How to Relax a
Bisimulation?

Michael Katz, Jorg Hoffmann, Malte Helmert

ISRN INRIA/RR--7901--FR+ENG

RESEARCH
REPORT

N° 7901

March 2012

ISSN 0249-6399

Project-Teams Maia

V4

informarits,mathematics
roy %

How to Relax a Bisimulation?

Michael Katz, J6rg Hoffmann, Malte Helmirt
Project-Teams Maia

Research Report n° 7901 — March 2012 18 pages

Abstract: Merge-and-shrink abstraction (M&S) is an approach for tmresing admissible heuristic func-
tions for cost-optimal planning. It enables the targetesigteof abstractions, by allowing to choose indi-
vidual pairs of (abstract) states to aggregate into one.yAjkestion is how to actually make these choices,
S0 as to obtain an informed heuristic at reasonable compn#itost. Recent work has addressed this via
the well-known notion obisimulation When aggregating only bisimilar states — essentiallyestavhose
behavior is identical under every planning operator — M&8ds a perfect heuristic. However, bisimula-
tions are typically exponentially large. Thus we mredtix the bisimulation criterion, so that it applies to
more state pairs, and yields smaller abstractions. Werhdeeiise a fine-grained method for doing so. We
restrict the bisimulation criterion to consider only a seth& of the planning operators. We show that, if
K is chosen appropriately, then M&S still yields a perfectiic, while abstraction size may decrease
exponentially. Designing practical approximations for we obtain M&S heuristics that are competitive
with the state of the art.

Key-words: artificial intelligence; planning; heuristic search

* University of Basel, Switzerland

RESEARCH CENTRE
NANCY — GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-les-Nancy Cedex

Comment relaxer une bisimulation?

Résumé : See English abstract.

Mots-clés : intelligence artificielle; planification; recherche hestique

How to Relax a Bisimulation? 3

1 Introduction

Heuristic forward state-space search with &hd admissible heuristics is a state of the art approach to
cost-optimal domain-independent planning. The main rebeguestion in this area is how to derive the
heuristic automatically. That is what we contribute to lirer&Ve design new variants of the merge-and-
shrink heuristic, short M&S, whose previous varigPjtyvon a 2nd price in the optimal planning track of
the 2011 International Planning Competition (IPC), and peas of the 1st-prize winning portfolic’].

M&S uses solution cost in a smallafstractstate space to yield an admissible heuristic. The abstract
state space is built incrementally, starting with a set ofrat abstractions corresponding to individual
variables, then iterativelgnergingtwo abstractions (replacing them with their synchronizestipct) and
shrinkingthem (aggregating pairs of states into one). In this way, M8l8ws to select individual pairs
of (abstract) states to aggregate. A key question, thatrgewmth the computational effort taken and the
quality of the resulting heuristic, isow to actually select these state pairs

M&S was first introduced for planning by Helmert et &P],[with only a rather naive method for
selecting the state pairs to aggregate. Nissim et?halmore recently addressed this via the notion of
bisimulation adopted from the verification literature (e. d?])] Two statess,t are bisimilar, roughly
speaking, if every transition label (every planning opargleads into equivalent abstract states from
andt¢. If one aggregates only bisimilar states, then the behafithhe transition system (the possible
paths) remains unchanged. This property is invariant og#r the merging and shrinking steps in M&S,
and thus the resulting heuristic is guaranteed to be petfdortunately, bisimulations are exponentially
big even in trivial examples, including benchmarks like,dgample, Gripper.

A key observation made by Nissim et al. is that bisimulat®omnecessarily strict for our purposes.
In verification, paths must be preserved because the teehiied property shall be checked within the
abstracted system. However, here we only want to computicolcosts. Thus it suffices to preserve
not the actual pathgut only their cost Nissim et al. design a label reduction technique, that ghan
the path inscriptions (the associated planning operatarshot their costs. This leads to polynomial
behavior in Gripper and some other cases, but the resultisiactions are still much too large in most
planning benchmarks.

Nissim et al. address this by (informally) introducing whhey call greedy bisimulationwhich
“catches” only a subset of the transitions;t are considered bisimilar already if every transitider
creasing remaining codeads into equivalent abstract states frerand¢. That is, “bad transitions” —
those increasing remaining cost — are ignored. Thisl@ssyrelaxation to bisimulation, i. e., a simpli-
fication that results in smaller abstractions but may (andallys does) yield an imperfect heuristic in
M&S: “bad transition” is defined locally, relative to the ecant abstraction, which does not imply that
the transition is globally bad. For example, driving a tragkay from its own goal may be beneficial for
transporting a package. Under such (very common) behaieedy bisimulation is not invariant across
the M&S merging step, because the relevant transitions@treaught.

We herein adopt the same approach for relaxing bisimulatiame catch a subset of the transitions —
but we take a different stance for determining that subset fikst select a subset of labels (operators).
Then, throughout M&S, we catch the transitions bearingdaheisels. This simple technique warrants that
the thus-relaxed bisimulation is invariant across M&S. fiksato this, to guarantee a quality propefty
of the final M&S heuristic, it suffices to select a label sulzpedranteeing when catching these labels
in a bisimulation of the (global) state space.

We consider two properties: (A) obtaining a perfect heuristic; (B) guaranteeing thatwill not
have to search. (A) is warranted by selecting all remaimiogt-decreasing operators in the (global) state
space. (B) is a generalization that only requires to catchbaet of these operators — those within a
certain radius around the goal.

In practice, it is not feasible to compute the label sets giesicribed. To evaluate their potential in
principle, we prove that they may decrease abstractionesipenentially, and we run experiments on

RR n° 7901

4 Katz & Hoffmann & Helmert

IPC benchmarks small enough to determine these labels.aloate the potential in practice, we design
approximation methods. Running these on the full IPC beracks) we establish that the resulting M&S
heuristics are competitive with the state of the art, andicgamove coverage in some domains.

We next give the necessary background. We revisit Nissinh'gtidea of greedy bisimulation, then
introduce our own relaxation principle, evaluate it, andaade.

2 Background

A planning task is a 4-tuplell = (V, O, s, sx). V is a finite set ovariables v, eachv € V associated
with a finite domainD,,. A partial state overV is a functions on a subseV; of V, so thats(v) € D,
forall v € Vs; sis astateif YV, = V. Theinitial state s, is a state. Thgoal s, is a partial stateQ is

a finite set ofoperators, each being a paiipre, eff) of partial states, called ifgrecondition andeffect
Eacho € O is also associated with itostc(o) € RJ (note thah-cost operators are allowed). A special
case we will mention areniform costs, where(o) = 1 for all o.

The semantics of planning tasks are defined via thi@ite spaceswhich are (labeledjransition
systems Such a system is a 5-tupke= (5, L, T, so, S+) whereS is a finite set oktates L is a finite set
of transition labels each associated withlabel costc(l) € Rf, T C S x L x S is a set otransitions,
sop € S is thestart state, and.S, C S is the set ofsolution states We define theeemaining cost
h* : S — R{ as the minimal cost of any path (the sum of costs of the labethe path), in®, from a
given states to anys, € S,, or h*(s) = o if there is no such path.

In the state space of a planning taskis the set of all states. The start stages the initial state of
the task, and € S, if s, C s. The transition label& are the operator®, and(s, (pre, eff), s') € T'if s
complies withpre, ands’(v) = eff(v) for all v € Vegt while s’ (v) = s(v) forallv € V \ Ve. A planis a
path fromsg to anys, € S,. The plan isoptimal iff its summed-up cost is equal #o* (o).

A heuristic is a functionk : S — R{ U {oo}. The heuristic isadmissibleiff, for every s € S,
h(s) < h*(s); it is consistentiff, for every (s,l,s") € T, h(s) < h(s') + ¢(I); it is perfect iff h
coincides withh*. The A" algorithm expands states by increasing valug@f + h(s) whereg(s) is
the accumulated cost on the pathstolf % is admissible, then Areturns an optimal solution. § is
consistent then Adoes not need to re-open any nodes: i§ perfect then, as will be detailed later; A
“does not need to search”; we will also identify a more gehetiterion sufficient to achieve this last
property.

How to automatically compute a heuristic, given a plannasktas input? Our approach is based on
designing arabstraction. This is a functionrn mappingS to a set ofabstract statesS*. Theabstract
state space©” is defined agS*, L, T, s§, S%), whereT* = {(a(s),l,a(s")) | (s,1,s') € T},
s§ = a(sp), andSY := {a(s4) | s« € S.}. Theabstraction heuristic h* maps eacly € S to the
remaining cost oé(s) in ©%; h* is admissible and consistent. We will sometimes consideinituced
equivalence relation~%, defined by setting ~“ ¢ iff a(s) = a(t).

How to choose a good in general? Inspired by work in the context of model checlantpmata
networks P], Helmert et al.] propose M&S abstraction as a method allowing fine-grairtestraction
design, selecting individual pairs of (abstract) stateagregate. The approach builds the abstraction in
an incremental fashion, iterating betwemergingandshrinkingsteps. In detail, an abstractionis an
M&S abstraction over V' C V if it can be constructed using these rules:

(i) Forv eV, my,,) is an M&S abstraction ovejv}.

(i) If Bis an M&S abstraction ovér and~ is a function onS”, theny o 3 is an M&S abstraction over
V.

(i) If a; andas are M&S abstractions over disjoint séfsandVs, thena; ® as is an M&S abstraction
overV; U Vs,

Inria

How to Relax a Bisimulation? 5

Rule (i) allows to start fromatomic projections. These are simple abstractions,, (also writtenr,)
mapping each statec S to the value of one selected variableRule (ii), theshrinking step, allows to
iteratively aggregate an arbitrary number of state pairghistractiors. Formally, this simply means to
apply an additional abstractionto the image of. Inrule (iii) , themerging step the merged abstraction
o1 ® ay is defined by(ay @ as)(s) == (ay(s), aa(s))

The above defines how to construct the abstraetidout not how to actually compute the abstraction
heuristich®. For that computation, the constrairitn V2 = (in rule (iii) is important. While designing
«, we maintain also the abstract state sp@€e This is trivial for rules (i) and (ii), but is a bit tricky
for rule (iii). We need to compute the abstract state sga¢e®>2 of a; ® ao, based on the abstract
state space®“* and©“2 computed (inductively) fory; andas beforehand. We do so by forming the
synchronized product©*! ® ©*2. This is a standard operation, its state space hgihgx S*2, with a
transition from(sy, s2) to (s, s5) via labell iff (s1,1,s]) € T and(s2, !, s5) € T*2. As Helmert et al.
[?] show, the constrairit; N V5 = @ is sufficient (and, in general, necessary) to ensure thatdltiorrect,
i.e., thato @ @2 = @ ®az,

To implement M&S in practice, we neednaerging strategy deciding which abstractions to merge
in (iii), and ashrinking strategy deciding which (and how many) states to aggregate in (iiyoighout
this paper, we use the same merging strategy as the most vemdnon M&S [?]. What we investigate
is the shrinking strategy. Helmert et aP] [proposed a strategy that leaves remaining cost intacirwith
the current abstraction. This is done simply by not aggiegatates whose remaining cost differs. The
issue with this is that it preservés locally only. For example, in a transportation domain, if we conside
only the position of a truck, then any states equally distant from the truck’s target position can be
aggregated: locally, the difference is irreleva@lobally, however, there are transportable objects to
which the difference in truck positions does matter, and thggregating andt results in information
loss.

We need a shrinking strategy that takes into account theabédfect of state aggregations. Nissim et
al. [?] address this (in a uniform-cost setting)via the well-kmawotion ofbisimulation a criterion under
which an abstraction preserves exactly the behavior (tresiiion paths) of the original system:

Definition 1 Let® = (5, L, T, s, S+) be a transition system. An equivalence relatioron S is a
bismulation for © if s ~ ¢ implies that: (1) eithes,t € S, or s,t & S,; (2) for every transition label
Le LA[s']] (s,l,s") € T} ={[t] | (&,1,¢') € T}.

As usual,[s] for a states denotes the equivalence classsofintuitively, s ~ ¢ only if (1) s and¢
agree on the status of the goal, and (2) whatever operatdeapgs or ¢ applies to both, and leads into
equivalent states. An abstractioris a bisimulation iff the induced equivalence relatiofi is.

Note that there are potentially many bisimulations. Fomepie, the identity relation, wherg] =
{s}, is one. A bisimulation~’ is coarser thananother bisimulation- if ~'>~, i.e., if every pair of
states equivalent under is also equivalent unde¥’. A unique coarsest bisimulation always exists, and
can be computed efficiently based on an explicit repredentaf © [?]. Thus the proposed shrinking
strategy is to reduce, in any application of rule @)} to a coarsest bisimulation of itself.

It is easy to see that the bisimulation property is invar@amr merging and shrinking steps. We spell
out the claim for merging steps since we will generalize tagilt later on:

Lemma 1 [?] Let ©; and ©, be transition systems, and le{ and «a, be abstractions fo®; and 9,
respectively. Ify; is a bisimulation foi©1, andas is a bisimulation foi©-, thena; ® as is a bisimulation
for9; ® O,.

INote that M&S abstractions are constructed over subigaifthe variables’. Indeed, in practice, there is no need to incorpo-
rate all variables. Like the previous work on M&S, we do nokmnase of this possibility: all M&S abstractions in our expents
are over the full set of variabldgs = V.

RR n° 7901

6 Katz & Hoffmann & Helmert

Proof: Note the slight abuse of notation here:is a function or®;, not on®; ® 0,; the precise claim
is thatag ® @z is a bisimulation fol®; ® 4, whereay (s, s2) := a1(s1) andaz(s1, s2) 1= as(s2). We
omit this distinction to avoid notational clutter.

DenoteO; = 01 ® O3 Where©q = (512, L, T12 512, S12). Lets = (s1,s2),8" = (s},8h),t =
(t1,t2) € SZandl € L, s.t.s ~19°%2 t and(s, [, s’) € T'2. To show thatiy ® @3 is a bisimulation,
we need to show that (§ € S!2 iff t € S!2, and (ll) there exists’ € S'2 s.t. (¢,1,t') € T'? and
N

To show (1), note that by definition of composed transitiosteyns we have (ij € S!2iff s; € S}
ands, € S2, and (i)t € S}2iff t; € S} andt, € S2. By definition of bisimulation we have (iii); € S}
iff t; € S} ands, € S?iff t, € S2, altogether giving us the desirads S}2 iff t € S12.

Now, since(s, [, s’) € T*2, by definition of the synchronized product, we have that(l)/, s}) €
T* and (2)(s2,1, 85) € T?. Sinces ~®1992 ¢ py definition of~*1©%2 we have that (3}; ~* t; and
(4) s3 ~2 ty. This is simply becausg ® az)(s) = (ai(s), @2(s)) = (ai(s1), a2(s2)) and similar
fort, soif (a1 ® @z)(s) = (a1 ® az)(t) then we havey; (s1) = a;(t1) andas(s2) = aa(ta).

Due to (1) and (3) and becausg is a bisimulation for®,, there exists} s.t. (5)(t1,1,t}) € T
and (6)s; ~** t}. Due to (2) and (4) and becausg is a bisimulation for9,, there existg), s.t. (7)
(t2,1,th) € T? and (8)sh, ~2 th.

Definet’ := (t},t,). Then by (5) and (7) we hawg,,t') € T'2. By (6) and (8), we have that
an(sh) = an (th) andas(sh) = as(th), thus(an (1), aa(s5)) = (au (t)), az(th)), thus(ar © @) (") =
(a1 ® az)(t'), thuss’ ~®1€°2 ¢/ as desired. L]

In other words, if we combine bisimulations for two trarmitisystems, then we obtain a bisimulation
for the synchronization of these systems. Due to this iavene property, bisimulation gets preserved
throughout M&S: if we build an M&S abstractionover the entire variable set= {v4,...,v,}, and we
always shrink by coarsest bisimulation, then the abstradfiill be a bisimulation fo®™1 ® - - - @ @7 vn,
The latter is isomorphic to the global state spa&@ethus« is a bisimulation for the global state space.
Since bisimulation preserves transition paths exactly,ithplies thath® is a perfect heuristic (see the
proof of Lemmd® below).

As previously discussed, bisimulations are exponenttaithyeven in trivial examples. A key point
for improving on this is that, in contrast to verification whéisimulation is traditionally being used, we
need to preserve not the solutions but only their cost. Migdial. [?] define a label reduction technique
to this end, the details of which are not important here (weusl®it in our implementation). What is
important is that, even with the label reduction, in mostdbenarks the resulting abstractions are still
huge. The way out we employ here is to relax Definifibn 1 by gipglconstraint (2) to only a subset of
the transitions irfl” — by catching this transition subset, as we will say from now on. We will stthat
this can be done while still computing a perfect heuristioyjled we catch the right transitions.

Nissim et al. already mentioned an approach — “greedy bisition"— catching a transition subset.
The approach preservés locally (in the current abstraction), but not globally. Wextrevisit it, then
we introduce new techniques that presédsvelobally.

3 Greedy Bisimulation

Nissim et al. propose greedy bisimulation as a more apprata@ishrinking strategy in practice, accepting
its lack of global foresight. They introduce the concepomially only; formally, it is defined as follows:

Definition 2 [?] Let © = (S, L, T, so, S«) be a transition system. An equivalence relatioon S is a

greedy bisimulation for © if it is a bisimulation for the systeri, L, T, s¢, S,) whereT = {(s,1, ') |
(s,1,8") € T,h*(s') < h*(s)}.

Inria

How to Relax a Bisimulation? 7

In other words, greedy bisimulation differs from bisimidetin that it catches only the transitions not
increasing remaining cost. Since a greedy bisimulatiorbisianulation on a modified transition system,
it is obvious that a unique coarsest greedy bisimulatidhestists and can be computed efficiently. More
interestingly, greedy bisimulation still preserves (Ipcamaining cost:

Lemma 2 Let©® be a transition system, and letbe a greedy bisimulation fap. Thenh® is perfect.

Proof: We first show that any full bisimulation yields perfect hatids. Say thatA, [, A’) starts a
cheapest abstract solution fj = A. By definition of the abstract transition system, there texis
transition(¢,1,t') € T where[t] = A and[t']| = A’. By Definition[1 (2), we have a transitiq, /,)
in © so thats’ € [t'] = A’. Thus the abstract plan step has a real correspondencestatee at hand.
Iterating the argument yields, with Definitidh 1 (1), a reallgion path with the same cost.

Now we show thab* = h“, whereh™ denotes remaining cost®“ = (S, L, T, so, S,). Since the
transitions ofl'“ are a subset of those @f, and otherwise the two transition systems are the same, any
solution path (for any state) I is a solution path iff". Thush* < h“. On the other hand, argptimal
solution path ir" is a solution path i"“: optimal solution paths never use transitions that ineaéas
so all transitions used are containedifi. Thush* > h< as desired.

Let 7’ be the heuristic function defined by the optimal solutiontgas the quotient syste®% /a.
Thenh/ = h%, sincea is a bisimulation o, and thus we havk’ = h*. Note thath® can be obtained
as optimal solution distances in a transition system obthfrom©¢ /« by adding all abstract transitions
that correspond to the transitiois, 7¢. Any transition(s, [, s') € T\ T hash*(s’) > h*(s), and thus
R'([s']) > h'([s]). Thus addind[s],, [s']) does not change the optimal solution distancedy«, and
henceh® = h/, from which the claim follows. =

The bad news, as indicated, is that remaining costs are es¢pred at thgloballevel. Say our shrinking
strategy is to reduce, in any application of rule @)? to a coarsest greedy bisimulation of itself. Then,
in difference to full bisimulation as per Definitioh 1, thedirabstraction imotguaranteed to be a greedy
bisimulation for the global state space. That is becausedgrbisimulation is not invariant over merging
steps, i.e., there is no equivalent of Lemha 1: a greedy hisition for ©; does not catch transitions
t that increase (local) remaining cost @y, however sucht may decreasgglobal) remaining cost in
0; ® ©2. A simple example is that whek®, is a truck,0, is a package, antdrives the truck away
from its own goal — which globally is a good idea in order tosport the package.

Not being invariant across M&S does not, by itself, implyttgeeedy bisimulation cannot result in
useful heuristic functions in practice. Still, its unpredble global effect is undesirable. And anyhow,
greedy bisimulation actually catches more transitions theeded to preservecal remaining cost. We
now introduce techniques addressing both.

4 Catching Relevant Labels

Instead of catching individual transitions with a criterimcal to the current abstraction, we now de-
vise techniques that catch them based on a label subset ¢hfit,wvith a global criterion, at the very
beginning. Throughout the M&S process, we catch a tramsiffdts label is inside this subsgt.

We next show that such label-catching bisimulations arariant in M&S. We then define a subset
of labels catching which guarantees a perfect heuristibs&guently, we show how this label subset can
be further diminished, while still guaranteeing thadtwill terminate without any search.

2There is an interaction between “catching” labels, andoiny” them as proposed by Nissim et &].[We do not reducé
and!’ to the same label ifis caught but’ is not.

RR n° 7901

8 Katz & Hoffmann & Helmert

4.1 Catching Label Subsets

Our definition is straightforward:

Definition 3 Let® = (S, L, T, s, S,) be a transition system, and I&f be a set of labels. An equiva-
lence relation~ on S is a K -catching bisimulation for © if itis a bisimulation for the systei®, K, 7%, sy, S,)
whereTX = {(s,1,5") | (s,1,s') € T,l € K}.

As indicated K -catching bisimulation is invariant over M&S rule (iii),8., we can generalize Lemrna 1
as follows:

Lemma 3 Let®; and O, be transition systems, léf be a set of labels, and let; and a, be abstrac-
tions for©; and ©, respectively. lf; is a K-catching bisimulation fol©;, and «a, is a K-catching
bisimulation for©,, thena; ® as is a K-catching bisimulation foB; ® 0.

Proof: The proof is almost identical to the proof of Lemfda 1. The adifference is that we demand
l € K C L. For the sake of completeness we present the full proof here.

DenoteO, = O1 ® O, Where©q, = (S12, L, T12 51?2, S12). Lets = (s1,52),8 = (s},8h),t =
(t1,t2) € S1?2 andl € K, s.t.s ~1®% t and(s,l,s') € T'2. To show thati; ® @z is a K-catching
bisimulation, we need to show that f)c S}? iff ¢t € S!2, and (Il) there exists' € S'?s.t.(¢,1,t') € T2
ands’ ~1®az ¢/,

To show (1), note that by definition of composed transitioateyns we have (i§ € S!2 iff s; € S}
ands, € S?, and (ii)t € S}2 iff t; € S! andty € S2. By definition of K -catching bisimulation we have
(iii) s1 € SLiff t; € S! andsy € S? iff ¢, € S?, altogether giving us the desireds S1? iff ¢t € S}2.

Now, since(s, [, s’) € T*2, by definition of the synchronized product, we have that(l)/, s}) €
Tt and (2)(s2,1,s4) € T?. Sinces ~“199 ¢ by definition of~“1®%2 we have that (3}; ~** ¢; and
(4) sg ~2 t5. This is simply becausévr @ @z)(s) = (a1(s),@z(s)) = (a1(s1), a2(s2)) and similar
fort, so if (a7 ® @2)(s) = (a1 ® az)(t) then we havey; (s1) = a1 (t1) andas(s2) = aa(ts).

Due to (1) and (3) and becausg is a K-catching bisimulation fol©,, there exists] s.t. (5)
(t1,1,t}) € T' and (6)s]; ~2 t;. Due to (2) and (4) and becauseg is a K-catching bisimulation
for ©4, there exists), s.t. (7)(t2,1,th) € T? and (8)sh ~*2 t},.

Definet’ := (t;,t,). Then by (5) and (7) we havg,,t') € T*2. By (6) and (8), we have that
ai(s)) = an () andan(sh) = a(th), thus(an (s1), az(sh)) = (aa(ty), aa(ty)), thus(ar © az)(s") =
(a1 @ az)(t'), thuss’ ~*1€22 ¢/ g5 desired. L]

Thus we get invariance over the entire M&S process:

Lemma 4 LetII be a planning task with variablég and state spac®, and letK be a set of labels. Let
«a be an M&S abstraction ovey where, in any application of rule (iiyy is a K-catching bisimulation
for ©°. Thena is a K -catching bisimulation foB.

Proof: Starting with the atomic M&S abstractions as per rule (iterthat these ar&-catching bisim-
ulations. Lemmal3 gives us invariance over the applicationile (iii). Finally, it is easy to see that a
K-catching bisimulation of d(-catching bisimulation is, again,/&-catching bisimulation. So we have
invariance over rule (ii) as well, from which the claim fols. u

Catching a smaller label set can only decrease abstradétienasnd can only increase the error made by
the heuristic:

Lemma 5 Let© be a transition system, and |&f' C K be sets of labels. Then the coarsEstcatching
bisimulation is coarser than the coarsdstcatching bisimulation.

Proof: Denoting the coarsesf’-catching (< -catching) bisimulation with-%" (~%), we need that ~*
t impliess ~X" . This holds becausg{s’] | (si,l,s,) € T,1 € K} = {[t!] | (t;,1,t})) € T\l € K}

? 7

implies{[s]] | (si,1,s) € T,1 € K'Y = {[t)] | (t:,1,t})) € T\l € K'}. =

77

Inria

How to Relax a Bisimulation? 9

4.2 Globally Relevant Labels

We now employ an idea similar to that of Nissim et al.'s grebtymulation, except that we select the
transitions based on a global view, and a little more cakeful

Definition 4 LetII be a planning task with state spa€e= (5, L, T, so, Sx). A labell € L is globally
relevant if there existys, , s") € T such thath*(s’) + c¢(I) = h*(s).

The transitions caught by this definition differ from tho$definition[2 in that (A) we identify them via
their labels, rather than individually; (B) they refer tetglobal state space, not to the local abstraction;
and (C) we do not catch transitions whose own cost exceedsethetion inh*. (A) is important to
obtain invariance in M&S, as just discussed. (B) is neededbse the global state space is what we wish
to approximate. (C) suffices to obtain a perfect heuristic:

Lemma 6 LetII be a planning task with state spa€g let G be the globally relevant labels, and let
K D G. Leta be aK-catching bisimulation fo®. Thenh* is perfect.

Proof: Due to Lemmab, it suffices to consider the c#Se= G. The proof of Lemmal2 remains valid
except in two details. When proving that = A%, we now rely onh*(s') + ¢(l) > h*(s) to show that
transitions not ifl" do not take part in optimal solution paths. When proving fifat= h*, we now
rely on the same fact, namely that the transitiong, s') € 7'\ T¢ haveh*(s") + ¢(I) > h*(s) and thus
R (s") + c(l) > h/(s). Clearly, as before this implies that addijg], /, [s']) does not change the optimal
solution distances i® /. n

Combining Lemmalsl4 arid 6, we get the desired result:

Theorem 1 LetII be a planning task with variablég and state spac®, let G be the globally relevant
labels, and letk’ O G. Leta be an M&S abstraction ove¥ where, in any application of rule (ii)y is a
K -catching bisimulation fo®”. Thenh® is perfect.

Note that Definitioi ¥ catches the globally relevant laliglbased on the entire state spateAs
defined here, that state set contalistates in the planning task, also those that are not acteathable
from the initial state. This is important: Theoréin 1 doeshw if we collectG based on reachable states
only.

Example 1 Letz, y, and z be three binary domain variables with initial values= 0,y = 0,z = 0,
goal valuest = 1,y = 1, and A = {a, b, ¢, d} be the set of uniform cost actions as follows:

ca:z=0—2z=1y=0,
cb:x=1y=0—-y=1,
cec:x=0,y=1—2=1,and
cd:z2=0,y=0,z=1—-y=1,2=0.

The state space of the planning task is described in Figlira)l Note that restricting ourselves to
reachable states will result in the set of globally releviatiels being{a, b}. Figure[d (b) shows the result
of merging the atomic abstractions of variableandy. Note that the state¥®) and01 are {a, b}-catching
bisimilar, and thus the abstraction obtained as a resultrafrking by the{a, b}-catching bisimilation is
depicted in Figuréll (c). Merging with the third variabtewill result in abstraction described in Figuié 1
(d). Note that the heuristic value for the initial staig0 obtained from that abstraction is, which is
smaller that the true cost of solving the task.

RR n° 7901

10 Katz & Hoffmann & Helmert

(c) (d)

Figure 1: The (a) full state space and the abstractionsreddaifter (b) merging andy, (c) shrinking the
outcome usinda, b}-catching bisimulation, and (d) merging the outcome withalzle z, of the planning
task in Exampl€]l.

As this example shows, if we do not catch labels relevant foeachable states, then such a state
s may end up in the same equivalence class with a reachabde sthihoughh*(s) < h*(t). We then
geth*(t) < h*(s) < h*(t). Note here that the abstraction considers solution pathpditicular the
one constituting*(¢)) within unreachable parts of the state space. In other wtindgransition system
considered when collecting the globally relevant labdig feachable state space) is different from the
transition system considered when building the abstra¢tite full state space). That difference can arise
in M&S because, during the construction of the abstractieachability is over-approximated. The same
difference can be illustrated in a simple fashion by a hyptitial algorithm that works directly on the
reachable vs. non-reachable state space: if we collectidhalty relevant labelds in the reachable state
space as in Figufd 1 (a), and then buil&acatching bisimulation of the non-reachable state spaee, w
obtain an abstract transition system isomorphic to the dows in Figurd]l (c), and thus in particular
we obtain the same error faf (s,) as in Examplel.

If there are nd)-cost operators, then with perfdct A* does not need to search. Preciselyfids an
optimal plan after expanding a number of nodes linear in the’plength, provided we break ties if"A
based on smallér*. Thatis, ifg(s)+h*(s) = g(s")+h*(s") andh®(s) < h*(s"), then we expandprior
to s’. Given this, we know that (I) any staténot on an optimal plan hags’)+h*(s") > g(so)+h*(so);
and (Il) along the states on any optimal plaf,decreases strictly monotonically. Due to (1), we do not
expand any sub-optimal states. Due to (Il), within the sebmifmal states (which may be large), the
tie-breaking leads directly to the goal in depth-first manne

In the presence df-cost operators, (I) is no longer true, and in general tieer® way to guarantee
avoiding search (e. g., &ll costs ard) andh* is devoid of information).

3In this definition, S andT (as defined in the background) include states not reachaiites). This is because, during M&S,
reachability is over-approximated. If we do not catch thepeetive labels, then the abstraction is done on a trangtistem larger
than that based on which we collected the labels, which mayltrim an imperfect heuristic even on reachable states.llMggrate
this phenomenon below in Examplk 1.

41f we do both, collecting the globally relevant lab@isand building ak -catching bisimulation, in the same transition system,
say the reachable part of the state space, then the proohwhidEs applies, and® is perfect within that transition system.

Inria

How to Relax a Bisimulation? 11

4.3 Bounded-Radius Relevant Labels

To avoid searchin A itis not necessary for the heuristic to be perfect everyehésuffices to guarantee
the conditions (I) and (Il) above. We show that, to acconfpligs, we can consider a radidisaround
the goal:

Definition 5 LetII be a planning task with state spa€e= (S, L, T, so, S,), and letR € R{. A label
l € Lis R-relevant if there existgs, l, s") € T such thath*(s") + ¢(I) = h*(s) < R.

This “radius” in terms of a label subset translates into ausduaranteeing heuristic quality:

Lemma 7 LetII be a planning task with state spa€elet R € R, letG be theR-relevant labels, and
let K O G. Leta be aK-catching bisimulation fo®. Then, for every € S with 2*(s) < R, we have
he(s) = h*(s); and fors € S with h*(s) > R, we haveh®(s) > R.

Proof: By a minor extension of the proof to Lemih 6. The claimed priypie obvious forh“, so we
also have it forh/, since forh*(s) < R, we preserve all optimal-path transitions, and fié(s) > R,
removing transitions can only increase the remaining cé¥e show now that the claimed property
is invariant over adding any transitiqa, I, s’) from 7'\ T¢ to 6% /a. If h*(s) > R, h'([s]) could
be decreased t0'([s']) + ¢(I); if h*(s’) < R then by invariance assumptidri([s’]) = h*(s’) and
thush/([s']) + c(l) > h*(s) > R; if h*(s’) > R then by invariance assumptidti([s']) > R so
R ([s']) +c(l) > Ras well. Ifh*(s) < R, thenh*(s") 4+ ¢(l) > h*(s). If h*(s") > R, thenh/([s']) > R,
andh/([s]) will not be decreased; otherwig&([s']) = h*(s") and thugi/([s]) could be decreased only to
R'([s']) + c(l) = h*(s") + c(l) > h*(s). L

Combining this with LemmBl4 we get that, if we fix a label sub&etatching allR-relevant labels, and
if we implement the shrinking step as coarsi&statching bisimulation, then the resulting heuristit
will have the claimed qualitpn the global state spac&hus, in the absence 6fcost operators and when
settingR to optimal plan cost, conditions (1) and (Il) still hold, aAd is efficient:

Theorem 2 LetII be a planning task all of whose operators have fiazest. Let) be the variables of
I1, let © be the state space oF, let G be theh*(s)-relevant labels, and lek’ O G. Leta be an M&S
abstraction oved where, in any application of rule (ii)y is a K -catching bisimulation fo®”. Then A
with h%, breaking ties in favor of smaller heuristic values, expaathumber of states linear in the length
of the plan returned.

One may speculate whether it is possible to generalize tletesidefined here (by the radidg
to ellipses. Definitioi 5 would then defirieto be R-relevant if there exist$s, [, s’) € T such that
(") +cel) = g(s') + h*(s") + ¢(l) = g(s) + h*(s) = f*(s) < R. For TheoreniR to still hold, we
would need the adapted version of Lemimha 7 stating that (Ag¥erys € S with f*(s) < f*(so) we
haveg(s) + h*(s) = f*(s), and (B) fors € S with f*(s) > f*(so), we havey(s) + h*(s) > f*(so).
For (A), the argument stated in the proof of Lemlmha 7 remaifiglvg™ is constant on optimal solution
paths, and any optimal solution feiis part of an optimal solution fos,. The latter does, however, not
apply in case (B), where is not part of an optimal solution fafy. Indeed, it is easy to construct cases
where the only (costly) patk from s to the goal does not contain any states on an optimal solfdion
s0, and where thus no operator éhis f*(sg)-relevant according to the modified definition. Then all
states alond® are aggregated, and we ggt) + h(s) < f*(so)-

5 Results Using Exact Label Sets

The label subsets introduced in the previous section camaaomputed efficiently, so they must be
approximated in practice. We will do so in the next sectiorrd{ we assess the power of our techniques

RR n° 7901

12 Katz & Hoffmann & Helmert

from a principled perspective, ignoring this source of ctiogtion. We consider what would happen if
we did use the exact label sets as defined.

5.1 Theoretical Results with Exact Labels

Catching globally relevant labels matches full bisimuatin that it yields a perfect heuristic (cf. Theo-
rem[1); greedy bisimulation does not give that guaranteef@med to both full bisimulation and greedy
bisimulation, catching globally relevant labels is poiaity better because it makes less distinctions. This
can yield an exponential advantage:

Proposition 1 There exist families of planning task$L,, }, with variable subsetg§V;,,} and globally
relevant labels{G,,}, so that M&S abstractions ovér,, are exponentially smaller with the shrinking
strategy using~,,-catching bisimulation, than with the shrinking strategjigsing either of bisimulation
or greedy bisimulation.

Proof: Consider the family of uniform-cost planning tasks withigatesV,, = {g,v1, ..., v,, v}, where
g,v1,...,v, are Boolean, and has domai{1,...,n}. The initial state sets all variables @pthe goal
is g = 1, and the operators are:

c04:9=0—g=1

c o0, v, =0v=1—>v; =1

® Oyij V=1V =]
cog:9g=0vu=1,...,0,=1—g=1

We can always achieve the goal in one step usjjdput we can also go through the entiresgt. . ., v,
to finally achieve the goal via;. Say our variable order is any one ordering variablast.

We show first that any full bisimulation or greedy bisimutetimust have exponential size at some
point during the abstraction process. Consider the settdst in the product of all variables except
Consider any two non-goal stateg € S whose subset af; with valueO is different. Then the sets of
outgoing labels); are different, even under label reduction becaugenot projected away. Thusand
t are not bisimilar, an@” is a lower bound on the number of abstract states in a fulirhikition. For
greedy bisimulation, we also need to show that the labetifo not increasabstractsolution distance;
that is trivial because solution distance, and thus alisérdation distance, is globally bounded bynd
the solution distance of; ¢ is greater tha® by construction.

We now show that bisimulation catching the globally relévdabels has constant size throughout the
abstraction process. Clearly, the globally relevant kabeé{o,, o }. Say that, at any point during the
abstraction process, we aggregate stat@sdt iff they agree on the value of (if already merged) and
so that either botkh andt make one already-mergedfalse, or boths andt make all already-merged
true. Then, clearlyy,, oc is applicable tos iff it is applicable tot; and the respective outcome states are
aggregated. Thus this abstraction is a bisimulation catrttie globally relevant labels. Obviously, the
size of this abstraction is 4. u

Likewise, imposing a radius on the caught labels can haveponential advantage (while still guar-
anteeing A to be efficient, cf. Theorefd 2):

Proposition 2 There exist families of planning taskH,, }, with variable subset§V;, }, globally relevant
labels {G,}, and h*(so)-relevant labels{ R, }, so that M&S abstractions ovér,, are exponentially
smaller with the shrinking strategy using,-catching bisimulation, than with the shrinking strategjie
using either of7,,-catching bisimulation, bisimulation, or greedy bisimitiden.

Inria

How to Relax a Bisimulation? 13

Proof: Consider the family of uniform-cost planning tasks withiaatesV,, = {g,v1, ..., v,, v}, where
v1,...,v, are Booleang has domaif{—1,0, 1}, andv has domaif1,...,n}. The initial state sets all
variables td), the goal isy = 1, and the operators are:

*0yig=0—g=-1
*0,:9=0—g=1

c o0 v, =0v=i—>v; =1

® 0yij V=1 V=]
cog:g=—1lunu=1,...,v,=1—=9g=0

Here, the setq, ..., v, is no longer a sub-optimal alternative to achieving the gioatead, it serves to
recover the initial value of, should we have made the mistake of applying. Thus, nowall labels
exceplo_, are globally relevant. Say our variable ordey s, . .., vy, v.

We show first that any bisimulation catching all globallyerednt labels, as well as any greedy bisimu-
lation, must have exponential size at some point during iséraction process. Consider the set of states
S in the product of all variables except Consider any two statest € .S whose subset af; with value
0 is different. Then the sets of outgoing labejsare different, even under label reduction becauisenot
projected away. Thusandt are not bisimilar, an@™ is a lower bound on the number of abstract states.
Since the labels; are globally relevant, this holds for any bisimulation ¢éng all globally relevant
labels (independently of the order in which we merged,, . .., v,).

For greedy bisimulation, the same argument applies foestat € S whereg = 0. Each of these
has goal distancg, so any transition that leavesuntouched is caught by greedy bisimulation. The latter
applies to the outgoing labeds, catching which leads to2i* lower bound as above.

We now show that bisimulation catching thé(s,)-relevant labels has constant size throughout the
abstraction process. Clearly, the orilj(so)-relevant label iso,. Say that, at any point during the
abstraction process, we aggregate statwsd¢ iff they agree on the value gf (if already merged). Then,
clearly, o, is applicable tos iff it is applicable tot; and the respective outcome states are aggregated.
Thus this abstraction is a bisimulation catching ii€s,)-relevant labels. Obviously, the size of this
abstraction is< 3. n

Proposition§ 1l and 2 hold regardless whether or not Nissah'stabel reduction technique is used.
Note that the situations underlying the proofs are quitenat In particular, as we will see in the next
sub-section, most IPC benchmarks contain at least somatopeas described. This notwithstanding,
to our knowledge none of the benchmarks actually contaiasaly as claimed in Propositions 1 alnd 2.
Intuitively, the described situations do occur, but to aézsextent. An exception is Dining-Philosophers
in a direct finite-domain planning encoding, for which Niesét al. showed that greedy bisimulation
yields perfect heuristics with polynomial effort. The samdrue when catching globally d&*(sg)-
relevant labels.

5.2 Empirical Results with Exact Labels

We ran M&S with no shrinking and no reachability pruning (eonoval of non-reachable abstract states
during M&S) to compute the full state space, and thus thetdaael sets; Tablel1 shows results on the
172 IPC benchmark instances where this process did not ruof @emory. We show, summed-up per
instance, the label set size and the size of the largesiakisins generated during M&S, when catching
all labels (“All") vs. the globally relevant labels (“GloBavs. the h*(so)-relevant labels (i*(so)”").

A quick look at the left-hand side of the table confirms tharéitend to be quite some labels that can
be ignored without sacrificing heuristic quality. The segbmain with no irrelevant labels at all is TPP.

RR n° 7901

14 Katz & Hoffmann & Helmert

Y number of labels Y maximal abstraction size
domain All | Global | h*(so) All Global h*(s0)
blocks 462 459 453 5338545| 5338437| 5337835
depots 72 48 48 26928 12402 12402
driverlog 448 383 383 1046925| 1046925| 1046925
gripper 232 176 176 712 712 712
logistics00 672 366 364 1314376| 1314376| 1314376
logistics98 278 173 173 4157536| 4157536| 4157536
miconic 5700 | 4070 4069 1314030| 1314660| 1314660
mystery 154 126 94 41408 39600 33768
nomysteryl1|| 5198 | 4501 4501 9688 8464 8464
openstack08 400 383 383 21396 21396 21396
openstack11 575 515 515 9048 9048 9048
parcprint08 158 115 103 359 374 392
parcprintll 59 39 39 241 257 257
pathways 61 30 30 97 97 97
pegsol08 166 166 128 180720 180720 94305
psr 1993 1753 1745 106780 103596 103596
rovers 161 100 100 8886 1920 1920
satellite 456 326 326 11302 8488 8488
scanaly08 2724 | 1224 1224 40320 40320 40320
scanalyll 1168 668 668 20192 20192 20192
tpp 38 38 38 276 276 276
transport08 1400 1232 1192 279850 279733 280883
transport11 424 400 400 160000 160000 160000
trucks 597 203 203 8175 8423 8423
zeno 2246 1581 1512 || 4689384| 4689384 | 4689056
by 26112 | 19345| 19137 || 18787174| 18757336| 18665327

Table 1: Summed-up sizes of exact label sets (all vs. gipbalévant vsh*(s)-relevant), and of maxi-
mum abstraction sizes during M&S for bisimulation catchiingse.

Often, only about two thirds of the labels dr&(s)-relevant; in Trucks, only one third are. At the same
time, a look at the right-hand side of the table shows that¢deced label sets are not very effective in
reducing abstraction size. In only 10 out of 24 domains watiuced labels, the maximal abstraction size
is reduced as well. The reduction is typically small, exaep few domains like PegSol (factdr92)
and Rovers (factot.63). In two cases (ParcPrinter and Trucks), the size actuatiysg.

This discrepancy with Lemnia 5 is due to removal of non-rebhighabstract states, done in our code,
but not in the lemma. In rare cases, the coarser abstraaaiohing less labels) has more reachable
abstract states:

Example 2 Letz andy be two variables with domain transition graphs as shown guFé2(a,b). Given
that the only goal leading action is the one changinffom 0 to 1, the bisimulation catching globally
relevant labels will not distinguish between the two valofes while the regular bisimulation will. Thus,
the abstract state spaces obtained after merging the skdiakstraction forr and the abstraction foy
are as shown in Figurel2(c,d), havigand2 reachable states, respectively.

We can scale this example by includingndepenedent pairs of variablesandy as shown. The size
difference then multiplies, yieldirgj reachable states for bisimulation catching globally relatlabels,
and2™ reachable states for regular bisimulation. Thus the siffedince can be exponential.

The present data should be treated with caution as the oegaronsidered are very small; the ab-
straction size reductions might be more significant in langgtances. This notwithstanding, in practice it
may be advisable to approximate the label subsets aggedssiatching less labels in the hope to reduce
abstraction size more, while not losing too much informati/e consider such methods next.

Inria

How to Relax a Bisimulation? 15

=20 O—O=0@

@

(c) (d)

Figure 2: Exampl€]2 domain transition graphs for variabégs:(and (b)y; state spaces of the merged
abstractions, with reachable and relevant states markéd)fa'-catching and (d) regular bisimulations.

6 Results Using Approximate Label Sets

We describe our label-subset approximation techniques,iitn experiments on the standard IPC bench-
marks.

6.1 Approximation Techniques

The word “relevant” in the names of the label sets identifire®éfinitiond4 andl5 was chosen because
the intuition behind these — subsets of operators used imafpplans — is very close to previous notions
of relevance (e.g., 7 ?, ?]). This creates a potential for synergy. We implementedraeéhod inspired
by this, and one method that integrates particularly wethwI&S:

» Backward k'. This is a variant of backward-chaining relevance detectising a straightforward
backwards version of the equations definirig ?]. We collect all operators that appear within the
radiusR given by the product of (forward)!(so) and a paramete# € [0, 1]. Note that, forh™
with largem, the selected labels would be exactly i€ s,)-relevant ones. Setting allows to
select less labels, controlling the trade-off betweenrabgbn size and accuracy. F6r= 0, we
use the smallest yielding a non-empty label set.

* Intermediate Abstraction (IntAbs). We run full bisimulation until abstraction size has reached
parametel/. The labels are then collected by applying either of Definii# orl% to the present
abstraction, and M&S continues with bisimulation catchiihgt label subset. With very largel
(and when not removing non-reachable abstract states)alied set would be exact. Smal
results in smaller labels sets because fi@wst operators on variables not yet merged will not be
considered relevant.

RR n° 7901

16 Katz & Hoffmann & Helmert

Neither technique guarantees, in general, to catchlobally relevantt*(sg)-relevant labels. They are
practical approximations whose merits we now evaluate raxgatally.

6.2 Experiments

Our techniques are implemented in Fast Downward, and allteewe report use the same' Ample-
mentation. We ran a total of 32 M&S configurations, plus twepeting heuristics, on 1396 instances
from 44 IPC benchmark domain suites. To make these 47464feastle, the runtime for each was
limited to 5 minutes. The memory limit was 2 GB. The runs wesaducted on machines equipped with
two quad-core CPUs (AMD Opteron 2384). Coverage data is slioWwabld 2. To save space, we omit
domains from IPC’08 that were run also in IPC’11.

Approach IntAbs Global Backwardh | strict-greedy bisimulation Nissim et al.

N 10K 100K oo = 10K =3 10K 100K oo oo [10K 100K oo oo [| BJOLP| LM-cut
MTB/Nissimet al. varianf[T0K 10K 10K 100K| 0.25 0.5 1 0 025 05 0.75 10K 10K 10K 100K| full s-greedy full s-greed:

airport *22 *22 %22 *22 19 19 19/*22 3 1 1 1 *22 %22 %22 22 19 16 1 *22) 28 25
barman-opt11-strips 4 4 4 4 4 4 4] 4 0o o0 0 0| 4 4 4 4 4 4 0 4 4 0
blocks *21 *21 *21 18| *21 *21 *21| 18 14 9 9 9| *21 *21 *21 *21| *21 *21 9 *21 26 28
depot 7 7 7 6 6 6 6] 6 6 1 1 1] 7 7 7 7 6 7 1 7 7 7
driverlog 12 12 12 12 12 12 12/*13 *13 6 5 5 12 12 12 12 12 12 5 12 14 13
elevators-opt11-strips 9 9 10 *12 9 9 91 9 o o0 0 0 9 9 9 9 9 9 0 9 12 15
floortile-opt11-strips 2 3 3 7 2 3 3 2 3 6 6 6 2 2 2 2 3 3 6 2 2 6
freecell *15 *15 *15 6(*15 *15 *15|*15 13 6 2 1 *15 *15 *15 *15| *15 7 1 *15 53 9
grid 1 1 1 0 2 2 2 2 2 0 0 0 2 2 2 2| 2 1 0 2 2 1
gripper 7 10 10 20 7 7 11 7 7 7 7 20 7 7 7 71 11 7 20 7 7 6
logistics00 16 16 16 14 18 20 20(18 18 10 10 1 16 16 16 14 20 16 10 16 20 20
logistics98 4 4 4 *5 4 4 4] *5 *5 3 2 2 4 4 4 4 4 4 2 4 6 6
miconic 51 52 52 54 51 51 *57| 61 51 51 55 5 50 50 50 50 *57 55 51 50| 141 140
mprime 22 22 22 13 23 23 19 22 22 16 2 1 22 22 22 24 19 10 1 22 20 20
mystery 15 15 15 14 15 14 13(13 13 11 4 3 15 15 15 19 13 10 3 15 15 15
nomystery-opt11-strips 12 15 15 19 16 18 18] 16 16 9 12 17 12 12 12 12 18 15 12 12 18 13
openstacks-opt11-strips 14 14 14 12 14 14 14 14 14 14 14 1 14 14 14 14 14 14 1 14 10 11
openstacks-strips 7 7 7 7 7 7 7 7 7 7 7 7| 7 7 7 7 7 7 7 7 7 7
parcprinter-opt11-strips *12 *12 *12 *12 11 11 *12| 11 9 9 8 8| 11 11 11 11 *12 *12 8 11 9 13
parking-opt11-strips 5 4 4 0 2 2 3[O 0 0 0 0f 5 5 5 5| 3 0 0 5 1 1
pathways-noneg *4 *4 *4 *4 *4 *4 *4 | *4 *4 3 *4 *4 *4 *4 *4 *4 *4 *4 x4 *4 4 5
pegsol-opt11-strips 19 19 19 19 17 17 18 17 17 8 8 q 17 17 17 11 19 18 0 17] 17 17
pipesworld-notankage 15 15 15 1§ *16 15 15| 3 3 2 1 2| 15 15 15 1§ 15 11 2 15 17 15
pipesworld-tankage 12 12 12 19 14 14 14 2 2 2 1 2| 16 16 16 15[14 13 2 16 11 8
psr-small 49 49 49 49 49 49 49| 49 49 49 49 44 49 50 50 50| 49 50 44 50 49 48
rovers 6 6 6 6 6 6 6] 6 6 6 4 4 6 6 6 6 6 7 4 6 7 7
satellite 6 6 6 6 7 7 6] 8 8 8 6 6 6 6 6 6 6 6 6 6 7 7
scanalyzer-opt11-strips 10 10 10 8 9 9 9 3 3 3 3 3 10 10 10 6 9 9 3 3 3 10
sokoban-opt11-strips 19 19 19 19 19 19 19/ 16 11 5 3 1 19 19 19 19 19 20 0 19 18 19
tidybot-opt11-strips 12 11 11 o] 8 1 1 14 4 1 1 1 13 12 12 17 4 0 0 12] 14 11
tpp 6 6 6 7 6 6 6] 6 6 5 5 5 6 6 6 6 6 7 5 6 6 6
transport-opt11-strips 6 6 6 8 6 6 6[6 1 1 1 1] 6 6 6 6 6 6 1 6| 6 6
trucks-strips 5 5 5 5 6 *7 5[6 6 6 4 4 5 5 5 5 6 6 4 5| 7 9
visitall-opt11-strips 9 9 9 10| 9 9 9| 8 8 8 8 8 12 12 12 17 9 9 8 12 9 10
woodworking-opt11-strip: 6 6 6 7 4 6 6[5 2 1 1 1] 7 *9 *9 *9 6 *9 2 *9 7 10
zenotravel 9 9 9 11 12 12 1112 12 12 7 7 9 9 9 9f 11 9 7 9| 10 11
P 585 591 *593 57§ 578 579 589538 449 358 320 27[] 588 *593 *593 584 591 547 270 57 715 698
3 w/o miconic & freecell || 519 524 526 514 512 513 513472 385 301 263 21 523 *528 *528 519 519 485 218 51 521 549
33 M&S built 1383 1341 1336 104‘51236 1196 1178989 687 501 352 27[]*1385 1357 1347 129p1174 1018 270 12§|5|

Table 2: Selected coverage data in IPC benchmarks. Bedtisresarall (of all M&S heuristics) are high-
lighted in bold (with a “*”). “3 M&S built”: number of tasks for which computing the M&S alesttion
did not exceed the available time/memory.

We run BJOLP P] and LM-cut [?] because they were the two non-M&S components in Fast Down-
ward Stone Soup, the portfolio winning the 1st prize in tlaekrfor optimal planners at IPC'11. We rén
M&S configurations from the work by Nissim et al., settifge {10K, 100K, oo} and using either full
bisimulation, or greedy bisimulation, atrict-greedy bisimulation (s-greedy). The latter is the variant
of Definition[2 catching all transitions, [, ') € T whereh*(s’) < h*(s), rather tharh*(s") < h*(s).
This variant is not mentioned by Nissim et al., but actualyhat is run in their experiments and in the
IPC. As for the parametelN, in all M&S variants, this is a bound on abstraction size héag which
forces the shrinking strategy to aggregate more stateppdrg any bisimulation guarante€ [?]. For
N = oo, the bisimulation guarantee is always held up (and the att&n might run out of memory).
Given the limited space in Taklé 2, we show datafaf the 9 Nissim et al. configurationsV = 10K
with full bisimulation, the one with highest overall covgeaN = oo with full bisimulation, for reference
(in difference to all other M&S configurations here, this targgees the heuristic to be perfect); and the

Inria

How to Relax a Bisimulation? 17

two configurations taking part in Fast Downward Stone Sps 100K andN = oo with strict-greedy
bisimulatiorld

We also rund new M&S variants using strict-greedy bisimulation, withetparamete\/ of our
Intermediate Abstraction (IntAbs) label approximatiohee configurations start with full bisimulation,
then switch to s-greedy bisimulation once abstraction 8izés reached. This allows for a very direct
comparison with our IntAbs configurations: the only diffiece to these lies in their use of label-catching
bisimulation, rather than s-greedy bisimulation, aftéris reached. We do not show data for IntAbs
with Definition[3 (»*(s¢)-relevant labels), because these configurations are dtedibg the ones using
Definition[4 (globally relevant labels). Compared to theiaats orginally designed by Nissim et al,
the new s-greedy variants have a significant adavantagéahcdmverage. They also have a small such
advantage vs. the IntAbs variants. However, the former fia@esdge in a larger number of individual
domains. The respective configuration with best coveraggitly better for IntAbs inl5 domains, is
equally good ire3 domains, and is worse only thdomains. An interesting observation within IntAbs is
that, as expected, smalléf yields more greedy abstractions. H8r= oo, M = 10K completesl336
abstractions, vs.049 completed by = 100K.

We finally run 11 M&S variants with the Backward label-catching strategyN = 10K with 4
values off3 (8 = 0.75 not shown because it is always dominated by one of the otl@18)V = oo with
7values ofg. ForN = 10K, 8 has hardly any effect since enforcing the bound makes tttesation very
greedy anyhow. By contrast, féf¥ = oo, smallers decreases computational effort drastically (consider
the bottom row in Tablgl2). In effect, 86 of the 44 domains, coverage increases monotonically as we
decreasé. Note also that, foff = 1.0, performance is almost identical to that of full bisimudetiwith
N = . Indeed, the number of labels caught (not shown here) isajlgiclose to the total number of
labels.

Comparing the per-domain perfomance of the Backwardonfigurations with the IntAbs configu-
rations, the latter have a slight edge. The configuratioh st coverage is strictly better for Backward
k' in 11 domains, is equally good it8 domains, and is worse ith. Comparing the new M&S variants
(IntAbs and Backward') with all “old” ones (including the novel s-greedy variahthe best-coverage
configuration is better for new M&S ih0 domains, equally good ia3, and worse inl1. Comparing
the new M&S variants against all other planners, the begtmage configuration is better for new M&S
in 5 domains, equally good ih6, and worse ir23. Altogether, the new heuristics are certainly not a
breakthrough in coverage of cost-optimal planners, but taa contribute. We reconfirm this below by
considering portfolios built from different subsets of éigarations.

Figure[3 examines more closely hgitrades off abstraction effort against accuracy. The cgeera
and “M&S built” data (lefty-axis) are as in Tablg 2. “Expansio&’ (right y-axis) shows the average
number of expanded states in the subset of instances soyvalll tonfigurations wherg < X. That
subset contains much larger instances for smalldrence the average expansions grow. Note however
that there is a consistent pattexithin each of these curves. Expansions increase a lot as we stap fro
B =075t08 = 0.5 (e.qg., from64976 to 212362 for “Expansionsl.0”), but remain almost constant
at both sides of this step. This suggests a kind of phaseitiamsvhere fors > 0.75 the heuristic is
close to perfect, whereas fgrgoing below0.5 it is quite bad, and does not get a lot worse while still
dramatically reducing abstraction effort. The latter dadst to help coverage, and one could try to catch
even less labels whefi= 0. One could also try to add complementary label selectionrtieies, in the
hope to push the “phase transition” to smalfeBoth are topics for future work.

Different M&S heuristics often have complementary stréisgiTablé B examines this in detail, listing
the best performance any sequential portfolio of a givea|$tz € {2, 4,6} can obtain, when selecting its
components from particular subsets of configurations. Goiepns should be made only within groups
of portfolios with sameéP|, as each component useminutes and thuP| determines the computational
resources used. In the “Design” row, “BL" is BJOLP+LM-cuhR“FDSS” has the same configurations

5Actually, N = 200K was used in the IPC; the performance #r= 100K is almost identical to that.

RR n° 7901

18 Katz & Hoffmann & Helmert

1100

1le+06

. ME&S built =t
Coverage
1000 Average Expansions 0.85 v | 900000
R " Average Expansions 0.1 i
900 Average Expansions 0.25 - 800000
Average Expansions 0.5
800 Average Expansions 0.75 1 1@«
" Average Expansions 1.0 ==~ 700000
3 700 = @
< 600000 £
2 6005 ..., @
b 500000 ©
5 500 8
2 400000 §
§ 400 2
200 300000
200‘ - 200000
L o, - 100000
100 e,
0 1 1 1 1 - il 0
00 0.1 0.25 0.5 0.75 1.0
Figure 3: Scalings in Backwardh! with N = co.
[Pl [2] 4 I 6 2 [4 J 6]
Design BL [[FDSS/ BL+O BL+N BL+ON|{FDSS+N BL+O BL+N BL+ON|| O N ON|[| O N ON|[O N ON
|C] 0 0 13 13 26 13 13 13 26| 13 13 26|| 13 13 26| 13 13 26
Upper bound|770|| 805 825 823 833 830 825 823 833|658 649 673658 649 673|658 649 67
[BestP [[770] 805] 825 819 827] 830] 825 823 833[656 630 656[658 647 671658 649 673

Table 3: Portfolios. [P|”: number of components within portfolio. “Design”: portfodesign space (see
text). “|C|": number of components to choose from. “Upper bound”: stllvg any possible component.
“Best P": best coverage of any portfolio.

as Fast Downward Stone Soup (cf. above). Bi#Y” we denote portfolios” in which the components
X are fixed and only the remainirj@| — | X'| components are selected frdm “O” (“Old”) refers to
the 13 “old” M&S configurations we run here. “N” (“New”) refers td3 of the IntAbs and Backward!
configurations (to obtain groups “O” and “N” of same size, waitted Backwardh! with N = oo and

B8 > 0). “BL" is included only for reference. The data foP| = 4 and “BL+Y™ design shows that, in
our setting here, different M&S variants than in “FDSS” vidletter coverage; the data fid?| = 6 and
“BL+Y" design shows that adding even more M&S configurationsistifiroves the outcome. Generally,
portfolios of only “O” M&S configurations are better than #eof only “N” ones, but the best option is
to combine the two.

7 Conclusion

Label-catching bisimulation is very appealing in prineiplt is invariant over M&S, guarantees a perfect
heuristic if we catch all relevant labels, may be expondgtiamaller than full bisimulation even in this
case, and allows a fine-grained effort/accuracy trade-pfpllogging in approximations of relevance.
At the same time, our empirical results are a bit disappaintperformance being improved only in
few domains. As indicated, one could try to design diffenehévance approximations. The authors’
speculation is that there is more potentiatambiningM&S heuristics, i. e., automatically constructing
sets of heuristics specifically designed to be complemgrftara given planning task.

Acknowledgments. Michael Katz was supported by the French National Reseagingy (ANR),
project ANR-10-CEXC-003-01.

Inria

informatics , mathematics

UARA—

RESEARCH CENTRE
NANCY — GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-les-Nancy Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background
	Greedy Bisimulation
	Catching Relevant Labels
	Catching Label Subsets
	Globally Relevant Labels
	Bounded-Radius Relevant Labels

	Results Using Exact Label Sets
	Theoretical Results with Exact Labels
	Empirical Results with Exact Labels

	Results Using Approximate Label Sets
	Approximation Techniques
	Experiments

	Conclusion

