
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
79

01
--

F
R

+
E

N
G

RESEARCH
REPORT

N° 7901
March 2012

Project-Teams Maia

How to Relax a
Bisimulation?
Michael Katz, Jörg Hoffmann, Malte Helmert

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

How to Relax a Bisimulation?

Michael Katz, Jörg Hoffmann, Malte Helmert∗

Project-Teams Maia

Research Report n° 7901 — March 2012 — 18 pages

Abstract: Merge-and-shrink abstraction (M&S) is an approach for constructing admissible heuristic func-
tions for cost-optimal planning. It enables the targeted design of abstractions, by allowing to choose indi-
vidual pairs of (abstract) states to aggregate into one. A key question is how to actually make these choices,
so as to obtain an informed heuristic at reasonable computational cost. Recent work has addressed this via
the well-known notion ofbisimulation. When aggregating only bisimilar states – essentially, states whose
behavior is identical under every planning operator – M&S yields a perfect heuristic. However, bisimula-
tions are typically exponentially large. Thus we mustrelax the bisimulation criterion, so that it applies to
more state pairs, and yields smaller abstractions. We herein devise a fine-grained method for doing so. We
restrict the bisimulation criterion to consider only a subsetK of the planning operators. We show that, if
K is chosen appropriately, then M&S still yields a perfect heuristic, while abstraction size may decrease
exponentially. Designing practical approximations forK, we obtain M&S heuristics that are competitive
with the state of the art.

Key-words: artificial intelligence; planning; heuristic search

∗ University of Basel, Switzerland

Comment relaxer une bisimulation?

Résumé : See English abstract.

Mots-clés : intelligence artificielle; planification; recherche heuristique

How to Relax a Bisimulation? 3

1 Introduction

Heuristic forward state-space search with A∗ and admissible heuristics is a state of the art approach to
cost-optimal domain-independent planning. The main research question in this area is how to derive the
heuristic automatically. That is what we contribute to herein. We design new variants of the merge-and-
shrink heuristic, short M&S, whose previous variant [?] won a 2nd price in the optimal planning track of
the 2011 International Planning Competition (IPC), and waspart of the 1st-prize winning portfolio [?].

M&S uses solution cost in a smaller,abstractstate space to yield an admissible heuristic. The abstract
state space is built incrementally, starting with a set of atomic abstractions corresponding to individual
variables, then iterativelymergingtwo abstractions (replacing them with their synchronized product) and
shrinkingthem (aggregating pairs of states into one). In this way, M&Sallows to select individual pairs
of (abstract) states to aggregate. A key question, that governs both the computational effort taken and the
quality of the resulting heuristic, ishow to actually select these state pairs.

M&S was first introduced for planning by Helmert et al. [?], with only a rather naïve method for
selecting the state pairs to aggregate. Nissim et al. [?] more recently addressed this via the notion of
bisimulation, adopted from the verification literature (e. g., [?]). Two statess, t are bisimilar, roughly
speaking, if every transition label (every planning operator) leads into equivalent abstract states froms
and t. If one aggregates only bisimilar states, then the behaviorof the transition system (the possible
paths) remains unchanged. This property is invariant over both the merging and shrinking steps in M&S,
and thus the resulting heuristic is guaranteed to be perfect. Unfortunately, bisimulations are exponentially
big even in trivial examples, including benchmarks like, for example, Gripper.

A key observation made by Nissim et al. is that bisimulation is unnecessarily strict for our purposes.
In verification, paths must be preserved because the to-be-verified property shall be checked within the
abstracted system. However, here we only want to compute solution costs. Thus it suffices to preserve
not the actual paths,but only their cost. Nissim et al. design a label reduction technique, that changes
the path inscriptions (the associated planning operators)but not their costs. This leads to polynomial
behavior in Gripper and some other cases, but the resulting abstractions are still much too large in most
planning benchmarks.

Nissim et al. address this by (informally) introducing whatthey call greedy bisimulation, which
“catches” only a subset of the transitions:s, t are considered bisimilar already if every transitionde-
creasing remaining costleads into equivalent abstract states froms andt. That is, “bad transitions” –
those increasing remaining cost – are ignored. This is alossyrelaxation to bisimulation, i. e., a simpli-
fication that results in smaller abstractions but may (and usually does) yield an imperfect heuristic in
M&S: “bad transition” is defined locally, relative to the current abstraction, which does not imply that
the transition is globally bad. For example, driving a truckaway from its own goal may be beneficial for
transporting a package. Under such (very common) behavior,greedy bisimulation is not invariant across
the M&S merging step, because the relevant transitions are not caught.

We herein adopt the same approach for relaxing bisimulation– we catch a subset of the transitions –
but we take a different stance for determining that subset. We first select a subset of labels (operators).
Then, throughout M&S, we catch the transitions bearing these labels. This simple technique warrants that
the thus-relaxed bisimulation is invariant across M&S. Thanks to this, to guarantee a quality propertyφ
of the final M&S heuristic, it suffices to select a label subsetguaranteeingφ when catching these labels
in a bisimulation of the (global) state space.

We consider two propertiesφ: (A) obtaining a perfect heuristic; (B) guaranteeing that A∗ will not
have to search. (A) is warranted by selecting all remaining-cost decreasing operators in the (global) state
space. (B) is a generalization that only requires to catch a subset of these operators – those within a
certain radius around the goal.

In practice, it is not feasible to compute the label sets justdescribed. To evaluate their potential in
principle, we prove that they may decrease abstraction sizeexponentially, and we run experiments on

RR n° 7901

4 Katz & Hoffmann & Helmert

IPC benchmarks small enough to determine these labels. To evaluate the potential in practice, we design
approximation methods. Running these on the full IPC benchmarks, we establish that the resulting M&S
heuristics are competitive with the state of the art, and canimprove coverage in some domains.

We next give the necessary background. We revisit Nissim et al.’s idea of greedy bisimulation, then
introduce our own relaxation principle, evaluate it, and conclude.

2 Background

A planning task is a 4-tupleΠ = (V ,O, s0, s⋆). V is a finite set ofvariablesv, eachv ∈ V associated
with a finite domainDv. A partial state overV is a functions on a subsetVs of V , so thats(v) ∈ Dv

for all v ∈ Vs; s is astate if Vs = V . The initial state s0 is a state. Thegoal s⋆ is a partial state.O is
a finite set ofoperators, each being a pair(pre, eff) of partial states, called itsprecondition andeffect.
Eacho ∈ O is also associated with itscostc(o) ∈ R

+

0 (note that0-cost operators are allowed). A special
case we will mention areuniform costs, wherec(o) = 1 for all o.

The semantics of planning tasks are defined via theirstate spaces, which are (labeled)transition
systems. Such a system is a 5-tupleΘ = (S,L, T, s0, S⋆) whereS is a finite set ofstates,L is a finite set
of transition labels each associated with alabel costc(l) ∈ R

+

0 , T ⊆ S × L× S is a set oftransitions,
s0 ∈ S is the start state, andS⋆ ⊆ S is the set ofsolution states. We define theremaining cost
h∗ : S → R

+

0 as the minimal cost of any path (the sum of costs of the labels on the path), inΘ, from a
given states to anys⋆ ∈ S⋆, orh∗(s) = ∞ if there is no such path.

In the state space of a planning task,S is the set of all states. The start states0 is the initial state of
the task, ands ∈ S⋆ if s⋆ ⊆ s. The transition labelsL are the operatorsO, and(s, (pre, eff), s′) ∈ T if s
complies withpre, ands′(v) = eff(v) for all v ∈ Veff while s′(v) = s(v) for all v ∈ V \ Veff. A plan is a
path froms0 to anys⋆ ∈ S⋆. The plan isoptimal iff its summed-up cost is equal toh∗(s0).

A heuristic is a functionh : S → R
+

0 ∪ {∞}. The heuristic isadmissible iff, for every s ∈ S,
h(s) ≤ h∗(s); it is consistent iff, for every (s, l, s′) ∈ T , h(s) ≤ h(s′) + c(l); it is perfect iff h
coincides withh∗. The A∗ algorithm expands states by increasing value ofg(s) + h(s) whereg(s) is
the accumulated cost on the path tos. If h is admissible, then A∗ returns an optimal solution. Ifh is
consistent then A∗ does not need to re-open any nodes. Ifh is perfect then, as will be detailed later, A∗

“does not need to search”; we will also identify a more general criterion sufficient to achieve this last
property.

How to automatically compute a heuristic, given a planning task as input? Our approach is based on
designing anabstraction. This is a functionα mappingS to a set ofabstract statesSα. Theabstract
state spaceΘα is defined as(Sα, L, Tα, sα0 , S

α
⋆), whereTα := {(α(s), l, α(s′)) | (s, l, s′) ∈ T },

sα0 := α(s0), andSα
⋆ := {α(s⋆) | s⋆ ∈ S⋆}. Theabstraction heuristic hα maps eachs ∈ S to the

remaining cost ofα(s) in Θα; hα is admissible and consistent. We will sometimes consider the induced
equivalence relation∼α, defined by settings ∼α t iff α(s) = α(t).

How to choose a goodα in general? Inspired by work in the context of model checkingautomata
networks [?], Helmert et al. [?] propose M&S abstraction as a method allowing fine-grained abstraction
design, selecting individual pairs of (abstract) states toaggregate. The approach builds the abstraction in
an incremental fashion, iterating betweenmergingandshrinkingsteps. In detail, an abstractionα is an
M&S abstraction over V ⊆ V if it can be constructed using these rules:

(i) For v ∈ V , π{v} is an M&S abstraction over{v}.

(ii) If β is an M&S abstraction overV andγ is a function onSβ, thenγ ◦ β is an M&S abstraction over
V .

(iii) If α1 andα2 are M&S abstractions over disjoint setsV1 andV2, thenα1⊗α2 is an M&S abstraction
overV1 ∪ V2.

Inria

How to Relax a Bisimulation? 5

Rule (i) allows to start fromatomic projections. These are simple abstractionsπ{v} (also writtenπv)
mapping each states ∈ S to the value of one selected variablev. Rule (ii), theshrinking step, allows to
iteratively aggregate an arbitrary number of state pairs, in abstractionβ. Formally, this simply means to
apply an additional abstractionγ to the image ofβ. In rule (iii) , themerging step, the merged abstraction
α1 ⊗ α2 is defined by(α1 ⊗ α2)(s) := (α1(s), α2(s)).1

The above defines how to construct the abstractionα, but not how to actually compute the abstraction
heuristichα. For that computation, the constraintV1 ∩ V2 = ∅ in rule (iii) is important. While designing
α, we maintain also the abstract state spaceΘα. This is trivial for rules (i) and (ii), but is a bit tricky
for rule (iii). We need to compute the abstract state spaceΘα1⊗α2 of α1 ⊗ α2, based on the abstract
state spacesΘα1 andΘα2 computed (inductively) forα1 andα2 beforehand. We do so by forming the
synchronized productΘα1 ⊗Θα2 . This is a standard operation, its state space beingSα1 × Sα2 , with a
transition from(s1, s2) to (s′1, s

′
2) via labell iff (s1, l, s′1) ∈ Tα1 and(s2, l, s′2) ∈ Tα2. As Helmert et al.

[?] show, the constraintV1 ∩V2 = ∅ is sufficient (and, in general, necessary) to ensure that this is correct,
i. e., thatΘα1 ⊗Θα2 = Θα1⊗α2 .

To implement M&S in practice, we need amerging strategydeciding which abstractions to merge
in (iii), and ashrinking strategy deciding which (and how many) states to aggregate in (ii). Throughout
this paper, we use the same merging strategy as the most recent work on M&S [?]. What we investigate
is the shrinking strategy. Helmert et al. [?] proposed a strategy that leaves remaining cost intact within
the current abstraction. This is done simply by not aggregating states whose remaining cost differs. The
issue with this is that it preservesh∗ locally only. For example, in a transportation domain, if we consider
only the position of a truck, then any statess, t equally distant from the truck’s target position can be
aggregated: locally, the difference is irrelevant.Globally, however, there are transportable objects to
which the difference in truck positions does matter, and thus aggregatings andt results in information
loss.

We need a shrinking strategy that takes into account the global effect of state aggregations. Nissim et
al. [?] address this (in a uniform-cost setting)via the well-known notion ofbisimulation, a criterion under
which an abstraction preserves exactly the behavior (the transition paths) of the original system:

Definition 1 Let Θ = (S,L, T, s0, S⋆) be a transition system. An equivalence relation∼ on S is a
bisimulation for Θ if s ∼ t implies that: (1) eithers, t ∈ S⋆ or s, t 6∈ S⋆; (2) for every transition label
l ∈ L, {[s′] | (s, l, s′) ∈ T } = {[t′] | (t, l, t′) ∈ T }.

As usual,[s] for a states denotes the equivalence class ofs. Intuitively, s ∼ t only if (1) s andt
agree on the status of the goal, and (2) whatever operator applies tos or t applies to both, and leads into
equivalent states. An abstractionα is a bisimulation iff the induced equivalence relation∼α is.

Note that there are potentially many bisimulations. For example, the identity relation, where[s] =
{s}, is one. A bisimulation∼′ is coarser than another bisimulation∼ if ∼′⊇∼, i. e., if every pair of
states equivalent under∼ is also equivalent under∼′. A unique coarsest bisimulation always exists, and
can be computed efficiently based on an explicit representation of Θ [?]. Thus the proposed shrinking
strategy is to reduce, in any application of rule (ii),Θβ to a coarsest bisimulation of itself.

It is easy to see that the bisimulation property is invariantover merging and shrinking steps. We spell
out the claim for merging steps since we will generalize thisresult later on:

Lemma 1 [?] Let Θ1 andΘ2 be transition systems, and letα1 andα2 be abstractions forΘ1 andΘ2

respectively. Ifα1 is a bisimulation forΘ1, andα2 is a bisimulation forΘ2, thenα1⊗α2 is a bisimulation
for Θ1 ⊗Θ2.

1Note that M&S abstractions are constructed over subsetsV of the variablesV . Indeed, in practice, there is no need to incorpo-
rate all variables. Like the previous work on M&S, we do not make use of this possibility: all M&S abstractions in our experiments
are over the full set of variablesV = V .

RR n° 7901

6 Katz & Hoffmann & Helmert

Proof: Note the slight abuse of notation here:αi is a function onΘi, not onΘ1 ⊗Θ2; the precise claim
is thatα1⊗α2 is a bisimulation forΘ1⊗Θ2, whereα1(s1, s2) := α1(s1) andα2(s1, s2) := α2(s2). We
omit this distinction to avoid notational clutter.

DenoteΘ12 = Θ1 ⊗ Θ2 whereΘ12 = (S12, L, T 12, s120 , S12
⋆). Let s = (s1, s2), s

′ = (s′1, s
′
2), t =

(t1, t2) ∈ S12 andl ∈ L, s.t.s ∼α1⊗α2 t and(s, l, s′) ∈ T 12. To show thatα1 ⊗ α2 is a bisimulation,
we need to show that (I)s ∈ S12

⋆ iff t ∈ S12
⋆ , and (II) there existst′ ∈ S12 s.t. (t, l, t′) ∈ T 12 and

s′ ∼α1⊗α2 t′.
To show (I), note that by definition of composed transition systems we have (i)s ∈ S12

⋆ iff s1 ∈ S1
⋆

ands2 ∈ S2
⋆ , and (ii)t ∈ S12

⋆ iff t1 ∈ S1
⋆ andt2 ∈ S2

⋆ . By definition of bisimulation we have (iii)s1 ∈ S1
⋆

iff t1 ∈ S1
⋆ ands2 ∈ S2

⋆ iff t2 ∈ S2
⋆ , altogether giving us the desireds ∈ S12

⋆ iff t ∈ S12
⋆ .

Now, since(s, l, s′) ∈ T 12, by definition of the synchronized product, we have that (1)(s1, l, s
′
1) ∈

T 1 and (2)(s2, l, s′2) ∈ T 2. Sinces ∼α1⊗α2 t, by definition of∼α1⊗α2 we have that (3)s1 ∼α1 t1 and
(4) s2 ∼α2 t2. This is simply because(α1 ⊗ α2)(s) = (α1(s), α2(s)) = (α1(s1), α2(s2)) and similar
for t, so if (α1 ⊗ α2)(s) = (α1 ⊗ α2)(t) then we haveα1(s1) = α1(t1) andα2(s2) = α2(t2).

Due to (1) and (3) and becauseα1 is a bisimulation forΘ1, there existst′1 s.t. (5)(t1, l, t′1) ∈ T 1

and (6)s′1 ∼α1 t′1. Due to (2) and (4) and becauseα2 is a bisimulation forΘ2, there existst′2 s.t. (7)
(t2, l, t

′
2) ∈ T 2 and (8)s′2 ∼α2 t′2.

Define t′ := (t′1, t
′
2). Then by (5) and (7) we have(t, l, t′) ∈ T 12. By (6) and (8), we have that

α1(s
′
1) = α1(t

′
1) andα2(s

′
2) = α2(t

′
2), thus(α1(s

′
1), α2(s

′
2)) = (α1(t

′
1), α2(t

′
2)), thus(α1 ⊗ α2)(s

′) =
(α1 ⊗ α2)(t

′), thuss′ ∼α1⊗α2 t′ as desired.

In other words, if we combine bisimulations for two transition systems, then we obtain a bisimulation
for the synchronization of these systems. Due to this invariance property, bisimulation gets preserved
throughout M&S: if we build an M&S abstractionα over the entire variable setV = {v1, . . . , vn}, and we
always shrink by coarsest bisimulation, then the abstraction will be a bisimulation forΘπv1 ⊗· · ·⊗Θπvn .
The latter is isomorphic to the global state space [?], thusα is a bisimulation for the global state space.
Since bisimulation preserves transition paths exactly, this implies thathα is a perfect heuristic (see the
proof of Lemma 2 below).

As previously discussed, bisimulations are exponentiallybig even in trivial examples. A key point
for improving on this is that, in contrast to verification where bisimulation is traditionally being used, we
need to preserve not the solutions but only their cost. Nissim et al. [?] define a label reduction technique
to this end, the details of which are not important here (we douse it in our implementation). What is
important is that, even with the label reduction, in most benchmarks the resulting abstractions are still
huge. The way out we employ here is to relax Definition 1 by applying constraint (2) to only a subset of
the transitions inT – by catching this transition subset, as we will say from now on. We will show that
this can be done while still computing a perfect heuristic, provided we catch the right transitions.

Nissim et al. already mentioned an approach – “greedy bisimulation”– catching a transition subset.
The approach preservesh∗ locally (in the current abstraction), but not globally. We next revisit it, then
we introduce new techniques that preserveh∗ globally.

3 Greedy Bisimulation

Nissim et al. propose greedy bisimulation as a more approximate shrinking strategy in practice, accepting
its lack of global foresight. They introduce the concept informally only; formally, it is defined as follows:

Definition 2 [?] Let Θ = (S,L, T, s0, S⋆) be a transition system. An equivalence relation∼ onS is a
greedy bisimulation for Θ if it is a bisimulation for the system(S,L, TG, s0, S⋆) whereTG = {(s, l, s′) |
(s, l, s′) ∈ T, h∗(s′) ≤ h∗(s)}.

Inria

How to Relax a Bisimulation? 7

In other words, greedy bisimulation differs from bisimulation in that it catches only the transitions not
increasing remaining cost. Since a greedy bisimulation is abisimulation on a modified transition system,
it is obvious that a unique coarsest greedy bisimulation still exists and can be computed efficiently. More
interestingly, greedy bisimulation still preserves (local) remaining cost:

Lemma 2 LetΘ be a transition system, and letα be a greedy bisimulation forΘ. Thenhα is perfect.

Proof: We first show that any full bisimulation yields perfect heuristics. Say that(A, l, A′) starts a
cheapest abstract solution for[s] = A. By definition of the abstract transition system, there exists a
transition(t, l, t′) ∈ T where[t] = A and[t′] = A′. By Definition 1 (2), we have a transition(s, l, s′)
in Θ so thats′ ∈ [t′] = A′. Thus the abstract plan step has a real correspondence in thestates at hand.
Iterating the argument yields, with Definition 1 (1), a real solution path with the same cost.

Now we show thath∗ = hG, wherehG denotes remaining cost inΘG = (S,L, TG, s0, S⋆). Since the
transitions ofTG are a subset of those ofT , and otherwise the two transition systems are the same, any
solution path (for any state) inTG is a solution path inT . Thush∗ ≤ hG. On the other hand, anyoptimal
solution path inT is a solution path inTG: optimal solution paths never use transitions that increaseh∗,
so all transitions used are contained inTG. Thush∗ ≥ hG as desired.

Let h′ be the heuristic function defined by the optimal solution costs in the quotient systemΘG/α.
Thenh′ = hG, sinceα is a bisimulation ofΘG, and thus we haveh′ = h∗. Note thathα can be obtained
as optimal solution distances in a transition system obtained fromΘG/α by adding all abstract transitions
that correspond to the transitionsT \TG. Any transition(s, l, s′) ∈ T \TG hash∗(s′) > h∗(s), and thus
h′([s′]) > h′([s]). Thus adding([s], l, [s′]) does not change the optimal solution distances inΘG/α, and
hencehα = h′, from which the claim follows.

The bad news, as indicated, is that remaining costs are not preserved at theglobal level. Say our shrinking
strategy is to reduce, in any application of rule (ii),Θβ to a coarsest greedy bisimulation of itself. Then,
in difference to full bisimulation as per Definition 1, the final abstraction isnotguaranteed to be a greedy
bisimulation for the global state space. That is because greedy bisimulation is not invariant over merging
steps, i. e., there is no equivalent of Lemma 1: a greedy bisimulation forΘ1 does not catch transitions
t that increase (local) remaining cost inΘ1, however sucht may decrease(global) remaining cost in
Θ1 ⊗ Θ2. A simple example is that whereΘ1 is a truck,Θ2 is a package, andt drives the truck away
from its own goal – which globally is a good idea in order to transport the package.

Not being invariant across M&S does not, by itself, imply that greedy bisimulation cannot result in
useful heuristic functions in practice. Still, its unpredictable global effect is undesirable. And anyhow,
greedy bisimulation actually catches more transitions than needed to preservelocal remaining cost. We
now introduce techniques addressing both.

4 Catching Relevant Labels

Instead of catching individual transitions with a criterion local to the current abstraction, we now de-
vise techniques that catch them based on a label subset that we fix, with a global criterion, at the very
beginning. Throughout the M&S process, we catch a transition iff its label is inside this subset.2

We next show that such label-catching bisimulations are invariant in M&S. We then define a subset
of labels catching which guarantees a perfect heuristic. Subsequently, we show how this label subset can
be further diminished, while still guaranteeing that A∗ will terminate without any search.

2There is an interaction between “catching” labels, and “reducing” them as proposed by Nissim et al. [?]. We do not reducel
andl′ to the same label ifl is caught butl′ is not.

RR n° 7901

8 Katz & Hoffmann & Helmert

4.1 Catching Label Subsets

Our definition is straightforward:

Definition 3 LetΘ = (S,L, T, s0, S⋆) be a transition system, and letK be a set of labels. An equiva-
lence relation∼ onS is aK-catching bisimulation forΘ if it is a bisimulation for the system(S,K, TK , s0, S⋆)
whereTK = {(s, l, s′) | (s, l, s′) ∈ T, l ∈ K}.

As indicated,K-catching bisimulation is invariant over M&S rule (iii), i.e., we can generalize Lemma 1
as follows:

Lemma 3 LetΘ1 andΘ2 be transition systems, letK be a set of labels, and letα1 andα2 be abstrac-
tions forΘ1 andΘ2 respectively. Ifα1 is a K-catching bisimulation forΘ1, andα2 is a K-catching
bisimulation forΘ2, thenα1 ⊗ α2 is aK-catching bisimulation forΘ1 ⊗Θ2.

Proof: The proof is almost identical to the proof of Lemma 1. The onlydifference is that we demand
l ∈ K ⊆ L. For the sake of completeness we present the full proof here.

DenoteΘ12 = Θ1 ⊗ Θ2 whereΘ12 = (S12, L, T 12, s120 , S12
⋆). Let s = (s1, s2), s

′ = (s′1, s
′
2), t =

(t1, t2) ∈ S12 andl ∈ K, s.t.s ∼α1⊗α2 t and(s, l, s′) ∈ T 12. To show thatα1 ⊗ α2 is aK-catching
bisimulation, we need to show that (I)s ∈ S12

⋆ iff t ∈ S12
⋆ , and (II) there existst′ ∈ S12 s.t.(t, l, t′) ∈ T 12

ands′ ∼α1⊗α2 t′.
To show (I), note that by definition of composed transition systems we have (i)s ∈ S12

⋆ iff s1 ∈ S1
⋆

ands2 ∈ S2
⋆ , and (ii)t ∈ S12

⋆ iff t1 ∈ S1
⋆ andt2 ∈ S2

⋆ . By definition ofK-catching bisimulation we have
(iii) s1 ∈ S1

⋆ iff t1 ∈ S1
⋆ ands2 ∈ S2

⋆ iff t2 ∈ S2
⋆ , altogether giving us the desireds ∈ S12

⋆ iff t ∈ S12
⋆ .

Now, since(s, l, s′) ∈ T 12, by definition of the synchronized product, we have that (1)(s1, l, s
′
1) ∈

T 1 and (2)(s2, l, s′2) ∈ T 2. Sinces ∼α1⊗α2 t, by definition of∼α1⊗α2 we have that (3)s1 ∼α1 t1 and
(4) s2 ∼α2 t2. This is simply because(α1 ⊗ α2)(s) = (α1(s), α2(s)) = (α1(s1), α2(s2)) and similar
for t, so if (α1 ⊗ α2)(s) = (α1 ⊗ α2)(t) then we haveα1(s1) = α1(t1) andα2(s2) = α2(t2).

Due to (1) and (3) and becauseα1 is a K-catching bisimulation forΘ1, there existst′1 s.t. (5)
(t1, l, t

′
1) ∈ T 1 and (6)s′1 ∼α1 t′1. Due to (2) and (4) and becauseα2 is aK-catching bisimulation

for Θ2, there existst′2 s.t. (7)(t2, l, t′2) ∈ T 2 and (8)s′2 ∼α2 t′2.
Define t′ := (t′1, t

′
2). Then by (5) and (7) we have(t, l, t′) ∈ T 12. By (6) and (8), we have that

α1(s
′
1) = α1(t

′
1) andα2(s

′
2) = α2(t

′
2), thus(α1(s

′
1), α2(s

′
2)) = (α1(t

′
1), α2(t

′
2)), thus(α1 ⊗ α2)(s

′) =
(α1 ⊗ α2)(t

′), thuss′ ∼α1⊗α2 t′ as desired.

Thus we get invariance over the entire M&S process:

Lemma 4 LetΠ be a planning task with variablesV and state spaceΘ, and letK be a set of labels. Let
α be an M&S abstraction overV where, in any application of rule (ii),γ is a K-catching bisimulation
for Θβ. Thenα is aK-catching bisimulation forΘ.

Proof: Starting with the atomic M&S abstractions as per rule (i), note that these areK-catching bisim-
ulations. Lemma 3 gives us invariance over the application of rule (iii). Finally, it is easy to see that a
K-catching bisimulation of aK-catching bisimulation is, again, aK-catching bisimulation. So we have
invariance over rule (ii) as well, from which the claim follows.

Catching a smaller label set can only decrease abstraction size, and can only increase the error made by
the heuristic:

Lemma 5 LetΘ be a transition system, and letK ′ ⊆ K be sets of labels. Then the coarsestK ′-catching
bisimulation is coarser than the coarsestK-catching bisimulation.

Proof: Denoting the coarsestK ′-catching (K-catching) bisimulation with∼K′

(∼K), we need thats ∼K

t impliess ∼K′

t. This holds because{[s′i] | (si, l, s
′
i) ∈ T, l ∈ K} = {[t′i] | (ti, l, t

′
i) ∈ T, l ∈ K}

implies{[s′i] | (si, l, s
′
i) ∈ T, l ∈ K ′} = {[t′i] | (ti, l, t

′
i) ∈ T, l ∈ K ′}.

Inria

How to Relax a Bisimulation? 9

4.2 Globally Relevant Labels

We now employ an idea similar to that of Nissim et al.’s greedybisimulation, except that we select the
transitions based on a global view, and a little more carefully:3

Definition 4 LetΠ be a planning task with state spaceΘ = (S,L, T, s0, S⋆). A labell ∈ L is globally
relevant if there exists(s, l, s′) ∈ T such thath∗(s′) + c(l) = h∗(s).

The transitions caught by this definition differ from those of Definition 2 in that (A) we identify them via
their labels, rather than individually; (B) they refer to the global state space, not to the local abstraction;
and (C) we do not catch transitions whose own cost exceeds thereduction inh∗. (A) is important to
obtain invariance in M&S, as just discussed. (B) is needed because the global state space is what we wish
to approximate. (C) suffices to obtain a perfect heuristic:

Lemma 6 Let Π be a planning task with state spaceΘ, let G be the globally relevant labels, and let
K ⊇ G. Letα be aK-catching bisimulation forΘ. Thenhα is perfect.

Proof: Due to Lemma 5, it suffices to consider the caseK = G. The proof of Lemma 2 remains valid
except in two details. When proving thath∗ = hG, we now rely onh∗(s′) + c(l) > h∗(s) to show that
transitions not inTG do not take part in optimal solution paths. When proving thath′ = hα, we now
rely on the same fact, namely that the transitions(s, l, s′) ∈ T \ TG haveh∗(s′) + c(l) > h∗(s) and thus
h′(s′) + c(l) > h′(s). Clearly, as before this implies that adding([s], l, [s′]) does not change the optimal
solution distances inΘG/α.

Combining Lemmas 4 and 6, we get the desired result:

Theorem 1 LetΠ be a planning task with variablesV and state spaceΘ, letG be the globally relevant
labels, and letK ⊇ G. Letα be an M&S abstraction overV where, in any application of rule (ii),γ is a
K-catching bisimulation forΘβ . Thenhα is perfect.

Note that Definition 4 catches the globally relevant labelsG based on the entire state spaceS. As
defined here, that state set containsall states in the planning task, also those that are not actuallyreachable
from the initial state. This is important: Theorem 1 does nothold if we collectG based on reachable states
only.

Example 1 Let x, y, andz be three binary domain variables with initial valuesx = 0, y = 0, z = 0,
goal valuesx = 1, y = 1, andA = {a, b, c, d} be the set of uniform cost actions as follows:

• a : x = 0 → x = 1, y = 0,

• b : x = 1, y = 0 → y = 1,

• c : x = 0, y = 1 → x = 1, and

• d : x = 0, y = 0, z = 1 → y = 1, z = 0.

The state space of the planning task is described in Figure 1 (a). Note that restricting ourselves to
reachable states will result in the set of globally relevantlabels being{a, b}. Figure 1 (b) shows the result
of merging the atomic abstractions of variablesx andy. Note that the states00 and01 are{a, b}-catching
bisimilar, and thus the abstraction obtained as a result of shrinking by the{a, b}-catching bisimilation is
depicted in Figure 1 (c). Merging with the third variablez will result in abstraction described in Figure 1
(d). Note that the heuristic value for the initial state000 obtained from that abstraction is1, which is
smaller that the true cost of solving the task.

RR n° 7901

10 Katz & Hoffmann & Helmert

000 010

100

110

001 011

101

111

a a aa

bb

cc

d
00 01

10

11

a a

b

c

d

(a) (b)

0[0|1]

10

11

a

b

c

d

(c)

0[0|1]0

100

110

0[0|1]1

101

111

a

b

c

a

b

c

d

(d)

Figure 1: The (a) full state space and the abstractions obtained after (b) mergingx andy, (c) shrinking the
outcome using{a, b}-catching bisimulation, and (d) merging the outcome with variablez, of the planning
task in Example 1.

As this example shows, if we do not catch labels relevant for unreachable states, then such a state
s may end up in the same equivalence class with a reachable state t althoughh∗(s) < h∗(t). We then
gethα(t) ≤ h∗(s) < h∗(t). Note here that the abstraction considers solution paths (in particular the
one constitutingh∗(t)) within unreachable parts of the state space. In other words, the transition system
considered when collecting the globally relevant labels (the reachable state space) is different from the
transition system considered when building the abstraction (the full state space). That difference can arise
in M&S because, during the construction of the abstraction,reachability is over-approximated. The same
difference can be illustrated in a simple fashion by a hypothetical algorithm that works directly on the
reachable vs. non-reachable state space: if we collect the globally relevant labelsK in the reachable state
space as in Figure 1 (a), and then build aK-catching bisimulation of the non-reachable state space, we
obtain an abstract transition system isomorphic to the one shown in Figure 1 (c), and thus in particular
we obtain the same error forhα(s0) as in Example 1.4

If there are no0-cost operators, then with perfecthα A∗ does not need to search. Precisely, A∗ finds an
optimal plan after expanding a number of nodes linear in the plan’s length, provided we break ties in A∗

based on smallerhα. That is, ifg(s)+hα(s) = g(s′)+hα(s′) andhα(s) < hα(s′), then we expands prior
to s′. Given this, we know that (I) any states′ not on an optimal plan hasg(s′)+hα(s′) > g(s0)+hα(s0);
and (II) along the states on any optimal plan,hα decreases strictly monotonically. Due to (I), we do not
expand any sub-optimal states. Due to (II), within the set ofoptimal states (which may be large), the
tie-breaking leads directly to the goal in depth-first manner.

In the presence of0-cost operators, (II) is no longer true, and in general thereis no way to guarantee
avoiding search (e. g., ifall costs are0 andh∗ is devoid of information).

3In this definition,S andT (as defined in the background) include states not reachable from s0. This is because, during M&S,
reachability is over-approximated. If we do not catch the respective labels, then the abstraction is done on a transition system larger
than that based on which we collected the labels, which may result in an imperfect heuristic even on reachable states. We illustrate
this phenomenon below in Example 1.

4If we do both, collecting the globally relevant labelsK and building aK-catching bisimulation, in the same transition system,
say the reachable part of the state space, then the proof of Lemma 6 applies, andhα is perfect within that transition system.

Inria

How to Relax a Bisimulation? 11

4.3 Bounded-Radius Relevant Labels

To avoid search in A∗, it is not necessary for the heuristic to be perfect everywhere. It suffices to guarantee
the conditions (I) and (II) above. We show that, to accomplish this, we can consider a radiusR around
the goal:

Definition 5 LetΠ be a planning task with state spaceΘ = (S,L, T, s0, S⋆), and letR ∈ R
+

0 . A label
l ∈ L is R-relevant if there exists(s, l, s′) ∈ T such thath∗(s′) + c(l) = h∗(s) ≤ R.

This “radius” in terms of a label subset translates into a radius guaranteeing heuristic quality:

Lemma 7 LetΠ be a planning task with state spaceΘ, letR ∈ R
+

0 , letG be theR-relevant labels, and
let K ⊇ G. Letα be aK-catching bisimulation forΘ. Then, for everys ∈ S with h∗(s) ≤ R, we have
hα(s) = h∗(s); and fors ∈ S with h∗(s) > R, we havehα(s) > R.

Proof: By a minor extension of the proof to Lemma 6. The claimed property is obvious forhG, so we
also have it forh′, since forh∗(s) ≤ R, we preserve all optimal-path transitions, and forh∗(s) > R,
removing transitions can only increase the remaining cost.We show now that the claimed property
is invariant over adding any transition(s, l, s′) from T \ TG to ΘG/α. If h∗(s) > R, h′([s]) could
be decreased toh′([s′]) + c(l); if h∗(s′) ≤ R then by invariance assumptionh′([s′]) = h∗(s′) and
thush′([s′]) + c(l) ≥ h∗(s) > R; if h∗(s′) > R then by invariance assumptionh′([s′]) > R so
h′([s′]) + c(l) > R as well. Ifh∗(s) ≤ R, thenh∗(s′) + c(l) > h∗(s). If h∗(s′) > R, thenh′([s′]) > R,
andh′([s]) will not be decreased; otherwiseh′([s′]) = h∗(s′) and thush′([s]) could be decreased only to
h′([s′]) + c(l) = h∗(s′) + c(l) > h∗(s).

Combining this with Lemma 4 we get that, if we fix a label subsetK catching allR-relevant labels, and
if we implement the shrinking step as coarsestK-catching bisimulation, then the resulting heuristichα

will have the claimed qualityon the global state space. Thus, in the absence of0-cost operators and when
settingR to optimal plan cost, conditions (I) and (II) still hold, andA∗ is efficient:

Theorem 2 LetΠ be a planning task all of whose operators have non-0 cost. LetV be the variables of
Π, letΘ be the state space ofΠ, letG be theh∗(s0)-relevant labels, and letK ⊇ G. Letα be an M&S
abstraction overV where, in any application of rule (ii),γ is aK-catching bisimulation forΘβ. Then A∗

with hα, breaking ties in favor of smaller heuristic values, expands a number of states linear in the length
of the plan returned.

One may speculate whether it is possible to generalize the circles defined here (by the radiusR)
to ellipses. Definition 5 would then definel to beR-relevant if there exists(s, l, s′) ∈ T such that
f∗(s′) + c(l) = g(s′) + h∗(s′) + c(l) = g(s) + h∗(s) = f∗(s) ≤ R. For Theorem 2 to still hold, we
would need the adapted version of Lemma 7 stating that (A) foreverys ∈ S with f∗(s) ≤ f∗(s0) we
haveg(s) + hα(s) = f∗(s), and (B) fors ∈ S with f∗(s) > f∗(s0), we haveg(s) + hα(s) > f∗(s0).
For (A), the argument stated in the proof of Lemma 7 remains valid: f∗ is constant on optimal solution
paths, and any optimal solution fors is part of an optimal solution fors0. The latter does, however, not
apply in case (B), wheres is not part of an optimal solution fors0. Indeed, it is easy to construct cases
where the only (costly) pathP from s to the goal does not contain any states on an optimal solutionfor
s0, and where thus no operator onP is f∗(s0)-relevant according to the modified definition. Then all
states alongP are aggregated, and we getg(s) + hα(s) < f∗(s0).

5 Results Using Exact Label Sets

The label subsets introduced in the previous section cannotbe computed efficiently, so they must be
approximated in practice. We will do so in the next section. Here, we assess the power of our techniques

RR n° 7901

12 Katz & Hoffmann & Helmert

from a principled perspective, ignoring this source of complication. We consider what would happen if
we did use the exact label sets as defined.

5.1 Theoretical Results with Exact Labels

Catching globally relevant labels matches full bisimulation in that it yields a perfect heuristic (cf. Theo-
rem 1); greedy bisimulation does not give that guarantee. Compared to both full bisimulation and greedy
bisimulation, catching globally relevant labels is potentially better because it makes less distinctions. This
can yield an exponential advantage:

Proposition 1 There exist families of planning tasks{Πn}, with variable subsets{Vn} and globally
relevant labels{Gn}, so that M&S abstractions overVn are exponentially smaller with the shrinking
strategy usingGn-catching bisimulation, than with the shrinking strategies using either of bisimulation
or greedy bisimulation.

Proof: Consider the family of uniform-cost planning tasks with variablesVn = {g, v1, . . . , vn, v}, where
g, v1, . . . , vn are Boolean, andv has domain{1, . . . , n}. The initial state sets all variables to0, the goal
is g = 1, and the operators are:

• og : g = 0 → g = 1

• oi : vi = 0, v = i → vi = 1

• ovij : v = i → v = j

• oG : g = 0, v1 = 1, . . . , vn = 1 → g = 1

We can always achieve the goal in one step usingog, but we can also go through the entire setv1, . . . , vn
to finally achieve the goal viaoG. Say our variable order is any one ordering variablev last.

We show first that any full bisimulation or greedy bisimulation must have exponential size at some
point during the abstraction process. Consider the set of statesS in the product of all variables exceptv.
Consider any two non-goal statess, t ∈ S whose subset ofvi with value0 is different. Then the sets of
outgoing labelsoi are different, even under label reduction becausev is not projected away. Thuss and
t are not bisimilar, and2n is a lower bound on the number of abstract states in a full bisimulation. For
greedy bisimulation, we also need to show that the labelsoi do not increaseabstractsolution distance;
that is trivial because solution distance, and thus abstract solution distance, is globally bounded by1 and
the solution distance ofs, t is greater than0 by construction.

We now show that bisimulation catching the globally relevant labels has constant size throughout the
abstraction process. Clearly, the globally relevant labels are{og, oG}. Say that, at any point during the
abstraction process, we aggregate statess andt iff they agree on the value ofg (if already merged) and
so that either boths andt make one already-mergedvi false, or boths andt make all already-mergedvi
true. Then, clearly,og, oG is applicable tos iff it is applicable tot; and the respective outcome states are
aggregated. Thus this abstraction is a bisimulation catching the globally relevant labels. Obviously, the
size of this abstraction is≤ 4.

Likewise, imposing a radius on the caught labels can have an exponential advantage (while still guar-
anteeing A∗ to be efficient, cf. Theorem 2):

Proposition 2 There exist families of planning tasks{Πn}, with variable subsets{Vn}, globally relevant
labels{Gn}, and h∗(s0)-relevant labels{Rn}, so that M&S abstractions overVn are exponentially
smaller with the shrinking strategy usingRn-catching bisimulation, than with the shrinking strategies
using either ofGn-catching bisimulation, bisimulation, or greedy bisimulation.

Inria

How to Relax a Bisimulation? 13

Proof: Consider the family of uniform-cost planning tasks with variablesVn = {g, v1, . . . , vn, v}, where
v1, . . . , vn are Boolean,g has domain{−1, 0, 1}, andv has domain{1, . . . , n}. The initial state sets all
variables to0, the goal isg = 1, and the operators are:

• o¬g : g = 0 → g = −1

• og : g = 0 → g = 1

• oi : vi = 0, v = i → vi = 1

• ovij : v = i → v = j

• oG : g = −1, v1 = 1, . . . , vn = 1 → g = 0

Here, the setv1, . . . , vn is no longer a sub-optimal alternative to achieving the goal; instead, it serves to
recover the initial value ofg, should we have made the mistake of applyingo¬g. Thus, now,all labels
excepto¬g are globally relevant. Say our variable order isg, v1, . . . , vn, v.

We show first that any bisimulation catching all globally relevant labels, as well as any greedy bisimu-
lation, must have exponential size at some point during the abstraction process. Consider the set of states
S in the product of all variables exceptv. Consider any two statess, t ∈ S whose subset ofvi with value
0 is different. Then the sets of outgoing labelsoi are different, even under label reduction becausev is not
projected away. Thuss andt are not bisimilar, and2n is a lower bound on the number of abstract states.
Since the labelsoi are globally relevant, this holds for any bisimulation catching all globally relevant
labels (independently of the order in which we mergedg, v1, . . . , vn).

For greedy bisimulation, the same argument applies for statess, t ∈ S whereg = 0. Each of these
has goal distance1, so any transition that leavesg untouched is caught by greedy bisimulation. The latter
applies to the outgoing labelsoi, catching which leads to a2n lower bound as above.

We now show that bisimulation catching theh∗(s0)-relevant labels has constant size throughout the
abstraction process. Clearly, the onlyh∗(s0)-relevant label isog. Say that, at any point during the
abstraction process, we aggregate statess andt iff they agree on the value ofg (if already merged). Then,
clearly,og is applicable tos iff it is applicable tot; and the respective outcome states are aggregated.
Thus this abstraction is a bisimulation catching theh∗(s0)-relevant labels. Obviously, the size of this
abstraction is≤ 3.

Propositions 1 and 2 hold regardless whether or not Nissim etal.’s label reduction technique is used.
Note that the situations underlying the proofs are quite natural. In particular, as we will see in the next
sub-section, most IPC benchmarks contain at least some operators as described. This notwithstanding,
to our knowledge none of the benchmarks actually contains a family as claimed in Propositions 1 and 2.
Intuitively, the described situations do occur, but to a lesser extent. An exception is Dining-Philosophers
in a direct finite-domain planning encoding, for which Nissim et al. showed that greedy bisimulation
yields perfect heuristics with polynomial effort. The sameis true when catching globally orh∗(s0)-
relevant labels.

5.2 Empirical Results with Exact Labels

We ran M&S with no shrinking and no reachability pruning (no removal of non-reachable abstract states
during M&S) to compute the full state space, and thus the exact label sets; Table 1 shows results on the
172 IPC benchmark instances where this process did not run out of memory. We show, summed-up per
instance, the label set size and the size of the largest abstractions generated during M&S, when catching
all labels (“All”) vs. the globally relevant labels (“Global”) vs. theh∗(s0)-relevant labels (“h∗(s0)”).

A quick look at the left-hand side of the table confirms that there tend to be quite some labels that can
be ignored without sacrificing heuristic quality. The single domain with no irrelevant labels at all is TPP.

RR n° 7901

14 Katz & Hoffmann & Helmert

Σ number of labels Σ maximal abstraction size
domain All Global h

∗(s0) All Global h
∗(s0)

blocks 462 459 453 5338545 5338437 5337835
depots 72 48 48 26928 12402 12402
driverlog 448 383 383 1046925 1046925 1046925
gripper 232 176 176 712 712 712
logistics00 672 366 364 1314376 1314376 1314376
logistics98 278 173 173 4157536 4157536 4157536
miconic 5700 4070 4069 1314030 1314660 1314660
mystery 154 126 94 41408 39600 33768
nomystery11 5198 4501 4501 9688 8464 8464
openstack08 400 383 383 21396 21396 21396
openstack11 575 515 515 9048 9048 9048
parcprint08 158 115 103 359 374 392
parcprint11 59 39 39 241 257 257
pathways 61 30 30 97 97 97
pegsol08 166 166 128 180720 180720 94305
psr 1993 1753 1745 106780 103596 103596
rovers 161 100 100 8886 1920 1920
satellite 456 326 326 11302 8488 8488
scanaly08 2724 1224 1224 40320 40320 40320
scanaly11 1168 668 668 20192 20192 20192
tpp 38 38 38 276 276 276
transport08 1400 1232 1192 279850 279733 280883
transport11 424 400 400 160000 160000 160000
trucks 597 203 203 8175 8423 8423
zeno 2246 1581 1512 4689384 4689384 4689056
Σ 26112 19345 19137 18787174 18757336 18665327

Table 1: Summed-up sizes of exact label sets (all vs. globally relevant vs.h∗(s0)-relevant), and of maxi-
mum abstraction sizes during M&S for bisimulation catchingthese.

Often, only about two thirds of the labels areh∗(s0)-relevant; in Trucks, only one third are. At the same
time, a look at the right-hand side of the table shows that thereduced label sets are not very effective in
reducing abstraction size. In only 10 out of 24 domains with reduced labels, the maximal abstraction size
is reduced as well. The reduction is typically small, exceptin a few domains like PegSol (factor1.92)
and Rovers (factor4.63). In two cases (ParcPrinter and Trucks), the size actually grows.

This discrepancy with Lemma 5 is due to removal of non-reachable abstract states, done in our code,
but not in the lemma. In rare cases, the coarser abstraction (catching less labels) has more reachable
abstract states:

Example 2 Letx andy be two variables with domain transition graphs as shown in Figure 2(a,b). Given
that the only goal leading action is the one changingy from 0 to 1, the bisimulation catching globally
relevant labels will not distinguish between the two valuesofx, while the regular bisimulation will. Thus,
the abstract state spaces obtained after merging the shrinked abstraction forx and the abstraction fory
are as shown in Figure 2(c,d), having3 and2 reachable states, respectively.

We can scale this example by includingn indepenedent pairs of variablesx andy as shown. The size
difference then multiplies, yielding3n reachable states for bisimulation catching globally relevant labels,
and2n reachable states for regular bisimulation. Thus the size difference can be exponential.

The present data should be treated with caution as the instances considered are very small; the ab-
straction size reductions might be more significant in larger instances. This notwithstanding, in practice it
may be advisable to approximate the label subsets aggressively, catching less labels in the hope to reduce
abstraction size more, while not losing too much information. We consider such methods next.

Inria

How to Relax a Bisimulation? 15

10
y = 2

(a)

0 21
x = 1

(b)

[0|1]0

[0|1]1

[0|1]2

(c)

00 10

01 11

02 12

(d)

Figure 2: Example 2 domain transition graphs for variables (a) x and (b)y; state spaces of the merged
abstractions, with reachable and relevant states marked for (c)G-catching and (d) regular bisimulations.

6 Results Using Approximate Label Sets

We describe our label-subset approximation techniques, then run experiments on the standard IPC bench-
marks.

6.1 Approximation Techniques

The word “relevant” in the names of the label sets identified in Definitions 4 and 5 was chosen because
the intuition behind these – subsets of operators used in optimal plans – is very close to previous notions
of relevance (e. g., [?, ?, ?]). This creates a potential for synergy. We implemented onemethod inspired
by this, and one method that integrates particularly well with M&S:

• Backward h1. This is a variant of backward-chaining relevance detection, using a straightforward
backwards version of the equations definingh1 [?]. We collect all operators that appear within the
radiusR given by the product of (forward)h1(s0) and a parameterβ ∈ [0, 1]. Note that, forhm

with largem, the selected labels would be exactly theh∗(s0)-relevant ones. Settingβ allows to
select less labels, controlling the trade-off between abstraction size and accuracy. Forβ = 0, we
use the smallestβ yielding a non-empty label set.

• Intermediate Abstraction (IntAbs). We run full bisimulation until abstraction size has reacheda
parameterM . The labels are then collected by applying either of Definition 4 or 5 to the present
abstraction, and M&S continues with bisimulation catchingthat label subset. With very largeM
(and when not removing non-reachable abstract states), thelabel set would be exact. SmallM
results in smaller labels sets because non-0 cost operators on variables not yet merged will not be
considered relevant.

RR n° 7901

16 Katz & Hoffmann & Helmert

Neither technique guarantees, in general, to catchall globally relevant/h∗(s0)-relevant labels. They are
practical approximations whose merits we now evaluate experimentally.

6.2 Experiments

Our techniques are implemented in Fast Downward, and all results we report use the same A∗ imple-
mentation. We ran a total of 32 M&S configurations, plus two competing heuristics, on 1396 instances
from 44 IPC benchmark domain suites. To make these 47464 runsfeasible, the runtime for each was
limited to 5 minutes. The memory limit was 2 GB. The runs were conducted on machines equipped with
two quad-core CPUs (AMD Opteron 2384). Coverage data is shown in Table 2. To save space, we omit
domains from IPC’08 that were run also in IPC’11.

Approach IntAbs Global Backwardh1 strict-greedy bisimulation Nissim et al.
BJOLP LM-cutN 10K 100K ∞ ∞ 10K ∞ 10K 100K ∞ ∞ 10K 100K ∞ ∞

M /β/Nissim et al. variant 10K 10K 10K 100K 0.25 0.5 1 0 0.25 0.5 0.75 1 10K 10K 10K 100K full s-greedy full s-greedy
airport *22 *22 *22 *22 19 19 19 *22 3 1 1 1 *22 *22 *22 *22 19 16 1 *22 28 25
barman-opt11-strips 4 4 4 4 4 4 4 4 0 0 0 0 4 4 4 4 4 4 0 4 4 0
blocks *21 *21 *21 18 *21 *21 *21 18 14 9 9 9 *21 *21 *21 *21 *21 *21 9 *21 26 28
depot 7 7 7 6 6 6 6 6 6 1 1 1 7 7 7 7 6 7 1 7 7 7
driverlog 12 12 12 12 12 12 12 *13 *13 6 5 5 12 12 12 12 12 12 5 12 14 13
elevators-opt11-strips 9 9 10 *12 9 9 9 9 0 0 0 0 9 9 9 9 9 9 0 9 12 15
floortile-opt11-strips 2 3 3 7 2 3 3 2 3 6 6 6 2 2 2 2 3 3 6 2 2 6
freecell *15 *15 *15 6 *15 *15 *15 *15 13 6 2 1 *15 *15 *15 *15 *15 7 1 *15 53 9
grid 1 1 1 0 2 2 2 2 2 0 0 0 2 2 2 2 2 1 0 2 2 1
gripper 7 10 10 20 7 7 11 7 7 7 7 20 7 7 7 7 11 7 20 7 7 6
logistics00 16 16 16 16 18 20 20 18 18 10 10 10 16 16 16 16 20 16 10 16 20 20
logistics98 4 4 4 *5 4 4 4 *5 *5 3 2 2 4 4 4 4 4 4 2 4 6 6
miconic 51 52 52 55 51 51 *57 51 51 51 55 50 50 50 50 50 *57 55 51 50 141 140
mprime 22 22 22 13 23 23 19 22 22 16 2 1 22 22 22 22 19 10 1 22 20 20
mystery 15 15 15 14 15 14 13 13 13 11 4 3 15 15 15 15 13 10 3 15 15 15
nomystery-opt11-strips 12 15 15 19 16 18 18 16 16 9 12 12 12 12 12 12 18 15 12 12 18 13
openstacks-opt11-strips 14 14 14 12 14 14 14 14 14 14 14 1 14 14 14 14 14 14 1 14 10 11
openstacks-strips 7
parcprinter-opt11-strips *12 *12 *12 *12 11 11 *12 11 9 9 8 8 11 11 11 11 *12 *12 8 11 9 13
parking-opt11-strips 5 4 4 0 2 2 3 0 0 0 0 0 5 5 5 5 3 0 0 5 1 1
pathways-noneg *4 *4 *4 *4 *4 *4 *4 *4 *4 3 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 4 5
pegsol-opt11-strips 19 19 19 19 17 17 18 17 17 8 8 0 17 17 17 17 19 18 0 17 17 17
pipesworld-notankage 15 15 15 15 *16 15 15 3 3 2 1 2 15 15 15 15 15 11 2 15 17 15
pipesworld-tankage 12 12 12 10 14 14 14 2 2 2 1 2 16 16 16 15 14 13 2 16 11 8
psr-small 49 49 49 49 49 49 49 49 49 49 49 44 49 50 50 50 49 50 44 50 49 48
rovers 6 6 6 6 6 6 6 6 6 6 4 4 6 6 6 6 6 7 4 6 7 7
satellite 6 6 6 6 7 7 6 8 8 8 6 6 6 6 6 6 6 6 6 6 7 7
scanalyzer-opt11-strips 10 10 10 8 9 9 9 3 3 3 3 3 10 10 10 6 9 9 3 3 3 10
sokoban-opt11-strips 19 19 19 18 19 19 19 16 11 5 3 1 19 19 19 19 19 20 0 19 18 19
tidybot-opt11-strips 12 11 11 0 8 1 1 14 4 1 1 1 13 12 12 12 4 0 0 12 14 11
tpp 6 6 6 7 6 6 6 6 6 5 5 5 6 6 6 6 6 7 5 6 6 6
transport-opt11-strips 6 6 6 8 6 6 6 6 1 1 1 1 6 6 6 6 6 6 1 6 6 6
trucks-strips 5 5 5 5 6 *7 5 6 6 6 4 4 5 5 5 5 6 6 4 5 7 9
visitall-opt11-strips 9 9 9 10 9 9 9 8 8 8 8 8 12 12 12 12 9 9 8 12 9 10
woodworking-opt11-strips 6 6 6 7 4 6 6 5 2 1 1 1 7 *9 *9 *9 6 *9 2 *9 7 10
zenotravel 9 9 9 11 12 12 11 12 12 12 7 7 9 9 9 9 11 9 7 9 10 11
Σ 585 591 *593 575 578 579 585 538 449 358 320 270 588 *593 *593 584 591 547 270 579 715 698
Σ w/o miconic & freecell 519 524 526 514 512 513 513 472 385 301 263 219 523 *528 *528 519 519 485 218 514 521 549
Σ M&S built 1383 1341 1336 10491236 1196 1178989 687 501 352 270 *1385 1357 1347 12901174 1018 270 1264

Table 2: Selected coverage data in IPC benchmarks. Best results overall (of all M&S heuristics) are high-
lighted in bold (with a “*”). “Σ M&S built”: number of tasks for which computing the M&S abstraction
did not exceed the available time/memory.

We run BJOLP [?] and LM-cut [?] because they were the two non-M&S components in Fast Down-
ward Stone Soup, the portfolio winning the 1st prize in the track for optimal planners at IPC’11. We ran9
M&S configurations from the work by Nissim et al., settingN ∈ {10K, 100K,∞} and using either full
bisimulation, or greedy bisimulation, orstrict-greedy bisimulation (s-greedy). The latter is the variant
of Definition 2 catching all transitions(s, l, s′) ∈ T whereh∗(s′) < h∗(s), rather thanh∗(s′) ≤ h∗(s).
This variant is not mentioned by Nissim et al., but actually is what is run in their experiments and in the
IPC. As for the parameterN , in all M&S variants, this is a bound on abstraction size reaching which
forces the shrinking strategy to aggregate more states, dropping any bisimulation guarantees [?, ?]. For
N = ∞, the bisimulation guarantee is always held up (and the abstraction might run out of memory).
Given the limited space in Table 2, we show data for4 of the9 Nissim et al. configurations:N = 10K
with full bisimulation, the one with highest overall coverage;N = ∞ with full bisimulation, for reference
(in difference to all other M&S configurations here, this guarantees the heuristic to be perfect); and the

Inria

How to Relax a Bisimulation? 17

two configurations taking part in Fast Downward Stone Soup,N = 100K andN = ∞ with strict-greedy
bisimulation.5

We also run4 new M&S variants using strict-greedy bisimulation, with the parameterM of our
Intermediate Abstraction (IntAbs) label approximation. These configurations start with full bisimulation,
then switch to s-greedy bisimulation once abstraction sizeM is reached. This allows for a very direct
comparison with our IntAbs configurations: the only difference to these lies in their use of label-catching
bisimulation, rather than s-greedy bisimulation, afterM is reached. We do not show data for IntAbs
with Definition 5 (h∗(s0)-relevant labels), because these configurations are dominated by the ones using
Definition 4 (globally relevant labels). Compared to the variants orginally designed by Nissim et al,
the new s-greedy variants have a significant adavantage in total coverage. They also have a small such
advantage vs. the IntAbs variants. However, the former havethe edge in a larger number of individual
domains. The respective configuration with best coverage isstrictly better for IntAbs in15 domains, is
equally good in23 domains, and is worse only in6 domains. An interesting observation within IntAbs is
that, as expected, smallerM yields more greedy abstractions. ForN = ∞, M = 10K completes1336
abstractions, vs.1049 completed byM = 100K.

We finally run 11 M&S variants with the Backwardh1 label-catching strategy:N = 10K with 4
values ofβ (β = 0.75 not shown because it is always dominated by one of the others); andN = ∞ with
7 values ofβ. ForN = 10K,β has hardly any effect since enforcing the bound makes the abstraction very
greedy anyhow. By contrast, forN = ∞, smallerβ decreases computational effort drastically (consider
the bottom row in Table 2). In effect, in35 of the44 domains, coverage increases monotonically as we
decreaseβ. Note also that, forβ = 1.0, performance is almost identical to that of full bisimulation with
N = ∞. Indeed, the number of labels caught (not shown here) is typically close to the total number of
labels.

Comparing the per-domain perfomance of the Backwardh1 configurations with the IntAbs configu-
rations, the latter have a slight edge. The configuration with best coverage is strictly better for Backward
h1 in 11 domains, is equally good in18 domains, and is worse in15. Comparing the new M&S variants
(IntAbs and Backwardh1) with all “old” ones (including the novel s-greedy variants), the best-coverage
configuration is better for new M&S in10 domains, equally good in23, and worse in11. Comparing
the new M&S variants against all other planners, the best-coverage configuration is better for new M&S
in 5 domains, equally good in16, and worse in23. Altogether, the new heuristics are certainly not a
breakthrough in coverage of cost-optimal planners, but they can contribute. We reconfirm this below by
considering portfolios built from different subsets of configurations.

Figure 3 examines more closely howβ trades off abstraction effort against accuracy. The coverage
and “M&S built” data (lefty-axis) are as in Table 2. “ExpansionsX” (right y-axis) shows the average
number of expanded states in the subset of instances solved by all configurations whereβ ≤ X . That
subset contains much larger instances for smallerβ, hence the average expansions grow. Note however
that there is a consistent patternwithin each of these curves. Expansions increase a lot as we step from
β = 0.75 to β = 0.5 (e. g., from64976 to 212362 for “Expansions1.0”), but remain almost constant
at both sides of this step. This suggests a kind of phase transition, where forβ ≥ 0.75 the heuristic is
close to perfect, whereas forβ going below0.5 it is quite bad, and does not get a lot worse while still
dramatically reducing abstraction effort. The latter doesa lot to help coverage, and one could try to catch
even less labels whenβ = 0. One could also try to add complementary label selection techniques, in the
hope to push the “phase transition” to smallerβ. Both are topics for future work.

Different M&S heuristics often have complementary strengths. Table 3 examines this in detail, listing
the best performance any sequential portfolio of a given size |P | ∈ {2, 4, 6} can obtain, when selecting its
components from particular subsets of configurations. Comparisons should be made only within groups
of portfolios with same|P |, as each component uses5 minutes and thus|P | determines the computational
resources used. In the “Design” row, “BL” is BJOLP+LM-cut, and “FDSS” has the same configurations

5Actually,N = 200K was used in the IPC; the performance forN = 100K is almost identical to that.

RR n° 7901

18 Katz & Hoffmann & Helmert

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

0.0 0.1 0.25 0.5 0.75 1.0
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

nu
m

be
r

of
 in

st
an

ce
s

nu
m

be
r

of
 s

ta
te

s

M&S built
Coverage

Average Expansions 0.05
Average Expansions 0.1

Average Expansions 0.25
Average Expansions 0.5

Average Expansions 0.75
Average Expansions 1.0

Figure 3: Scalingβ in Backwardh1 with N = ∞.

|P | 2 4 6 2 4 6

Design BL FDSS BL+O BL+N BL+ON FDSS+N BL+O BL+N BL+ON O N ON O N ON O N ON
|C| 0 0 13 13 26 13 13 13 26 13 13 26 13 13 26 13 13 26

Upper bound 770 805 825 823 833 830 825 823 833 658 649 673 658 649 673 658 649 673

BestP 770 805 825 819 827 830 825 823 833 656 630 656 658 647 671 658 649 673

Table 3: Portfolios. “|P |”: number of components within portfolio. “Design”: portfolio design space (see
text). “|C|”: number of components to choose from. “Upper bound”: solved by any possible component.
“BestP ”: best coverage of any portfolio.

as Fast Downward Stone Soup (cf. above). By “X+Y ” we denote portfoliosP in which the components
X are fixed and only the remaining|P | − |X | components are selected fromY . “O” (“Old”) refers to
the13 “old” M&S configurations we run here. “N” (“New”) refers to13 of the IntAbs and Backwardh1

configurations (to obtain groups “O” and “N” of same size, we omitted Backwardh1 with N = ∞ and
β > 0). “BL” is included only for reference. The data for|P | = 4 and “BL+Y ” design shows that, in
our setting here, different M&S variants than in “FDSS” yield better coverage; the data for|P | = 6 and
“BL+Y ” design shows that adding even more M&S configurations stillimproves the outcome. Generally,
portfolios of only “O” M&S configurations are better than those of only “N” ones, but the best option is
to combine the two.

7 Conclusion

Label-catching bisimulation is very appealing in principle: it is invariant over M&S, guarantees a perfect
heuristic if we catch all relevant labels, may be exponentially smaller than full bisimulation even in this
case, and allows a fine-grained effort/accuracy trade-off by plugging in approximations of relevance.
At the same time, our empirical results are a bit disappointing, performance being improved only in
few domains. As indicated, one could try to design differentrelevance approximations. The authors’
speculation is that there is more potential incombiningM&S heuristics, i. e., automatically constructing
sets of heuristics specifically designed to be complementary, for a given planning task.

Acknowledgments. Michael Katz was supported by the French National Research Agency (ANR),
project ANR-10-CEXC-003-01.

Inria

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background
	Greedy Bisimulation
	Catching Relevant Labels
	Catching Label Subsets
	Globally Relevant Labels
	Bounded-Radius Relevant Labels

	Results Using Exact Label Sets
	Theoretical Results with Exact Labels
	Empirical Results with Exact Labels

	Results Using Approximate Label Sets
	Approximation Techniques
	Experiments

	Conclusion

