explore at some point). The ability of a backup function to adapt quickly
to the latest samples is therefore a two-edged sword: on the one hand, it is
desirable that action-value estimates are highly flexible and change quickly
towards the results of the latest trials. But on the other hand, if they are too
unstable, each explorative action or outcome with low probability can distort
the final result significantly. It turns out that a technique that is very popular
in the Reinforcement Learning community – Temporal Difference Learning
– might provide us with a solution to this problem: like MC backups, their
flexibility can be controlled with a learning rate function, but they produce
more stable estimates as updates are based on the action-value estimate of
the chance node that follows in the current trial instead of the accumulated
reward of the current trial.

2The heuristic estimates can still be arbitrary bad, only the relative order is of relevance.

106 CHAPTER 6. THTS INGREDIENTS

Temporal Difference Learning algorithms TD(λ) are typically described in
terms of a parameter λ (e.g., Sutton and Barto, 1998). Even though there is
no reason not to consider other values for λ, our backup function restricts to
the basic version TD(0). In Online RL, where TD learning is very popular, it is
an important property of TD backups that the update of action value estimates
can be performed right after an action has been selected for execution and not
only when a trial has been finished. As the new information is directly used to
update an estimate this away, a better informed decision can be made if the
same state is encountered again in the same trial. Furthermore, it allows TD
backups to also work in scenarios that are not episodic (i.e., one where the
learning process can be restarted from the initial state at any time). However,
both of these properties are irrelevant for our needs, as it is impossible to
reach the same state more than once in the same trial due to the acyclicity of
the MDP. We therefore update action value estimates in the backup phase of
k-th trial θk = (d0, c0, . . . , dl, cl) with the function

Q̂kTD(ct)=

R(ct) if t = H−1

Q̂k−1
TD (ct)+ηk(ct)·

(
R(ct)+Q̂k−1

TD (ct)
)

if H−1 < t = l

Q̂k−1
TD (ct)+ηk(ct)·

(
R(ct)+Q̂kTD(ct+1)−Q̂k−1

TD (ct)
)

otherwise.
(6.8)

This has the advantage that collected information is propagated faster while
stable estimates are maintained. The TD backup function looks similar to
the MC backup function, and it is essentially only the term Rt..l(θk) that has
been replaced by R(ct) + Q̂kTD(ct+1). In other words, an action-value esti-
mate Q̂kTD(ct) is no longer updated under consideration of the reward that
was achieved in the current trial during and following the visit of ct, but with
the sum of the immediate reward R(ct) (which is also contained in Rt..l(θk))
and the action-value estimate of the next chance node that was visited in the
current trial (which has already been updated in the current trial and hence
includes the information of Rt+1..l(θ

k)). As the action-value estimate of the
selected successor is more stable than Rt..l(θk), TD backups are more resilient
to results that differ vastly from the current estimate, but they also adapt
slower to a better policy. Basing updates on the current estimate of succes-
sor states instead of using the result of the latest trial is typically known as
bootstrapping. From a theoretical point of view, there are good reasons both
for the usage of MC and TD backups, and we will see in Chapter 7 that there
are anytime optimal THTS recipes with both backup functions. However, it is
unclear to date if one backup function has a theoretical advantage over the
other, and a comparison of the application of TD backups to our example runs
to the application of MC backups above also shows a better result in one run
and a worse one in the other. We attempt to find an empirical answer on the
advantages of both backup functions in Chapter 8.

6.3. BACKUP FUNCTIONS 107

Example 25. Let us first observe that Q̂kTD(c1) = Q̂kMC(c1) and Q̂kTD(c2) =

Q̂kMC(c2) for all k. The first action-value estimate for c0 where MC and TD back-
ups differ in the first example scenario is after the third trial, where the (com-
parably bad) trial over c6 influences TD backups less since its update is based
on Q̂3

TD(c2) = 25 instead of R(c2) + R(c6) = 10 that is used by MC backups.
Similarly, in the fifth trial (which includes the bad decision to simulate a(c4))
the action-value estimate Q̂5(c0) even increases because the fact that the better
outcome to the left was sampled weighs more than the poor decision in d3. The
estimates of TD in the first example scenario are therefore always at least as close
to Q?(c0) as the corresponding estimates that are computed with MC backups.

However, TD backups suffer from the problem that early backups influence
the estimates stronger than later ones (and the order of the trials hence plays
a role for TD backups even with the sample-average learning rate) – the poor
decision in d3, which is taken already in the second trial in the second example
scenario, influences TD backups far more than MC, leading to an estimate that
is worse after seven trials in that case. It is, however, possible to counteract this
effect by using a learning rate, but the influence of the learning rate with the same
learning rate decay is lower in TD – the action-value estimates with ηd = 0.5,
for instance, lead to Q̂7

TD(0.5)(c0) ≈ 71.79 in the first example scenario (which
is only 2.2% higher than Q̂7

TD(c0) as opposed to an increase of 3.1% between
the respective MC backup functions), and Q̂7

TD(0.5)(c0) ≈ 61.88 in the second
(an increase of 7.7% for TD(0.5) in comparison to sample-average TD, while the
estimate with MC(0.5) is 17.2% higher than the estimate of sample-average MC).

6.3.3 Selective Backups

We have seen that both MC and TD backups suffer from the problem that the
action-value estimate of a chance node c can be biased by explorative action
selections in the subtree rooted at c. We have presented a possible solution
with the introduction of a learning rate for MC and TD backups, but the value
for the learning rate decay must be selected with care to avoid unstable esti-
mates that oscillate strongly. In this section, we present a simple alternative
solution to the problem that exploits the fact that we know during the backup
phase if we are about to update a node based on decisions that contain ex-
plorative actions. Selective backups are based on the principle of separation
of concerns that has been proposed by Feldman and Domshlak (2012), where
chance nodes are only updated if the part of the trial that impacts the update
has been derived with greedy action selections only. Feldman and Domshlak
argue that the fact that the action selection strategy of an algorithm follows
two different concerns – exploration and exploitation – should also be re-
flected in the backup function.

Each trial of the BRUE algorithm and its variants (Feldman and Domshlak,
2013, 2014a,b) starts with a purely explorative phase until a switching point
is reached that is set following a predefined pattern. All action selections be-

108 CHAPTER 6. THTS INGREDIENTS

fore the switching point are UNI and all other are greedy, and action-value
estimates are only updated for all nodes starting with the chance node at
the switching point. In BRUE, action selection and backup function are in-
terdependent and only work in the specific combination. Here, we present
a generalization of the BRUE backup function that realizes the separation of
concerns concept and allows the combination with the other THTS ingredi-
ents presented in this thesis. Given a trial θk = (d0, c0, . . . , dl, cl), we define
the Boolean flag σk(ct) for a chance node ct in θk as

σk(ct) :=

{
true if t = l

ct+1 ∈ Ak−1
? (dt+1) ∧∧l

i=t+2 σ
k(ci) otherwise.

(6.9)

In other words, σk(ct) holds for a chance node if it is the last visited node
in the trial, or if all decisions following ct in that trial were due to greedy
choices. The role of σk is the same as in BRUE: the action-value estimate
of a node Q̂k(ct) is updated iff σk(ct) is true, and it remains unaltered oth-
erwise. This way, the concept of separation of concerns can be achieved in
combination with any other backup function. In combination with a backup
function B, we can derive the lazy selective B backup function, where the
action-value estimates and backup counters of all visited chance nodes ct are
update according to the rules

Q̂kLS-B(ct) =

{
Bk(ct) if σk(ct)
Q̂k−1

LS-B(ct) otherwise, and
(6.10)

Bk(ct) =

{
Bk−1(ct) + 1 if σk(ct)
Bk−1(ct) otherwise,

(6.11)

where Bk(ct) refers to the function of B that computes the backup in the k-
th trial based on the action-value estimates Q̂kLS-B. Even though any backup
function can be used in combination with the separation of concerns that is
achieved by lazy selective backup functions, we restrict our analysis in the
following to lazy selective Monte-Carlo (LS-MC) and lazy selective Tempo-
ral Difference (LS-TD) backups where the update rules that are specified in
the Equations 6.6 and 6.8 are used in place of Bk(ct) in Equation 6.10, re-
spectively. In combination with MC backups, for instance, this results in the
backup function where all chance nodes ct that are visited in a trial θk are
updated according to Equation 6.11 and the rule

Q̂kLS-MC(ct) =

R(ct) if t = H−1

Q̂k−1LS-MC(ct) + ηk(ct)·
(
Rt..l − Q̂k−1LS-MC(ct)

)
if t 6= H−1 and σk(ct)

Q̂k−1LS-MC(ct) otherwise.

Note that it is not necessary to check if t ≥ σk in the first case where t =
H−1 since Equation 6.9 ensures that the last action in each trial must be

6.3. BACKUP FUNCTIONS 109

updated. LS-MC is the backup function that resembles the backup function of
the BRUE algorithms the most. However, it is slightly more general as LS-MC
allows the usage of a learning rate, a concept that is incorporated comparably
in BRUE(α) (Feldman and Domshlak, 2014b) where learning is achieved by
removing obsolete results from a list of rewards that is maintained for each
chance node in the explicit graph.

Example 26. Recall from Example 22 that the actions a(d4) and a(d5) are con-
sidered the greedy choices initially in d3 and d4, respectively. In the trials over
d2 the result is as desired: the explorative trial where c6 is selected is ignored in
c2 and Q̂kLS-MC(c2) = Q̂kLS-TD(c2) = Q?(c2) = 40 for all k ≥ 1. However, the
trials over d1 give a completely different picture: since c4 is considered the better
choice initially, it is not until the last considered trial of the first example scenario
(which is the third over c1) that a trial impacts the action-value estimate of c1

because the selection of c3 in the second trial is non-greedy but switches the rela-
tive assessment of c3 and c4 such that the fifth trial over c4 is non-greedy as well
(admittedly, it requires poor initialization and action selection ingredients for
this case). The result is that only trials from the right branch impact Q̂kLS-MC(c0)
for k ≤ 6, but starting with the seventh trial both LS-MC and LS-TD will only
consider optimal action selections.

Apparently, there is no difference between LS-MC and LS-TD in the first exam-
ple scenario (which is due to the fact that the action-value estimates of c1 and c2

rely only on trials over c3 and c5, respectively). The second scenario is worth dis-
cussing only because it shows that LS-MC and LS-TD are in fact different backup
functions: in the seventh trial, LS-MC makes an update based on the result of the
trialR(c0)+100 = 120, while LS-TD bases its update onR(c0)+Q̂7

LS-TD(c1) = 55.

A potential weakness of backup methods that consider the principles of
separation of concerns is that only a comparably small number of trials im-
pacts the action-value estimates of actions that are applicable in the envi-
ronment’s current state (i. e., of successors of the root node d0). In the first
scenario of our running example, already three out of seven trials are ignored
in c0. Even worse, in problems with a larger horizon this will occur a lot more
often, as most action selection methods that are not designed to be used in
conjunction with Selective backups (such as BRUE) are such that the proba-
bility that all decisions in a trial suffix are greedy is negatively correlated to
the length of the trial. However, it is a valid argument that the information
that is considered is so much more accurate that the sparseness of information
is compensated for. Nevertheless, one has to keep in mind that lazy selective
backups do by no means only consider trials where all actions are selected
according to the optimal policy, but it considers trials where all actions are
selected according to the a policy that is believed to be the optimal policy in
the current trial. This is apparent in the second example scenario, where the
second trial with the suboptimal choice of a(c4) leaves its mark on the action-
value estimate of c0.

110 CHAPTER 6. THTS INGREDIENTS

Since it is anyway not the case that only trials where the optimal policy
is simulated are considered it is a promising approach to think about ways
how to increase the number of trials that impact action-value estimates. If we
take the lazy selective approach to the extreme where all trials are considered
in all visited nodes we end up with MC and TD backups as defined earlier
in this section. However, there is a large space between that extreme and
lazy selective backups.3 We propose only a single such method that is closely
related to lazy selective backups. It is inspired from the behavior of LS-MC and
LS-TD in the first scenario of our running example, where both lazy selective
backups ignore the result of second trial in the backup of c1 because the greedy
action at the moment of action selection has been c4. However, after having
updated c3 and before updating c1 it is already apparent that a(c4) is no longer
the greedy choice in d3 in future trials. This means that in the next trial
where the same decision is made in c1, the trial will be considered, and if it is
reasonable to do so in the next trial over c1 there is no reason not to include
the information of the current trial right away.

For a given backup function B we therefore define eager selective backups
as the backup function that is identical to lazy selective backups except for the
fact that the switching point σk is calculated in the k-th trial as

σk(ct) :=

{
true if t = l

ct+1 ∈ Ak−1
? (dt+1) ∪ Ak,t+1

? (dt+1) ∧∧l
i=t+2 σ

k(ci) otherwise,

Please observe that the action-value estimate of chance node ct+1 in the k-th
trial has already been performed when σk(ct) is computed, and Ak,t+1

? (dt+1)
therefore refers to the set of greedy actions after the update.

Example 27. We only provide results for ES-MC backups in Table 6.1 and Figure
6.2 and 6.3 since ES-TD backups behave equally in the first example scenario and
differ only slightly in the second. The most important difference is that ES-MC
backups consider the second trial over c3 in c1 as the computation of Q̂2

ES-MC(c3)
makes c3 the greedy choice in d3 in future trials. It is a promising sign that the
final action-value estimate in c0 is equal to Q?(c0) = 84, but the result of the
second example scenario shows that this is (of course) not necessarily the case.

6.3.4 Q-Learning Backups

With the family of selective backup functions, we have presented a first solu-
tion to the problem that explorative actions have the potential to bias action-
value estimates disproportionately for many trials. Selective backups achieve
this by ignoring parts of trials that are not accomplished under the greedy
policy. However, like MC and TD backups, they are on-policy methods that

3It is also possible to consider even less trials in node updates. However, we do not believe
that is a promising idea and do hence not pursue it any further.

6.3. BACKUP FUNCTIONS 111

base their backup only on the result of the policy that was simulated in the
latest trial. A popular alternative in RL are off-policy methods that are able to
simulate one policy but learn from another one. That way, it becomes possi-
ble to explore in the simulation but base backups directly only on the policy
that is believed to be optimal. In THTS algorithms, we achieve this by tak-
ing the state-value estimates of decision nodes d – which correspond to the
value of the greedy policy in d according to Equation 6.2 – into account. All
backup functions that are discussed in the remainder of this section are off-
policy methods. The equivalent for TD backups that incorporates this idea is
known under the name Q-Learning in the literature (Watkins, 1989), where
the dependence on the action-value of the next chance node in TD backups is
replaced by a dependence on the state-value of the direct decision node suc-
cessor. The resulting QL-backup function computes its chance node estimates
with

Q̂kQL(ct) =

R(ct) if t = H−1

Q̂k−1
QL (ct)+ηk(ct)·

(
R(ct)−Q̂k−1

QL (ct)
)

if H−1 < t = l

Q̂k−1
QL (ct)+ηk(ct)·

(
R(ct)+V̂ k

QL(dt+1)−Q̂k−1
QL (ct)

)
otherwise

(6.12)

for all chance nodes ct that are encountered in a trial θk = (d0, c0, . . . , dl, cl).

Example 28. The interesting trials in the first example scenario are the third
and fifth where suboptimal actions are selected in d4 and d3, respectively. In
contrast to TD, which bases its update on the reward of 10 that is obtained when
c6 is visited, QL exploits its knowledge that there is a better choice and bases its
update on c5 instead. QL is hence equivalent to a version of TD that pretends in
the third trial that c5 has been selected instead of the suboptimal c6. The same
behavior can be observed in the fifth trial, where QL effectively uses a trial over
c3 (which is known to be the max child of d3) rather than c4. Interestingly, after
the fifth trial (when all trajectories in the AND/OR Tree have been simulated at
least once), the decision of the action selection strategy becomes irrelevant for the
backup function, since QL will always use the information of the trials over c3

and c5 in its updates.

6.3.5 MaxMonte-Carlo Backups

When we compare the result of QL-backups in the first and second example
scenario, it is apparent that the fact that the poor decision in d3 of simu-
lating c4 comes prior to the right decision of selecting c3 is reflected in the
action-value estimates of c0 forever (hence the lower estimates in the second
scenario). The reason is that QL backups – as well as MC and TD backups –
compute new action-value estimates by altering the old value with an error
estimate that is given as the difference of the result in the current trial and

112 CHAPTER 6. THTS INGREDIENTS

the old value. We have already seen that this is different in the Full Bellman
backup function, where the old estimate is not part of the computation a new
estimate, but only the estimates of the successor nodes. Such an approach is
typical for Dynamic Programming algorithms. We have adopted the idea of
DP in our original work on THTS (Keller and Helmert, 2013) and combined it
with the principles of MC backups. In the MaxMonte-Carlo (MaxMC) backup
function, decision nodes are updated by maximizing over all successor nodes,
while action-value estimates are computed as the sum over the state-value
estimates over all successors, each weighted proportionally to the number of
times it has been visited. Formally, all chance nodes ct that are encountered in
a trial θk = (d0, c0, . . . , dl, cl) are updated with MaxMC backups by applying

Q̂kMaxMC(ct) =

R(ct) if succk(ct) = ∅

R(ct) +

∑
d∈succk(ct)

Bk(d)·V̂ kMaxMC(d)∑
d∈succk(ct)

Bk(d)
otherwise.

(6.13)

MaxMC backups are not only an off-policy backup function (since state-value
estimates are considered in the updates of Q̂kMaxMC(ct)), but both kinds of
nodes are also updated with DP methods where estimates are based on the
estimates of successor nodes.

Example 29. We have seen that QL backups overcome the problem of explo-
rative actions by pretending in their backups that each trial has been performed
under application of the current greedy policy. However, if the greedy policy is
inaccurate in a trial, the error of that – in hindsight explorative – action applica-
tion impacts the estimates forever (albeit with a decreasing weight). An example
for this effect is the second example scenario, where the action-value estimate is
biased by the seemingly greedy decision in the second trial that turns out to be
explorative in the fifth. This is different with MaxMC backups: as action-value
estimates are not altered by closing the gap to the latest result but re-computed
based on the estimates of all successor nodes, MaxMC backups have the abil-
ity to “alter the past” and pretend that not only the current trial is under the
current greedy policy, but also all former trials. In the fifth trial of the second
example scenario, it is therefore the case that Q̂5

MaxMC(c0) jumps from 52.5 to
84, as MaxMC realizes that the second trial over c4 can be treated as if it were a
trial over c3. That way, MaxMC backups yield the (quite accurate) result of QL
backups in both example scenarios.

Another analogy to MC backups is the fact that, among all present backup
functions, only MC backups (with sample-average learning rate) and MaxMC
backups are such that the relative order of the trials is irrelevant – when the
same set of trials has been sampled, all estimates will be the same regardless
of the order.

6.3. BACKUP FUNCTIONS 113

6.3.6 Partial Bellman Backups

With Full Bellman backups, we have already seen a way how the Bellman op-
timality equation can be turned into a backup function. However, we have
also seen that it is impossible to compute action-value estimates by accumu-
lating over all outcomes as explicating all successors of a state-action pair is
not always possible. To turn the Bellman optimality equation into a backup
function that also works in the MDPs that are considered in this thesis, we
are interested in a backup function that is equivalent to Full Bellman backups
in the limit but allows the computation of a backup even in the presence of
a large number of outcomes. We have developed the Partial Bellman (PB)
backup function (Keller and Helmert, 2013) which meets these requirements:

Q̂kPB(ct) =

R(ct) if succk(ct) = ∅

R(ct) +

∑
d∈succk(ct)

PT [d|ct]·V̂ kPB(d)∑
d∈succk(ct)

PT [d|ct] otherwise.
(6.14)

PB backups extrapolate missing estimates of outcomes that are not explicated
by assuming that they are consistent with the estimates of the outcomes we
have seen so far. Unlike all other backup functions discussed so far, PB back-
ups achieve this behavior by using the declarative model of the MDP which
provides the transition probabilities. While this limits its use to DMPlan sce-
narios, it has the advantage that it is possible to label states as solved. PB
backups replace the update function for the solve label that is given in Equa-
tion 6.4 by an update procedure that sets

ϕ(d) =
∧

c∈A(d)

ϕ(c)

ϕk(c) =

true if c ∈ N?

false if c /∈ N? and succk(c) 6= succ(c)∧
d∈succk(c) ϕ(d) otherwise

for all decision nodes d ∈ D and chance nodes c ∈ C that are visited in the
k-th trial.

Example 30. Due to the solve labeling procedure of PB backups, trials where
a solved node is selected would never happen in the THTS framework and the
corresponding entries are hence omitted. In the third trial of the first example
scenario, PB backups label d4 as solved and, in turn, also c2 and d2 since all
of their successors are both explicated and solved (c5 is labeled as solved in the
first trial, and c6 in the third). The fourth and the sixth trial are therefore such
that they cannot provide new information and they will not happen this way in
a THTS algorithm. After the fifth trial (the fourth for a THTS algorithm with
solve labeling), the left subtree is labeled as solved as well, and the action-value
estimate in chance node c0 is equal to the true action value Q?(c0).

114 CHAPTER 6. THTS INGREDIENTS

6.4 Trial Length

The trial length is the ingredient that determines if the expansion phase of a
trial ends and the backup phase begins before a leaf node has been encoun-
tered. Formally, it is a function that maps the current system state (which is
given by the partial trial and the explicit graph) to a decision if the trial is
stopped (true) or not (false).

Definition 22 (Trial Length Component). A trial length component is a
Boolean function T over a trial θk,t = (d0, c0, . . . , dt, ct) and an explicit graph
Gk,t.

We only use a single (yet configurable) trial length component in this the-
sis, the expansion count trial length component, which is defined by

TνEC(Gk,t, (d0, c0, . . . , dt, ct)) =

{
true if |D[k/k−1]| = ν

false otherwise,

where D[k/k−1] is the set of decision nodes that were expanded in the k-th trial
and ν ∈ N+ is a parameter that gives the number of decision nodes that must
have been expanded for the expansion count trial length component to end
the trial.

The expansion count trial length component suits our needs even though
it is based on a simple concept. However, by adjusting its parameter ν, the
expansion count trial length component allows the description of the two
most popular trial lengths that are used in well-known algorithms: on the
one hand, it models the trial length of Trial-based Real Time Dynamic Pro-
gramming (Barto et al., 1995) and its variants (e.g., Bonet and Geffner, 2003;
McMahan et al., 2005; Smith and Simmons, 2006) which never stop a trial
before a leaf node is encountered by setting ν = H. And on the other, the
expansion count trial length component can be used with ν = 1 in a THTS
recipe that uses the trial length of the popular global search algorithm AO∗

or the Monte-Carlo Tree Search algorithm UCT, where only a single node is
added to the explicit graph before the collected information is propagated.

6.5 Action Selection

We have already introduced most action selections that are described in the
following in Section 5.1 in the context of the Multi-Armed Bandit problem.
Here, we generalize the action selection methods to their use in THTS al-
gorithms, where they have the role of deciding during the expansion phase
which action (or chance node) is selected in a state (or decision node) to
continue the traversal of the tree. An alternative way to look at the action
selection strategy is to describe it as a non-stationary, incomplete policy of the

6.5. ACTION SELECTION 115

MDP. In combination with the outcome selection that has been discussed in
Section 6.2, action selection is the ingredient that decides ultimately at which
node the explicit graph is extended. The only condition that must be met by
an action selection strategy of a THTS algorithm is that only successor nodes
that are not labeled as solved are selected (which is only relevant if the backup
function supports solve labeling and is hence restricted to combinations with
PB backups in this thesis). We denote the set of all successor nodes of an
expanded decision node d that are not labeled as solved in the k-th trial with

Ak¬ϕ(d) := {c ∈ A(d) | ¬ϕk−1(c)}

and assume in the following without loss of generality that |A0
¬ϕ(d)| > 1 (the

set cannot be empty initially as dead-ends are prohibited in our setting, and
if A0

¬ϕ(d) contains only a single action that action can be selected without
further deliberation). Furthermore, we denote the set of (unsolved) greedy
decision in the k-th trial with

Ak?(d) := arg max
c∈Ak¬ϕ(d)

Q̂k−1(c),

and the normalized action-value estimates at the end of the k-th trial of a suc-
cessor node c ∈ Ak¬ϕ(d) of d as

Q̃k(d, c) :=
Q̂k(c)−minc′∈A(d) Q̂

k(c′)

maxc′∈A(d) Q̂k(c′)−minc′∈A(d) Q̂k(c′)
.

Definition 23 (Action Selection). An action selection is a function A that
maps a trial θk,t = (d0, c0, . . . , ct−1, dt) with Ak¬ϕ(dt) 6= ∅ and an explicit graph
Gk,t to a probability distribution over Ak¬ϕ(dt).

In the following, we denote the probability that an action selection strat-
egy A selects chance node c ∈ A¬ϕ(d) in trial θk,t = (d0, c0, . . . , ct−1, dt) with

PA [c | dt] := P [ct = c] .

After a chance node c (or, equivalently, the action represented by c) has been
drawn from the probability distribution according to the probabilities that
are given by A, the selection counter Lk(c) is increased by one and the trial
proceeds with a visit of c.

6.5.1 Greedy Action Selection

We include the greedy action selection strategy (GRD) here only as a discus-
sion of action selection strategies feels incomplete without it. We have met
GRD in the previous chapter in two places: as part of the Explore-then-Exploit

116 CHAPTER 6. THTS INGREDIENTS

strategy and as part of the ε-greedy strategy (which is discussed below). Fol-
lowing the greedy policy in a decision node d corresponds to acting exploita-
tive in d in most settings, and it is usually combined with an alternative action
selection strategy that takes care of exploration. We will see in Chapter 7 that
there is no combination of ingredients that is anytime optimal with GRD in
this thesis (but there are exceptions to this, e. g., by using an optimistic ini-
tialization). For the sake of completeness, GRD is the action selection strategy
that samples one of the unsolved greedy successor nodes c ∈ Ak¬ϕ(dt) of de-
cision node dt uniformly at random in the t-th decision of the k-th trial, i. e.,
the greedy action selection is such that for all c ∈ Ak¬ϕ(dt):

PGRD [c | dt] =
1

|Ak?(dt)|
.

6.5.2 Uniform

The opposite extreme of the purely exploitative GRD action selection is an
action selection strategy that explores in every step. The uniform action se-
lection strategy (UNI) matches this description the closest, as the successor
c ∈ Ak¬ϕ(dt) of dt is selected in the t-th decision of the k-th trial with proba-
bility uniformly at random, i. e., AUNI is such that for all c ∈ A(dt):

PUNI [c | dt] =
1

|A(dt)|
.

6.5.3 ε-Greedy

A classical action selection strategy that balances exploration and exploitation
with the help of a single parameter ε with 0 < ε < 1 is the famous ε-greedy
action selection (ε-G). In the k-th trial in decision node d, it behaves like the
uniform action selection with probability ε and like the greedy one otherwise,
i. e., such that

Pε-G [c | dt] =

ε

|Ak¬ϕ(dt)| + 1−ε
|Ak?(dt)| if c ∈ Ak?(dt)

ε
|Ak¬ϕ(dt)| otherwise

for all c ∈ Ak¬ϕ(dt). The parameter ε allows to adjust the similarity of ε-G to
GRD on the one hand and to UNI on the other: the closer ε is to one, the more
does ε-G resemble uniform action selection, and both are identical for ε = 1;
and the closer ε is to zero, the greedier it gets, and ε-G with ε = 0 is equivalent
to the greedy action selection strategy.

We have seen in Section 5.1, that the theoretical properties of using ε-G
are weak in all presented optimization problems. While a study of Kuleshov
and Precup (2010) has shown that it is able to keep up with the state-of-the-
art in MABs, we have also presented an example that shows that ε-G leads to

6.5. ACTION SELECTION 117

suboptimal decision if combined with MC backups. For anytime optimality, it
is often required that action value estimates converge to the optimal action
values. We will see in the next chapter that this imposes requirements on
the action selection strategy as well, so we consider three additional ε-greedy
action selections where the probability for exploration is computed dynami-
cally rather than provided by the constant parameter ε. In decreasing ε-greedy
action selection, each chance node c ∈ Ak¬ϕ(dt) is selected with probability

PA [c | dt] =

εk(dt)
|Ak¬ϕ(dt)| + 1−εk(dt)

|Ak?(dt)| if c ∈ Ak?(dt)
εk(dt)
|Ak¬ϕ(dt)| otherwise,

where A is described by the ε-decay function that is used to compute εk(d):

εk(d) =
1

Lk(d)
in linear decreasing ε-greedy (εLIN-G),

εk(d) =
1

(Lk(d))
γ in root-valued decreasing ε-greedy (εRT-G), and

εk(d) =
1

ln (Lk(d))
in logarithmic decreasing ε-greedy (εLOG-G),4

The first option, linear decreasing ε-greedy, is similar to the suggestions
for a decay schema for ε-G of Singh et al. (2000) and Auer et al. (2002).
However, their schemata aim for the optimization of cumulative regret in the
Multi-Armed Bandit problem where fast decay is desirable. However, cumu-
lative regret minimization is an optimization criterion that is both irrelevant
in the results of MAB applications in practice (Kuleshov and Precup, 2010)
and theoretically harmful in the MAB when a generative model is available
(Bubeck et al., 2009). Even though the results of Bubeck et al. (2009) tempt
to conjecture that an action selection that leads to high cumulative regret in
MABs is a good choice for an action selection in MDPs with generative or
declarative model, this is not the case because exploitation in a single deci-
sion node does not equal exploitation in the whole trial (which is the same
thing in the MAB) – in MDPs, early exploitation enables exploration in “de-
sired” parts of the AND/OR tree. We therefore consider root-valued decreasing
ε-greedy (with a parameter γ, 0 < γ < 1 that allows to use smaller and larger
roots) and logarithmic decreasing ε-greedy in addition to εLIN-G, and analyze
the influence of the different ε-decay functions on the convergence of THTS
algorithm theoretically in Chapter 7 and on the simple regret empirically in
Chapter 8.

4It holds that ln
(
Lk(d)

)
> 0 for all d ∈ D because Lk(d) is monotonically increasing with

increasing k and L0(d) = |A(d)|·χ with χ ≥ 1 and |A(d)| ≥ 2.

118 CHAPTER 6. THTS INGREDIENTS

6.5.4 Boltzmann Exploration

A weakness of all proposed ε-greedy action selections is that they use the
action-value estimates only to separate the set of unsolved successor nodes in
a set of greedy and a set of non-greedy actions, but then they treat all non-
greedy actions equivalently regardless of the difference to the best action(s).
However, if there are promising choices with estimates that are close to the
estimate of the best action and other that are significantly worse, it appears
reasonable to select promising actions with higher probability. This describes
the main idea of Soft-Max action selections (Sutton and Barto, 1998), whose
most popular member is Boltzmann Exploration (BE). In BE, the probability
of selecting each chance node c ∈ Ak¬ϕ(dt) in the k-th trial is

PBE[c | dt] =
Qk(dt, c)∑

c′∈Ak¬ϕ(dt)
Qk(dt, c′)

,

where Qk(d, c) := e
Q̃k−1(d,c)

τ . The degree of exploration can be adapted by a
adjusting the temperature parameter τ > 0. Again, the extreme cases for τ
turn BE into uniform and greedy action selection: with τ →∞, BE turns into
UNI action selection, and with τ → 0 it resembles GRD more and more. An-
other commonality with ε-G is that it is possible to adapt the temperature τ
dynamically over time. In the Boltzmann Exploration with Decreasing Temper-
ature (BE-DT) action selection of Singh et al. (2000) that is also considered in
this work, the parameter τk(d) is computed as

τk(d) =
1

ln (Lk(d))
.

6.5.5 Upper Confidence Bounds

Even though BE fixes the mismatch between the probability that an explo-
rative action is selected and its action-value estimate that is inherent to all
variants of ε-greedy action selection, it still has a fundamental flaw: it does
not take into account how uncertain the action-value estimate is. An example
for this is given in Figure 6.4. It depicts a situation before (on the left) and
after (on the right) the k-th trial as Gaussians that describe the available in-
formation for the three chance nodes cblue, cred, and cgreen. (The action-value
estimate that is maintained by all our backup functions is an estimate of the
mean, and keeping track of the variance would be trivial and would allow
the derivation of the depicted normal distributions.) If BE is faced with the
depicted situation, it selects cblue with the highest probability as it has the
highest action-value estimate (since its mean is the rightmost one). However,
the certainty about cblue is also the highest (its mean has the highest proba-
bility) and the probability that the action-value estimate changes significantly
with additional information is the lowest, so it might very well be better to

6.5. ACTION SELECTION 119

Q̂k−1

P

Q̂k

P

Figure 6.4: Example information of an action selection before (left) and after
(right) the decision to select cgreen is taken.

select the highly uncertain green chance node. If the result of the trial is such
that distribution on the right of Figure 6.4 is the new believe, the selection of
the uncertain chance node cgreen has payed off since it has the highest action-
value estimate of the three options now.

UCB1 (Auer et al., 2002) is an action selection strategy that incorporates
an uncertainty estimate in its decisions that is based on the number of times
each chance node has been selected. It maintains an upper confidence bound
on the action-value estimate by computing a value ÛkUCB1(c) for each successor
node c of dt that is such that Q?(c) ≤ Q̂k(c) + ÛkUCB1(c) with high probability.
We denote with

AkUCB1(d) := arg max
c∈Ak¬ϕ(d)

(
Q̃k−1(d, c) +

√
2·ln(Lk−1(d))

Lk−1(c)

)

the set of (unsolved) successor nodes of decision node d with highest upper
confidence bound. The probability of selecting each chance node c ∈ Ak¬ϕ(dt)
in the k-th trial with the UCB1 action selection strategy is

PUCB1 [c | dt] =

{
1

|AkUCB1(dt)|
if c ∈ AkUCB1(dt)

0 otherwise.

Even though the logarithmic cumulative regret in the Multi-Armed Bandit
problem that led to the specific form of UCB1 is irrelevant in MDP planning
with generative or declarative model (and even obstructive in MABs with
declarative model), algorithms that use UCB1 have achieved convincing re-
sults in a wide variety of non-MAB applications. Examples for the success-
ful application of UCT (Kocsis and Szepesvári, 2006) – the Monte-Carlo Tree
Search algorithm that is based on UCB1 action selection – includes work in

120 CHAPTER 6. THTS INGREDIENTS

MDPs (e.g., Balla and Fern, 2009; Eyerich et al., 2010; Keller and Eyerich,
2011) single-player games (e.g., Bjarnason et al., 2009), multi-player games
(e.g., Finnsson and Björnsson, 2008; Gelly and Silver, 2011) or POMDPs (e.g.,
Silver and Veness, 2010; Geißer et al., 2014), to give just a small and by far
not exhaustive selection.

Root-valued Upper Confidence Bounds

We believe that the success story of UCT is mostly due to the fact that the UCB1
formula is sufficiently exploitative close to the root node and sufficiently ex-
plorative far from it to allow exploration in relevant parts of the explicit graph.
Of course, this has not been the intention of the developers of UCB1 (who
were interested in MABs and cumulative regret and not in MDPs and simple
regret), but it is merely a byproduct of the UCB1 formula. In our framework,
this incurs the consequence that UCB1 performs poorly if the initial guidance
is poor, as it turns into the greedy action selection too quickly. UCB1 can
therefore commit to a suboptimal decision too early, which is a possible expla-
nation for the fact that the optimization of parameters is an important part of
many of the aforementioned successful applications of UCB1.

The most important consequence of this insight is that, while it is necessary
that the best action is selected exponentially more often to achieve logarithmic
cumulative regret in MABs, there is no theoretical justification to do so in
MDPs with access to a model of the environment. On the contrary, the results
of Bubeck et al. (2011) indicate that a higher degree of exploration might lead
to a lower simple regret. We hence present a variant of UCB1 in the following.
In line with the findings of Bubeck et al. (2011), we derive a method where
the probability that Q?(c) ≤ Q̂k(c) + Ûk(c) is even smaller than with UCB1,
which can only be achieved with a higher incentive for exploration. The root-
valued UCB (RT-UCB) action selection achieves this by selecting a chance node
in decision node dt from the set

AkRT-UCB(dt) := arg max
c∈Ak¬ϕ(dt)

Q̂k−1(c) +

√
2·
√
Lk−1(dt)

Lk−1(c)

uniformly at random such that

PRT-UCB [c | dt] =

{
1

|AkRT-UCB(dt)|
if c ∈ AkRT-UCB(dt)

0 otherwise.

for all chance nodes c ∈ Ak¬ϕ(dt). Apparently, the only difference is that
the logarithmic dependence on the selection counter of d in UCB1 has been
replaced by a dependence in the square root of Lk−1(d). Before we have a look
at the behavior of RT-UCB in MDPs, we analyze the ratio between exploration
and exploitation of this novel action selection if it is applied to a Multi-Armed
Bandit problem.

6.5. ACTION SELECTION 121

Theorem 5. With RT-UCB action selection, each suboptimal arm a is selected at
most

E
[
Lk(a)

]
≤ 8·

√
k

(Q?(a?)−Q?(a))2 + 1 +
π2

3

times in expectation in an MAB problem with k trials and optimal arm a?.

Proof: We start the proof of Theorem 5 by using the Chernoff-Hoeffding in-
equality to bound the probability that the action-value estimate Q̂k(a) in the
k-th trial differs by more than Ûk(a) from Q?(a) by

P

Q̂k(a) +

√
2 ·
√
k

Lk(a)
≤ Q?(a)

 ≤ e−4·
√
k. (6.15)

Let us now assume that a suboptimal arm a is selected in the (k+1)-th
trial. By definition of the RT-UCB action selection, this implies that

Q̂k(a) + Ûk(a) ≥ Q̂k(a′) + Ûk(a′)

for all other arms a′ 6= a and in particular also for all optimal arms a?:

Q̂k(a) +

√
2 ·
√
k

Lk(a)
≥ Q̂k(a?) +

√
2 ·
√
k

Lk(a?) . (6.16)

There are several possible explanations for why Equation 6.16 holds in the
(k+1)-th trial. The first is a consequence of the observation that all confidence
bounds are large as long as the number of trials is low simply because there
haven’t been many opportunities to play an arm. In the initial phase of the
interaction between agent and environment some exploration is unavoidable,
and Q̂k(a) + Ûk(a) can be larger than Q̂k(a?) + Ûk(a?) even if the algorithm
had access to the true action-values of all arms

Q?(a) + 2·
√

2 ·
√
k

Lk(a)
≥ Q?(a?),

which can be transformed with simple arithmetic to

Lk(a) ≤ 8 ·
√
k

(Q?(a?)−Q?(a))2 .

This implies that, as soon as arm a has been selected at least

Lmin(a) :=
8 ·
√
k

(Q?(a?)−Q?(a))2 + 1 (6.17)

times, all confidence bounds are tight enough that the upper bound of a and
the lower bound of the estimate for the optimal action a? overlap only because

122 CHAPTER 6. THTS INGREDIENTS

the action-value estimates are far from the true action-values. Let us denote
with kmin the minimal number of trials that is necessary in expectation that
arm a has been played Lmin(a) times, i. e.,

kmin(a) := min
k

(
E
[
Lk(a)

]
= Lmin(a)

)
.

So far, we have seen that the sequence of trials can be divided into two
phases: an initial phase with kmin(a) trials where a is selected Lmin(a) times,
and a second phase (that is discussed below) where a is selected because
Equation 6.16 holds. The expected number of pulls of a suboptimal arm a in
k > kmin trials is hence

E
[
Lk(a)

]
= Lmin(a) +

k∑
t=kmin

I
[
Q̂t−1(a) + Û t−1(a) ≥ Q̂t−1(a?) + Û t−1(a?)

]
(6.18)

≤ Lmin(a) +
k∑

t=kmin

t∑
s=1

t∑
u=kmin

I
[
Q̂u(a) + Ûu(a) ≥ Q̂s(a?) + Ûs(a?)

]
(6.19)

The inequality holds as all terms in Iverson brackets that are contained in
Equation 6.18 are also contained in Equation 6.19, and there several addi-
tional comparisons that might hold in Equation 6.19.

Let us now have a look at the second phase in the sequence of trials where
Lk(a) ≥ Lmin(a). As arm a is selected only if its upper confidence bound is
larger than the lower confidence bound of a?, it is either the case that the
current action-value estimate Q̂k(a?) of the optimal action a? is an underesti-
mation of Q?(a?)

Q̂k(a?) +

√
2 ·
√
k

Lk(a?) < Q?(a
?) (6.20)

or if the current action-value estimate Q̂k(a) of the selected action a is a poor
estimate of the true action value of a:

Q̂k(a) > Q?(a
?) +

√
2 ·
√
k

Lk(a)
. (6.21)

We can now use Equation 6.15 and the fact that e−4·
√
k ≤ e−4·ln(k) = k−4

since
√
k ≥ ln(k) for all k ≥ 1 to derive an upper bound for the probability

that Equation 6.20 is indeed the explanation that a has been selected in the
(k+1)-th trial, which yields

P

Q̂k(a?) +

√
2 ·
√
k

Lk(a?) < Q?(a
?)

 ≤ e−4·
√
k ≤ k−4 (6.22)

and the same bound for Equation 6.21. Setting both bounds into Equation
6.19 allows us to derive the upper bound on the number of selections of a

6.5. ACTION SELECTION 123

suboptimal arm a that is given in Theorem 5:

E
[
Lk(a)

]
≤ Lmin(a) +

k∑
t=kmin

t−1∑
s=1

t−1∑
u=kmin

I
[
Q̂u(a) + Ûu(a) ≥ Q̂s(a?) + Ûs(a?)

]

≤ Lmin(a) +

k∑
t=1

t∑
s=1

t∑
u=1

P
[
Q̂s(a?) + Ûs(a?) < Q?(a

?)
]

+

P
[
Q̂u(a?) + Ûu(a) < Q?(a

?)
]

≤ 8 ·
√
k

(Q?(a?)−Q?(a))
2 + 1 +

k∑
t=1

t∑
s=1

t∑
u=1

2·t−4

≤ 8 ·
√
k

(Q?(a?)−Q?(a))
2 + 1 +

k∑
t=1

2·t−2

≤ 8 ·
√
k

(Q?(a?)−Q?(a))
2 + 1 +

π2

3
.

The most important consequence of Theorem 5 for our purposes is that the
number of times the optimal arm is selected with RT-UCB is k −O(

√
k) times

in k trials as the derived bound is dependent from the number of trials only in√
k. This is asymptotically less often than the number of exploitative decisions

of UCB1 just as we have aimed for. Finally, we would like to mention that the
constant of 8 in the denominator of our bound can be brought arbitrarily close
to 2 by using the same technique that was applied by Auer et al. (2002) in their
UCB2 algorithm.

Generalization of RT-UCB

Unlike in the ε-decay function that is used in the εRT-greedy action selection,
where a parameter γ allows to adapt the fractional exponent that specifies the
root, we have used a constant value of γ = 1

2 for RT-UCB so far. The reason
is as follows: even though kγ is asymptotically larger than ln(k) for all γ > 0,
it takes a large number of trials until kγ > ln(k) if γ is small: for instance, if
γ = 1

3 , it is not until the 94-th visit that k
1
3 > ln(k), and if γ = 1

4 it already takes
more than 5500 visits until ln(k) is larger than k

1
4 . A function that displays

the relation between kγ and ln(k) is fγ(k) = kγ − ln(k), which is shown for
values of γ ∈ {3

4 ,
1
2 ,

1
e ,

1
3 ,

1
4} in Figure 6.5. For all k where fγ(k) is positive,

kγ is larger than ln(k). This has both theoretical and practical consequences
for a generalized RT-UCB action selection. First, the proof of Theorem 5 does
not hold for the generalized RT-UCB action selection, where a chance node in

124 CHAPTER 6. THTS INGREDIENTS

25 50 75 100

−2

0

2

4

6

f 3
4

f 1
2

f 1
e

f 1
3

f 1
4

k

f δ
(k
)

Figure 6.5: Comparison of root-valued functions and the natural logarithm.

decision node d is selected uniformly at random from the set

AkRT-UCB(d) := arg max
c∈Ak¬ϕ(dt)

(
Q̂k−1(c) +

√
2·(Lk−1(d))

γ

Lk−1(c)

)
.

The reason that the proof does not hold for RT-UCB is that we use the fact that
e−4·

√
k ≤ e−4·ln(k) for all k ≥ 1 to derive Equation 6.22, which does, as we can

see in Figure 6.5, not hold for all 0 < γ < 1 if we extend from
√
k to kγ . We

can nonetheless derive a bound for RT-UCB.

Corollary 1. With generalized RT-UCB action selection with 0 < γ < 1, each
suboptimal arm a is selected at most

E
[
Lk(a)

]
≤ kmin + 1 +

π2

3

times in expectation in an MAB problem with k trials and optimal arm a?, where

kmin := max{ 8·kγ
(Q?(a?)−Q?(a))2 } ∪ {k ≥ 1 | kγ − ln(k) = 0}.

Proof: The only difference between Theorem 5 and Corollary 1 is that we
extend the first phase of the sequence of trials to

max{k ≥ 1 | kγ − ln(k) = 0}+ 1

if that value exists and if it is larger than the value that was denoted with
Lmin(a) in the previous proof. The additional bound for the start of the second
phase corresponds to the trial from where on it is guaranteed that kγ > ln(k)
for all k larger than the bound (which is the largest value k where kγ = ln(k),

6.5. ACTION SELECTION 125

and since limk→∞ k
γ − ln(k) =∞), such that the rest of the proof of Theorem

5 holds for RT-UCB as well.

It is not hard to show that {k ≥ 1 | kγ − ln(k) = 0} = ∅ iff γ > 1
e by

studying some properties of fγ(k): it has a single critical point as its derivative

f ′γ(k) = γ ·kγ−1 − 1

k
= γ ·kγ · 1

k
− 1

k
= (γ ·kγ − 1)· 1

k

can be used to compute the critical point(s) by setting f ′γ(k) to 0:

f ′γ(k) = 0

⇔ (γkγ − 1)· 1k = 0

⇔ γkγ − 1 = 0

⇔ γkγ = 1

⇔ kγ = 1
γ

⇔ k =
(

1
γ

) 1
γ .

Hence, fγ(k) has a single critical point at
(

1
γ

) 1
γ with value

fγ

((
1

γ

) 1
γ

)
=

(
1

γ

) 1
γ
·γ
− ln

(
1

γ

) 1
γ

=
1

γ
− 1

γ
·ln
(

1

γ

)
=

1

γ
+

1

γ
·ln (γ)

=
1

γ
·(1 + ln (γ)) ,

which is larger than 0 for all k ≥ 1 iff

1
γ (1 + ln(γ)) > 0

⇔ 1 + ln(γ) > 0

⇔ ln(γ) > −1

⇔ γ > 1
e .

With this, it is easy to see that the seemingly different bounds that are
given in Theorem 5 and Corollary 1 are identical for γ = 1

2 > 1
e . From

a practical point of view, it is important to keep in mind that RT-UCB with
γ < 1

e behaves more exploitative in the initial phase than even UCB1. This is
significant especially when the deliberation time is small. For instance, with

126 CHAPTER 6. THTS INGREDIENTS

γ = 1
4 , it takes until the 5504-th trial that k

1
4 > ln(k), which is a number of

trials that is not even reached in many of the experiments that are presented
in Chapter 8.

6.6 Recommendation Functions

The recommendation function is the only ingredient that is discussed in this
thesis that has not been included in our initial description of the THTS frame-
work (Keller and Helmert, 2013) where a static recommendation of the ac-
tion with the highest action-value estimate is considered. We have selected
to extend the THTS framework with an adaptable recommendation function
mostly due to the work of Bubeck et al. (2009), who show that there are com-
binations where it is not the best decision to recommend the action with the
highest action-value estimate. Even though the work of Bubeck et al. is on
the Multi-Armed Bandit problem with access to a generative model, it is to
be expected that their results carry over to MDP planning. A first step in that
direction is the MpaUCT algorithm of Feldman and Domshlak (2014a) which
differs from UCT, among other things, in the fact that the most played action
is recommended rather than the one with the highest action-value estimate.

Formally, a recommendation function ingredient is a mapping from the
explicit graph Gk that is the result of a sequence of k trials to a probability
distribution over all actions that are applicable in the initial state.

Definition 24 (Recommendation Function Ingredient). A recommenda-
tion function ingredient is a function R that maps an explicit graph Gk =
〈d0,Dk,Ck, Ek〉 to a probability distribution over A(d0).

A recommendation function may extract any information from the pro-
vided explicit graph, but it has to make a decision quickly if it is used in an
anytime algorithm. We therefore only consider recommendation functions
that base their decision on comparisons of annotations of the children of the
root node only. There are some examples for recommendation functions in the
literature. The solution that is often considered exclusively is called the max
child recommendation by Chaslot et al. (2008) and the expected best arm by
Bubeck et al.. Formally, it is the recommendation function ingredient where
the probability distribution is such that one of the actions with highest action-
value estimate is drawn uniformly at random:

REBA(Gk) = U
(

arg max
c∈A(d0)

Q̂k(c)

)
.

The second recommendation function that is considered here is also de-
scribed both by Bubeck et al. and Chaslot et al., namely the most played arm

6.6. RECOMMENDATION FUNCTIONS 127

or robust child recommendation

RMPA(Gk) = U
(

arg max
c∈A(d0)

Lk(c)
)
,

where one of the actions that have been selected most often in the root node
by the action selection ingredient is recommended uniformly at random. Even
though we do not consider any more recommendation functions in the the-
oretical and empirical analysis of THTS algorithms in the following chapter,
we would like to briefly mention some further possibilities that are described
in related work. Chaslot et al. consider the secure child recommendation in
addition to the aforementioned two functions

RSecA(Gk) = U
(

arg max
c∈A(d0)

Q̂k(c) +
1√
Lk(c)

)
,

where one of the actions that maximize an upper confidence bound on the
action-value estimate is recommended. And finally, Bubeck et al. propose the
empirical distribution of plays recommendation function, where each arm is
selected with a probability that is proportional to the number of times it has
been selected by the action selection ingredient:

REDP(Gk) =
⋃

c∈A(d0)

{(p(c) :c)}

with p(c) := Lk(c)∑
c′∈A(d0) Lk(c′)

. This concludes our discussion of specific ingredi-

ents for THTS algorithms, and we continue with a theoretical analysis of how
they can be combined to anytime optimal algorithms in the next chapter.

CHAPTER 7
Theoretical Evaluation

In the last two chapters, we have presented the Trial-based Heuristic Tree
Search framework and a selection of ingredients that allow the specification of
both well-known and novel algorithms. Most theoretical properties of interest
cannot be derived for ingredients in isolation. Instead, we analyze in Section
7.1 which combinations of ingredients yield a recipe that is such that all action-
value estimates converge towards the respective true state- and action-values.
In Section 7.2, we combine the insights with the available recommendation
functions and derive which anytime optimal THTS algorithms can be created
with the ingredients that have been presented in Chapter 6.

7.1 Convergence

We have deliberately decided to keep the THTS framework as generic as pos-
sible, which allows for a wide variety of recipes that result in anytime optimal
algorithms. However, this means that there is no right or wrong when it comes
to assessing individual ingredients, as it is only the whole recipe that can be
analyzed. As we have introduced nine different action selections in the previ-
ous chapter (not counting the greedy action selection), nine different backup
functions and two recommendation functions, this allows for an amazing 162
different THTS algorithms that have to be analyzed theoretically, 81 for each
recommendation function. Luckily, we can reduce the analysis for all recipes
that use the expected best arm recommendation function to an analysis of
the convergence of the state- and action-value estimates to the true state- and
action-values in the given recipe, and a few simple conclusions allow us to de-
rive results for the anytime optimality of THTS recipes with the most played
arm recommendation function as well.

Let us therefore put the recommendation functions aside for the moment
(we consider it again in the following section) and focus on the convergence of
state- and action-value estimates to the true state- and action-values. We start

129

130 CHAPTER 7. THEORETICAL EVALUATION

with a brief survey of theoretical properties of the individual ingredients that
were discussed in the previous chapter. For three of the six ingredients that
describe a THTS algorithm we have presented only a single implementation,
and all algorithms that are considered in this thesis hence share

• the Monte-Carlo outcome selection OMC,

• the expansion count trial length component TEC, and

• the virtual trials initialization IVT.

We nonetheless extract the key properties of these implementations that are
required for anytime optimality, which allows to obtain general results for all
six ingredients.

7.1.1 Core Properties of Ingredients

Let us now have a look at some of the properties of the used ingredients
that hold in isolation (i. e., independently of the other used ingredients). A
property of the EC trial length component that is important for this analysis is
that is it explorative independently of the choice of the parameter ν.

Definition 25 (Explorative Trial Length Component). A trial length compo-
nent T is explorative iff it is such that for all θk,t = (d0, c0, . . . , dt, ct) and all
Gk,t:

T(Gk,t, θk,t) = true⇒ |D[k/k−1]| > 0.

(Recall that D[k/k−1] denotes the set of decision nodes that were added to
the explicit graph in the k-th trial.) That TνEC is explorative for all ν > 0
follows directly from Definition 22.

It is also of relevance for this analysis that all of the backup functions that
were presented in the previous chapter are goal-aware (a term that is used
due to the similarity with goal-aware heuristics in classical planning), which
holds if the action-value estimates of all leaf nodes are always backed up to
the true action-values.

Definition 26 (Goal-aware Backup Functions). A backup function B is goal-
aware iff it is such that for all k > 0 and all leaf nodes c? ∈ N? that are expanded
in Gk:

Q̂kB(c?) = R(c?).

It is easy to see that all considered backup functions are goal-aware, as the
recursive functions that are given in Equations 6.6, 6.8, 6.10, 6.12, 6.13, and
6.14, which define how the value of Q̂kB(c?) is updated for all c? ∈ N?, list leaf
nodes as special cases and assign the value of R(c?).

From hereon, we have to continue our analysis by considering only subsets
of possible THTS recipes. The first distinction we make is to separate backup

7.1. CONVERGENCE 131

functions that do not label nodes as solved from backup functions that do. We
start with the former, which includes all backup functions that were presented
in Section 6.3 apart from Partial Bellman backups. The convergence of THTS
recipes that use PB backups is discussed at the end of this section.

Definition 27 (Solve Labeling). An initialization1 and a backup function do
not support solve-labeling iff they are such that ϕk(n) = false for all k ≥ 0
and all n ∈ Nk.

In the presence of an initialization and a backup function that do not sup-
port solve-labeling, the MC outcome selection that is used in all our algorithms
is unbiased:

Definition 28 (Unbiased Outcome Selection). An outcome selection O is un-
biased iff it is such that for all c ∈ C and all s′ ∈ succ(s(c), a(c))

lim
k→∞

E
[
Lk(c)

]
=∞⇒ lim

k→∞
E

[
Lk(dn(c, s′))∑

s′′∈succ(s(c)) Lk(dn(c, s′′))

]
= PT [s′ | s(c), a(c)].

In other words, outcomes are selected according to their true probabilities
in all chance nodes that are visited infinitely often in expectation, which is
given in the MC outcome selection since Pk¬ϕ[c] = 1 for all k ≥ 0 and all
c ∈ Ck.

7.1.2 Infinite Exploration

If nodes are not labeled as solved, all action selections that were discussed in
the previous chapter (apart from GRD) explore infinitely.

Definition 29 (Infinite Exploration). An action selection explores infinitely
iff for all d ∈ D it holds that

lim
k→∞

E
[
Lk(d)

]
=∞⇒ lim

k→∞
E
[
Lk(c)

]
=∞ for all c ∈ A(d).

As it is not as obvious as the previous properties of presented ingredients,
we show that all our action selections explore infinitely in the following.

Theorem 6. The UNI, ε-G, εLIN-G, εRT-G, εLOG-G, BE, BE-DT, UCB1 and RT-
UCB action selections explore infinitely if combined with an initialization and a
backup function that do not support solve-labeling.

Proof: In the following, let d be a decision node with limk→∞ E
[
Lk(d)

]
=∞.

As the initialization and the backup function do not support solve-labeling, it
holds that ϕk(n) = false for all k ≥ 0 and all n ∈ Nk according to Definition
27, and hence Ak¬ϕ(d) = A(d) for all k > 0. Let PkA [c | d] be the probability

1The initialization is relevant because solve labels must be false for k = 0 as well.

132 CHAPTER 7. THEORETICAL EVALUATION

that c is selected with A in the i-th trial that actually visits d. With E
[
Lk(c)

]
=∑Lk(d)

i=1 PkA [c | d] it is then sufficient to show that

∞∑
i=1

PkA [c | d] =∞

holds for all c ∈ A(d) to show that action selection A explores infinitely.

• UNI explores infinitely since for all c ∈ A(d)

∞∑
k=1

PkUNI [c | d] =

∞∑
k=1

1

|A(d)| =
1

|A(d)| ·
∞∑
k=1

1 =∞.

• ε-G, εLIN-G, εRT-G, and εLOG-G explore infinitely since

∞∑
k=1

α︸ ︷︷ ︸
(1)

=
∞∑
k=1

1

k︸ ︷︷ ︸
(2)

=
∞∑
k=1

1

kγ︸ ︷︷ ︸
(3)

=
∞∑
k=1

1

ln(k)︸ ︷︷ ︸
(4)

=∞

for a constant α > 0 are the infinite sums that describe the probabil-
ity that a non-greedy successor of d is selected with (1) ε-G, (2) εLIN-G,
(3) εRT-G, and (4) εLOG-G action selection, and the probability that a
non-greedy successor is selected is a lower bound for all c ∈ A(d). Di-
vergence of the infinite sums is obvious for (1) and well-known for the
harmonic series (2), which induces divergence of (3) (with 0 < γ < 1)
and (4) as it is a lower bound for both.

• BE explores infinitely since for all c ∈ A(d)

∞∑
k=1

PkBE [c | d] =
∞∑
k=1

eτ
−1·Q̃k−1(d,c)∑

c′∈A(d) e
τ−1·Q̃k−1(d,c′)

(1)

≥
∞∑
k=1

1

|A(d)| · eτ−1

=
1

|A(d)|·eτ−1 ·
∞∑
k=1

1

=∞,

where (1) holds because Q̃k−1(d, c) ∈ [0, 1] due to the normalization.

7.1. CONVERGENCE 133

• BE-DT explores infinitely since for all c ∈ A(d)

∞∑
k=1

PkBE-DT [c | d] =
∞∑
k=1

eln(k)·Q̃k−1(d,c)∑
c′∈Ak(dt)

eln(k)·Q̃k−1(d,c′)

(1)

≥ 1

|A(d)|
∞∑
k=1

1

eln(k)

=
1

|A(d)|
∞∑
k=1

1

k

(2)
= ∞,

where (1) holds because Q̃k−1(d, c) ∈ [0, 1] due to the normalization and
(2) due to the divergence of the harmonic series.

• The important argument for UCB1 comes from the analysis of Auer et al.
(2002), who show that each non-greedy c ∈ A(d) is selected at least
O (ln(k)) times (greedy actions are selected more often). Then UCB1
explores infinitely since for all c ∈ A(d)

lim
k→∞

E
[
Lk(c)

]
≥ lim

k→∞
ln (k) =∞.

• Similarly, with Theorem 5 and Corollary 1, RT-UCB explores infinitely
since for all c ∈ A(d) and 0 < γ < 1

lim
k→∞

E
[
Lk(c)

]
≥ lim

k→∞
kγ =∞.

Before we proceed, we would like to mention that the reason why we con-
sider a root-valued and linear ε-decay function for ε-greedy action selection
but only a logarithmic τ -decay function is no arbitrary choice. We assume
that functions where τ decreases faster than with the logarithmic pace that
is used in BE-DT are impossible in a variant of Boltzmann Exploration that
explores infinitely. We base this assumption on the following observation: it
is not only the case that a BE variant with (1) a root-valued decay schema for
τ explores likely and (2) a linear decay schema for τ explores certainly not in-
finitely, but (3) even a variant where τk(d) is computed as in BE-DT but with a
constant factor γ > 1 as τk(d) = 1

γ·ln(Lk(d))
does not lead to an action selection

that explores infinitely. We can only conjecture convergence of
∑∞

k=1 e
−
√
k for

assumption (1), while it is well-known that (2) the geometric series
∑∞

k=1 e
−k

and (3) a hyper-harmonic series
∑∞

k=1 k
−γ with γ > 1 converge.

134 CHAPTER 7. THEORETICAL EVALUATION

7.1.3 Exhaustive Search

We can now combine Theorem 6 with some properties of other ingredients to
derive that there are THTS recipes where it can be expected that all nodes in
the AND/OR tree are eventually explicated and visited infinitely often.

Theorem 7. In a THTS algorithm with an outcome selection O that is unbiased,
an action selection A that explores infinitely, a trial length component T that
is explorative and an initialization and a backup function that do not support
solve-labeling

1. there is a k0 > 0 such that Gk = G for all k ≥ k0, and

2. it holds that limk→∞ E
[
Lk(n)

]
=∞ for all n ∈ N .

Proof: We show Theorem 7 by induction over the structure of the explicit
AND/OR tree. The base idea is that all decision and chance nodes up to depth
t are explicated in a finite number of trials k0(t), which implies that all nodes
up to depth t are visited infinitely often as

• T is explorative (no trial stops before a node in depth t is encountered)

• O is unbiased (each decision node is visited with non-zero probability
and hence infinitely often in the limit)

• A explores infinitely (each chance node is selected infinitely often).

The root node d0 and all its successors are explicated eventually (the latter
because A explores infinitely), so let us assume that the hypothesis holds up
to depth t. As the trial length component is explorative, no trial stops in a node
in depth t, but proceeds (at least) to depth t+1, and as the action selection
strategy explores infinitely and the outcome selection is unbiased all nodes in
depth t+1 are eventually explicated and are visited infinitely often as well.

We can conclude from Theorem 7 not only that all nodes are explicated
eventually and visited infinitely often, but also that the implications inherent
to an outcome selection that is unbiased (all outcomes are selected according
to their probability) hold in the limit. It does not take much imagination to
see that a THTS algorithm with a “clairvoyant” action selection that always
simulates the optimal policy converges to the true state- and action-values
with all our backup functions as long as outcomes are selected according to the
true transition probabilities. Unfortunately, we do not have such a clairvoyant
action selections – on the contrary, we have just used the fact that all our
action selections explore infinitely, which implies that all actions are selected
infinitely often. The backup functions that do not support solve-labeling have
three different strategies to overcome the bias that is incurred by explorative
action selections, and we discuss each of these strategies on their own in the
following.

7.1. CONVERGENCE 135

7.1.4 Convergence with On-policy Backups

The first strategy to overcome the bias of explorative actions is incorporated
in the MC and TD backup functions. Both build upon the idea that, even
though each chance node is selected infinitely often in each decision node,
the chance nodes that represent optimal choices are selected “a significantly
larger” number of times than all other options. Such an action selection is
called greedy in the limit.

Definition 30 (Greedy in the Limit). An action selection A is greedy in the
limit iff for all decision node d ∈ D it holds that

lim
k→∞

E
[
Lk(d)

]
=∞ and lim

k→∞
Q̂k(c) = Q̄c for all c ∈ A(d) and Q̄c ∈ R

⇒ lim
k→∞

E
[
Lk(c̄?)

]∑
c′∈A(d)\Ā?(d) E [Lk(c′)] =∞ for all c̄? ∈ Ā(d),

where Ā?(d) := arg maxc∈A(d) Q̄c and Ā?(d) 6= Ak(d) for k →∞.

Theorem 8. The UNI, ε-G, and BE action selections are not greedy in the limit,
and the εLIN-G, εRT-G, εLOG-G, BE-DT, UCB1, and RT-UCB action selections are
greedy in the limit.

Proof: In the following, let d be a decision node with limk→∞ Lk(d) =∞ and
limk→∞ Q̂

k(c) = Q̄c for all c ∈ A(d). Furthermore, to ease notation, we use
the abbreviations α := |A(d)| and β := |Ā?(d)| in this proof. Then:

• UNI, ε-G, and BE are not greedy in the limit since

lim
k→∞

E
[
Lk(c̄?)

]∑
c′∈A(d)\Ā?(d) E [Lk(c′)] = lim

k→∞

PkA[c̄? | d]·k∑
c′∈A(d)\Ā?(d)(PkA[c′ | d]·k)

=
PkA[c̄? | d]∑

c′∈A(d)\Ā?(d) PkA[c′ | d]

6=∞,

where the inequality holds because

– E
[
PkUNI[c | d]

]
= 1

α for all c ∈ A(d) is constant for all k ≥ 0 in UNI

– E
[
Pkε-G[c̄? | d]

]
= ε

α + 1−ε
β for all c̄? ∈ Ā?(d) and E

[
Pkε-G[c | d]

]
= ε

α

for all c̄? ∈ Ā?(d) are constant for all k ≥ 0 in ε-G

– E
[
PkBE[c | d]

]
= eτ

−1·Q̄c∑
c′∈A(d) e

τ−1·Q̄c
for all c ∈ A(d) is constant in ex-

pectation for all k ≥ 0 since Q̂k(c) converges.

136 CHAPTER 7. THEORETICAL EVALUATION

• εLIN-G, εRT-G, and εLOG-G are greedy in the limit since for all c̄? ∈ Ā?(d):

lim
k→∞

E
[
Lk(c̄?)

]∑
c′∈A(d)\Ā?(d) E [Lk(c′)] = lim

k→∞

PkA[c̄? | d]·k∑
c′∈A(d)\Ā?(d) PkA[c′ | d]·k

= lim
k→∞

(ε
k(d)
α + 1−εk(d)

β)

(α− β)· εk(d)
α

= lim
k→∞

1

α− β︸ ︷︷ ︸
const

+

→1︷ ︸︸ ︷
1−εk(d)

εk(d)·
(
β − β2

α

)
︸ ︷︷ ︸

→0

=∞,

where the annotated limits are correct since limk→∞ ε
k(d) = 0.

• BE-DT is greedy in the limit as shown by Singh et al. (2000) in Appendix
B.1.

• UCB1 is greedy in the limit since there is a constant δ > 0 such that for
all c̄? ∈ Ā?(d):

lim
k→∞

E

[
Lk(c?)∑

c′∈A(d)\A∞? (d) Lk(c′)

]
(1)
= lim

k→∞

1
β ·(k − δ ·ln(k))∑
c′∈A(d)\Ā?(d) δ ·ln(k)

= lim
k→∞

1
β ·(k − δ ·ln(k))

(α− β)·δ ·ln(k)

=
1

β ·(α− β)
lim
k→∞

k − δ ·ln(k)

δ ·ln(k)

=
1

β ·(α− β)
lim
k→∞

k

δ ·ln(k)
− 1

=∞,

where (1) is due to the analysis of UCB1 of Auer et al. (2002) who show
that each suboptimal action is selected δ ·ln(k) times in expectation.

• RT-UCB is greedy in the limit since there is a constant δ > 0 such that

7.1. CONVERGENCE 137

for all 0 < γ < 1 and all c̄? ∈ Ā?(d):

lim
k→∞

E

[
Lk(c?)∑

c′∈A(d)\A∞? (d) Lk(c′)

]
(1)
= lim

k→∞

1
β ·(k − δ ·kγ)∑
c′∈A(d)\Ā?(d) δ ·kγ

= lim
k→∞

1
β ·(k − δ ·kγ)

(α− β)·δ ·kγ

=
1

β ·(α− β)
lim
k→∞

k − δ ·kγ
δ ·kγ

=
1

β ·(α− β)
lim
k→∞

k

δ ·kγ − 1

=∞,
where (1) is due to Theorem 5 and Corollary 1.

Please note that (similar to the reasons to omit a root-valued or linear
variant of Boltzmann exploration) we do not consider a linear variant of UCB1
as the corresponding action selection is not greedy in the limit. Let us now
state our first convergence result for a THTS recipe.

Theorem 9. A THTS algorithm with an outcome selection O that is unbiased,
an action selection A that explores infinitely and is greedy in the limit, a trial
length component T that is explorative, an initialization that does not support
solve-labeling and the MC or TD backup function is such that for all c ∈ C

lim
k→∞

E
[
Q̂k(c)

]
= Q?(c).

Proof: Let us start by having a look at the common form of the equation that
is used to update action-value estimates in MC, TD, and QL backups. Consider
the target T kB(c) of a chance node c in the k-th trial in backup function B as

T kMC(c) := Rt..l(θk) in MC backups,

T kTD(c) := R(c) + Q̂k(c′) in TD backups, and

T kQL(c) := R(c) + V̂ k(d′) in QL backups,

where c′ and d′ are the next chance and decision nodes that are visited in trial
θk after c. The target allows the generalization of the three recursive backup
functions for action-value estimates in MC, TD, and QL backups to

Q̂k(c) = Q̂k−1(c) + ηk(c)·
(
T kB(c)− Q̂k−1(c)

)
= Q̂k−1(c) +

1

1+ηkd ·Bk(c)
·
(
T kB(c)− Q̂k−1(c)

)
=

1

1+ηkd ·Bk(c)
·T kB(c) +

ηkd ·Bk(c)
1+ηkd ·Bk(c)

·Q̂k−1(c).

138 CHAPTER 7. THEORETICAL EVALUATION

It is easy to see that the backup functions compute a weighted arithmetic
mean of the target T kB(c) and the previous estimate Q̂k−1(c), as the weights
sum up to one independently from k, Q̂k−1(c), and T kB(c):

1

1+ηkd ·Bk(c)
+

ηkd ·Bk(c)
1+ηkd ·Bk(c)

=
1+ηkd ·Bk(c)
1+ηkd ·Bk(c)

= 1.

The weight 1
1+ηkd ·Bk(c)

of the target T kB(c), which was introduced as the learning

rate ηk(c) in Section 6.3, is often also referred to as the step size of the backup
function (e.g., Sutton and Barto, 1998). It specifies how much of the gap
between the current estimate and the target is closed in the update: the closer
it is to 1 – or, the closer ηkd is to 0 – the higher is the weight of the target in the
computation of Q̂k(c), and the lower is the weight of Q̂k−1(c). As the step size
is larger than 0 independently of the choice of the parameter ηkd (that is, for
0 < ηkd ≤ 1), the backup is always such that the action-value estimate is closer
(or equally close) to the target after the update than it was before, i. e.,

|Q̂k(c)− T kB(c)|
{

= |Q̂k−1 − T kB(c)| if Q̂k−1 = T kB(c)

< |Q̂k−1 − T kB(c)| otherwise.

This implies than an action-value estimate converges towards a constant α if
it holds that E

[
T k(c)

]
= α. Moreover, it even suffices if there is a constant k0

such that E
[
T k(c)

]
= α for all k > k0 as Q̂k0 is finite which does not change

convergence.
From hereon, it is simple to show that Theorem 9 holds since E

[
T k(c)

]
=

Q?(c) for a sufficiently large k, which can be shown by induction over the
structure of the tree from the leaf nodes to the root node, exploiting the same
properties of ingredients that were used in the proof of Theorem 7, the goal-
awareness of MC and TD backups, and the fact that the optimal policy is
simulated in expectation as A is greedy in the limit.

Lemma 1. The requirement that the action selection A is greedy in the limit is a
necessary condition for Theorem 9 to hold.

Proof: The lemma follows directly from a generalization of the example that
was given at the beginning of Section 5.1.2.

As a result of this discussion we can conclude that all considered action se-
lections except UNI, ε-G and BE can be combined with MC and TD backups to
a THTS algorithm whose state- and action-value estimates converge towards
their respective true values.

7.1. CONVERGENCE 139

7.1.5 Convergence with Selective Backups

The convergence of selective backups incurs two contradictory anticipations:
on the one hand, it appears that the results should match the convergence
results of TD and MC backups, as only TD or MC backups are used in the
backup phase. And on the other, as non-greedy actions are ignored in the
backup phase, it appears that the constraint that the action selection has to
be greedy in the limit is actually not required. We show in the following that
the first anticipation is correct, before we give a counter-example that shows
that it is not possible in general to relax the greedy in the limit requirement
for selective backups.

Theorem 10. A THTS algorithm with an outcome selection O that is unbiased,
an action selection A that explores infinitely and greedy in the limit, a trial
length component T that is explorative, an initialization that does not support
solve-labeling and the LSMC, LSTD, ESMC, or ESTD backup function is such that
for all c ∈ C

lim
k→∞

E
[
Q̂k(c)

]
= Q?(c).

Proof: The only difference between LSMC, ESMC, LSTD, and ESTD backups
on the one hand and MC or TD backups is that the former are updated less
often. However, as the induction base case holds for selective backups as well
(they are also goal-aware), it is possible to show that in the limit all backups
are considered as A is greedy in the limit, and that selective backups converge
to the same values.

Lemma 2. The requirement that the action selection A is greedy in the limit is a
necessary condition for Theorem 10 to hold.

Proof: Being greedy in the limit is a necessary condition for MC and TD back-
ups because an even in the limit relevant proportion of runs under a non-
optimal policy is used to update action-value estimates. This is different for
selective backups, where only results that were obtained with greedy deci-
sions are considered. However, we can show that the greedy decisions are
not necessarily identical to optimal decisions as there is no guarantee that the
probabilities of considered outcomes converges to the true probabilities even
though O is unbiased. We show this by providing an example with an action
selection A that is not greedy in the limit and show that Theorem 10 does not
hold. Consider the explicit AND/OR tree from Figure 7.1, where an applicable
action c0 in d0 has two outcomes that occur equally likely, ending up in either
d1 or d2. In d1, there are 100 applicable actions, all of which but one yield
an immediate reward of ±0, and the last yielding a reward of +100. In d2,
there is a single action with an immediate reward of −100. In combination,
the expected reward of a(c0) is therefore Q?(c0) = 100

2 + −100
2 = 0. Now let

140 CHAPTER 7. THEORETICAL EVALUATION

d0

c0

±0

d1 d2

.5 .5

c1 c2 . . . c99 c100 c′

±0
±0 ±0

±
0

+100

−100

Figure 7.1: AND/OR tree where Q̂k(c0) does not converge toQ?(c0) in a THTS
algorithm with a selective backup function and an action selection that is not
greedy in the limit.

us assume that a selective backup function is combined with ingredients as
required in Theorem 10 except that A is not greedy in the limit.

As outcomes are sampled according to their true probabilities, d1 and d2

are visited equally often. Each trial that ends up in d2 is considered when c0 is
updated with a selective backup functions as there is only a single (and hence
greedy) option in d2. As A is not greedy in the limit, we know for d1 that the
relationship between greedy decision a(c100) and non-greedy decisions (any
other action) is finite, i. e.limk→∞

Lk(c100)∑99
i=1 Lk(ci)

= α for some finite constant α.

Therefore, only α in (α+1) trials over d1 are considered in the backup of c0,
and thus

lim
k→∞

Q̂k(c0) =

(
α

α+1
· 1
2
·100

)
︸ ︷︷ ︸

d1

+

(
1

2
·−100

)
︸ ︷︷ ︸

d2

< 0 6= Q?(c0).

Please observe that it is possible to design an outcome function that com-
pensates the imbalance by selecting outcomes such that the relation between
the backup counters of outcomes are proportional to the true probabilities
rather than the selection counters. Another possibility is used in the BRUE al-
gorithm, where the switching point is not determined dynamically in the
backup phase by checking from where on all selections were greedy, but is
determined with a predefined computation schema that makes sure that state-
and action-value estimates converge to the correct values.

7.2. OPTIMAL BEHAVIOR 141

7.1.6 Convergence with Off-policy Backups

The requirements for THTS algorithms with off-policy backups to converge to
the right values are less constraint than in the previously discussed cases as it
is always the result of the greedy action that is used for a backup. Therefore,
neither of the reasons why an action selection must be greedy in the limit for
convergence of on-policy or selective backups to true action values applies for
the off-policy backup functions QL and MaxMC backups.

Theorem 11. A THTS algorithm with an outcome selection O that is unbiased,
an action selection A that explores infinitely, a trial length component T that is
explorative, an initialization that does not support solve-labeling and the QL or
MaxMC backup function is such that for all c ∈ C

lim
k→∞

E
[
Q̂k(c)

]
= Q?(c).

Proof: The proof for QL backups is similar to the proof for MC and TD backups
with the addition that it is irrelevant which action is simulated as it is always
the greedy action that is used to backup a node; and the proof for MaxMC
backups is based on the observation that MaxMC backups are identical to the
application of Full Bellman backup function in the limit (as O is unbiased).

7.1.7 Convergence with Partial Bellman backups

The last backup function that was presented in the previous chapter is the
only backup function that exploits the declarative model of the MDP in the
backup function, which allows to label nodes as solved. This simplifies the
convergence analysis significantly.

Theorem 12. A THTS algorithm with a trial length component T that is explo-
rative and the PB backup function is such that for all c ∈ C

Q̂k
?
(c) = Q?(c)

and ϕk
?
(d0) for a finite k? > 0.

Proof: Eventually, all nodes are explicated as T is explorative and as actions
and outcomes are selected among unsolved successor nodes only. Then the
Partial Bellman function is equivalent to the Full Bellman backup function.
The finite k? follows from the fact that it takes at most |D| trials until Gk = G
due to the explorativeness of the trial length component, and then the root
node must be labeled as solved.

7.2 Optimal Behavior

Let us now consider the recommendation function in addition to the other in-
gredients and use our convergence results to derive THTS recipes that behave

142 CHAPTER 7. THEORETICAL EVALUATION

optimally in the limit. We start with the expected best arm recommendation,
for which the result follows directly from the analysis up to this point.

Theorem 13. A THTS algorithm with the expected best arm recommendation
function REBA and ingredients that are such that limk→∞ E

[
Q̂k(c)

]
= Q?(c) for

all c ∈ C executes the optimal policy in expectation with k →∞.

Proof: Holds as limk→∞ E
[
Q̂k(c)

]
= Q?(c) for all c ∈ C and in particular for

all c ∈ A(d).

For the ingredients that are considered in this thesis, Theorem 13 means
that THTS algorithms are anytime optimal if the expected best arm recom-
mendation function is combined with

• an on-policy (MC, TD) or selective (LSMC, LSTD, ESMC, ESTD) backup
function and the εLIN-G, εRT-G, εLOG-G, BE-DT, RT-UCB or UCB1 action
selection; or

• an off-policy (QL, MaxMC, PB) backup function and any of the consid-
ered action selections.

We have furthermore shown that all remaining combinations are not anytime
optimal. An overview on the results is given in Table 7.1, where all non-red
markings (the difference between yellow and green is irrelevant here) indicate
that the corresponding THTS algorithm is anytime optimal in combination
with the expected best arm recommendation function.

For the most played arm recommendation, we require a weaker version of
greediness in the limit for an action selection.

Definition 31 (Favor the Greedy Action). An action selection A favors the
greedy action in the limit iff for all decision node d ∈ D it holds that

lim
k→∞

E
[
Lk(d)

]
=∞ and lim

k→∞
Q̂k(c) = Q̄c for all c ∈ A(d) and Q̄c ∈ R

⇒ E
[
Lk(c̄?)

]
> E

[
Lk(c)

]
for k →∞

for all c̄? ∈ arg maxc∈A(d) Q̄c and c ∈ A(d) \ arg maxc∈A(d) Q̄c.

Theorem 14. The UNI action selection does not favor the greedy action in the
limit, and the ε-G, εLIN-G, εRT-G, εLOG-G, BE, BE-DT, UCB1, and RT-UCB action
selections favor the greedy action in the limit.

Proof:

• UNI does not favor the greedy action in the limit as it holds for all deci-
sion nodes d ∈ D that

E
[
Lk(c)

]
= E

[
Lk(c′)

]

7.2. OPTIMAL BEHAVIOR 143

UNI
ε-G ε LO

G
-G

ε R
T
-G

ε LI
N
-G

BE BE-
DT

RT-U
CB

UCB1

LSMC

MC

ESMC

LSTD

TD

ESTD

QL

MaxMC

PB

Table 7.1: Overview on anytime optimal THTS algorithms: green icons in-
dicate that the corresponding recipe is anytime optimal in combination with
both the expected best arm and the most played arm recommendation func-
tion, yellow icons that it is anytime optimal if combined with the expected best
arm recommendation function and red icons that it is not anytime optimal.

for all c, c′ ∈ A(d) and k →∞;

• ε-G favors the greedy action in the limit as it holds for all decision nodes
d ∈ D that

E
[
Lk(c̄?)

]
=
ε

α
+

1−ε
β

>
ε

α
= E

[
Lk(c)

]
for all c̄? ∈ arg maxc∈A(d) Q̄c and c ∈ A(d)\arg maxc∈A(d) Q̄c and k →∞
with α := |A(d)| and β := | ¯A?(d)|;

• BE favors the greedy action in the limit as it holds for all decision nodes
d ∈ D that

eτ
−1·Q̄c?∑

c′∈A(d) e
τ−1·Q̃k−1(d,c′)

>
eτ
−1·Q̄c∑

c′∈A(d) e
τ−1·Q̃k−1(d,c′)

⇔ eτ
−1·Q̄c? > eτ

−1·Q̄c

⇔ Q̄c? > Q̄c

144 CHAPTER 7. THEORETICAL EVALUATION

for all c̄? ∈ arg maxc∈A(d) Q̄c and c ∈ A(d) \ arg maxc∈A(d) Q̄c and k →
∞; and

• εLIN-G, εRT-G, εLOG-G, BE-DT, UCB1, and RT-UCB favor the greedy action
in the limit as this is implied by greediness in the limit.

Theorem 15. A THTS algorithm with the most played arm recommendation
function RMPA, an initialization and a backup function that do not support solve-
labeling, an action selection A that favors the greedy action in the limit and
where limk→∞ E

[
Q̂k(c)

]
= Q?(c) for all c ∈ C executes the optimal policy in

expectation with k →∞.

Proof: A THTS algorithm with the most played arm recommendation func-
tion behaves optimally in the limit if the action-value estimates converge to
true action-values and additionally the action with the highest action-value
estimate is selected most often.

Lastly, we would like to determine that the most played arm recommenda-
tion function does not combine well with a backup function that labels nodes
as solved as it cannot be guaranteed that it takes more trials to solve the op-
timal part than a suboptimal one. Therefore, the PB backup function is only
optimal in combination with the expected best arm recommendation func-
tion. This is depicted by the yellow markings in Table 7.1, which describe that
a THTS algorithm is optimal with the expected best arm but not with the most
played arm recommendation function.

Table 7.1 contains several well-known algorithms for planning under un-
certainty. The combination of MC and UCB1 is the famous UCT algorithm,
albeit with VT initialization and not with the typically used random walk
heuristic (in the subsequent experimental evaluation both are distinguished
as UCT and Blind UCT). Furthermore, the combination of MC backups and
ε-G and BE is what is typically understood under ε-G and BE algorithms for
planning under uncertainty. Silver et al. (2012) combine Temporal-Difference
backups with Monte-Carlo Tree Search to Temporal-Difference search, an al-
gorithm that can be derived in THTS by combining TD backups and ε-greedy
action selection. Even though none of the BRUE algorithms of Feldman and
Domshlak (2014b) is in Table 7.1 as we do not consider the action selection of
BRUE, the row with LSMC backups behaves comparably. Furthermore, Partial
Bellman backups and UNI action selection result in an algorithm that is very
similar to breadth first search (they would be identical if we used RR action
selection), and PB combined with UCB1 has been presented as UCT? in our
initial work on THTS (Keller and Helmert, 2013). Other algorithms that are
not considered are those that require Full Bellman backups (AO? and RTDP),

7.2. OPTIMAL BEHAVIOR 145

and even though variants with Partial Bellman backups are possible they are
not considered as our initialization is not admissible.

This concludes our theoretical analysis of THTS algorithms, and we con-
tinue with an empirical comparison of all anytime optimal THTS algorithms
that can be derived with the ingredients that are considered in this thesis.

CHAPTER 8
Empirical Evaluation

Over the course of the last three chapters, we have presented the THTS frame-
work and a variety of ingredients and have analyzed which recipes combine to
anytime optimal algorithms. In Section 8.1, we compare two representative
THTS recipes to the suboptimal optimistic policy, hindsight optimization, and
optimistic rollout that were presented in Chapter 4 of this thesis. In the sub-
sequent main experiment that is discussed in Section 8.2, we compare all 115
anytime optimal THTS algorithms that can be derived with the ingredients
that are considered in this thesis empirically.

8.1 THTS vs. Suboptimal Algorithms

Before we evaluate different combinations of ingredients that combine to an
algorithm in the Trial-based Heuristic Tree Search framework, we examine if
the theoretical superiority of anytime optimal THTS algorithms over the sub-
optimal methods that were presented in Chapter 4 can be confirmed empiri-
cally. The problem setup is the same as in the experiment that was presented
in Chapter 4 on the CANADIAN TRAVELER’S PROBLEM. We use two variants of
the famous UCT algorithm (Kocsis and Szepesvári, 2006), which are modeled
as THTS algorithms by using MC backups, UCB1 action selection and the ex-
pected best arm recommendation function in combination with MC outcome
selection and the expansion count trial length component that is configured
such that it only stops when a terminal state is reached (i. e., ν is set to H).
Both UCT versions differ only in the used initialization procedure. The first
version, UCTB (for blind UCT), uses the blind heuristic in the initialization that
assigns an initial action-value estimate of 0 to all actions. It does hence not
take into account any problem-specific information that would bias trials to-
wards reaching the goal location. The second version, which is annotated with
UCT, computes a heuristic based on the optimistic policy that was presented
in Section 4.1. As the optimistic policy implementation is domain-specific and

147

148 CHAPTER 8. EMPIRICAL EVALUATION

50 locations 100 locations

best best

subopt. UCTB UCT subopt. UCTB UCT

1 -214.3±7 -229.4±12 -186.1±7 -319.3±9 -464.5±21 -286.8±7

2 -375.4±7 -918.0±16 -365.5±7 -153.2±7 -185.9±12 -151.5±7

3 -268.5±7 -382.1±15 -255.6±7 -451.3±14 -811.1±39 -412.2±13

4 -241.6±7 -296.6±12 -230.5±7 -329.8±7 -552.3±20 -314.3±7

5 -229.5±7 -290.8±11 -225.4±7 -348.1±13 -654.6±43 -348.3±13

6 -238.3±9 -405.2±21 -236.3±8 -399.9±10 -741.7±29 -396.2±9

7 -209.3±7 -250.5±11 -206.3±7 -370.1±12 -716.2±39 -358.2±12

8 -300.4±8 -462.6±15 -277.6±8 -295.7±11 -405.7±25 -293.3±10

9 -238.1±9 -295.2±18 -222.5±9 -273.8±11 -382.1±27 -262.0±10

10 -249.0±6 -390.8±15 -240.8±6 -347.1±9 -735.1±32 -342.3±9

∅R -256.4 -392.1±6 -244.7±2 -328.8 -564.9±10 -316.5±3

∅Trun 40.48 s 13.99 s 162.00 s 43.74 s

∅Tdec 2.65 s 1.23 s 7.38 s 2.87 s

Table 8.1: Average rewards with 95% confidence intervals for 1000 runs on
ten roadmaps with 50 locations (left) and ten roadmaps with 100 locations
(right). The columns labeled with “best subopt.” repeat the highest result
achieved by any of the optimistic policy, hindsight optimization, and optimistic
rollout from Table 4.1.

based on the optimistic roadmap as described in Example 15 rather than an
all-outcomes determinization, it can be computed efficiently. The number of
virtual trials in the VT initialization has been optimized empirically and is set
to χ = 20 in the discussed results. We obtained comparable results for other
values in the range from χ = 5 to χ = 80, but significantly worse performance
for χ = 1.

The results for both experiments that were discussed in Section 4.5 are
given in Tables 8.1 and 8.2. We do not repeat all results for the optimistic
policy, hindsight optimization, and optimistic rollout from Table 4.1, but com-
bine the three suboptimal policies and present the highest result. (The entry
can hence be regarded as the result of an artificial algorithm with an oracle
that knows which of the optimistic policy, hindsight optimization, and opti-
mistic rollout performs best in the instance.) UCT clearly dominates all other
algorithms in both setups. It always provides the policy that yields the highest
reward except for a single instance in each experiment where the difference
to the best performance is below 1 and statistically not significant. Compared
to the popular optimistic policy, UCT reduces the expected cost by 19.4% on
the medium-sized instances and by 17.4% on the large instances. UCTB, on
the other hand, does not fare well. Given that it is optimal in the limit as well,
this must be due to a slow rate of convergence. The significant difference to

8.1. THTS VS. SUBOPTIMAL ALGORITHMS 149

best

subopt. UCTO EXP VOI

p=0.1 ∅C -155.0±0.3 -155.5±0.3 -154.9±0.3 -154.9±0.3

∅Trun 2.85 s 0.05 s 15.88 s

∅Tdec 0.32 s 0.00 s 0.86 s

p=0.3 ∅C -212.3±0.9 -211.4±0.9 -219.2±0.9 -218.9±0.9

∅Trun 7.38 s 0.06 s 26.77 s

∅Tdec 0.64 s 0.00 s 1.08 s

p=0.5 ∅C -281.7±1.4 -278.5±1.4 -304.3±1.4 -309.3±1.5

∅Trun 6.30 s 0.07 s 38.60 s

∅Tdec 0.46 s 0.00 s 1.21 s

p=0.6 ∅C -286.0±1.4 -281.6±1.5 -311.4±1.4 -316.4±1.5

∅Trun 3.00 s 0.07 s 39.19 s

∅Tdec 0.21 s 0.00 s 1.24 s

Table 8.2: Results for the CTP with sensing on the benchmarks of Bnaya et al.
(2009) with fixed sensing cost of 5. Our algorithms (left half) do not make use
of the sensing capabilities, while the others do. Each block summarizes the
results for 30 roadmaps where all roads are blocked with the same probability.

UCT is not at all surprising since early trials of UCTB have to find the goal
location with random walks.

Figure 8.1 shows the average reward in terms of the number of considered
weathers (for hindsight optimization) and trials (for optimistic rollout, UCT
and UCTB) for the benchmark instance 50-9. It takes roughly 10000 trials
until UCT has converged, a slightly larger number than what is necessary
for convergence of hindsight optimization and optimistic rollout. However, as
UCT is optimal in the limit while hindsight optimization and optimistic rollout
are not, UCT outperforms hindsight optimization after approximately 200 and
optimistic rollout after roughly 1000 trials, which is a number of trials that
is easily performed in less than a second. Figure 8.1 also indicates that the
eventual convergence of the blind version of UCT to an optimal policy is of
limited practical utility, as it would require a number of trials far beyond what
is feasible in practice.

150 CHAPTER 8. EMPIRICAL EVALUATION

-500

-400

-300

-200

-100

10 10
2

10
3

10
4

10
5

a
v
e
ra

g
e
 r

e
w

a
rd

number of considered weathers or trials

OMT

HOP

ORO

UCTB

UCT

Figure 8.1: Average reward as a function of considered weathers or trials for
benchmark instance 50-9.

8.2 THTS Recipes

8.2.1 Setting

Our first experiment shows that the use of an anytime optimal algorithm can
lead to significantly improved behavior in comparison with a suboptimal alter-
native, but it also shows that it can take prohibitively long until near-optimal
behavior is achieved. In our second experiment, we compare all anytime op-
timal THTS algorithms that are derived in Chapter 7 empirically. We use the
benchmark sets of the latest two International Probabilistic Planning Compe-
titions in 2011 and 2014, which sum up to a set of ten instances of each of
the following twelve domains:

• ACADEMIC ADVISING (IPPC 2014)

• CROSSING TRAFFIC (IPPC 2011 & 2014)

• ELEVATORS (IPPC 2011 & 2014)

• GAME OF LIFE (IPPC 2011)

• NAVIGATION (IPPC 2011)

• RECON (IPPC 2011)

8.2. THTS RECIPES 151

• SKILL TEACHING (IPPC 2011 & 2014)

• SYSADMIN (IPPC 2011)

• TAMARISK (IPPC 2014)

• TRAFFIC (IPPC 2011 & 2014)

• TRIANGLE TIREWORLD (IPPC 2014)

• WILDFIRE (IPPC 2014)

For each THTS recipe and parameter configuration that is considered in the
following, we perform 100 runs and use the average over the 100 results to
assess the quality of the evaluated policy. The experiments are performed on
2.60 GHz Eight-Core Intel Xeon computers with one task per core simultane-
ously and a memory limit of 2 GB per task. All algorithms are based on the
same implementation in the state-of-the-art planning system PROST (Keller
and Eyerich, 2012), so there should be no side effects of the implementa-
tion that bias the empirical evaluation towards one configuration or another.
Recall that all tested configurations use

• the Monte-Carlo outcome selection OMC,

• the expansion count trial length component TEC, and

• the virtual trials initialization IVT.

In the following, we denote a THTS algorithm with these three ingredients
and backup function B, action selection A, and recommendation function R
with BA

R – for instance, the algorithm that uses UCB1 action selection, MC
backups and the expected best arm recommendation function is denoted with
MCUCB1

EBA .
We compare the quality of algorithms with the evaluation schema that is

also used at IPPC. The instance score of an MDP is computed for a given set
of algorithms by normalizing all average rewards that are obtained in that
MDP to a value in [0, 100] such that best configuration is assigned a score of
100 and the worst a score of 0. For each algorithm, we furthermore compute
the domain score by averaging over all ten instance scores that belong to the
same domain, and the total score as the average of the twelve domain scores.
The minimal average reward of all considered algorithms plays a role in the
normalization process. To remove the influence of instances where all algo-
rithms perform poorly, we use the reward of the artificial minimum policy of
IPPC 2014 as a minimal limit, i. e., we also assign a score of 0 to all algorithms
that perform worse than that policy. There are only a few THTS recipes and
instances where this plays a role, but is is of strong relevance in the three ACA-
DEMIC instances 5, 9, and 10 where none of our algorithms is able to achieve

152 CHAPTER 8. EMPIRICAL EVALUATION

a better average reward than the IPPC minimal policy, and where all config-
urations are hence assigned a score of 0. A hypothetical oracle that always
selects the best THTS configuration would therefore achieve a domain score
of 100 in all domains except for ACADEMIC, where it only achieves a domain
score of 70, which combines to a total score of 97.5.

The goal of our main experiment is the comparison of all anytime optimal
THTS algorithms that can be derived with the ingredients that are discussed
in this thesis. All considered recipes use the MC outcome selection, the EC
trial length component and the VT initialization, while the backup function,
action selection and recommendation function are combined to the anytime
optimal algorithms that are depicted in Table 7.1. Before we show our main
experiment, there are some parameters where a default value is unclear. This
does not include the trial length, which is set to ν = 1 for all algorithms, a
value that was shown to be superior to larger values in our earlier article on
THTS (Keller and Helmert, 2013); the heuristic weight, which is set to ω = 0.5
for all algorithms because the best results were obtained in an empirical eval-
uation of PROST prior to IPPC 2014 with that value; and of the number of
virtual trials χ, which is set to χ = 1 as this is a parameter that strongly inter-
feres with the strengths and weaknesses of the proposed action selections and
backup functions if it is set to a higher value. The remaining five parameters
are:

• the exploration probability ε in the ε-G action selection;

• the fractional exponent γ in the εRT-G action selection;

• the temperature τ in the BE action selection;

• the fractional exponent γ in the RT-UCB action selection; and

• the learning rate decay ηd in the MC, TD, LSMC, LSTD, ESMC, ESTD,
and QL backup functions.

All of these are core parameters of action selection and backup functions,
which are two of the three ingredients where our anytime optimal algorithms
differ. As we believe that it is important for a meaningful comparison to set
these parameters to reasonable values, we start with an experiment that is
designed to find good parameter values. To ensure that our main experiment
does not get biased, we select two instances of each of the twelve domains,
one each uniformly at random from the five instances with the lowest and the
five instances with the highest indices (in most domains, the index roughly
corresponds to the hardness of an instance). Moreover, we do not aim to
find a global maximum for each parameter but aim for reasonable values for
the four (pairwise independent) parameters of the action selections in a first
step. We settle for only a few reasonable values such that we do not pick
the best values for each configuration, but generalize over combinations of

8.2. THTS RECIPES 153

0

0.25

0.5

0.75

1

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
rm

al
iz

ed
sc

or
e

exploration rate ε

MaxMC
QL
PB

Figure 8.2: Normalized total score vs. exploration probability ε for the
MaxMCε-GEBA, QLε-GEBA, and PBε-GEBA THTS algorithms.

ingredients when possible. In a second step, we optimize the learning rate
decay independently (i. e., with the fixed values of the first step), which might
lead to local maxima as dependencies between the parameters are ignored.
We furthermore only use the expected best arm recommendation function for
the initial experiments and assign the same parameter values to recipes that
differ only in the recommendation function.

8.2.2 Core Parameter

Exploration Probability of ε-greedy Action Selection. Let us start with the
exploration probability of the ε-G action selection, which is used in only three
anytime optimal THTS algorithms (if the recommendation function is ignored,
otherwise there are five) where it is combined with the three off-policy backup
functions QL, MaxMC, and PB. We computed policies for the three configura-
tions PBε-GEBA, MaxMCε-GEBA, and QLε-GEBA with a variety of exploration probabilities
in [0.01, 0.9]. As we are interested in good values for each THTS recipe, we
computed IPPC scores for each recipe independently. Figure 8.2 shows the
total scores over all domains, but they are additionally normalized to values
between 0 and 1, which does not alter the relative order of the configurations
for each recipe (i. e., the relative length of bars of the same color is in relation
to the respective total scores), but allows us to display the (incomparable)

154 CHAPTER 8. EMPIRICAL EVALUATION

results in a single figure without hinting at wrong conclusions.
All three THTS recipes have a common maximum for ε = 0.6. This is sur-

prisingly high at first glance, but it can be explained by the fact that all three
recipes use an off-policy backup function that can benefit from exploration
without suffering from biased action-value estimates. Even though all three
configurations share a common maximum, it does not appear to be the case
that there is a universal value for ε that works good across all domains: the
best values for the exploration probability in the individual domains range
from ε = 0.01 in TRIANGLE to ε = 0.9 in ELEVATORS, and there is a domain
for almost all values that are considered in this experiment where the value
performs best. Even though this is a problem of the ε-G action selection that
has to be kept in mind, it is also the case that all results above a normalized
score of roughly 0.75 (i. e., ε ∈ [0.3, 0.8] for PB and ε ∈ [0.3, 0.7] for QL and
MaxMC) yield total scores that are not unreasonably far from the top result.

Temperature of Boltzmann Exploration. The BE action selection (with
constant temperature) also combines only with the three off-policy backup
functions to an anytime optimal algorithm. Figure 8.3 depicts normalized to-
tal scores in dependence on the temperature τ ∈ [0.01, 5]. Like in the previous
experiment, all three THTS algorithms share a common maximum, which can
be found for τ = 0.15. Unlike in the previous experiment, the best values for τ
w.r.t. domain scores are fairly homogeneous, though: if BE is combined with
a PB or MaxMC backup function, the best policy for eight of twelve domains
is achieved with a temperature in [0.1, 0.25], and the domain scores for the
other four domains with τ ∈ [0.1, 0.25] are close to the best as well. While
the picture is not quite as clear for QLBE

EBA, it is still more stable than the cor-
responding algorithm with ε-G action selection. In general, it appears that
the BE action selection leads to fairly stable results over all domains, which
cannot be taken for granted as the twelve domains are far from similar.

Decrease schema of εRT-G. The γ parameter of the εRT-G action selection in-
fluences the trade-off between exploration and exploitation since ε decreases
slower when γ is smaller, which leads to an higher expected exploration
rate. We performed experiments with values for the fractional exponent γ
in [0.025, 0.5]. The best result for the PBεRT-G

EBA , MaxMCεRT-G
EBA , and QLεRT-G

EBA algo-
rithms is such that the exploration rate is comparably high with γ ∈ [0.05, 0.1].
Similar to the experiment with the ε-greedy action selection, the best results
for the individual domains are scattered over all possible values. The εRT-G
action selection can also be combined with the on-policy and selective backup
functions in an optimal way, all of which yield the highest total score for
γ ∈ [0.1, 0.3]. To pick as few values as possible without sacrificing too much
performance, we decided to settle for values of γ = 0.05 for the off-policy
backup functions, and of γ = 0.2 for the rest.

8.2. THTS RECIPES 155

0

0.25

0.5

0.75

1

0.01 0.05 0.1 0.15 0.2 0.25 0.35 0.5 1 1.5 5

no
rm

al
iz

ed
sc

or
e

temperature τ

MaxMC
QL
PB

Figure 8.3: Normalized total score vs. temperature τ for the MaxMCBE
EBA,

QLBE
EBA, and PBBE

EBA THTS algorithms.

Please observe that this means that the ε parameter decreases slower in
εRT-G than in εLOG-G as the number of trials that is necessary until Lk(c)γ >
ln(Lk(c)) holds is larger than the number of trials that is performed by our
algorithms in each decision step (see our discussion of the RT-UCB action
selection in Section 6.5 for details). This means that, in combination with the
off-policy backup functions, the ε-greedy action selections are such that the
exploration rate of ε-G (with ε = 0.6) and εRT-G (with γ = 0.05) is the largest
(with an average exploration rate of roughly 50% in the initial state), which is
followed by εLOG-G with roughly 10% exploration rate and εLIN-G, where the
ε parameter decreases so quickly that the average exploration rate is below
1%. For on-policy and selective backups, the highest amount of exploration
is achieved with εRT-G (with γ = 0.2) with an average exploration rate of
roughly 16% in the initial state, followed by εLOG-G and εLIN-G with identical
rates.

Decrease schema of RT-UCB. The final action selection parameter is the
fractional exponent γ of the RT-UCB action selection. To our surprise, it has a
comparably low influence on the total score, with best results among all algo-
rithms for γ ∈ [0.3, 0.5]. As the differences within the interval are negligible,
we decided to settle for γ = 1

e ≈ 0.37 for all algorithms and in all further
experiments, a value that is such that RT-UCB never explores less than UCB1.

156 CHAPTER 8. EMPIRICAL EVALUATION

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

MCεLOG-G
EBA 35 51 37 56 37 97 41 60 74 54 52 59 54

MCεLOG-G
MPA 26 53 78 60 35 93 49 64 78 73 47 89 62

MCRT-UCB
EBA 28 67 47 87 43 93 78 91 84 77 48 87 69

MCRT-UCB
MPA 28 64 71 87 47 91 80 86 88 73 47 81 70

ESMCεLIN-G
EBA 28 64 53 19 34 84 13 39 39 48 65 63 46

ESMCεLIN-G
MPA 22 68 83 26 31 88 19 43 52 70 64 89 55

QLεLOG-G
EBA 34 88 54 54 31 91 54 31 61 48 51 37 53

QLεLOG-G
MPA 21 87 87 47 33 85 50 30 62 49 45 55 54

MaxMCBE-DT
EBA 27 93 61 82 35 64 66 69 71 59 49 54 61

MaxMCBE-DT
MPA 32 90 81 77 36 68 59 66 68 50 53 40 60

Table 8.3: Influence of the recommendation function on the performance of a
THTS recipe.

Learning Rate Decay. The learning rate decay of the MC, TD, LSMC, LSTD,
ESMC, ESTD, and QL backup function is the last parameter we have been
looking at prior to the main experiment. Given how different the action se-
lections are, the results have been surprisingly homogeneous for all recipes
that use an MC-based backup function (i. e., MC, LSMC, or ESMC), namely
that it is always best to set ηd = 1 and use no decay at all. This underlines
the behavior of the MC-based backup functions in the example from Chapter
6, where the backup functions adapt quickly to changed results. For the re-
maining backup functions, the result is slightly different. We have seen that
both TD-based backup functions and QL backups are much more stable than
the MC-based backup functions and take a long time until estimates adapt to
significantly different results. The results of this experiment indicate that the
rate of adaption is too low, as the total scores of most algorithms with TD,
LSTD, ESTD, and QL backups improve with a decreasing learning rate decay
until ηd = 0.5, which is the best value for most recipes. However, the picture
is not as clear as it was with the MC-based backup functions, and the action
selection plays a more important role.

8.2.3 Main Experiment

Our theoretical evaluation in the previous section has provided us with a
large number of anytime optimal THTS algorithms: Table 7.1 shows 52 green

8.2. THTS RECIPES 157

icons (which can be paired with two recommendation functions) and 11 yel-
low ones (which are anytime optimal only in combination with the expected
best arm recommendation function), which combines to 115 different THTS
recipes that are anytime optimal. In our main experiment, we ran each of the
anytime optimal algorithms with values for the core parameters as described
above and computed IPPC scores by considering all of these recipes (the scores
are hence comparable to each other). As the result table is really large, we de-
cided to move it to Appendix A. However, we repeat the most relevant entries
in the following discussion.

Influence of the recommendation function

Before we have a look at the best performing algorithms in our main experi-
ment, let us first analyze the influence of the recommendation function. Table
8.3 gives an excerpt of the results of our main experiment that shows the
most important insights w.r.t the influence of the recommendation function.
All combinations that use an on-policy or selective backup function have in
common that there is a clear tendency towards better performance if the most
played arm recommendation function is used, and the effect is strongest for
the algorithms that use an MC-based backup function. The domain that is
foremost responsible for this is the ELEVATORS domain, where every single
THTS recipe BA

MPA outperforms the corresponding recipe BA
EBA with identi-

cal backup function B and action selection A by far (there are cases like the
depicted MCεLOG-G

R where the difference is more than 40 points). Similar re-
sults – albeit to a lesser extent – can be observed in the TAMARISK, TRAFFIC,
and WILDFIRE domains. A possible explanation for the superiority of the most
played arm recommendation function is that all of these domains have in
common that things can only become worse with more information due to
stochastic events and independently from the agent’s policy. Therefore, an
action-value estimate can only get worse the more often it is selected, and it
is possible that a point is reached where the best action has been examined
so much more thoroughly that it appears worse than an inferior yet less often
visited action.

Since there is no domain where BA
EBA performs significantly better than

the corresponding BA
MPA recipe over all action selections A, the empirical data

clearly hints at the fact that the most played arm recommendation function
is indeed a better choice in combination with on-policy and selective backup
functions. At first glance, this seems to match the theoretical results of Bubeck
et al. (2009) who show the same for the MAB with access to a generative
model, but their results can not be transferred to MDPs without further con-
siderations. A theoretical confirmation of the assumption is certainly an inter-
esting avenue of research for future work.

Another, independent observation is that the set of algorithms that is de-
scribed by ESMCA

MPA yields a higher total score than the respective LSMCA
R,

158 CHAPTER 8. EMPIRICAL EVALUATION

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

PBBE
EBA 35 97 72 82 91 84 85 71 79 51 76 55 73

PBRT-UCB
EBA 30 92 72 83 88 67 81 67 74 63 72 63 71

MCUCB1
MPA 27 65 78 86 45 92 77 89 86 71 46 84 70

MCRT-UCB
MPA 28 64 71 87 47 91 80 86 88 73 47 81 70

PBUCB1
EBA 24 91 69 77 94 71 77 69 66 64 74 62 70

MCBE-DT
MPA 26 61 84 84 43 86 83 81 82 74 47 84 70

PBBE-DT
EBA 30 89 73 84 89 67 73 68 70 56 63 54 68

MaxMCBE
EBA 36 95 68 84 40 85 72 68 81 59 67 52 67

PBε-GEBA 53 93 76 85 93 36 79 64 73 55 52 43 67

PBεRT-G
EBA 44 89 70 82 95 56 75 62 71 45 52 43 65

QLBE
EBA 31 97 69 85 37 90 73 67 72 49 56 51 65

TDBE-DT
MPA 26 68 78 87 25 78 85 74 73 66 38 68 64

Table 8.4: Top 12 anytime optimal THTS algorithms. Best results (among all
115 algorithms) for each column are in red, and top five in bold.

LSTDA
R, and ESTDA

R algorithms for all action selections A and for both consid-
ered recommendation functions, and each ESMCA

MPA is a good representative
of the other THTS algorithms that use a selective backup function as its per-
formance in the individual domains is similar to the performance of the other
THTS algorithms. It is not unexpected that the eager selective backup func-
tion improves over its lazy pendant because more trials of the same quality
are considered. We believe that the fact that the poor behavior of selective
TD backups is because they adapt slower to results that are different from the
current estimate than MC backups, which combines poorly with the fact that
only a fraction of all trials are considered in the backup process.

Finally, there is no clear advantage of one recommendation function over
the other if combined with the off-policy backup functions QL or MaxMC (re-
call that PB cannot be paired with most played arm to an anytime optimal
algorithm). In combination with one of the ε-greedy action selections, the
algorithms that are paired with the most played arm recommendation func-
tion yield significantly higher scores in the ELEVATORS and WILDFIRE domains
as well, while the remaining scores (including TAMARISK and TRAFFIC) tend
slightly towards the usage of the expected best arm recommendation function.
And in combination with the BE, BE-DT, RT-UCB, or UCB1 action selection it
is only the ELEVATORS domain where the most played arm recommendation

8.2. THTS RECIPES 159

35

40

45

50

55

60

65

70

75

εLIN -G
εRT -G

εLOG -G

BE-DT

UCB1
RT-UCB

to
ta

ls
co

re

ESMC
TD
MC

Figure 8.4: Total scores for the ESMCA
MPA, TDA

MPA, and MCA
MPA THTS algorithms

in dependence on the action selection A

looks better. For the total scores, this means that the QLAEBA and MaxMCA
EBA

algorithms perform equally good to slightly better than their respective QLAMPA
and MaxMCA

MPA counterparts if A is one of the ε-greedy action selections in
most of the cases, and equally good to slightly worse for the majority of the
recipes with BE, BE-DT, UCB1 and RT-UCB action selection.

Influence of the action selection

Table 8.4 shows the twelve THTS recipes that performed best in our final
experiment.1 At the top of the list is a recipe that uses the BE action selection
and PB backups (and hence the expected best arm recommendation function)
– one of ten recipes in the list that uses an action selection that has not been
applied to the benchmark set of IPPC 2011 and 2014 prior to this thesis.
Especially the two variants of Boltzmann Exploration and the RT-UCB action
selection are represented in the list disproportionately often. And at the same
time, it is not the case that only a few action selection strategies dominate,
since all but the three action selections UNI, εLOG-G, andεLIN-G are contained
in the list of best performing recipes. Let us therefore have a closer look at the
performance of the nine action selection strategies of this thesis.

1For each combination of action selection and backup function, only the recipe with the
recommendation function that yields a higher total score is considered.

160 CHAPTER 8. EMPIRICAL EVALUATION

35

40

45

50

55

60

65

70

75

εLIN -G
UNI

εLOG -G

εRT -G
ε-G BE-DT

UCB1
RT-UCB

BE

to
ta

ls
co

re
MaxMC

QL
PB

Figure 8.5: Total scores for the MaxMCA
R, QLAR, and PBA

R THTS algorithms in
dependence on the action selection A and with the recommendation function
R that yields the highest score.

Figures 8.4 and 8.5 show the performance of different recipes in depen-
dency on the used action selection – Figure 8.4 shows the total scores for the
THTS recipes with on-policy and selective backup functions, and Figure 8.5
shows the total scores for the THTS algorithms that use an off-policy backup
function. Except for ESMC backups, all recipes follow the same pattern: if the
BE action selection combines to an anytime optimal algorithm, it performs
best, followed by RT-UCB, UCB1, BE-DT, and ε-G (the latter for the Offline
backup functions only) which yield similar total scores. All ε-greedy action
selections with decaying ε and UNI perform significantly worse, with εLIN-G
clearly at the end of the scale. Even though the results are clear, we have to
keep in mind that an important parameter of both top performers, BE and RT-
UCB, has been optimized prior to the main experiment, and that the instances
that were used there are also considered here. While this should not alter the
results by much, it certainly incurs a slight bias in favor of both action selec-
tions. Hence, and as the gap to UCB1 and BE-DT is comparably small, we
believe that it is possible to introduce similar parameters for UCB1 and BE-DT
(e. g., the base of the logarithm for UCB1 and a constant factor for BE-DT),
optimize them and achieve comparable results.

The influence of the action selection on ESMC (and the other selective
backup functions) is fairly different, as all action selections except for εLIN-G

8.2. THTS RECIPES 161

yield similar results (and εLIN-G also achieves comparably high scores in com-
bination with ESMC). It is likely that this is because all selective backup func-
tions have in common that the decision to consider trials (or not) serves a
comparable role w.r.t. the action-value estimates as the action selection ingre-
dient itself. On the one hand, this has a positive effect on all ε-greedy action
selections with decaying ε, all of which perform best in combination with
ESMC backups. On the other hand, it does not seem to improve the results
with BE-DT, UCB1 and RT-UCB action selections, but it results in significantly
lower total scores than MC backups. Nevertheless, it shows that separation
of concerns can have positive effects on the performance of THTS algorithms,
and ways to transfer the advantages to stronger action selections seem like an
interesting research direction for future work.

Let us also have a look at the domain and instance scores in dependence on
the action selection. Figure 8.6 shows the number of domains and instances
where a recipe with the given action selection is among the algorithms with
the highest score. A first observation is that both pie charts are very multicol-
ored, which is not entirely surprising for the instance scores where the con-
fidence intervals are comparably large and the results hence quite uncertain.
However, this is not true for the domain scores, where the 95% confidence
intervals are smaller than ±1 consistently and where better results do clearly
hint at some fundamental advantage. Even though all action selections be-
sides UNI are best in at least one domain, we can nevertheless not detect that
there are domains where it is the action selection that is responsible for the
fundamental advantage, as there is not a single domain where an action se-
lection is particular good independently from the selected backup functions.
Nevertheless, both the total results and the results on domains where one ac-
tion selection dominates the others clearly indicate that some action selections
– in particular the two variants of Boltzmann Exploration and RT-UCB – allow
for stronger THTS recipes than others.

Influence of the backup function

In general, the picture of the best performers is pretty clear w.r.t the backup
functions, with the seven best performers all being PB and MC backup func-
tions. However, it is not the case that other backup functions are nowhere
close. The best MaxMC recipe is the eighth best result, the best QL the
eleventh, the best TD the twelfth and the best ESMC (14-th) and LSMC (17-th)
just missed the list of the best recipes by a margin. In fact, it is only the two
selective TD backup functions that do not perform particularly good in any
combination.

As the action selections are not responsible for good or bad behavior in
single domains, it must be the combination of action selection and backup
function. Figure 8.7 shows the number of domains and instances where a
THTS algorithm with the respective backup function is among the best per-

162 CHAPTER 8. EMPIRICAL EVALUATION

1

UCB1
4

RT-UCB

4

BE

2

BE-DT

1

ǫ-G

1

ǫRT-G

1

ǫLOG-G

1

ǫLIN-G

28

UCB1
32

RT-UCB

21

BE

19

BE-DT 9

ǫ-G

15

ǫRT-G

16

ǫLOG-G

21

ǫLIN-G

9
UNI

Figure 8.6: Number of domains (left) and instances (right) where a recipe
with the given action selection is among the algorithms with the highest score.

6

MC

4PB

2

TD

2

MaxMC

1

SMC

1

QL

41

MC

32

PB

14
TD

16

MaxMC

22

SMC

22

QL

8
STD

Figure 8.7: Number of domains (left) and instances (right) where a recipe
with the given backup function is among the algorithms with the highest
score. SMC (STD) contains both ESMC (ESTD) and LSMC (LSTD) backups.

formers. Again, both charts are fairly multi-colored, and again, all (except
TD-based selective backups) are best in at least one domain. However, this
time there is a clear dependency between the behavior in a domain and the
backup function. There are a few domains – most notably CROSSING, ELEVA-
TORS, and TRIANGLE – where the three off-policy backup functions perform
best, followed by the selective backups and then the two on-policy backup
functions. PB backups dominate another two domains, namely NAVIGATION

and SKILL. And MC (and to a lesser extent TD) backups perform significantly
better in GAME, RECON, SYSADMIN, TAMARISK, TRAFFIC, and WILDFIRE.

It is noticeable that all domains where off-policy backups dominate other
backup functions are domains where best actions have a significantly higher
expected reward than non-optimal actions. It is not hard to imagine that using
the maximum of all actions in decision nodes is a reasonable choice. On-policy

8.2. THTS RECIPES 163

ACADEM
IC

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

TRIA
NGLE

W
IL

DFI
RE

To
tal

PBε-GEBA 7.2 12.2 1.4 25.1 9.4 14.8 15.8 5.4 8.0

PBεLIN-G
EBA 2.7 1.7 0.0 0.5 3.9 4.8 0.8 3.0 1.6

PBεLOG-G
EBA 6.5 8.6 0.8 13.2 5.9 17.6 3.6 5.0 5.4

PBεRT-G
EBA 7.3 12.2 1.5 25.1 9.4 14.8 15.8 5.4 8.0

PBUNI
EBA 5.6 12.7 1.6 25.7 9.7 13.6 16.4 4.6 7.9

PBRT-UCB
EBA 6.7 13.7 3.4 20.4 10.9 27.0 18.9 5.6 9.3

PBBE-DT
EBA 6.6 12.8 2.3 23.7 11.2 21.0 18.9 5.0 8.8

PBBE
EBA 7.0 12.9 2.4 26.9 11.4 27.3 22.9 5.9 10.1

PBUCB1
EBA 7.0 14.0 3.6 35.1 11.2 28.9 19.2 4.7 10.7

Table 8.5: Average number of steps-to-go in the first root state that is labeled
as solved. All instances have a horizon of H = 40.

backup functions, on the other hand, dominate when all actions are highly un-
certain and have many outcomes that are often caused by exogenous effects.
We believe that it is advantageous in these domains to somehow use as much
of the collected information as possible, and a higher amount of information
is propagated in the tree by considering the results of all actions instead of just
the best one. Finally, PB has an additional advantage over all other backup
functions as it is able to label states as solved. This especially plays a role
in small domains or in decisions with only few steps-to-go, and explains the
good performance in the NAVIGATION and SKILL domains. Table 8.5 shows the
average number of steps-to-go in the first root state that is labeled as solved
in a run of all algorithms that use PB backups. Note that the horizon is set to
40 in all IPPC benchmarks, so PBUCB1

EBA acts provably optimal almost from the
beginning in all instances of NAVIGATION and after little more than 10 steps
on average in the SKILL instances. (In practice, it acts optimally from the
first step in the simpler instances and needs longer to solve the root state in
harder instances.) Other domains where recipes with PB backups profit from
the solve labeling procedure are ELEVATORS, RECON, and TRIANGLE.

In comparison to the algorithms that were presented in our first analysis
of the THTS framework (Keller and Helmert, 2013) where UCT? (which is
PBUCB1

EBA here) dominated all other algorithms, it is apparently the case that the
additional ingredients that are considered here are a noteworthy addition.
The action selection strategies BE and RT-UCB improve slightly yet notable
over the state-of-the-art algorithm UCT?, and the most played arm recommen-
dation function improves the performance of algorithms that use MC backups

164 CHAPTER 8. EMPIRICAL EVALUATION

up to a point where some are competitive with the best recipes. This concludes
our analysis of the Trial-based Heuristic Tree Search framework, and we turn
our attention to a problem we became aware off during our participation at
the last International Probabilistic Planning Competition in 2014.

CHAPTER 9
The MDP-Evaluation Stopping

Problem

Since it is often impossible or intractable to evaluate MDP algorithms based
on a theoretical analysis alone, the International Probabilistic Planning Com-
petition (IPPC) was introduced to allow a comparison based on experimental
evaluation. Just as our evaluation in the previous chapter, the idea is to ap-
proximate the quality of an MDP solver by performing a sequence of runs on
a problem instance, and by using the average of the obtained results as an
approximation of the expected reward. Following the optimal policy (i.e., the
policy that maximizes the expected reward) leads to the best result in such a
setting. In the final chapter of this thesis, we discuss the MDP-Evaluation Stop-
ping Problem (MDP-ESP) (Keller and Geißer, 2015), an optimization problem
that we got aware of in our preparation for IPPC 2014, where each solver had
to perform at least 30 runs within a given time limit, while only the last 30
runs were used for evaluation.

The decision when to stop the sequence of runs could be taken at any point
of the evaluation with knowledge of the rewards that were collected in all
previous runs. We show in Section 9.1 how the MDP-ESP can be constructed
as a meta-MDP with actions that correspond to the application of a policy on
the base-MDP. Interestingly, the computation of the optimal policy is no longer
the only objective of participating planners, and the fact that the execution of
other policies on the base-MDP can be part of an optimal strategy for the
MDP-ESP leads to a problem that is intractable in practice.

However, there are special cases where the MDP-ESP can be reduced to
an instance of an optimal stopping problem. We analyze these cases theo-
retically in Section 9.2. Two functions that depend only on the number of
remaining runs – one that specifies the target reward that is necessary to stop,
and one that gives the policy that is applied otherwise – suffice to describe
an optimal policy. Based on these observations, we present four approximate

165

166 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

s0

s⋆

π+

π⋆
π2

0.2 0.5 0.8

Figure 9.1: An example instance of the NAVIGATION domain with the policies
π? (dotted), π2 (dashed) and π+ (solid).

algorithms for the general problem in Section 9.3. The first strategy can be
applied even when a policy for the base-MDP is computed online and not
known in advance, while two other algorithms require the knowledge of the
optimal policy and its expected reward. We show that the expected reward
of the optimal policy is a lower bound for the expected performance of both
strategies.

Our final algorithm switches between the application of the optimal policy
and the policy with the highest possible outcome, which can be computed
without notable overhead in the THTS framework. We show theoretically and
empirically that all algorithms outperform the naïve base approach in Section
9.4 that ignores the potential of optimizing evaluation runs in hindsight, and
that it pays off to take suboptimal base policies in addition to the optimal one
into account. Finally, we discuss the influence of the MDP-ESP on the results
of IPPC 2014, and propose applications of our algorithms by discussing them
in the context of related work.

9.1 The MDP-ESP

Each policy π induces a set of outcomes Oπ, which consists of each accumu-
lated reward r that can be achieved under application of π paired with the
probability of r, i. e., Oπ = {(r,P[R(φπ) = r]) | P[R(φπ) = r] > 0}. We call
the highest possible outcome P π := max(r,p)∈Oπ r of a policy π the potential
of π. We abbreviate the policy with the highest potential among all policies

9.1. THE MDP-ESP 167

with π+. Moreover, we abbreviate the expected reward of π? (π+) with V ?

(V +), its potential with P ? (P+), its set of outcomes with O? (O+) and a run
under the policy with φ? (φ+).

The example MDP that is used in this Chapter is depicted in Figure 9.1.
It shows an instance of the NAVIGATION domain of IPPC 2011, where an
agent is initially located in grid cell s0 and aims to reach cell s? by mov-
ing within the grid. On its way, the agent has to cross the middle row at
some point, where it gets stuck with increasing probability from left (20%)
to right (80%). The agent has no possibility to break free once it is stuck,
and it receives a reward of −1 in each step unless it is located in s?. If we
consider the IPPC horizon of H = 40, the agent receives an accumulated re-
ward of R(φ?) = −6, R(φπ2) = −4, and R(φ+) = −2 if it successfully passes
the middle row, and of −40 if it gets stuck regardless of the applied policy.
The expected reward of π? is V ? = −12.8, and it induces the set of out-
comes O? = {(−6, 0.8), (−40, 0.2)} with potential P ? = −6. For π+, we have
V + = −32.4, O+ = {(−2, 0.2), (−40, 0.8)}, and P+ = −2.

The problem we have faced at IPPC 2014 is the MDP-ESPuk , where a se-
quence of at least k > 0 and at most u ≥ k runs is performed on an MDP. A
strategy σ assigns policies π1, . . . , πn to runs on the MDP and stops the eval-
uation after n (k ≤ n ≤ u) runs. The objective is to find a strategy σ that
maximizes the average accumulated reward of the last k runs, i.e., where

Ruk(σ) :=
1

k
·

n∑
i=n−k+1

R(φπii)

is maximal in expectation. The quality of a strategy σ is hence measured in
terms of its expected average reward E[Ruk(σ)].

An instance of the MDP-ESP not only optimizes the evaluation of a se-
quence of policies on a base-MDP, it can be described in terms of a meta-MDP
itself. A state in the meta-MDP is given by a sequence of rewards (r1, . . . , rn),
where ri := R(φπii) for i = 1, . . . , n is the accumulated reward of the runs that
were performed before reaching a state. The meta-MDP provides an action
aπ for each policy π ∈ Π, which encodes the execution of policy π on the
base-MDP. Furthermore, there is a single action a⊗ that encodes the decision
to stop the MDP-ESP and evaluate the meta-run under σ based on the result
of the last k runs on the base-MDP. We describe the transition function of the
meta-MDP in terms of its actions: a⊗ is not applicable in a state (r1, . . . , rn) if
n < k, and it is the only applicable action in a state (r1, . . . , ru). Its applica-
tion leads deterministically to an absorbing terminal state and yields a reward
R((r1, . . . , rn), a⊗) = 1

k ·
∑n

i=n−k+1 ri. The application of an action aπ in state
(r1, . . . , rn) incurs no reward and leads to a state (r1, . . . , rn, r), where r is
drawn according to the outcome function r ∼ Oπ of the executed policy π.

168 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

9.2 Theoretical Analysis

Upper and Lower Bounds. All optimization problems that were discussed
in Chapter 5 have in common that the theoretical upper bound of the expected
reward of a policy is less than or equal to the expected reward V ? of the
optimal policy π?. This is different in the MDP-ESP. Since the agent is allowed
to decide in hindsight if the last k runs were good enough to be used for
evaluation, there are strategies that allow an expected performance that is at
least as good as V ? for all instances of the MDP-ESPuk . However, it is impossible
to achieve a result that is higher than P+.

Theorem 16. V ? ≤ max
σ

E[Ruk(σ)] ≤ P+ for all k > 0 and u ≥ k.

Proof: We start with a discussion of the lower bound V ? by considering the
subset of instances where u = k. The MDP-ESPkk, where each performed run
is an evaluation run reduces to DMPlan, and the optimal strategy is hence
the strategy that only executes π?. (We denote the strategy that executes π?

in each run and never stops prematurely with σπ? in this proof). Since the
expected reward of each run under π? is V ?, the expected average reward of
the whole sequence of k runs is V ? as well. If we apply σπ? to instances where
u > k, the additional, prepended runs have no effect as they are not used for
evaluation. Therefore, E[Ruk(σπ?)] = V ? for any instance of the MDP-ESP, and
the lower bound is as stated in Theorem 16.

P+ is an upper bound of the MDP-ESPuk since it is the highest possible
outcome of all policies, and it is therefore impossible to achieve a higher ex-
pected reward in a run and a higher expected average reward in a sequence
of k runs. Moreover, the bound is tight for the MDP-ESP∞k , i. e., the subset
of instances with an infinite number of runs and a finite number of evalua-
tion runs. Since any sequence of outcomes will occur eventually in an infinite
number of runs, the optimal strategy for the MDP-ESP∞k applies π+ in every
run until a sequence of k runs in a row yields P+, and the expected average
reward of this strategy is P+.

Optimal Strategies. Even though we have provided tight upper and lower
bounds for the MDP-ESP, the expected reward of optimal policies in the space
between the discussed extreme cases is not yet clear. It is not hard to show
that the expected reward of the MDP-ESPuk under an optimal strategy increases
strictly from V ? to P+ with increasing u for all k (unless π? = π+ and π?

deterministic, in which case maxσ E[Ruk(σ)] = V ? = P+ for all k > 0 and
u ≥ k). We omit a general proof and discuss the figurative special case where
k = 1 instead. The MDP-ESPu1 corresponds to a finite-horizon version of the
house-selling problem (Karlin, 1962), where offers come in sequentially for
a house an agent wishes to sell. The offers are drawn from a known prob-
ability distribution, and the agent has to accept or decline each offer right

9.2. THEORETICAL ANALYSIS 169

n π? π2 π+ app(n)

1 −12.8 −22 −32.4 π?

2 −7.36 −8.4 −10.64 π?

3 −6.272 −5.68 −6.288 π2

4 −5.936 −4.84 −4.944 π2

5 −5.768 −4.42 −4.272 π+

6 −5.654 −4.136 −3.8176 π+

Table 9.1: The optimal strategy for the MDP-ESPu1 on the NAVIGATION instance
of Figure 9.1 applies app(n) if the current result is less than t(n) (in bold) and
stops otherwise.

after receiving it. The agent aims to sell the house for the highest price
among at most u offers. The subset of instances where only a single run is
used for evaluation is interesting for our purposes because an optimal strat-
egy can be described with two simple functions: the target reward function
t : {1, . . . , u−k} → R describes the average reward t(n) of the last k runs that
must have been achieved in a state (r1, . . . , ru−n) to apply a⊗, and the policy
application function app : {1, . . . , u− k} → Π specifies the policy that is taken
otherwise.

A solution for the MDP-ESPu1 is to compute these functions by applying
backward induction, a popular method to solve full information optimal stop-
ping problems where an increasing number of available runs u is considered
(Gilbert and Mosteller, 1966). We know that it is optimal to apply π? in the
MDP-ESP1

1, and the expected reward is V ?, i. e., app(1) = π?. Now consider
the MDP-ESP2

1: if, after the first run, our current result is higher than V ?, we
stop the evaluation, since the remaining problem is exactly the MDP-ESP1

1 with
expected reward V ?. Otherwise, we apply app(1) = π?. The target reward
function is therefore such that t(1) = V ?. The policy that is applied in the first
run of the MDP-ESP2

1, app(2), can be computed as the policy that maximizes
the expected reward given t(1), which in turn allows the computation of t(2)
and so on.

Take for example the NAVIGATION domain that was presented earlier. We
have app(1) = π? and t(1) = V ? = −12.8. If we apply π? in the first run
of the MDP-ESP2

1, we achieve a reward of −6 with probability 0.8 and of −40
with probability 0.2. Since we prefer not to stop in the latter case, we get
t(2) = (0.8·(−6)) + (0.2·t(1)) = −7.36. Table 9.1 shows these computations
for all three policies of the NAVIGATION instance that are depicted in Figure
9.1. It reveals that it is optimal to execute π+ if five or more runs are left, and
to stop only if a run successfully crosses the middle row and yields a reward

170 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

u = k k < u <∞ u =∞

k = 1 O(1) O(u·|Π|·Omax) O(1)

1 < k <∞ O(1) O
(
(|Π|·Omax)u

)
O(1)

Table 9.2: Complexity results for different instances of the MDP-ESPuk given
an oracle for the underlying base-MDP.

of −2. If three or four runs are left, the strategy proposes the execution of
policy π2, and π? is executed only in the last two runs. The example shows
that restricting to strategies that consider only π? and π+ is not sufficient for
optimal behavior.

Complexity. It is not hard to see that finding an optimal strategy for the
general MDP-ESPuk is practically intractable for all but the most trivial cases. It
corresponds to solving the meta-MDP with a search space of size (|Π|·Omax)u

with Omax = maxπ∈Π |Oπ|, which is intractable even if |Π| were manageable
(which is usually not the case). We have discussed three special cases of the
MDP-ESP, though, and we have shown that an optimal strategy for two of
them – the MDP-ESPkk and the MDP-ESP∞k – can be derived in constant time
under the assumption that the cost of deriving policies in the base-MDP can
be neglected. For the third, we have provided an algorithm that regards all
outcomes of all policies π ∈ Π in at most (u − k) decisions, and it is hence
linear in u, |Π|, and Omax. Even though the dependence on |Π| is discouraging
as the computation of all policies is intractable, it also shows that efficient
approximations of good quality are possible if we consider only a subset of Π.
The complexity results are summarized in Table 9.2. The manageable cases all
have in common that two simple functions that map the number of remaining
runs to a target reward and a policy suffice to describe the strategy. In the next
section, we show how these ideas can be used to approximate the general case
with strategies of high quality.

9.3 Strategies for the MDP-ESP

We consider three possible states of a-priori information: first, we look at
the case where π? and V ? are unknown, and assume that the computation
of a policy and its execution are interleaved. We continue with MDPs where
π? and V ? can be computed, and present two strategies, one that aims at
avoiding bad luck and one that pushes its luck under execution of π?. In the
last part of this section, we present a strategy that mixes π? and π+ and prove
that it is theoretically superior to the other considered strategies.

9.3. STRATEGIES FOR THE MDP-ESP 171

Secretary Problem. While most instances of the IPPC are such that they
cannot be solved in the given time, it is always possible to perform more than
k runs. Even if the available time is distributed equally among all planning
steps beforehand, there are reasons for spare time: the PROST planner (Keller
and Eyerich, 2012) that has been our entry for IPPC 2014 detects reward
locks; it recognizes states with only one reasonable action; it is able to solve
an encountered state even in larger MDPs if the remaining horizon is small;
and it reuses decisions if it encounters a state more than once.

If the optimal policy is not available, the MDP-ESPuk is similar to the sec-
retary problem (Dynkin, 1963; Ferguson, 1989), which is a variant of the
finite-horizon house-selling problem where the underlying probability distri-
bution is not revealed to the agent. It involves a single secretarial position and
u applicants which are interviewed sequentially in a uniformly random order.
Applicants can be ranked unambiguously, and the decision to hire a candidate
has to be made right after the interview and is irrevocable. The objective is
to have the highest probability of selecting the best applicant of the whole
group, and it can be shown that an optimal solution is to reject the first bue c
applicants (≈ 36.8%) and select the first subsequent candidate that is ranked
higher than all candidates before (e.g., Ferguson, 1989; Bruss, 2000).

To apply the secretary-problem strategy (SecP) to the MDP-ESPuk , we pre-
tend that all sequences of k consecutive runs are independent, identically dis-
tributed data points. We perform bu−k+1

e c runs and stop as soon as the last
k runs yield a higher average reward than all data points before. It is im-
portant to note that the data points are of course not independent and iden-
tically distributed in our setting – each data point depends on the previous
one(s) unless k = 1, since two consecutive samples differ only in a single re-
ward. Our empirical evaluation (where only π? is executed) shows that the
secretary-problem strategy is a strategy that improves over V ? significantly
nonetheless.

Meet-The-Expectations. The IPPC benchmarks offer MDPs of varying com-
plexity, including some instances where π? can be computed. However, it is
always possible that the execution of a policy is unfortunate. Take, for exam-
ple, the NAVIGATION instance from Figure 9.1. If we execute π? for k = 30
runs, the expected reward V ? is achieved if the agent ends up stuck exactly
six times. Figure 9.2, which depicts how likely it is that the agent gets stuck,
reveals that the probability that it gets stuck more than six times is roughly
40%. A strategy that avoids bad luck if more than k runs are available is a
first step in the right direction. We call the strategy with tσMTE(n) = V ? and
appσMTE

(n) = π? for all n the meet-the-expectations strategy (MTE).

Theorem 17. V ? ≤ E[Ruk(σMTE)] ≤ P ? for all k > 0 and u ≥ k.

Proof: If π? is deterministic, all inequalities are trivially equalities. Otherwise,
both inequalities hold since only π? is applied. The first is strict for u > k since

172 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

0 2 4 6 8 10 12 14

0

5

10

15

number of runs getting stuck (out of 30)

p
ro
b
ab

il
it
y
in

%

Figure 9.2: Probability of getting stuck x times in 30 runs of the NAVIGATION

example instance.

we accept lucky results and improve unlucky ones, and the second is strict
even for most instances of the MDP-ESP∞1 since the meet-the-expectations
strategy stops with a result between V ? and P+.

Pure Strategy. We have presented a strategy that avoids bad luck while ap-
plying π?, so the question naturally arises how to push the envelope and aim
for good luck. After all, Figure 9.2 shows that the probability of getting stuck
less than six times is also approximately 40%. Since an optimal target re-
ward function is intractable in practice even if appσPS

= π? for all n, we use a
simulation approach in the pure strategy (PS) to estimate tσPS . The pure strat-
egy performs a sequence of m simulations (�1, . . . ,�m) (m is a parameter of
the algorithm), where each �i consists of u runs (φ?i1, . . . , φ

?
iu). We use the

simulations to compute the target reward function as

tσPS(n) = median(Rnmax(�1), . . . ,Rnmax(�m)),

where Rnmax(�i) = maxl∈{1,...,n}(
1
k

∑l+k−1
s=l R(φ?is)).

Theorem 18. V ? ≤ E[Ruk(σPS)] ≤ P ? for all k > 0 and u ≥ k. For all finite
k > 0, E[R∞k (σPS)] = P ? and E[Ruk(σPS)] is monotonically increasing in u and
converges to P ?.

9.3. STRATEGIES FOR THE MDP-ESP 173

Algorithm 8: Mixed strategy for the MDP-ESPuk with u > k

1 compute_mixed_strategy(u, k,m):
2 let all t(n)← −∞, app(n)← π? and n0 ← 1
3 for i = 0, . . . , k do
4 sample_run_sequences(u, k,m, i)
5 update_strategy(u, k, i)

6 sample_run_sequences(u, k,m, i):
7 for j = 1, . . . ,m do
8 for n = 1, . . . , u do
9 if (n mod k) < i then rn ← sample(π+);

10 else rn ← sample(π?);
11 if n > k then
12 tij(n−k)← maxl∈{1,...,n}(

1
k

∑l+k−1
s=l rs)

13 for n = 1, . . . , u− k do
14 ti(n)← median(ti1(n), . . . , tim(n))

15 update_strategy(u, k, i):
16 for n = u− k, . . . , n0 do
17 if ti(n) > t(n) then t(n)← ti(n);
18 else
19 for l = n0, . . . , n do
20 if (l mod k) < i then app(n)← π+;
21 n0 ← n and return

Proof: V ? and P ? are bounds since only π? is applied and E[tσPS(n)] ≥ V ? for
a sufficiently large m. E[tσPS(n)] increases monotonically in n from V ? to a
value ≤ P ? for u > k since the number of considered data points in the simu-
lations grows, and it reaches P ? for u = ∞ and therefore E[R∞k (σPS)] = P ?.
E[Ruk(σPS)] is monotonically increasing since the expected reward is bounded
from below by a probability weighted sum of all target rewards.

Mixed Strategy. π+ can not only be derived when Oπ is available for all π,
but it can be computed as π+ := maxπ∈Π P

π(s0), which is described by the set
of equations

P π(s) =

{
0 if s is terminal
W π(s, π(s)) otherwise, and

W π(s, a) = R(s, a) + max
s′∈succ(s,a)

P π(s′).

Note that the only difference to the Bellman optimality function in Definition
11 is that W π(s, a) only cares about the best outcome while Qπ(s, a) uses the
weighted average of all outcomes. In the PROST version that has been used

174 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

for IPPC 2014, we have turned these equations into assignment operators and
have extended the used PB backup function to compute π+ in addition. This
way, it is in general possible to use the THTS framework to derive π+ as a
side-effect of the π? computation and without notable overhead.

While it is possible to use π+ as the base-policy of the pure strategy, it
turns out that u has to be prohibitively large to outperform the pure strategy
based on π?. Instead, we generate a policy that is inspired by our analysis
of the MDP-ESPu1 , where a function appσMS

(n) is used to describe which pol-
icy is executed solely in terms of the number of remaining runs. We restrict
ourselves to the policies π? and π+ in our version of a mixed strategy (MS),
but adding more policies is an interesting (and certainly non-trivial) topic for
future work. Initially, the mixed strategy computes a function t0 (the index
stands for the number of runs under π+ in each data point) which is equiva-
lent to tσPS . The mixed strategy, which is depicted in Algorithm 8, continues
by performing simulations where π+ is executed in i out of k runs. The func-
tions tσMS and appσMS

are updated after the i-th iteration by finding the largest
n where t(n) ≥ ti(n), i. e., by finding the element in the sequence where the
number of runs is small enough that an additional execution of π+ does not
pay off anymore. Note that our implementation stops the computation pre-
maturely when a ti does not alter tσMS in the update procedure (unlike the
depicted Algorithm 8).

Theorem 19. E[Ruk(σPS)] ≤ E[Ruk(σMS)] for all k > 0 and u ≥ k, and for all
finite k > 0 it holds that E[R∞k (σMS)] = P+.

Proof: If we assume that the number of simulations is sufficiently high, then it
is either not beneficial to apply π+ and the mixed strategy reduces to the pure
strategy, or it is beneficial and E[Ruk(σMS)] > E[Ruk(σPS)]. The mixed strategy
converges towards P+ with an increasing number of u since at some point it
pays off to only apply π+ with an expected reward of P+ in the limit.

9.4 Experimental Evaluation

To evaluate our algorithms empirically, we perform experiments on the do-
mains of IPPC 2011 and 2014. We use the UCT? algorithm of Keller and
Helmert (2013), which corresponds to the PBUCB1

EBA recipe, to solve the base-
MDP. We have altered the THTS framework to perform a sequence of searches
with an increasing horizon, a change that is inspired by the Reverse Itera-
tive Deepening approach that is used in GLUTTON (Kolobov et al., 2012a). A
higher number of instances can be solved since state-values of solved states
are reused, which occurs more often if the horizon is increased iteratively
(the possibly weaker anytime performance is not important here). The result-
ing algorithm is able to solve 34 instances of the 120 existing IPPC bench-
marks: four of CROSSING, five of ELEVATORS, three of GAME, all NAVIGATION

9.4. EXPERIMENTAL EVALUATION 175

102 103 104

−4.5

−4

−3.5

−3

u

av
er
ag
e
re
w
ar
d

MS
PS
SecP
MTE

Figure 9.3: Results for an increasing number of available runs u on the first
instance of the CROSSING domain with V ? ≈ −4.43, P ? = −4, and P+ = −2.

instances, and six both of SKILL and TRIANGLE. Apart from the ELEVATORS

domain, where π? can be derived for the instances 1, 2, 4, 7, and 10, the
instances with the lowest indices are solved. The number of evaluation runs k
is set to 30 in all experiments, which corresponds to the number of evaluation
runs at both IPPC 2011 and 2014, and the values for u are increased from
30 to 10000. Each experiment is conducted 20 times and average results are
reported.

Figure 9.3 shows the average reward of the experiments on the first in-
stance of CROSSING with increasing u. We have selected the instance since
comparably small values of u showcase our theoretical results. Nevertheless,
if u is large enough, any instance could have been selected. Table 9.3 shows
normalized IPPC scores which are computed over the average of the results of
the experiment sets for u = 200 and u = 1000. As in the previous chapter, a
score of 100 is assigned to the best performing strategy. Moreover, a score of
0 is assigned to an artificial baseline solver with an average reward of V ? in
all instances. (Please observe that the minimal result is assigned to a solver
that plays the optimal base policy in each run.) All other scores are normal-
ized with the procedure that is used at IPPC with the described minimal and
maximal values.

The expected reward in the depicted CROSSING instance is V ? ≈ −4.43.
The simple meet-the-expectations strategy is already an improvement over
the baseline solver. It reliably avoids bad luck already with only a few extra
runs. However, it has converged to −4.35, a value that is only little above
V ?, in the CROSSING instance already with u = 100 and does not improve
any further. The same can be observed in Table 9.3, where the result does

176 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

not improve when u is increased from 200 to 1000. In that experiment set,
merely 35 to 40 runs suffice to avoid bad luck reliably over all instances, and
in between 100 and 200 runs suffice for convergence. Except for special cases
like an MDP-ESPu1 with |{(r, p) ∈ O? | r ≥ V ?}| = 1, the meet-the-expectations
strategy converges to a value that is greater than V ? yet significantly less than
P ?.

The secretary-problem strategy does not suffer from this problem – the
larger u, the better the result in our experiments. It quickly outperforms the
meet-the-expectations strategy even though the availability of the optimal pol-
icy is no condition for the applicability of the strategy. It should nevertheless
be noted that the presented results of the secretary-problem strategy are based
on an implementation that executes the optimal policy in all experiments to
allow a better comparison of the strategies. In this setting, the secretary-
problem strategy converges to P ? with growing u: since only π? is applied, it
cannot improve over P ?, and since bu−k+1

e c grows with u, the target reward
and in turn the expected average reward approach P ?.

The two sampling-based strategies yield comparable results in the experi-
ment on all solvable IPPC instances that is given in Table 9.3, and both outper-
form the other considered algorithms significantly and in all domains. Obvi-
ously, simulation based approaches are well-suited to create strategies of high
quality. It is not surprising that the pure strategy outperforms the meet-the-
expectations strategy with increasing u since the pure strategy converges to
P ? according to Theorem 18 while the meet-the-expectations strategy usually
does not, and since the pure strategy reduces to the meet-the-expectations
strategy if it ever were reasonable. The theoretical relation between the per-
formance of the pure strategy and the secretary-problem strategy is an open
question, but it appears that the latter converges to P ? with a slower pace.
The pure strategy often has an edge over the mixed strategy when u and k
are close, since applying π+ is rarely reasonable in these cases and the mixed
strategy can hence only be misled by its additional possibilities. Increasing the
number of simulations m will neglect the slight advantage the pure strategy
has in some instances. The larger u compared to k, the larger the advantage
of the mixed strategy over the pure strategy. Figure 9.3, which depicts one of
the smaller instances of the used benchmarks, shows this clearly: the mixed
strategy quickly outperforms all other strategies (as soon as it starts to mix in
runs under π+) and converges to P+ = −2. Table 9.3 also supports this claim
since the mixed strategy outperforms the pure strategy in all domains with
u = 1000. The only exception is the ELEVATORS domain, where P π(s0) = 0
for all policies π since there is a small chance that no passenger shows up. If
ties were broken in favor of better action-value estimates in our implementa-
tion of π+ (instead of uniformly at random), the mixed strategy and the pure
strategy would perform equally in the ELEVATORS domain.

9.5. DISCUSSION 177

MTE SecP Pure Mixed

200 1000 200 1000 200 1000 200 1000

CROSSING 21 21 34 45 59 84 57 100

ELEVATORS 26 26 34 59 59 98 55 93

GAME 28 28 27 52 63 98 68 98

NAVIGATION 37 37 57 85 74 93 73 100

SKILL 23 23 37 63 57 97 60 96

TIREWORLD 27 27 38 68 62 96 62 99

Total 27 27 38 62 62 94 63 98

Table 9.3: IPPC scores of the proposed algorithms for the MDP-ESPu30 on in-
stances of IPPC 2011 and 2014 that can be solved with PROST. The expected
reward V ? of the optimal policy π? is used as the minimum for normalization.

9.5 Discussion

We started with the work at hand due to the evaluation schema that was used
at IPPC 2014. Only three IPPC solvers made use of the rule that more than
30 runs are allowed: both versions of PROST and G-PACK, a variant of the
GOURMAND planner (Kolobov et al., 2012b). The latter does not reason over
the MDP-ESP, though. It simplifies the original MDP by considering at most N
outcomes for all actions, and computes and executes the policy with highest
expected reward in the simplified MDP. If time allows, this process is repeated
with a larger N , which is the only reason that more than k evaluation runs
are performed.

Therefore, only our submissions actually considered the MDP-ESP as the
relevant optimization problem. However, most of the work described in this
paper was done after the competition – only the secretary-problem strategy
and a variant of the pure strategy with a target reward that is independent
from the number of remaining runs were applied at IPPC 2014. Note that
both are strategies that aim at optimizing the evaluation of π? or a near-
optimal policy. PROST 2011 applied the secretary-problem strategy in 33 out
of 80 instances, while PROST 2014 used it in 28 and the pure strategy in
another six instances. Even though we were able to improve the average
reward in 22 (19) instances with the secretary-problem strategy and in five
with the variant of the pure strategy in the 2014 (2011) version, the total
IPPC scores are mostly unaffected: had we stopped evaluation after 30 runs
in all instances with both solvers, the final result would differ only slightly
with total IPPC scores of 81.6 (-0.9) and 77.3 (+0.4) for the PROST versions

178 CHAPTER 9. THE MDP-EVALUATION STOPPING PROBLEM

and of 73.9 (+0.5) for G-PACK (and hence still with a clear winner PROST).
There are many applications for optimal stopping problems, including

sponsored search (e.g., Babaioff et al., 2007; Zhou and Naroditskiy, 2008),
online auctions (e.g., Hajiaghayi et al., 2004), or optimal stock market behav-
ior (e.g., Griffeath and Snell, 1974; Shiryaev et al., 2008). Most applications
are based on variants of the secretary problem that differ in the number of
applicants that must be selected as in the multiple-choice secretary problem
(Freeman, 1983), that have full information as in the house-selling problem
or where the selected values must be maximized under constraints on each
element as in the online knapsack problem (Marchetti-Spaccamela and Ver-
cellis, 1995). The MDP-ESP differs from the multiple-choice secretary prob-
lem in two details: first, the selected applicants must show up consecutively,
and second, the probability distribution that gives the next sample must be
selected from a known set of probability distributions.

The former difference does not alter the applicability of our algorithms,
since scenarios where k consecutive data points must be selected exist, e. g.,
with resources that decay with time, goods on an assembly line, or in traffic
control. Moreover, our algorithms can also be applied to a variant of the MDP-
ESP where k results can be selected in arbitrary order. An example application
is, as in the multiple-choice secretary problem, the plan to hire k employees.
In our scenario, all applicants have provided application documents, which al-
low the estimation of a probability distribution over the candidate’s aptitude
(e. g., grades or experience influence the expectation and the rest of the CV
the variance and hence the potential). We invite at most u of the applicants
(more than u applicants are necessary since we do not restrict the number of
times a “type of applicant” is selected), and we have to decide right after the
interview if we hire the candidate with knowledge of the aptitude. This prob-
lem differs from the MDP-ESP only in the way the k applicants are selected.
However, it is easy to see that Theorem 16 also holds, that the meet-the-
expectations strategy can be applied with the same bounds on the expected
reward (i. e., Theorem 17 holds) and that Theorems 18 and 19 hold for ver-
sions of the pure strategy and the mixed strategy where line 12 of Algorithm
8 is replaced with an equation that sums the k largest rewards independently
from their position. Since this is a simple and useful generalization of the
popular multiple-choice secretary problem, it is well-suited to describe exist-
ing optimal stopping problem applications more realistically.

CHAPTER 10
Conclusion

The focus of this thesis is the problem of planning and acting in a dynamic and
uncertain environment. In Chapter 3, we discussed different determinization
techniques that are used in the context of MDPs. We showed how two differ-
ent single-outcome determinizations can be derived from a given MDP, and
we have discussed a compilation schema that allows the conversion of an
MDP to an equivalent MDP in forked normal form, which in turn allows the
creation of an all-outcomes determinization of polynomial size. Among the
algorithms that use determinizations in MDP planning are three suboptimal
policies which are presented in Chapter 4. The optimistic policy, which bases
its decisions solely on a determinization, is among the state-of-the-art in many
planning problems under uncertainty despite its simplicity. We showed that
it is overly optimistic of the optimistic policy to assume that it is possible to
follow the optimal path in the best possible weather. Hindsight optimization
is an alternative approach that also allows to reduce the policy computation
to solving a set of deterministic MDPs. It samples a weather according to its
probability in each step and computes action-value estimates as the average of
the optimal solution in each weather. We showed both theoretically and em-
pirically that hindsight optimization improves over the optimistic policy, but
is still too optimistic due to the assumption of clairvoyance. The third approx-
imate policy that has been presented is optimistic rollout, which overcomes
this weakness by computing action-value estimates by simulating runs.

Even if provided with unlimited resources, optimistic rollout remains sub-
optimal. It is nevertheless possible to derive similar algorithms that also sim-
ulate trials but behave optimally in the limit. In Chapter 5, we introduced the
main contribution of this thesis, the Trial-based Heuristic Tree Search frame-
work. It is a general framework that allows the specification of algorithms
in terms of only six ingredients: action selection, outcome selection, initial-
ization, trial length, backup function, and recommendation function. Our
discussion of related work both in MDP Planning and Reinforcement Learning
provided us with a variety of basic ingredients for THTS algorithms: action

179

180 CHAPTER 10. CONCLUSION

selection strategies can be derived from techniques that are used in the Multi-
Armed Bandit Problem; backup functions can be derived from techniques that
are used in Online RL; recommendation functions play a key role in MDP plan-
ning with generative model; and a declarative model allows the initialization
of search nodes with well-informed heuristics that guide THTS algorithms in
early trials.

A selection of different THTS ingredients is provided in Chapter 6, with
a focus on backup functions and methods for action selection. We proposed
backup functions that are inspired from Temporal Difference Learning and Q-
Learning, and we showed that they differ significantly from the Monte-Carlo
backups that are most often used in MDP planning. We derived four selective
backup functions that are inspired from the concept of separation of concerns.
We presented Partial Bellman backups, a variant of Full Bellman backups that
are tractable even if the number of outcomes is large, and MaxMC backups,
an off-policy backup function that can be used even if only a generative model
of the MDP is accessible. We furthermore introduced several action selection
methods, among them RT-UCB, a variant of UCB1 that behaves explorative
more often but is still greedy in the limit.

The proposed ingredients can be combined to 162 different THTS algo-
rithms, which we analyzed theoretically in Chapter 7 by determining the prop-
erties that are necessary for anytime optimal recipes. We showed in particular
that on-policy and selective backup functions must be combined with an an
action selection that is both greedy in the limit and explores infinitely, while
infinite exploration alone is sufficient for off-policy backup functions. Partial
Bellman backups can even be combined with any action selection strategy, but
unlike most other recipes they can only be used with the expected best arm
recommendation function and not in conjunction with the most played arm
recommendation function. The main result of the theoretical evaluation is
that we showed that 115 different, anytime optimal THTS algorithms can be
derived with the considered ingredients.

All anytime optimal THTS algorithms are evaluated empirically by per-
forming experiments on the benchmark sets of IPPC 2011 and 2014. Our im-
plementation of the THTS framework is the PROST planning system, a state-of-
the-art MDP planner that was developed during the author’s doctoral process.
We showed empirically in Chapter 8 that off-policy backup functions perform
better if the rate of exploration is high while on-policy and selective backup
functions prefer little exploration. We also showed that a decaying learning
rate can be a useful tool and that the most played arm recommendation func-
tion outperforms the expected best arm recommendation significantly in some
recipes. We showed empirically that the majority of well-performing THTS al-
gorithms uses Monte-Carlo or Partial Bellman backups in combination with an
action selection that is based on Boltzmann Exploration or the computation
of an upper confidence bound. Most considered ingredients are nevertheless
used in a recipe that performs best in at least one domain.

181

In the final Chapter 9, we identified the MDP-Evaluation Stopping Problem
as the relevant problem of IPPC 2014. We showed how it can be constructed
as a meta-MDP where actions encode the execution of a policy in the base-
MDP, and where the decision when to stop is crucial. We showed that the
expected reward of the optimal policy of the base-MDP is a lower bound for
optimal strategies in the MDP-ESP. We derived four approximate strategies
that achieve an expected result that exceeds the expected reward of the op-
timal policy significantly. The combination of the Trial-based Heuristic Tree
Search framework, its efficient implementation in the MDP planning system
PROST, and the insights of the MDP-ESP makes this thesis an integral view on
the problem of planning and acting under uncertainty.

Even though we presented important contributions and encouraging re-
sults towards autonomous agents that are able to act reasonably over a large
planning horizon in a complex and dynamic environment, we still see a lot
of room for future research. The main contribution of this thesis, the Trial-
based Heuristic Tree Search framework, offers a good starting point for fur-
ther development. Especially the distinction of the six ingredients that allow
the specification of algorithms for MDP planning induce clearly partitioned
research topics. For instance, the only outcome selection that has been con-
sidered in this thesis is the Monte-Carlo outcome selection where effects of
actions are sampled according to their probability. Methods that base their
selection on the impact of each outcome on the current decision are the only
missing piece in the guidance of the search procedure of THTS algorithms.

We also see possibilities to incorporate such an impact measurement into
novel action selection methods. Even though we have extended the portfolio
of action selection methods with new developments in this thesis, we have not
been able to single out one action selection that outperforms all others in the
majority of planning problems. All current methods balance exploration and
exploitation by treating each decision node as a Multi-Armed Bandit problem.
Integrating decisions that are deeper in the search tree in the current selec-
tion might give rise to THTS algorithms that outperform the current state-of-
the-art significantly. However, the ingredient where the scope and need for
progress is greatest is, in our opinion, the heuristic function that is used to
compute initial action-value estimates. In the field of classical planning, the
development of novel heuristics has shown that problems are now solvable
that have a complexity that would have been unthinkable only a few years.
Possibilities in MDP planning include the adaption of heuristics from classi-
cal planning (which also includes the development of new determinization
techniques that are typically necessary to apply a classical heuristic), and the
development of novel ideas that lead to heuristics that take the uncertainty of
the MDP directly into account.

Finally, the ultimate aim of our research should be an autonomous plan-
ning systems that can be used in everyday applications. The current progress,
e. g., in the context of autonomous cars, shows that there are applications

182 CHAPTER 10. CONCLUSION

that need planning systems that are able to act reasonably and safely in an
uncertain environment. However, there are still some hurdles to take. It is,
for instance, impossible to describe the real world with discrete variables. An
extension of the THTS framework such that continuous state variables are
supported is a crucial first step. Incorporating ideas from optimal control the-
ory, which deals with this kind of MDPs, opens up new challenges in the area
of planning and acting under uncertainty, but also allows for a whole range of
new possibilities.

APPENDIX A
Experimental Results

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

PBε-GEBA 53 93 76 85 93 36 79 64 73 55 52 43 67

PBεLIN-G
EBA 19 73 46 20 39 78 33 10 14 36 62 48 40

PBεLOG-G
EBA 47 93 57 59 64 30 70 38 60 56 52 43 56

PBεRT-G
EBA 44 89 70 82 95 56 75 62 71 45 52 43 65

PBBE-DT
EBA 30 89 73 84 89 67 73 68 70 56 63 54 68

PBBE
EBA 35 97 72 82 91 84 85 71 79 51 76 55 73

PBRT-UCB
EBA 30 92 72 83 88 67 81 67 74 63 72 63 71

PBUCB1
EBA 24 91 69 77 94 71 77 69 66 64 74 62 70

PBUni
EBA 14 87 76 75 94 26 72 56 66 23 48 51 56

Table A.1: IPPC scores of THTS algorithms with PB backups and the given
action selection and recommendation function. Best results among all recipes
from Tables A.1 to A.5 in red and top five in bold.

183

184 APPENDIX A. EXPERIMENTAL RESULTS

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

MCεLIN-G
EBA 28 56 50 26 37 88 16 35 50 53 62 61 47

MCεLIN-G
MPA 21 56 85 23 39 87 18 41 52 69 56 92 53

MCεLOG-G
EBA 35 51 37 56 37 97 41 60 74 54 52 59 54

MCεLOG-G
MPA 26 53 78 60 35 93 49 64 78 73 47 89 62

MCεRT-G
EBA 36 32 7 69 31 93 59 65 75 63 48 61 53

MCεRT-G
MPA 24 31 44 71 28 95 62 72 75 72 44 91 59

MCBE-DT
EBA 28 62 54 85 38 82 78 88 82 72 61 77 67

MCBE-DT
MPA 26 61 84 84 43 86 83 81 82 74 47 84 70

MCRT-UCB
EBA 28 67 47 87 43 93 78 91 84 77 48 87 69

MCRT-UCB
MPA 28 64 71 87 47 91 80 86 88 73 47 81 70

MCUCB1
EBA 26 62 49 84 42 90 69 88 83 60 49 85 66

MCUCB1
MPA 27 65 78 86 45 92 77 89 86 71 46 84 70

TDεLIN-G
EBA 26 63 44 22 25 83 26 20 22 45 49 49 40

TDεLIN-G
MPA 22 62 75 27 24 85 21 23 30 56 44 69 45

TDεLOG-G
EBA 32 61 37 62 30 86 62 46 61 55 40 51 52

TDεLOG-G
MPA 20 63 79 59 27 85 55 47 70 57 33 74 56

TDεRT-G
EBA 43 34 9 74 28 90 62 55 64 47 27 53 49

TDεRT-G
MPA 27 26 41 76 26 88 64 54 75 56 22 73 52

TDBE-DT
EBA 40 70 54 86 26 76 81 71 75 59 38 69 62

TDBE-DT
MPA 26 68 78 87 25 78 85 74 73 66 38 68 64

TDRT-UCB
EBA 24 66 44 85 32 85 73 71 73 55 41 78 61

TDRT-UCB
MPA 34 61 60 85 28 86 75 72 70 57 30 73 61

TDUCB1
EBA 27 63 44 82 31 73 62 69 66 63 37 83 57

TDUCB1
MPA 23 66 69 86 27 69 64 74 75 65 27 72 60

Table A.2: IPPC scores of THTS algorithms with MC and TD backups and the
given action selection and recommendation function. Best results among all
recipes from Tables A.1 to A.5 in red and top five in bold.

185

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

LSMCεLIN-G
EBA 28 67 55 23 32 83 26 37 48 50 63 61 48

LSMCεLIN-G
MPA 32 67 82 20 33 76 21 40 52 65 62 91 53

LSMCεLOG-G
EBA 36 82 56 50 28 86 49 48 74 69 56 55 56

LSMCεLOG-G
MPA 23 79 85 57 27 88 48 55 72 71 49 86 62

LSMCεRT-G
EBA 35 82 57 61 26 82 51 49 63 57 56 51 56

LSMCεRT-G
MPA 24 78 87 56 22 84 42 57 66 69 55 77 60

LSMCBE-DT
EBA 15 86 54 76 27 81 53 67 73 67 56 55 59

LSMCBE-DT
MPA 21 85 71 73 27 88 60 65 68 62 56 56 61

LSMCRT-UCB
EBA 18 82 50 73 28 92 53 56 72 67 56 69 60

LSMCRT-UCB
MPA 14 78 61 79 28 91 53 60 75 71 56 56 60

LSMCUCB1
EBA 13 74 54 75 33 90 49 56 68 66 59 66 59

LSMCUCB1
MPA 16 78 59 75 28 90 52 56 65 68 56 63 59

ESMCεLIN-G
EBA 28 64 53 19 34 84 13 39 39 48 65 63 46

ESMCεLIN-G
MPA 22 68 83 26 31 88 19 43 52 70 64 89 55

ESMCεLOG-G
EBA 35 83 61 56 28 83 48 52 65 60 55 55 56

ESMCεLOG-G
MPA 24 80 89 52 27 82 47 56 71 74 51 87 62

ESMCεRT-G
EBA 32 81 60 62 26 84 54 49 60 72 56 51 56

ESMCεRT-G
MPA 21 79 82 59 23 86 50 61 74 70 62 80 62

ESMCBE-DT
EBA 22 84 53 76 27 83 53 68 68 67 54 53 59

ESMCBE-DT
MPA 20 83 70 74 26 83 55 59 69 74 56 59 61

ESMCRT-UCB
EBA 19 79 57 74 28 91 53 65 67 73 56 64 61

ESMCRT-UCB
MPA 21 85 67 72 28 90 56 68 70 74 65 56 63

ESMCUCB1
EBA 18 80 61 76 31 93 60 67 71 73 56 66 63

ESMCUCB1
MPA 17 83 71 71 28 93 50 67 64 77 54 62 62

Table A.3: IPPC scores of THTS algorithms with selective MC backups and the
given action selection and recommendation function. Best results among all
recipes from Tables A.1 to A.5 in red and top five in bold.

186 APPENDIX A. EXPERIMENTAL RESULTS

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

LSTDεLIN-G
EBA 23 65 45 17 21 90 28 26 23 40 48 49 40

LSTDεLIN-G
MPA 21 69 76 18 20 77 28 20 33 48 46 69 44

LSTDεLOG-G
EBA 32 77 56 48 21 64 51 40 61 63 46 49 51

LSTDεLOG-G
MPA 25 74 84 56 19 63 48 37 59 66 37 62 53

LSTDεRT-G
EBA 32 81 56 53 19 70 47 38 56 64 47 44 51

LSTDεRT-G
MPA 27 73 83 54 17 71 49 31 59 57 40 62 52

LSTDBE-DT
EBA 18 83 48 76 4 72 52 61 63 68 38 48 53

LSTDBE-DT
MPA 21 84 65 73 8 75 50 56 60 63 40 36 53

LSTDRT-UCB
EBA 23 78 52 74 4 81 33 48 63 59 39 50 50

LSTDRT-UCB
MPA 21 82 64 76 4 84 38 49 60 54 34 38 50

LSTDUCB1
EBA 16 81 50 70 0 81 36 45 57 56 35 47 48

LSTDUCB1
MPA 17 76 61 72 0 81 35 45 59 56 33 35 48

ESTDεLIN-G
EBA 26 72 48 24 22 87 25 19 26 48 47 45 41

ESTDεLIN-G
MPA 21 70 77 19 21 78 25 19 30 46 44 69 43

ESTDεLOG-G
EBA 33 81 53 60 21 66 50 39 62 64 44 46 52

ESTDεLOG-G
MPA 21 76 85 59 19 65 47 40 71 65 37 63 54

ESTDεRT-G
EBA 32 79 56 57 19 70 49 32 55 60 46 42 50

ESTDεRT-G
MPA 24 77 84 56 17 65 52 37 59 64 39 62 53

ESTDBE-DT
EBA 23 84 48 76 6 61 55 56 64 61 37 45 51

ESTDBE-DT
MPA 22 77 65 69 7 64 54 57 59 66 36 37 51

ESTDRT-UCB
EBA 20 83 53 71 4 73 39 48 59 60 38 52 50

ESTDRT-UCB
MPA 21 79 60 71 5 80 40 50 65 64 33 37 50

ESTDUCB1
EBA 15 83 57 66 2 75 35 48 59 61 36 52 49

ESTDUCB1
MPA 17 81 62 70 3 77 36 42 60 56 35 39 48

Table A.4: IPPC scores of THTS algorithms with selective TD backups and the
given action selection and recommendation function. Best results among all
recipes from Tables A.1 to A.5 in red and top five in bold.

187

ACADEM
IC

CROSSIN
G

ELE
VAT

ORS

GAM
E

NAVIG
AT

IO
N

RECON

SKIL
L

SYSADM
IN

TAM
ARIS

K

TRAFF
IC

TRIA
NGLE

W
IL

DFI
RE

To
tal

MaxMCε-GEBA 51 92 68 75 39 54 62 56 69 57 40 40 59

MaxMCε-GMPA 35 93 82 74 41 73 63 56 73 41 36 60 61

MaxMCεLIN-G
EBA 17 78 46 18 34 75 26 8 9 39 56 40 37

MaxMCεLIN-G
MPA 10 75 73 15 39 63 28 8 15 42 60 56 40

MaxMCεLOG-G
EBA 43 95 55 45 41 55 49 38 68 54 49 44 53

MaxMCεLOG-G
MPA 28 89 91 43 47 61 51 34 69 62 43 61 56

MaxMCεRT-G
EBA 40 85 70 77 31 69 68 53 75 37 28 43 56

MaxMCεRT-G
MPA 30 83 84 77 31 85 68 54 64 30 24 57 56

MaxMCBE-DT
EBA 27 93 61 82 35 64 66 69 71 59 49 54 61

MaxMCBE-DT
MPA 32 90 81 77 36 68 59 66 68 50 53 40 60

MaxMCBE
EBA 36 95 68 84 40 85 72 68 81 59 67 52 67

MaxMCBE
MPA 30 92 85 76 39 75 75 63 72 51 81 42 65

MaxMCRT-UCB
EBA 27 93 60 80 40 76 60 64 82 61 50 64 63

MaxMCRT-UCB
MPA 25 94 78 81 40 75 62 62 73 69 45 52 63

MaxMCUCB1
EBA 20 91 62 74 39 69 60 64 69 68 49 64 61

MaxMCUCB1
MPA 22 95 80 73 38 70 54 66 75 61 47 51 61

MaxMCUni
EBA 11 79 72 71 30 30 53 53 69 23 12 56 47

QLε-GEBA 35 92 76 78 34 94 69 53 67 44 45 35 60

QLε-GMPA 24 91 87 72 36 92 66 45 66 49 40 60 61

QLεLIN-G
EBA 25 80 49 23 27 85 23 18 18 38 54 34 39

QLεLIN-G
MPA 20 79 76 17 25 87 22 17 15 31 64 54 42

QLεLOG-G
EBA 34 88 54 54 31 91 54 31 61 48 51 37 53

QLεLOG-G
MPA 21 87 87 47 33 85 50 30 62 49 45 55 54

QLεRT-G
EBA 33 90 71 77 28 94 75 49 67 40 36 46 59

QLεRT-G
MPA 24 87 82 75 32 92 71 46 64 35 36 54 57

QLBE-DT
EBA 27 92 70 85 32 87 82 68 65 52 44 54 63

QLBE-DT
MPA 28 91 86 80 32 91 79 56 64 45 42 44 61

QLBE
EBA 31 97 69 85 37 90 73 67 72 49 56 51 65

QLBE
MPA 27 95 86 78 36 83 80 60 70 57 56 50 65

QLRT-UCB
EBA 25 92 68 82 36 90 70 61 68 49 50 63 63

QLRT-UCB
MPA 26 95 84 86 35 92 68 61 71 56 41 48 64

QLUCB1
EBA 21 91 75 78 35 91 65 57 68 50 38 62 61

QLUCB1
MPA 19 93 86 80 34 90 62 53 66 56 40 50 61

QLUni
EBA 23 83 76 79 19 92 71 50 65 20 38 55 56

Table A.5: IPPC scores of THTS algorithms with MaxMC and QL backups and
the given action selection and recommendation function. Best results among
all recipes from Tables A.1 to A.5 in red and top five in bold.

List of Figures

2.1 Interaction between agent and environment 8
2.2 Example MDP . 10
2.3 Initial state of the EARTHOBSERVATION example instance 16
2.4 Partial state space of the EARTHOBSERVATION example instance . 23
2.5 An MDP that is equivalent to the MDP in Figure 2.2. 25

3.1 CTP example instance . 33
3.2 CTP example action . 35
3.3 All-outcomes determinization of the CTP example action 36
3.4 Single-outcome determinizations of the CTP example action . . . 37
3.5 Process flowchart of a determinization via forked normal form . . 40
3.6 Split version of the CTP example action 42
3.7 Intermediate FNF-DAGs . 47
3.8 Final FNF-DAG . 48

4.1 Optimistic roadmap of the CTP example instance 55
4.2 Weather of the CTP example instance 58
4.3 Modified CTP example instance 62
4.4 Average reward in dependence of considered weathers or trials . 66

5.1 Example MAB . 71
5.2 An MDP in terms of nested MABs 75
5.3 MDP that is flattened to an MAB 77
5.4 Example AND/OR graph . 86
5.5 Example AND/OR tree . 88
5.6 Expansion phase of an THTS algorithm 91
5.7 Backup phase of an THTS algorithm 92

6.1 Explicit AND/OR tree of the running example for backup functions 100
6.2 Comparison of backup functions in the first example scenario . . 104

189

190 List of Figures

6.3 Comparison of backup functions in the second example scenario . 105
6.4 Information of an action selection component 119
6.5 Comparison of root-valued functions and the natural logarithm . 124

7.1 Convergence of selective backup functions 140

8.1 Average reward in dependence of considered weathers or trials . 150
8.2 Exploration probability ε in ε-greedy action selection 153
8.3 Temperature τ in Boltzmann Exploration 155
8.4 Action selection with on-policy backup functions 159
8.5 Action selection with off-policy backup functions 160
8.6 Best performing action selections 162
8.7 Best performing backup functions 162

9.1 NAVIGATION example instance and policies 166
9.2 Expectations in the NAVIGATION example instance 172
9.3 Results for the MDP-ESPuk in dependence of u 175

List of Tables

2.1 Quality of policies and models of optimal behavior 12

3.1 Comparison of all-outcomes determinizations 50

4.1 Empirical evaluation of suboptimal policies in the CTP 65
4.2 Empirical evaluation of suboptimal policies in the CTP with sensing 67

6.1 Comparison of backup functions in both example scenarios 103

7.1 Anytime optimal THTS algorithms 143

8.1 Empirical evaluation of policies in the CTP 148
8.2 Empirical evaluation of policies in the CTP with sensing 149
8.3 Empirical evaluation of the recommendation function 156
8.4 Top 12 anytime optimal THTS algorithms 158
8.5 Solved states . 163

9.1 Optimal strategy for the MDP-ESPu1 169
9.2 Complexity of the MDP-ESPuk . 170
9.3 Empirical evaluation of MDP-ESP strategies 177

A.1 Final results for THTS algorithms with PB backups 183
A.2 Final results for THTS algorithms with MC and TD backups . . . 184
A.3 Final results for THTS algorithms with selective MC backups . . . 185
A.4 Final results for THTS algorithms with selective TD backups . . . 186
A.5 Final results for THTS algorithms with MaxMC and QL backups . 187

191

List of Algorithms

1 Acyclic policy evaluation . 27
2 Acyclic value computation . 28

3 Compilation of actions to forked normal form 46

4 Optimistic policy . 56
5 Hindsight optimization . 57
6 Optimistic rollout . 60

7 Trial-based Heuristic Tree Search 90

8 Mixed strategy for the MDP-ESPuk 173

193

Bibliography

Agrawal, R. (1995). Sample Mean Based Index Policies with O(log n) Regret
for the Multi-armed Bandit Problem, volume 27, pages 1054–1078. Applied
Probability Trust.

Antos, A., Szepesvári, C., and Munos, R. (2008). Fitted Q-iteration in Con-
tinuous Action-space MDPs. In Platt, J., Koller, D., Singer, Y., and Roweis,
S., editors, Advances in Neural Information Processing Systems (NIPS 2008),
pages 9–16. Curran Associates, Inc.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time Analysis of the
Multiarmed Bandit Problem. Journal of Machine Learning Research, 47:235–
256.

Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. (2007). A Knapsack
Secretary Problem with Applications. In Proceedings of the 10th Interna-
tional Workshop on Approximation (APPROX 2007), pages 16–28, Berlin,
Heidelberg. Springer-Verlag.

Balla, R.-K. and Fern, A. (2009). UCT for Tactical Assault Planning in Real-
Time Strategy Games. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI 2009), pages 40–45.

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to Act Using
Real-Time Dynamic Programming. Artificial Intelligence (AIJ), 72(1–2):81–
138.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Berry, D. and Fristedt, B. (1985). Bandit Problems. Chapmann and Hall.

Bertsekas, D. (1995). Dynamic Programming and Optimal Control. Athena
Scientific.

195

196 BIBLIOGRAPHY

Bertsekas, D. P. and Tsitsiklis, J. N. (1991). An Analysis of Stochastic Shortest
Path Problems. Mathematics of Operations Research, 16:580–595.

Bjarnason, R., Fern, A., and Tadepalli, P. (2009). Lower Bounding Klondike
Solitaire with Monte-Carlo Planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS 2009), pages 26–
33.

Bnaya, Z., Felner, A., Shimony, E., Kaminka, G. A., and Merdler, E. (2008). A
Fresh Look at Sensor-Based Navigation: Navigation with Sensing Costs. In
AAAI 2008 Workshop on Search in Artificial Intelligence and Robotics, pages
11–17.

Bnaya, Z., Felner, A., and Shimony, S. E. (2009). Canadian Traveler Problem
with Remote Sensing. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI 2009), pages 437–442.

Bonet, B. (2009). Deterministic POMDPs Revisited. In Proceedings of the 25th
Conference in Uncertainty in Artificial Intelligence (UAI 2009), pages 59–66.

Bonet, B. and Geffner, H. (2001). Planning as Heuristic Search. Artificial
Intelligence (AIJ), 129(1-2):5–33.

Bonet, B. and Geffner, H. (2003). Labeled RTDP: Improving the Conver-
gence of Real-Time Dynamic Programming. In Proceedings of the 13th Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2003),
pages 12–21.

Bonet, B. and Geffner, H. (2012). Action Selection for MDPs: Anytime AO*
Versus UCT. In Proceedings of the 26th AAAI Conference on Artificial Intelli-
gence (AAAI 2012).

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic Dynamic
Programming with Factored Representations. Artificial Intelligence (AIJ),
121(1–2):49–107.

Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlf-
shagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A
Survey of Monte Carlo Tree Search Methods. IEEE Transactions Computa-
tional Intelligence and AI in Games, 4(1):1–43.

Bruss, F. T. (2000). Sum the Odds to One and Stop. The Annals of Probability,
28(3):1384–1391.

Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure Exploration in Multi-
armed Bandits Problems. In Proceedings of the 20th International Conference
on Algorithmic Learning Theory (ALT 2009), pages 23–37.

BIBLIOGRAPHY 197

Bubeck, S., Munos, R., and Stoltz, G. (2011). Pure Exploration in Finitely-
armed and Continuous-armed Bandits. Theoretical Computer Science,
412(19):1832–1852.

Buffet, O. and Aberdeen, D. (2007). FF + FPG: Guiding a Policy-Gradient
Planner. In Proceedings of the 17th International Conference on Automated
Planning and Scheduling (ICAPS 2007), pages 42–48.

Burnetas, A. N. and Katehakis, M. N. (1997). Optimal Adaptive Policies for
Markov Decision Processes. Mathematics of Operations Research, 22:222–
255.

Buro, M., Long, J. R., Furtak, T., and Sturtevant, N. (2009). Improving State
Evaluation, Inference, and Search in Trick-Based Card Games. In Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pages 1407–1413.

Busa-Fekete, R. and Hüllermeier, E. (2014). A Survey of Preference-Based
Online Learning with Bandit Algorithms. In Proceedings of the 25th Interna-
tional Conference on Algorithmic Learning Theory (ALT 2014), pages 18–39.

Bäckström, C. and Nebel, B. (1995). Complexity Results for SAS+ Planning.
Computational Intelligence, 11:625–656.

Cesa-Bianchi, N. and Fischer, P. (1998). Finite-time Regret Bounds for the
Multiarmed Bandit Problem. In In Proceedings of the 5th International Con-
ference on Machine Learning (ICML 1998), pages 100–108. Morgan Kauf-
mann.

Chakrabarti, D., Kumar, R., Radlinski, F., and Upfal, E. (2008). Mortal multi-
armed bandits. In Advances in Neural Information Processing Systems (NIPS
2008), pages 273–280.

Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I. (2005). An Adaptive
Sampling Algorithm for Solving Markov Decision Processes. Operations Re-
search, 53(1):126–139.

Chaslot, G., Winands, M., van den Herik, J., Uiterwijk, J., and Bouzy, B.
(2008). Progressive Strategies for Monte-Carlo Tree Search. New Math-
ematics and Natural Computation, 4:343–357.

Chen, W., Wang, Y., and Yuan, Y. (2013). Combinatorial Multi-Armed Bandit:
General Framework and Applications. In Dasgupta, S. and Mcallester, D.,
editors, Proceedings of the 30th International Conference on Machine Learning
(ICML 2013), volume 28, pages 151–159. JMLR Workshop and Conference
Proceedings.

198 BIBLIOGRAPHY

Chong, E. K. P., Givan, R. L., and Chang, H. S. (2000). A Framework for
Simulation-based Network Control via Hindsight Optimization. In Proceed-
ings of the 39th IEEE Conference on Decision and Control (CDC 2000), pages
1433–1438.

Condon, A. (1992). The Complexity of Stochastic Games. Information and
Computation, 96(2):203–224.

Coquelin, P.-A. and Munos, R. (2007). Bandit Algorithms for Tree Search. In
Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intel-
ligence (UAI 2007), pages 67–74. AUAI Press.

Coulom, R. (2006). Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In Proceedings of the 5th International Conference on Computers
and Games (CG 2006), pages 72–83, Berlin, Heidelberg. Springer-Verlag.

Dai, P., Mausam, Weld, D. S., and Goldsmith, J. (2011). Topological Value
Iteration Algorithms. Journal of Artificial Intelligence Research (JAIR),
42(1):181–209.

Derman, C. (1970). Finite State Markovian Decision Processes. Academic Press,
New York.

Dey, D., Kolobov, A., Caruana, R., Kamar, E., Horvitz, E., and Kapoor, A.
(2014). Gauss Meets Canadian Traveler: Shortest-path Problems with Cor-
related Natural Dynamics. In Proceedings of the 2014 International Confer-
ence on Autonomous Agents and Multi-agent Systems (AAMAS 2014), pages
1101–1108, Richland, SC. International Foundation for Autonomous Agents
and Multiagent Systems.

Domshlak, C. and Feldman, Z. (2013). To UCT, or not to UCT? (Position
Paper). In Helmert, M. and Röger, G., editors, Proceedings of the 6th Inter-
national Symposium on Combinatorial Search (SOCS 2013). AAAI Press.

Dynkin, E. B. (1963). The Optimum Choice of the Instant for Stopping a
Markov Process. Soviet Mathematics Doklady, 4.

Eyerich, P., Keller, T., and Helmert, M. (2010). High-Quality Policies for the
Canadian Traveler’s Problem. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI 2010), pages 51–58.

Feldman, Z. and Domshlak, C. (2012). Online Planning in MDPs: Rationality
and Optimization. CoRR, abs/1206.3382.

Feldman, Z. and Domshlak, C. (2013). Monte-Carlo Planning: Theoretically
Fast Convergence Meets Practical Efficiency. In Proceedings of the 29th Con-
ference on Uncertainty in Artificial Intelligence (UAI 2013), pages 212–221.

BIBLIOGRAPHY 199

Feldman, Z. and Domshlak, C. (2014a). On MABs and Separation of Concerns
in Monte-Carlo Planning for MDPs. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS 2014).

Feldman, Z. and Domshlak, C. (2014b). Simple Regret Optimization in Online
Planning for Markov Decision Processes. Journal of Artificial Intelligence
Research (JAIR), 51:165–205.

Ferguson, D., Stentz, A., and Thrun, S. (2004). PAO∗ for Planning with Hidden
State. In Proceedings of the 2004 IEEE International Conference on Robotics
and Automation (ICRA 2004), pages 2840–2847.

Ferguson, T. S. (1989). Who Solved the Secretary Problem? Statistical Science,
4(3):282–289.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A New Approach to the Ap-
plication of Theorem Proving to Problem Solving. In Proceedings of the 2nd
International Joint Conference on Artificial Intelligence (IJCAI 1971), pages
608–620, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Finnsson, H. and Björnsson, Y. (2008). Simulation-based Approach to General
Game Playing. In Fox, D. and Gomes, C. P., editors, Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI 2008). AAAI Press.

Finnsson, H. and Björnsson, Y. (2010). Learning Simulation Control in Gen-
eral Game-Playing Agents. In Proceedings of the 24th Conference on Artificial
Intelligence (AAAI 2010), pages 954–959.

Finnsson, H. and Björnsson, Y. (2011). CadiaPlayer: Search Control Tech-
niques. KI Journal, 25(1):9–16.

Frank, I. and Basin, D. A. (2001). A Theoretical and Empirical Investigation
of Search in Imperfect Information Games. Theoretical Computer Science,
252(1–2):217–256.

Freeman, P. R. (1983). The Secretary Problem and its Extensions: A Review.
International Statistical Review, 51(2):189–206.

Geißer, F., Keller, T., and Mattmüller, R. (2014). Past, Present, and Future: An
Optimal Online Algorithm for Single-Player GDL-II Games. In Proceedings
of the 21st European Conference on Artificial Intelligence (ECAI 2014), pages
357–362". IOS Press.

Gelly, S. and Silver, D. (2007). Combining Online and Offline Knowledge in
UCT. In Proceedings of the 24th International Conference on Machine Learn-
ing (ICML 2007), pages 273–280.

200 BIBLIOGRAPHY

Gelly, S. and Silver, D. (2011). Monte-Carlo Tree Search and Rapid Action
Value Estimation in Computer Go. Artificial Intelligence (AIJ), 175:1856–
1875.

Gilbert, J. P. and Mosteller, F. (1966). Recognizing the Maximum of a Se-
quence. Journal of the American Statistical Association, 61(313):35–73.

Ginsberg, M. L. (1999). GIB: Steps Toward an Expert-Level Bridge-Playing
Program. In Proceedings of the 16th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2009), pages 584–593. Morgan Kaufmann.

Gittins, J. C. (1979). Bandit Processes and Dynamic Allocation Indices. Jour-
nal of the Royal Statistical Society, Series B, pages 148–177.

Godoy, J., Karamouzas, I., Guy, S. J., and Gini, M. (2014). Anytime Navigation
with Progressive Hindsight Optimization. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS 2014), pages
730–735.

Graham, R. L., Knuth, D. E., and Patashnik, O. (1994). Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition.

Griffeath, D. and Snell, J. L. (1974). Optimal Stopping in the Stock Market.
The Annals of Probability, 2(1):1–13.

Hajiaghayi, M. T., Kleinberg, R., and Parkes, D. C. (2004). Adaptive Limited-
supply Online Auctions. In Proceedings of the 5th ACM Conference on Elec-
tronic Commerce, pages 71–80, New York, NY, USA. ACM.

Hansen, E. A. and Zilberstein, S. (2001). LAO*: A Heuristic Search Algorithm
that Finds Solutions with Loops. Artificial Intelligence (AIJ), 129(1–2):35–
62.

Haslum, P. and Geffner, H. (2000). Admissible Heuristics for Optimal Plan-
ning. In Chien, S., Kambhampati, S., and Knoblock, C. A., editors, Proceed-
ings of the Fifth International Conference on Artificial Intelligence Planning
Systems (AIPS 2000), pages 140–149. AAAI.

Helmert, M. (2006). The Fast Downward Planning System. Journal of Artifi-
cial Intelligence Research (JAIR), 26:191–246.

Helmert, M. (2008). Understanding Planning Tasks: Domain Complexity and
Heuristic Decomposition. Springer-Verlag, Berlin, Heidelberg.

Helmert, M. and Domshlak, C. (2009). Landmarks, Critical Paths and Abstrac-
tions: What’s the Difference Anyway? In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2009).

BIBLIOGRAPHY 201

Hertle, A., Dornhege, C., Keller, T., Mattmüller, R., Ortlieb, M., and Nebel, B.
(2014). An Experimental Comparison of Classical, FOND and Probabilistic
Planning. In Proceedings of the 37th International Conference on Artificial
Intelligence (KI 2014).

Hoffmann, J. and Nebel, B. (2001). The FF Planning System: Fast Plan Gen-
eration Through Heuristic Search. Journal of Artificial Intelligence Research
(JAIR), 14:253–302.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA, USA.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal Regret Bounds for
Reinforcement Learning. Journal of Machine Learning Research, 11:1563–
1600.

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press, Cambridge,
MA, USA.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research (JAIR), 4:237–
285.

Kallenberg, L. (1994). Survey of Linear Programming for Standard and Non-
standard Markovian Control Problems. Part I: Theory. ZOR – Mathematical
Methods of Operations Research, 40(1):1–42.

Karlin, S. (1962). Stochastic Models and Optimal Policy for Selling an Asset.
Studies in Applied Probability and Management Science, pages 148–158.

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A Sparse Sampling Algorithm
for Near-Optimal Planning in Large Markov Decision Processes. Journal of
Machine Learning Research, 49(2–3):193–208.

Keller, T. and Eyerich, P. (2011). A Polynomial All Outcome Determinization
for Probabilistic Planning. In Proceedings of the 21st International Conference
on Automated Planning and Scheduling (ICAPS 2011), pages 331–334. AAAI
Press.

Keller, T. and Eyerich, P. (2012). PROST: Probabilistic Planning Based on UCT.
In Proceedings of the 22nd International Conference on Automated Planning
and Scheduling (ICAPS 2012), pages 119–127. AAAI Press.

Keller, T. and Geißer, F. (2015). Better Be Lucky Than Good: Exceeding Ex-
pectations in MDP Evaluation. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI 2015). AAAI Press.

202 BIBLIOGRAPHY

Keller, T. and Helmert, M. (2013). Trial-based Heuristic Tree Search for Fi-
nite Horizon MDPs. In Proceedings of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS 2013), pages 135–143.

Kiesel, S. and Ruml, W. (2014). Planning Under Temporal Uncertainty Us-
ing Hindsight Optimization. In 24th International Conference on Automated
Planning and Scheduling (ICAPS 2014): Planning and Robotics Workshop.

Kocsis, L. and Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning.
In Proceedings of the 17th European Conference on Machine Learning (ECML
2006), pages 282–293.

Koenig, S. and Likhachev, M. (2002). D∗ Lite. In Proceedings of the 18th
National Conference on Artificial Intelligence (AAAI 2002), pages 476–483.

Kolobov, A., Dai, P., Mausam, and Weld, D. S. (2012a). Reverse Iterative Deep-
ening for Finite-Horizon MDPs with Large Branching Factors. In Proceedings
of the 22nd International Conference on Automated Planning and Scheduling
(ICAPS 2012), pages 146–154.

Kolobov, A., Mausam, and Weld, D. S. (2012b). LRTDP vs. UCT for Online
Probabilistic Planning. In Proceedings of the 26th AAAI Conference on Artifi-
cial Intelligence (AAAI 2012), pages 1786–1792.

Kuleshov, V. and Precup, D. (2010). Algorithms for the Multi-Armed Bandit
Problem. Journal of Machine Learning Research.

Lai, T. L. and Robbins, H. (1985). Asymptotically Efficient Adaptive Allocation
Rules. Advances in Applied Mathematics, 6(1):4–22.

Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rimmel, A., Teytaud, O.,
Tsai, S.-R., Hsu, S.-C., and Hong, T.-P. (2009). The Computational Intel-
ligence of MoGo Revealed in Taiwan’s Computer Go Tournaments. IEEE
Transactions on Computational Intelligence and AI in Games, 1(1):73–89.

Likhachev, M. and Stentz, A. (2006). PPCP: Efficient Probabilistic Planning
with Clear Preferences in Partially-Known Environments. In Proceedings of
the 21st AAAI Conference on Artificial Intelligence (AAAI 2006), pages 7860–
867.

Little, I. and Thiébaux, S. (2007). Probabilistic Planning vs Replanning. In
ICAPS Workshop International Planning Competition: Past, Present and Fu-
ture.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. PhD thesis,
Brown University, Providence, Rhode Island.

BIBLIOGRAPHY 203

Marchetti-Spaccamela, A. and Vercellis, C. (1995). Stochastic On-line Knap-
sack Problems. Mathematical Programming, 68(1):73–104.

Martelli, A. and Montanari, U. (1973). Additive AND/OR Graphs. In Proceed-
ings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI
1973), pages 1–11, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Mattmüller, R. (2013). Informed Progression Search for Fully Observable Non-
deterministic Planning. PhD thesis, Albert-Ludwigs-Universität Freiburg.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D. (1998). PDDL – The Planning Domain Defini-
tion Language. Technical report, Yale Center for Computational Vision and
Control.

McMahan, H. B., Likhachev, M., and Gordon, G. J. (2005). Bounded Real-
Time Dynamic Programming: RTDP with Monotone Upper Bounds and Per-
formance Guarantees. In Proceedings of the 22nd International Conference
on Machine Learning (ICML 2005), pages 569–576.

Nebel, B. (2000). On the Compilability and Expressive Power of Proposi-
tional Planning Formalisms. Journal of Artificial Intelligence Research (JAIR),
12(1):271–315.

Nikolova, E. and Karger, D. R. (2008). Route Planning under Uncertainty: The
Canadian Traveller Problem. In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence (AAAI 2008), pages 969–974.

Nilsson, N. (1980). Principles of Artificial Intelligence. Morgan Kaufmann Pub-
lishers Inc.

Papadimitriou, C. H. and Yannakakis, M. (1991). Shortest Paths Without a
Map. Theoretical Computer Science, 84(1):127–150.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Boston, MA, USA.

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley.

Radlinski, F., Kleinberg, R., and Joachims, T. (2008). Learning Diverse Rank-
ings with Multi-Armed Bandits. In Proceedings of the 25th Annual Interna-
tional Conference on Machine Learning (ICML 2008), pages 784–791.

Raghavan, A., Joshi, S., Fern, A., Tadepalli, P., and Khardon, R. (2012).
Planning in Factored Action Spaces with Symbolic Dynamic Programming.
In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI
2012).

204 BIBLIOGRAPHY

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks Revisited. In
Fox, D. and Gomes, C. P., editors, Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI 2008), pages 975–982. AAAI Press.

Rintanen, J. (2003). Expressive Equivalence of Formalisms for Planning with
Sensing. In Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS 2003), pages 185–194.

Robbins, H. (1952). Some Aspects of the Sequential Design of Experiments.
Bulletin of the American Mathematical Society, 58(5):527–535.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-Learning Using Connec-
tionist Systems. Technical report, Cambridge University.

Russell, S. and Norvig, P. (1995). Artificial Intelligence — A Modern Approach.
Prentice Hall.

Sanner, S. (2010). Relational Dynamic Influence Diagram Language (RDDL):
Language Description.

Sanner, S., Goetschalckx, R., Driessens, K., and Shani, G. (2009). Bayesian
Real-Time Dynamic Programming. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009), pages 1784–1789.

Shiryaev, A., Xu, Z., and Zhou, X. Y. (2008). Thou Shalt Buy and Hold. Quan-
titative Finance, 8(8):765–776.

Silver, D., Sutton, R. S., and Müller, M. (2012). Temporal-Difference Search
in Computer Go. Machine Learning, 87(2):183–219.

Silver, D. and Veness, J. (2010). Monte-Carlo Planning in Large POMDPs. In
Advances in Neural Information Processing Systems 23 (NIPS 2010), pages
2164–2172.

Singh, S. P., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000). Con-
vergence Results for Single-Step On-Policy Reinforcement-Learning Algo-
rithms. Journal of Machine Learning Research, 38(3):287–308.

Smith, T. and Simmons, R. G. (2006). Focused Real-Time Dynamic Program-
ming for MDPs: Squeezing More Out of a Heuristic. In Proceedings of the
21st AAAI Conference on Artificial Intelligence (AAAI 2006), pages 1227–
1232.

Stentz, A. (1994). Optimal and Efficient Path Planning for Partially-Known
Environments. In Proceedings of the 1994 International Conference on
Robotics and Automation (ICRA 1994), pages 3310–3317.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differ-
ences. Machine Learning, 3(1):9–44.

BIBLIOGRAPHY 205

Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful
Examples Using Sparse Coarse Coding. In Advances in Neural Information
Processing Systems 8 (NIPS 1996), pages 1038–1044. MIT Press.

Sutton, R. S. and Barto, A. G. (1987). A Temporal-Difference Model of Clas-
sical Conditioning. pages 355–378. Lawrence Erlbaum.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA.

Teichteil-Königsbuch, F., Kuter, U., and Infantes, G. (2010). Incremental Plan
Aggregation for Generating Policies in MDPs. In 9th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages
1231–1238.

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Commu-
nications of the ACM (CACM), 38(3):58–68.

Tewari, A. and Bartlett, P. L. (2008). Optimistic Linear Programming Gives
Logarithmic Regret for Irreducible MDPs. In Platt, J., Koller, D., Singer, Y.,
and Roweis, S., editors, Advances in Neural Information Processing Systems
21 (NIPS 2008), pages 1505–1512, Cambridge, MA. MIT Press.

Warnquist, H., Kvarnström, J., and Doherty, P. (2010). Iterative Bounding
LAO*. In Coelho, H., Studer, R., and Wooldridge, M., editors, Proceedings
of the 19th European Conference on Artificial Intelligence (ECAI 2010), pages
341–346. IOS Press.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis,
Cambridge University.

Yoon, S., Fern, A., Givan, R., and Kambhampati, S. (2008). Probabilistic Plan-
ning via Determinization in Hindsight. In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI 2008), pages 1010–1016.

Yoon, S. W., Fern, A., and Givan, R. (2007). FF-Replan: A Baseline for Prob-
abilistic Planning. In Proceedings of the 17th International Conference on
Automated Planning and Scheduling (ICAPS 2007), pages 352–360.

Yoon, S. W., Ruml, W., Benton, J., and Do, M. B. (2010). Improving Deter-
minization in Hindsight for On-line Probabilistic Planning. In Proceedings
of the 20th International Conference on Automated Planning and Scheduling,
(ICAPS 2010), pages 209–217.

Younes, H. and Littman, M. (2004). PPDDL 1.0: The Language for the Proba-
bilistic Part of IPC-4. In Proceedings of the 4th International Planning Com-
petition (IPC 2004), Probabilistic Part.

206 BIBLIOGRAPHY

Zhou, Y. and Naroditskiy, V. (2008). An Algorithm for Stochastic Multiple-
Choice Knapsack Problem and Keywords Bidding. In Proceedings of the 17th
International World Wide Web Conference (WWW 2008), pages 1175–1176.

	Introduction
	Contributions
	Relevant Publications
	Awards

	Markov Decision Processes
	Preliminaries
	Compact Description
	Solutions

	Determinization
	Preliminaries
	Syntactical All-outcomes Determinizations

	Suboptimal Policies
	Optimism
	Hindsight Optimization
	Optimistic Rollout
	Theoretical Evaluation
	Empirical Evaluation

	Trial-based Heuristic Tree Search
	Preliminaries
	The Framework

	THTS Ingredients
	Initialization
	Outcome Selection
	Backup Functions
	Trial Length
	Action Selection
	Recommendation Functions

	Theoretical Evaluation
	Convergence
	Optimal Behavior

	Empirical Evaluation
	THTS vs. Suboptimal Algorithms
	THTS Recipes

	The MDP-Evaluation Stopping Problem
	The MDP-ESP
	Theoretical Analysis
	Strategies for the MDP-ESP
	Experimental Evaluation
	Discussion

	Conclusion
	Experimental Results
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

