Journal of Artificial Intelligence Research 35 (2009) 49-117

Submitted 10/08; published 05/09

Message-Based Web Service Composition, Integrity Constraints, and
Planning under Uncertainty: A New Connection

Jorg Hoffmann
SAP Research
Karlsruhe, Germany

Piergiorgio Bertoli
Fondazione Bruno Kessler
Trento, Italy

Malte Helmert
Albert-Ludwigs-Universitdt Freiburg
Freiburg, Germany

Marco Pistore
Fondazione Bruno Kessler
Trento, Italy

JOE.HOFFMANN @ SAP.COM

BERTOLI@FBK.EU

HELMERT @ INFORMATIK.UNI-FREIBURG.DE

PISTORE @FBK.EU

Abstract

Thanks to recent advances, Al Planning has become the underlying technique for several ap-
plications. Figuring prominently among these is automated Web Service Composition (WSC) at
the “capability” level, where services are described in terms of preconditions and effects over onto-
logical concepts. A key issue in addressing WSC as planning is that ontologies are not only formal
vocabularies; they also axiomatize the possible relationships between concepts. Such axioms cor-
respond to what has been termed “integrity constraints” in the actions and change literature, and
applying a web service is essentially a belief update operation. The reasoning required for belief
update is known to be harder than reasoning in the ontology itself. The support for belief update is
severely limited in current planning tools.

Our first contribution consists in identifying an interesting special case of WSC which is both
significant and more tractable. The special case, which we term forward effects, is characterized
by the fact that every ramification of a web service application involves at least one new constant
generated as output by the web service. We show that, in this setting, the reasoning required for
belief update simplifies to standard reasoning in the ontology itself. This relates to, and extends,
current notions of “message-based” WSC, where the need for belief update is removed by a strong
(often implicit or informal) assumption of “locality” of the individual messages. We clarify the
computational properties of the forward effects case, and point out a strong relation to standard no-
tions of planning under uncertainty, suggesting that effective tools for the latter can be successfully
adapted to address the former.

Furthermore, we identify a significant sub-case, named strictly forward effects, where an actual
compilation into planning under uncertainty exists. This enables us to exploit off-the-shelf plan-
ning tools to solve message-based WSC in a general form that involves powerful ontologies, and
requires reasoning about partial matches between concepts. We provide empirical evidence that
this approach may be quite effective, using Conformant-FF as the underlying planner.

(©2009 AI Access Foundation. All rights reserved.

HOFFMANN, BERTOLI, HELMERT & PISTORE

1. Introduction

Since the mid-nineties, Al Planning tools have become several orders of magnitude more scalable,
through the invention of automatically generated heuristic functions and other search techniques
(see McDermott, 1999; Bonet & Geffner, 2001; Hoffmann & Nebel, 2001; Gerevini, Saetti, &
Serina, 2003; Helmert, 2006; Chen, Wah, & Hsu, 2006). This has paved the way to the adoption
of planning as the underlying technology for several applications. One such application area is
web service composition (WSC), by which in this paper we mean the automated composition of
semantic web services (SWS). SWS are pieces of software advertised with a formal description
of what they do. Composing SWS means to link them together so that their aggregate behavior
satisfies a complex user requirement. The ability to automatically compose web services is the key
to reducing human effort and time-to-market when constructing integrated enterprise applications.
As a result, there is a widely recognized economic potential for WSC.

In the wide-spread SWS frameworks OWL-S! and WSMO?, SWS are described at two distinct
“levels”. One of these addresses the overall functionality of the SWS, and the other details precisely
how to interact with the SWS. At the former level, called “service profile” in OWL-S and “service
capability” in WSMO, SWS are described akin to planning operators, with preconditions and ef-
fects. Therefore, planning is a prime candidate for realizing WSC at this level. This is the approach
we follow in our paper.

In such a setting, a key aspect is that SWS preconditions and effects are described relative to
an ontology which defines the formal (logical) vocabulary. Indeed, ontologies are much more than
just formal vocabularies introducing a set of logical concepts. They also define axioms which con-
strain the behavior of the domain. For instance, an ontology may define a subsumption relationship
between two concepts A and B, stating that all members of A are necessarily members of B. The
natural interpretation of such an axiom, in the context of WSC, is that every state that can be en-
countered — every possible configuration of domain entities — must satisfy the axiom. In that sense,
ontology axioms correspond to integrity constraints as discussed in the actions and change literature
(Ginsberg & Smith, 1988; Eiter & Gottlob, 1992; Brewka & Hertzberg, 1993; Lin & Reiter, 1994;
McCain & Turner, 1995; Herzig & Rifi, 1999).> Hence WSC as considered here is like planning in
the presence of integrity constraints. Since the constraints affect the outcome of action executions,
we are facing the frame and ramification problems, and execution of actions corresponds closely to
complex notions such as belief update (Lutz & Sattler, 2002; Herzig, Lang, Marquis, & Polacsek,
2001). Unsurprisingly, providing such support for integrity constraints in the modern scalable plan-
ning tools mentioned above poses serious challenges. To the best of our knowledge, it has yet to be
attempted at all.

Regarding the existing WSC tools, or planning tools employed for solving WSC problems, the
situation isn’t much better. Most tools ignore the ontology, i.e., they act as if no constraints on the
domain behavior were given (Ponnekanti & Fox, 2002; Srivastava, 2002; Narayanan & Mcllraith,
2002; Sheshagiri, desJardins, & Finin, 2003; Pistore, Traverso, & Bertoli, 2005b; Pistore, Mar-
coni, Bertoli, & Traverso, 2005a; Agarwal, Chafle, Dasgupta, Karnik, Kumar, Mittal, & Srivastava,
2005a). Other approaches tackle the full generality of belief update by using general reasoners, and

1. For example, see the work of Ankolekar et al. (2002) and Burstein et al. (2004).
2. For example, see the work of Roman et al. (2005) and Fensel et al. (2006).
3. Integrity constraints are sometimes also called state constraints or domain constraints.

50

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

suffer from the inevitable performance deficiencies (Eiter, Faber, Leone, Pfeifer, & Polleres, 2003;
Giunchiglia, Lee, Lifschitz, McCain, & Turner, 2004).

WSC Formalism isa plan_ning—based WSC
formalization of

--"" is a restriction of is a variant of

is a rich vérsion of Forward Effects)—15 8 Planning-based___Megsage—based WSC)

formalization of

isa resTiction of

[Conformant Planning }—taiﬁezeby—[Strictly Forward Effects)

Figure 1: An overview of the planning and WSC frameworks addressed in this paper. Special cases
identified herein shown in red / boldface.

Our work addresses the middle ground between these two extremes, i.e., the trade-off between
expressivity and scalability in WSC. We do so via the identification of special cases that can be
tackled more efficiently. Figure 1 gives an overview of the WSC and planning frameworks involved.

In brief, the forward effects case requires that every effect and ramification of a web service
affects at least one new constant that was generated as the web service’s output. In this situation,
the frame problem trivializes, making the planning problem more similar to common notions of
conformant planning (Smith & Weld, 1998; Bonet & Geffner, 2000; Cimatti, Roveri, & Bertoli,
2004; Hoffmann & Brafman, 2006). We will discuss how existing tools for the latter, in particular
Conformant-FF (Hoffmann & Brafman, 2006), can be extended to deal with WSC under forward
effects. With strictly forward effects, where action effects are required to affect only outputs, we
devise an actual compilation into conformant planning. We thus obtain a scalable tool for interesting
WSC problems with integrity constraints. In particular we are able to exploit (some of) the heuristic
techniques mentioned above (Hoffmann & Nebel, 2001; Hoffmann & Brafman, 2006).

In what follows, we will explain the various parts of Figure 1 in a little more detail. Our starting
point is a WSC formalism, addressing WSC in terms of planning in the presence of integrity con-
straints, as discussed above. The formalism is essentially an enriched form of conformant planning.
Its distinguishing aspects are:

o The initial state description is a conjunction of literals (possibly not mentioning some of the
logical facts in the task, and hence introducing uncertainty).

e Actions have a conditional effects semantics, meaning they can be executed in any state, but
have an effect only if they are applicable.

e Actions may have output variables, i.e., they may create new constants.
e There is a set of integrity constraints, each of which is a universally quantified clause.
e The semantics of action execution is defined in terms of a belief update operation.
Section 2 below provides more details on these choices, and motivates them with an example and

results from the literature. As we will show, planning in the formalism is very hard. Particularly,

51

HOFFMANN, BERTOLI, HELMERT & PISTORE

even just testing whether a given action sequence is a plan is IT5-complete. This is in contrast to the
more common notions of conformant planning, where plan testing is “only” coNP-complete.

As we will see, forward effects remove the additional complexity. Intuitively, the forward effects
case covers the situation where a web service outputs some new constants, sets their characteristic
properties relative to the inputs, and relies on the ontology axioms to describe any ramifications
concerning the new constants. This case is syntactically characterized as follows:

(1) Every effect literal contains at least one output variable.
(2) Within each integrity constraint, every literal has the same set of variables in its arguments.

This definition is best understood with an example. Consider the following variant of the wide-
spread “virtual travel agency” (VTA). Web services that book travel and accommodation must
be linked. These web services generate new constants corresponding to tickets and reservations.
For example, there are integrity constraints stating subsumption, such as Vz : trainTicket(z) =
ticket(z). A web service bookTicket may have the input variable z, the precondition train(z), the
output variable y, and the effect trainTicket(y) A ticketFor(y,x). This is a forward effects task:
every effect literal contains the output variable y, and the integrity constraint has the single variable
z which provides the arguments of all literals in the constraint. Say one instantiates the input of
bookTicket with a constant c and its output with a new constant d. When applying the resulting
ground action to a state where ¢rain(c) holds true, the constant d gets created, and its characteristic
properties relative to the inputs — trainTicket(d) A ticketFor(d, c) — are set directly by the action.
The integrity constraint takes care of the ramification, establishing that ticket(d) holds. Note that
the status of ¢ — apart from its relation to d — is not affected in any way. *

The forward effects case is closely related to a wide-spread notion of WSC problems, which
we refer to as “message-based WSC”. In such approaches, the composition semantics is based on
chaining over input and output messages of web services, in one or the other sense. Inferences from
ontology axioms can be made in many of these approaches, but only in a restricted way limited by an
assumption of “locality” of the individual messages, where the interferences affect only a particular
message transfer, and any implications for other transfers are ignored. This locality assumption is
usually made in an informal way, and often not stated explicitly at all. One contribution of our work
is to shed some light on this issue, via the identification of the forward effects case which lies “in
between” message-based WSC and a full planning framework with belief update semantics.

Both message-based WSC and the forward effects case share the focus on output constants.
There are two important differences. First, the forward effects case is more restricted than message-
based WSC in terms of the ontology axioms allowed. Essentially, forward effects correspond to
a special case of WSC where the locality assumption of message-based WSC is actually justified,
within a full planning framework. Second, that full framework comes with the benefit of increased
flexibility in the combination of services, because locality is not enforced (e.g. the output of one
service may be reused at several points in a plan).

From a computational point of view, the key property of the forward effects case is that it
removes the need for belief update. In a nutshell, the reason is that actions affect only “new” propo-
sitions, i.e., propositions involving at least one output constant. (Recall here the point made about

4. The latter would not be the case if the effect of bookTicket included a literal affecting only x (example:
—train(x)), or if there was an integrity constraint capable of mixing “old” and “new” constants (example: Vzx,y :
trainTicket(y) = —train(x)).

52

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

the unchanged status of ¢, in the VTA example above.) The output constant (d, in the example) does
not exist prior to the application of the action, and hence the previous belief carries no knowledge
about it and need not be revised. Consider the characterization of forward effects, as given above.
Condition (1) ensures that the immediate effect of the action affects only new propositions. Con-
dition (2) ensures that any changes on new propositions only propagate to new propositions. Since
all literals in a constraint share the same variables, the output constant in question is copied to all of
them. As we will see, by virtue of these properties the complexity of plan testing is coNP-complete,
rather than Hg -complete, in the forward effects case.

This complexity reduction is critical because the reduced complexity is the same as in the more
common notions of conformant planning under initial state uncertainty. Therefore it should be fea-
sible to adapt conformant planning tools to address WSC with forward effects. Scalable planning
tools for conformant planning have already been developed (Cimatti et al., 2004; Bryce, Kamb-
hampati, & Smith, 2006; Hoffmann & Brafman, 2006; Palacios & Geffner, 2007). Hence this is a
promising line of research. As an example, we will focus on the Conformant-FF tool (Hoffmann
& Brafman, 2006) (short CFF) and outline the main steps that need to be taken in adapting CFF to
handle WSC with forward effects.

We then identify a case where an actual compilation into conformant planning under initial
state uncertainty exists. For that, one must fix a set of constants a priori. In a manner that is
fairly standard (see, e.g., the Settlers domain of Long & Fox, 2003), we simply include in that set
a subset of “potential constants” that can be used to instantiate outputs. The more subtle idea we
put forward is to identify a condition on the actions under which we can “predict” which properties
will be assigned to which potential constants, in case they are created. This enables us to design
a compilation that moves all action effects into the initial state formula, and uses actions only to
modify the set of constants that already exist. In this way, reasoning about the initial state formula
in the compiled task is the same as reasoning about output constants in the original task, and the
reasoning mechanisms included in tools such as CFF can be naturally used to implement the latter.

Our trick for predicting output properties is to require that all actions are compatible in the sense
that they either produce different outputs, or have the same effects. It turns out that this condition is
naturally given in a restriction of forward effects, which we call strictly forward effects, where the
web service effects concern only new constants.

Clearly, not being able to reference the inputs is a limitation. For example, we can no longer
say, in the above VTA example, that the output y is a ticket for the input x. Still, the strictly forward
effects case describes an interesting class of WSC problems. That class corresponds to web services
modeled as in the early versions of OWL-S, for example, where there was no logical connection
between inputs and outputs. Further, this class of WSC problems allows powerful ontologies —
universally quantified clauses — and makes it possible to combine services very flexibly. Using
our compilation, this class of problems can be solved by off-the-shelf tools for planning under
uncertainty.

We validate the compilation approach empirically by running a number of tests using CFF as
the underlying planner. We use two test scenarios, both of which are scalable in a variety of param-
eters, covering a range of different problem structures. We examine how CFF reacts to the various
parameters. Viewed in isolation, these results demonstrate that large and complex WSC instances
can be comfortably solved using modern planning heuristics.

A comparison to alternative WSC tools is problematic due to the widely disparate nature of
what kinds of problems these tools can solve, what kinds of input languages they understand, and

53

HOFFMANN, BERTOLI, HELMERT & PISTORE

what purpose the respective developers had in mind. To nevertheless provide some assessment of
the comparative benefits of our approach we run tests with the DLVK tool by Eiter et al. (2003)
and Eiter, Faber, Leone, Pfeifer, and Polleres (2004). DLVK is one of the few planning tools that
deals with ontology axioms — called “static causal rules” — directly, without the need to restrict
to forward effects and without the need for a compilation. Since, in the context of our work, the
main characteristic of WSC is the presence of ontology axioms, this means that DLVK is one of
the few existing “native WSC tools”. By comparison, our forward effects compilation approach
solves a similar problem, but sacrifices some expressivity. The question is, can we in principle
gain anything from this sacrifice? Absolutely, the answer is “yes”. DLVK is much slower than
compilation+CFF, solving only a small fraction of our test instances even when always provided
with the correct plan length bound. We emphasize that we do not wish to over-state these results,
due to the above-mentioned differences between the tools. The only conclusion we draw is that the
trade-off between expressivity and scalability in WSC is important, and that the forward effects case
seems to constitute an interesting point in that trade-offt.

The paper is organized as follows. First, Section 2 provides some further background necessary
to understand the context and contribution of our work. Section 3 introduces our WSC planning
formalism. Section 4 defines and discusses forward effects. Section 5 introduces our compilation to
planning under uncertainty, and Section 6 presents empirical results. We discuss the most closely
related work at the relevant points during the text, and Section 7 provides a more complete overview.
Finally, Section 8 concludes and discusses future work. To improve readability, most proofs are
moved into Appendix A and replaced in the text by proof sketches.

2. Background

The context of our work is rather intricate. WSC as such is a very new topic posing many different
challenges to existing techniques, with the effect that the field is populated by disparate works dif-
fering considerably in their underlying purpose and scope. In other words, the “common ground” is
fairly thin in this area. Further, our work actually involves three fields of research — WSC, planning,
and reasoning about actions and change — which are all relevant to understanding our contribution.
For these reasons, we now explain this background in some detail. We first discuss WSC in general,
and WSC as Planning in particular. We then state the relevant facts about belief update. We finally
consider “message-based” WSC.

2.1 WSC, and WSC as Planning

Composition of semantic web services has received considerable attention in the last few years. A
general formulation of the problem, shared by a large variety of works, focuses on the “capability”
level, where each web service is conceived as an atomic operator that transforms concepts. More
specifically, a service is defined via an “IOPE” description: the service receives as input a set [
of typed objects, and, provided some precondition P on I holds, produces as output a set O of
typed objects for which some effect F is guaranteed to hold. The typing of the objects exchanged
by the services is given in terms of their membership in concepts. Concepts are classes defined
within ontologies, which exploit Description Logics (DL), or some other form of logic, to formally
define the universe of concepts admitted in the discourse. An ontology can express complex rela-
tionships among concepts, like a subsumption hierarchy, or the way objects belonging to a concept
are structured into parts referring to other concepts.

54

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

This general setting can be instantiated in various ways depending on the kind of conditions
admitted as preconditions/effects of services, and on the kind of logics underlying the ontology
definitions. Independent of this, the problem of semantic web service composition can be stated
as one of “linking appropriately a set of existing services so that their aggregate behavior is that
of a desired service (the goal)”. To illustrate this problem, consider the following example, which
is inspired by the work of Thakkar, Ambite, and Knoblock (2005) on e-services for bioinformatics
(and relies on the actual structure of proteins, see for example Petsko & Ringe, 2004; Branden &
Tooze, 1998; Chasman, 2003; Fersht, 1998):

Example 1 Say we want to compose a web service that provides information about different classes
of proteins. The ontology states which classes of proteins exist, and which structural characteristics
may occur. We have available an information service for every structural characteristic, and a
presentation service that combines a range of information. Given a particular protein class, the
composed web service should run the relevant information services, and present their output.
Concretely, classes of proteins are distinguished by their location (cell, membrane, inter-
membrane, ...). This is modeled by predicates protein(x), cellProtein(x), membraneProtein(z),
intermembraneProtein(x), along with sub-concept relations such as ¥z : cellProtein(z) =
protein(x). An individual protein is characterized by the following four kinds of structures:

1. The “primary structure” states the protein’s sequence of amino-acids, e.g., lkw3(x) (a pro-
tein called “Glyoxalase”) and In55(x) (a protein called “Triosephosphate Isomerase”).

2. The “secondary structure” states the protein’s external shape in terms of a DSSP (“Dictio-
nary of Secondary Structure for Proteins”) code, admitting a limited set of possible values.
For example, G indicates a 3-turn helix, B a (3-sheet, and so on. The total set of values is
G,HITE,B,S.

3. The “tertiary structure” categorizes the protein’s 3-D shape.

4. For a subset of the proteins, a “quaternary structure” categorizes the protein’s shape when
combined in complexes of proteins (amounting to about 3000 different shapes, see for example
3DComplex.org, 2008).

There are various axioms that constrain this domain, apart from the mentioned subconcept
relations. First, some obvious axioms specify that each protein has a “value” in each of the four
kinds of structures (i.e., the protein has a sequence of amino-acids, an external shape, etc). However,
there are also more complex axioms. Particular kinds of proteins come only with particular structure
values. This is modeled by axioms such as:

Va : —cellProtein(x) V G(z) V —In55(x)

Va : —cellProtein(x) V —B(x) V 1kw3(x) V complexBarrel(x)

For each DSSP code Z there is an information service, named getInfoDSSP 7, whose precondition
is Z(x) and whose effect is InfoDSSP(y) where y is an output of the service. Similarly, we have in-
formation services for amino-acids, 3-D shapes, and shapes in complexes. The presentation service,
named combinelnfo, requires that information on all four kinds of structures has been created, and
has the effect combinedPresentation(y) (where y is an output of combineInfo).

55

HOFFMANN, BERTOLI, HELMERT & PISTORE

The input to the composed web service is a protein c (a logical constant) and its class. The
goal is 3z : combinedPresentation(x). A solution is to reason about which characteristics may
occur, to apply the respective information services, and then to run combinelnfo. In a variant of
the problem, an additional requestInfo service is used to initiate the information request, i.e., the
output of requestInfo is the protein c and its class.

This example shows how ontology axioms play a crucial role in our form of WSC, formulating
complex dependencies between different concepts. Note that applying a web service may have in-
direct consequences implied by the ontology axioms. In the example, the output of the requestInfo
service has implications for which kinds of information services are required.

Another interesting aspect of Example 1 is that it requires what the SWS community calls “par-
tial matches”, as opposed to “plug-in matches” (Paolucci, Kawamura, Payne, & Sycara, 2002; Li
& Horrocks, 2003; Kumar, Neogi, Pragallapati, & Ram, 2007).> Consider the situation where one
wants to “connect” a web service w to another web service w’. That is, w will be executed prior to
w’, and the output of w will be used to instantiate the input of w’. Then w and w’ are said to have
a partial match if, given the ontology axioms, the output of w sometimes suffices to provide the
necessary input for w’. By contrast, w and w’ are said to have a plug-in match if, given the ontology
axioms, the output of w always suffices to provide the necessary input for w’.

Plug-in matches are tackled by many approaches to WSC, whereas partial matches are tackled
only by few. Part of the reason probably is that plug-in matches are easier to handle, in many types
of WSC algorithms. Indeed most existing WSC tools support plug-in matches only (see a detailed
discussion of WSC tools in Section 7). Example 1 cannot be solved with plug-in matches because
each of the information services provides the necessary input for the combineInfo service only in
some particular cases.

We base our work on a planning formalism that allows to specify web services (i.e., actions)
with outputs, and that allows to specify ontology axioms. The axioms are interpreted as integrity
constraints, and the resulting semantics corresponds closely to the common intuitions behind WSC,
as well as to the existing formal definitions related to WSC (Lutz & Sattler, 2002; Baader, Lutz,
Milicic, Sattler, & Wolter, 2005; Liu, Lutz, Milicic, & Wolter, 2006b, 2006a; de Giacomo, Lenz-
erini, Poggi, & Rosati, 2006). Since one of our main aims is to be able to exploit existing planning
techniques, we consider a particular form of ontology axioms, in correspondence with the represen-
tations that are used by most of the existing tools for planning under uncertainty. Namely, the axioms
are universally quantified clauses. An example is the subsumption relation Vx : trainTicket(x) =
ticket(x) mentioned above, where as usual A = B is an abbreviation for =A V B. A planning task
specifies a set of such clauses, interpreted as the conjunction of the clauses. Note that this provides
significant modeling power. The meaning of the universal quantification in the clauses is that the
clauses hold for all planning “objects” — logical constants — that are known to exist. In that sense, the
interpretation of formulas is closed-world as is customary in planning tools. However, in contrast
to most standard planning formalisms including PDDL, we do not assume a fixed set of constants.
Rather, the specification of actions with outputs enables the dynamic creation of new constants. The
quantifiers in the ontology axioms range over all constants that exist in the respective world. In a
similar fashion, the planning goal may contain variables, which are existentially quantified. The
constants used to instantiate the goal may have pre-existed, or they may have been generated as

5. The terminology in these works is slightly different from what we use here, and they also describe additional kinds
of matches. Some details are given in Section 7.

56

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

the outputs of some of the web services that were applied on the path to the world. Consider for
illustration the goal 3x : combinedPresentation(x) in Example 1, where the goal variable = will
have to be instantiated with an output created by the combinelnfo service.

Another important aspect of our planning formalism is that we allow incomplete initial state
descriptions. The initial state corresponds to the input that the user provides to the composed web
service. Certainly we cannot assume that this contains complete information about every aspect
of the world. (In Example 1, the initial state tells us which class of proteins we are interested
in, but leaves open what the consequences are regarding the possible structural characteristics.)
We consider the case where there is no observability, i.e., conformant planning. The outcome of
WSC is a sequence of web services that satisfies the user goal in all possible situations.® As is
customary in conformant planning, the actions have a conditional effects semantics, i.e., they fire if
their precondition holds true, and otherwise they do nothing. Note that, this way, we obtain a notion
of partial matches: the solution employs different actions depending on the situation.

The main difference between our planning formalism and the formalisms underlying most cur-
rent planning tools is the presence of integrity constraints, and its effect on the semantics of execut-
ing actions. That semantics is defined as a belief update operation.

2.2 Belief Update

The correspondence of web service applications to belief update was first observed by Lutz and
Sattler (2002), and followed by Baader et al. (2005), Liu et al. (2006b, 2006a) and de Giacomo
et al. (2006). In the original statement of the belief update problem, we are given a “belief” @,
i.e., a logical formula defining the worlds considered possible. We are further given a formula ¢,
the “update”. Intuitively, ¢ corresponds to some observation telling us that the world has changed
in a way so that, now, ¢ is true. We want to obtain a formula ®' defining the worlds which are
possible given this update. Certainly, we need to have that &' |= ¢. Ensuring this corresponds
to the well-known ramification problem. At the same time, however, the world should not change
unnecessarily. That is, we want ®' to be “as close as possible to ®”, among the formulas which
satisfy ¢. This corresponds to the frame problem.

Say we want to apply an action a in the presence of integrity constraints. ® describes the
worlds that are possible prior to the application of a. @’ is the resulting set of possible worlds.
The integrity constraints correspond to a formula ® ;- which holds in ®, and which we require to
hold in ®’. The update formula ¢ is given as the conjunction of the action effect with ®;¢, i.e.,
we have ¢ = eff, A ®;¢. This means that we update our previous belief with the information that,
after a, eff, is a new formula required to hold, and ®;¢ is still true. For example, we may have an
action effect A(c) and a subsumption relation between concepts A and B, formulated as a clause
Vx : = A(x) vV B(x). Then the update formula A(c) AVz : =A(x) V B(x) ensures that B(c) is true
in @’

Belief update has been widely considered in the literature on Al and databases (see for example
Fagin, Kuper, Ullman, & Vardi, 1988; Ginsberg & Smith, 1988; Winslett, 1988, 1990; Katzuno
& Mendelzon, 1991; Herzig, 1996; Herzig & Rifi, 1999; Liu et al., 2006b; de Giacomo et al.,
2006). The various approaches differ in exactly how @’ should be defined. The best consensus is
that there is no one approach that is most adequate in every application context. All approaches

6. Of course, more generally, observability is partial and web service effects are also uncertain. We do not consider
these generalizations here. Extending our notions accordingly should be straightforward, and is future work.

57

HOFFMANN, BERTOLI, HELMERT & PISTORE

agree that ¢ should hold in the updated state of affairs, &’ = ¢. Major differences lie in what
exactly it should be taken to mean that ®’ should be “as close as possible to ®”. Various authors, for
example Brewka and Hertzberg (1993), McCain and Turner (1995), Herzig (1996), and Giunchiglia
and Lifschitz (1998), argue that a notion of causality is needed, in addition to (or even instead of) a
notion of integrity constraints, to model domain behavior in a natural way. We do not counter these
arguments, but neither do we follow a causal approach in our work. The reason is that ontologies
in the context of WSC, for example ontologies formulated in the web ontology language OWL
(McGuinness & van Harmelen, 2004), do not incorporate a notion of causality. All we are given is a
set of axioms, made with the intention to describe the behavior of the domain itself, rather than the
behavior it exhibits when changed by some particular web services. Our idea in this work is to try
to leverage on what we have (or what we are reasonably close to having). Consideration of causal
approaches in WSC is left for future work.

Belief update is a computationally very hard problem. Eiter and Gottlob (1992) and Liberatore
(2000) show that, for the non-causal approaches to defining ®’, reasoning about ®’ is typically
harder than reasoning in the class of formulas used for formulating ® and ¢. Specifically, deciding
whether or not a particular literal is true in @' is Hg—hard even if ® is a complete conjunction of
literals (corresponding to a single world state) and ¢ is a propositional CNF formula. The same
problem is coNP-hard even if ® is a single world state and ¢ is a propositional Horn formula. We
use these results to show that, in our planning formalism, checking a plan — testing whether or
not a given action sequence is a plan — is Hg—complete, and deciding polynomially bounded plan
existence is Eg—complete.

Given this complexity, it is perhaps unsurprising that the support for integrity constraints in cur-
rent planning tools is severely limited. The only existing planning tools that do support integrity
constraints, namely those by Eiter et al. (2003) and Giunchiglia et al. (2004), are based on generic
deduction, like satisfiability testing or answer set programming. They hence lack the planning-
specific heuristic and search techniques that are the key to scalability in the modern planning tools
developed since the mid-nineties. It has not even been investigated yet if and how integrity con-
straints could be handled in the latter tools. The only existing approach that ventures in this di-
rection implements so-called derived predicates in some of the modern planning tools (Thiébaux,
Hoffmann, & Nebel, 2005; Gerevini, Saetti, Serina, & Toninelli, 2005; Chen et al., 2006). This
approach postulates a strict distinction between “basic” predicates that may be affected by actions,
and “derived” predicates that may be affected by integrity constraints taking the form of logic pro-
gramming rules. If a predicate appears in an action effect, then it is not allowed to appear in the
head of a rule. This is not a desirable restriction in the context of WSC, where web services are
bound to affect properties that are constrained by ontology axioms.

The existing work connecting WSC with belief update (Lutz & Sattler, 2002; Baader et al.,
2005; Liu et al., 2006b, 2006a; de Giacomo et al., 20006) is of a theoretical nature. The actual imple-
mented WSC tools make severe simplifying assumptions. Most often, that assumption is to ignore
the ontology axioms (Ponnekanti & Fox, 2002; Srivastava, 2002; Mcllraith & Son, 2002; Sheshagiri
et al., 2003; Sirin, Parsia, Wu, Hendler, & Nau, 2004; Pistore et al., 2005b, 2005a). Sometimes,
the ontology constraints are restricted to subsumption hierarchies, which makes the update problem
easy (Constantinescu & Faltings, 2003; Constantinescu, Faltings, & Binder, 2004b, 2004a). Sirin
and Parsia (2004) and Sirin, Parsia, and Hendler (2006) discuss the problem of dealing with on-
tology axioms in WSC, but do not make a connection to belief update, and describe no alternative
solution. Finally, some authors, for example Meyer and Weske (2006), do deal with ontology ax-

58

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

ioms during composition, but do not provide a formal semantics and do not specify exactly how
action applications are handled. It seems that these not fully formalized WSC approaches implicitly
assume a message-based framework. Those frameworks are closely related to the forward effects
special case identified herein.

2.3 Message-Based WSC

In message-based approaches to WSC, the composition semantics is based on chaining over input
and output messages of web services. The word “message” is not a standard term in this context.
Most authors use their own individual vocabulary. As far as we are aware, the first appearance of the
word “message” in a WSC paper title is in the work by Liu, Ranganathan, and Riabov (2007). This
work describes message-based WSC as follows. A solution is a directed acyclic graph (DAG) of
web services, where the input needed for web service (DAG graph node) w must be provided by the
outputs of the predecessors of w in the graph. That is, the plan determines fixed connections between
the actions. Reasoning, then, only takes place “within these connections”. Any two connections
between different output and input messages, i.e., any two graph edges ending in a different node,
are assumed to be mutually independent. Consider the following example for illustration. Say a web
service w has the effect hasAttribute A(c, d) where d is an output constant and ¢ is an input (i.e., ¢
existed already prior to application of w). Say there is an axiom Vz,y : hasAttribute A(z,y) =
conceptB(x) expressing an “attribute domain restriction”. If x has y as a value of attribute A,
then = must be of concept B. Given this, w’s effect implies concept B(c). Now, suppose that our
belief prior to applying w did not constrain c to be of concept B. Then applying w leads to new
knowledge about c. Hence we need a non-trivial belief update taking into account the changed
status of ¢, and any implications that may have. Message-based WSC simply acts as if the latter is
not the case. It only checks whether w correctly supplies the inputs of the web services w’ that w
is connected to. That is, the new fact hasAttributeA(c, d) may be taken as part of a proof that the
effect of w implies the precondition of a connected web service w’. But it is not considered at all
what implications hasAttribute A(c, d) may have with respect to the previous state of affairs. In
that sense, message-based WSC “ignores” the need for belief update.

The intuitions underlying message-based WSC are fairly wide-spread. Many papers use them
in a more or less direct way. There are many approaches that explicitly define WSC solutions to be
DAGs with local input/output connections as above (Zhan, Arpinar, & Aleman-Meza, 2003; Lecue
& Leger, 2006; Lecue & Delteil, 2007; Kona, Bansal, Gupta, & Hite, 2007; Liu et al., 2007; Ambite
& Kapoor, 2007). In various other works (Constantinescu & Faltings, 2003; Constantinescu et al.,
2004b, 2004a; Meyer & Weske, 2006), the message-based assumptions are more implicit. They
manifest themselves mainly in the sense that ontology axioms are only used to infer the properties
of output messages, and often only for checking whether the inferences imply that a desired input
message is definitely given.

Previous work on message-based WSC does not address at all how message-based WSC relates
to the various notions, like belief update, considered in the literature. One contribution of our work
is to shed some light on this issue, via the identification of the forward effects case which lies “in
between” message-based WSC and a full planning framework with belief update semantics.

Both message-based WSC and the forward effects case share the focus on outputs. Indeed,
the output constants generated by our actions can be viewed as “messages”. An output constant
represents an information object which is created by one web service, and which will form the

59

HOFFMANN, BERTOLI, HELMERT & PISTORE

input of some other web service. In the forward effects case, due to the restriction on axioms, the
individual messages do not interact. This is much like message-based WSC. The main difference is
this: while message-based WSC ignores any possible interactions, in forward effects there actually
aren’t any interactions, according to a formal planning-based execution semantics. In that sense,
forward effects correspond to a special case of WSC where the assumptions of message-based WSC
are justified.

Reconsider our example from above, featuring a web service w with an effect implying that
conceptB(c) where c is a pre-existing constant. As explained above, message-based WSC will
simply ignore the need for updating the knowledge about c. In contrast, the forward effects case
disallows the axiom Vx,y : hasAttribute A(z,y) = conceptB(z) because it may lead to new
conclusions about the old belief (note that the literals in the axiom refer to different sets of variables).

The forward effects case also differs significantly from most approaches to message-based WSC
in terms of the flexibility with which it allows to combine actions into plans. In the message-
based approach using DAGs, a solution DAG ensures that the inputs of each service w can always
be provided by w’s predecessors. That is, we have a plug-in match between the set W of w’s
predecessors in the DAG, and w itself. Note that this is slightly more general than the usual notion
of plug-in matches, in that |T¥| may be greater than 1, and hence each single service in W may have
only a partial match with w. This is the notion used, amongst others, by Liu et al. (2007). Other
authors, for example Lecue and Leger (2006) and Lecue and Delteil (2007), are more restrictive in
that they consider every individual input of w in turn and require that there exists a w’ € W so that
w’ has a plug-in match with z (i.e., w’ guarantees to always provide x). Even in the more generous
of these two definitions, partial matches are restricted to appear locally, on DAG links. Every
action/web service is required to be always executable at the point where it is applied. In other
words, the services are used in a fixed manner, not considering the dynamics of actual execution.
In Example 1, this would mean using the same information services regardless of the class of the
protein, hence completely ignoring what is relevant and what is not.

The forward effects case incorporates a much more general notion of partial matches. This hap-
pens in a straightforward way, exploiting the existing notions from planning, in the form of a condi-
tional effects semantics. The standard notion of a conformant solution defines how partial matches
must work together on a global level, to accomplish the goal. To the best of our knowledge, there
is only one other line of work on WSC, by Constantinescu et al. (Constantinescu & Faltings, 2003;
Constantinescu et al., 2004b, 2004a), that incorporates a comparable notion of partial matches. In
that work, web services are characterized in terms of input and output “types”. To handle partial
matches, so-called “switches” combine several web services in a way that ascertains all relevant
cases can be covered. The switches are designed relative to a subsumption hierarchy over the types.
Note that subsumption hierarchies are a special case of the much more general integrity constraints
— universally quantified clauses — that we consider in our work.

3. Formalizing WSC

As a solid basis for addressing WSC, we define a planning formalism featuring integrity constraints,
on-the-fly creation of output constants, incomplete initial state descriptions, and actions with a con-
ditional effects semantics. The application of actions is defined as a belief update operation, follow-
ing the possible models approach by Winslett (1988). That definition of belief update is somewhat
canonical in that it is very widely used and discussed. In particular it underlies all the recent work

60

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

relating to formalizations of WSC (Lutz & Sattler, 2002; Baader et al., 2005; Liu et al., 2006b,
2006a; de Giacomo et al., 2006; de Giacomo, Lenzerini, Poggi, & Rosati, 2007). As we will show
further below (Section 4.3), most belief update operations are equivalent anyway as soon as we
are in the forward effects case. Recall here that the forward effects case is the central object of
investigation in this paper.

We first give the syntax of our formalism, which we denote with YWSC, then we give its seman-
tics. We conclude with an analysis of its main computational properties.

3.1 Syntax

We denote predicates with G, H, I, variables with x, y, z, and constants with ¢, d, e. Literals are pos-
sibly negated predicates whose arguments are variables or constants. If all arguments are constants,
the literal is ground. We refer to positive ground literals as propositions. Given a set P of predicates
and a set C' of constants, we denote by P the set of all propositions that can be formed from P
and C. Given a set X of variables, we denote by £ the set of all literals / which use only variables
from X. Note here that [may use arbitrary predicates and constants.” If [is a literal, we write
I[X] to indicate that [has the variable arguments X. If X = {z1,..., 2} and C = (c1,..., k),
then by l[c1,...,cr/x1,. .., x| we denote the respective substitution, abbreviated as ([C]. In the
same way, we use the substitution notation for any construct involving variables. Slightly abusing
notation, we use a vector of constants also to denote the set of constants appearing in it. Further, if
a function a assigns constants to the variables X, then by [[a/X] we denote the substitution where
each argument z € X was replaced with a(z). We are only concerned with first-order logic, that is,
whenever we write formula we mean a first-order formula. We denote true as 1 and false as 0.

A clause, or integrity constraint, is a disjunction of literals with universal quantification on the
outside. The variables quantified over are exactly those that appear in at least one of the literals. For
example, Vz,y : =G(x,y)V H(z) is an integrity constraint but Vz, y, z : =G(z,y)V H(x) and Vz :
—G(x,y)V H(x) are not. An operator ois a tuple (X, pre,, Yy, eff,), where X, Y, are sets of vari-
ables, pre, is a conjunction of literals from L%, and eff, is a conjunction of literals from £X¢YYo 8
The intended meaning is that X, are the inputs and Y, the outputs, i.e., the new constants created by
the operator. For an operator o, an action a is given by (pre,, eff,) = (pre,, eff,)[Ca/Xo, Ea/Yo)
where C, and F, are vectors of constants. For £/, we require that the constants are pairwise differ-
ent — it makes no sense to “output the same new constant twice”. Given an action a, we will refer
to a’s inputs and outputs by C, and E,,, respectively. We will also use the notations pre,,, eff, with
the obvious meaning.

AWSC task, or planning task, is a tuple (P, ®rc, O, Cy, ¢o, ¢). Here, P is a set of predicates.
® ;e is a set of integrity constraints. O is a set of operators and Cj is a set of constants, the initial
constants supply. ¢g is a conjunction of ground literals, describing the possible initial states. ¢g
is a conjunction of literals with existential quantification on the outside, describing the goal states,
e.g., 3z,y : G(z) A H(y). All predicates are taken from P, and all constants are taken from Cj.
All constructs (e.g., sets and conjunctions) are finite. We will sometimes identify ® ;- with the
conjunction of the clauses it contains. Note that the existential quantification of the goal variables

7. One could of course introduce more general notations for logical constructs using some set of predicates or constants.
However, herein the two notations just given will suffice.
8. As stated, we do not address disjunctive or non-deterministic effects. This is a topic for future work.

61

HOFFMANN, BERTOLI, HELMERT & PISTORE

provides the option to instantiate the goal with constants created during planning — obtaining objects
as requested by the goal may be possible only through the use of outputs.

The various formulas occurring in (P, ® ¢, O, Cy, ¢,) may make use of constants from C.
Specifically, this is the case for clauses in @ ;¢ and for the goal formula ¢g. Allowing such use of
constants does not have any effect on our complexity or algorithmic results. It is conceivable that
the feature may be useful. As a simple example, in the VTA domain the user may wish to select a
particular train. Say the train company provides a table of trains with their itineraries. That table can
be represented in ¢g, possibly with help from ® ;¢ stating constraints that hold for particular trains.
The user can then select a train, say /C'E'107, and pose as a goal that Jy : ticketFor(y, ICE107).
Constraining the produced ticket in this way would not be possible without the use of pre-existing
constants (or would at least require a rather dirty hack, e.g., encoding the desired train in terms of a
special predicate).

Operator descriptions, that is, preconditions and effects, may also use constants from Cp. The
value of this is more benign than for ®;- and ¢ because one can always replace a constant ¢ in
the precondition/effect with a new input/output variable z, and instantiate x (during planning) with
c. Note, however, that this would give the planner the option to (uselessly) instantiate x with some
other constant, and may hence affect planning performance. In our above example, there might be a
special operator booking a ticket for IC'E'107 (e.g., if that train has particular ticketing regulations).

The correspondence of a WSC task to a web service composition task is fairly obvious. The
set P of predicates is the formal vocabulary used in the underlying ontology. The set ®rc of
integrity constraints is the set of axioms specified by the ontology, i.e., domain constraints such as
subsumption relations. The set O of operators is the set of web services. Note that our formalization
corresponds very closely to the notion of IOPE descriptions: inputs, outputs, preconditions, and
effects (Ankolekar et al., 2002; Burstein et al., 2004). An action corresponds to a web service call,
where the web service’s parameters are instantiated with the call arguments.

The constructs Cy, ¢g, and ¢g are extracted from the user requirement on the composition.
We assume that such requirements also take the form of IOPE descriptions. Then, Cj are the
user requirement inputs, and ¢ is the user requirement precondition. In other words, Cy and ¢q
describe the input given to the composition by the user. Similarly, ¢¢ is the user requirement effect
— the condition that the user wants to be accomplished — and the user requirement outputs are the
(existentially quantified) variables in ¢¢.

3.2 Semantics

In what follows, assume we are given a WSC task (P, ®;¢, O, Co, ¢o, ¢c). To be able to model
the creation of constants, states (also called world states) in our formalism are enriched with the set
of constants that exist in them. A state s is a pair (Cs, I5) where Cj is a set of constants, and /5 is a
C,-interpretation, i.e., a truth value assignment I, : P% — {0, 1}. Quantifiers are taken to range
over the constants that exist in a state. That is, if I is a C-interpretation and ¢ is a formula, then by
writing I |= ¢ we mean that I |= ¢ where ¢ is the same as ¢ except that all quantifiers were
restricted to range over C. To avoid clumsy notation, we will sometimes write s = ¢ to abbreviate
I = ¢.

The core definition specifies how the application of an action affects a state. This is defined
through a form of belief update. Let us first define the latter. Assume a state s, a set of constants
C’ D Cs, and a formula ¢. We define update(s, C’, ¢) to be the set of interpretations that result

62

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

from creating the constants C’ \ C, and updating s with ¢ according to the semantics proposed by
Winslett (1988).

Say I and I, are C'-interpretations. We define a partial order over such interpretations, by
setting I; < Io if and only if

{pe P | Ii(p) # I(p)} C {p € P | La(p) # L(p)}- (1)

In words, I is ordered before I iff it differs from s in a proper subset of values. Given this, we can
now formally define update(s, C’, ¢). Let I be an arbitrary C’-interpretation. We define

I € update(s,C",¢) = [=gand {I' | I' = ¢, I' <5 I} = 0. (2)

Hence, update(s,C’, ¢) is defined to be the set of all C’-interpretations which satisfy ¢, and which
are minimal with respect to the partial order <. Put in different terms, update(s,C’, ¢) contains
all interpretations that differ from s in a set-inclusion minimal set of values.

Now, assume an action a. We say that a is applicable in s, short appl(s,a), if s = pre,,
C, C U, and E, N Cs = (). That is, on top of the usual precondition satisfaction we require that
a’s inputs exist and that a’s outputs do not yet exist. The result of executing a in s is:

1T/ /I __ v ’
res(s,a) = (O 1) | €7 = Cs U Eq, I' € update(s, ', @1c Aeffa)} - appl(s. a) 3)
{S} otherwise

Note that a can be executed in s even if it is not applicable. In that case, the outcome is the singleton
set containing s itself, i.e., the action does not affect the state. This is an important aspect of our
formalism, which we get back to below. If ®;c A eff, is unsatisfiable, then obviously we get
res(s,a) = (). We say in this case that a is inconsistent.’

The overall semantics of YWSC tasks is now easily defined via a standard notion of beliefs. These
model our uncertainty about the true state of the world. A belief b is the set of world states that are
possible at a given point in time. The initial belief is

by :={s| Cs =Co,s = Prc A do}. “)

An action a is inconsistent with a belief b if it is inconsistent with at least one s € b. In the latter
case, res(b, a) is undefined. Otherwise, it is defined by

res(b,a) 1= U res(s,a). (5)

s€b
This is extended to action sequences in the obvious way. A plan is a sequence (a1, ..., ay) so that
Vs € res(by, (a1,...,an)) : 8 | dg. (6)

For illustration, consider the formalization of our example from Section 2.

Example 2 Reconsider Example 1. For the sake of conciseness, we formalize only a part of the
example, with simplified axioms. The WSC task is defined as follows:

9. Unless ®7¢ mentions any constants, if a is based on operator o and a is inconsistent, then any action based on o is
inconsistent. Such operators can, in principle, be filtered out in a pre-process to planning.

63

HOFFMANN, BERTOLI, HELMERT & PISTORE

e P = {protein, cellProtein, G, H, I, In55, 1kw3, InfoDSSP, Info3D, combinedPresentation},
where all the predicates are unary.

o O;o consists of the clauses:

- Va : —cellProtein(x) V protein(x) — [subsumption]

- Va : —protein(z) V G(z) V H(x) V I(x) — [at least one DSSP value]
- Y : —protein(x) V In55(x) V 1kw3(x) — [at least one 3-D shape]
— Vz : —cellProtein(x) V G(x) V In55(x) — [dependency]

— Va : —cellProtein(x) V H(x) V =1n55(x) — [dependency]

o O consists of the operators:

getInfoDSSP.: ({z}, G(x), {y}, InfoDSSP(y))

getInfoDSSPy: ({z}, H(z),{y}, InfoDSSP(y))

getInfoDSSP;: ({z},1(z), {y}, InfoDSSP(y))

getInfo3Dy,,55: ({z}, In55(x), {y}, Info3D(y))

getInfo3Dy . ,3: ({z}, 1kw3(z), {y}, Info3D(y))

combinelnfo: ({z1,z2}, InfoDSSP(x1) A Info3D(x2),{y}, combinedPresentation(y))

o Cy ={c}, po = cellProtein(c)
e ¢ = Jx : combinedPresentation(x)

To illustrate the formalism, we now consider a plan for this example task.
The initial belief by consists of all states s where Cs = {c} and s |= ®1c A cellProtein(c). Say
we apply the following sequence of actions:

1. Apply getInfoDSSP¢ (¢, d) to by. Then we get to the belief by which is the same as by except
that, from all s € by where s |= G(c), new states are generated that have the constant d and
InfoDSSP(d).

2. Apply getInfoDSSPy(c,d) to by. We get the belief by where new states with d and
InfoDSSP(d) are generated from all s € by where s |= H(c).

3. Apply getInfo3D,,55(c, €) to by, yielding bs.

4. Apply getInfo3D1,3(c, €) to bs. This yields by, where we get e and Info3D(e) from all s € bo
where s |= 1n55(c) or s |= Tkw3(c).

5. Apply combinelnfo(d, e, f) to by. This brings us to bs which is like by except that from all
s € by where d, e € Cs new states are generated that have f and combinedPresentation(f).

From the dependencies in ® ¢ (the last two clauses), we get that any s € by satisfies either G(c) or
H(c). From the subsumption clause and the clause regarding 3-D shapes (first and third clauses)
we get that any s € by satisfies either In55(c) or 1kw3(c). Hence, as is easy to verify, bs |=
oG and so (getInfoDSSP (¢, d), getInfoDSSP; (¢, d), getInfo3D1,,55(c, €), getInfo3Dx,,3(c, €),
combinelnfo(d, e, f)) is a plan.

64

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Note that this plan does not make use of getInfoDSSP;(c, d). To obtain a plan, in this domain
one can always just apply all information services. However, this plan is trivial and does not take
into account what is relevant and what is not. Reasoning over ® ¢ enables us to find better plans.

Our semantics for executing non-applicable actions is vital for the workings of Example 2. As
pointed out above, below the definition of res(s, a) (Equation (3)), a can be executed in s even if it
is not applicable. This realizes partial matches: a web service can be called as soon as it might match
one of the possible situations. In planning terms, our actions have a conditional effects semantics.'”
The contrasting notion would be to enforce preconditions, i.e., to say that res(s, a) is undefined if
a is not applicable to s. This would correspond to plug-in matches.

In Example 2, the partial match semantics is necessary in order to be able to apply actions that
cover only particular cases. For example, consider the action getInfoDSSP; (¢, d), which is applied
to the initial belief in the example plan. The precondition of that action is G(c). However, there
are states in the initial belief which do not satisfy that precondition. The initial belief allows any
interpretation satisfying ®;c A ¢¢ (cf. Equation (4)), and some of these interpretations satisfy H(c)
rather than G(c). Due to the partial match semantics, getInfoDSSP (¢, d) does not affect such
states — its match with the initial belief is partial.

Clarification is also in order regarding our understanding of constants. First, like every PDDL-
like planning formalism (we are aware of), we make a unique name assumption, i.e., different
constants refer to different objects. Second, our understanding of web services is that any output
they create is a separate individual, i.e., a separate information object.

The latter directly raises the question why we allow actions to share output constants. The
answer is that we allow the planner to treat two objects as if they were the same. This makes
sense if the two objects play the same role in the plan. Consider again Example 2. The actions
getInfoDSSP((c, d) and getInfoDSSP; (¢, d) share the same output constant, d. This means that
d is one name for two separate information objects. These two objects have the same properties,
derived from InfoDSSP(d). The only difference between them is that they are created in different
cases, namely from states that satisfy G(c) and H(c) respectively. Having a single name for the
two objects is useful because we can take that name as a parameter of actions that do not need to
distinguish between the different cases. In the example, combinelInfo(d, e, f) is such an action.

As hinted, the “cases” in the above correspond to different classes of concrete execution traces.
Importantly, on any particular execution trace, each output constant is created at most once. To see
this, consider an execution trace sg, ag, S1, @1, - - ., Gk, Sk+1, 1.€., an alternating sequence of states
and actions where sg € bp, and s;41 € res(sj,a;) forall 0 < 7 < k. Say that a; and a; share
an output constant, d. Say further that a; is applicable in s;, and hence d € Cs,,,. Then, quite
obviously, we have d € Cy, forall ¢ +1 <[< k + 1. In particular, a; is not applicable in s;: the
intersection of its output constants with Cj; is non-empty (cf. the definition of appl(s, a)). So, due
to our definition of action applicability, it can never happen that the same constant is created twice.
In other words, there can never be a reachable state where a single constant name refers to more
than one individual information object. In that sense, the use of one name for several objects occurs
only at planning time, when the actual execution trace — the actual case which will occur — is not
known. For illustration, consider getInfoDSSP((c, d) and getInfoDSSPy; (¢, d), and their shared

10. An obvious generalization is to allow several conditional effects per action, in the style of the ADL language (Ped-
nault, 1989). We omit this here for the sake of simplifying the discussion. An extension in this direction is straight-
forward.

65

HOFFMANN, BERTOLI, HELMERT & PISTORE

output d, in Example 2. Even if the concrete state so € by in which the execution starts satisfies
both G(c) and H(c), only one of the actions will fire — namely the one that comes first.

We remark that we initially experimented with a definition where actions instantiate only their
inputs, and when they are applied to a state s their outputs are, by virtue of the execution semantics,
instantiated to constants outside of C;. In such a framework, one can never choose to “share output
constants”, i.e., to use the same name for two different outputs. The notion we have settled for is
strictly richer: the planner can always choose to instantiate the outputs with constants outside of Cs.
The question is, when does it make sense to share outputs? Answering this question in a domain-
independent planner may turn out to be quite non-trivial. We get back to this when we discuss a
possible adaptation of CFF in Section 4.5. In the experiments reported herein (Section 6), we use a
simple heuristic. Outputs are shared iff the operator effects are identical (giving an indication that
the respective outputs may indeed “play the same role” in the plan).

We conclude this sub-section with a final interesting observation regarding modeling in our
framework. Negative effects are not an essential part of the YWSC formalism: they can be compiled
away. We simply replace any negative effect ~G(z1,...,zx) with notG(zx, ..., xy) (introducing
a new predicate) and state in the integrity constraints that the two are equivalent. That is, we in-
troduce the two new clauses Vx1,...,z, : G(x1,...,2x) V notG(x1,...,xx) and Vo, ... xf :
-G(x1,...,zE) V "notG(z1,. .., x). While this is a simple compilation technique, the formal
details are a little intricate, and are moved to Appendix A. If a is an action in the original task, then
a™ denotes the corresponding action in the compiled task, and vice versa. Similarly, if s is an action
in the original task, then s™ denotes the corresponding state in the compiled task. We get:

Proposition 1 (Compilation of Negative Effects in WSC) Assume a WSC task (P, ®;¢, O, Cy,
®0, ¢c)- Let (P, @Tg, O™, Co, o, ¢c) be the same task but with negative effects compiled away.
Assume an action sequence {(ay, . ..,ay). Let b be the result of executing (a1, ...,ay) in (P, ®rc,
O, Co, ¢o, ¢c), and let bT be the result of executing (af,...,a}) in (PT, @7, O, Co, o, dc)-
Then, for any state s, we have that s € b iff s* € b™.

This can be proved by straightforward application of the relevant definitions. The most impor-
tant aspect of the result is that the new clauses introduced are allowed in the forward effects and
strictly forward effects special cases identified later. Hence, any hardness results transfer directly to
tasks without negative effects and dropping negative effects cannot make the algorithms any easier.

3.3 Computational Properties

We now perform a brief complexity analysis of the WSC formalism in its most general form as
introduced above. In line with many related works of this kind (Eiter & Gottlob, 1992; Bylander,
1994; Liberatore, 2000; Eiter et al., 2004), we consider the propositional case. In our context, this
means that we assume a fixed upper bound on the arity of predicates, on the number of input/output
parameters of each operator, on the number of variables appearing in the goal, and on the number of
variables in any clause. We will refer to WWSC tasks restricted in this way as WSC tasks with fixed
arity.

We consider the problems of checking plans — testing whether or not a given action sequence is a
plan — and of deciding plan existence. For the latter, we distinguish between polynomially bounded
plan existence, and unbounded plan existence. We deem these to be particularly relevant decision
problems in the context of plan generation. Certainly, plan checks are an integral part of plan gen-

66

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

eration. Indeed, if a planning tool is based on state space search, then the tool either performs such
checks explicitly for (potentially many) plan candidates generated during search, or this complexity
is inherent in the effort that underlies the computation of state transitions. Polynomially bounded
plan existence is relevant because, in most commonly used planning benchmark domains, plans are
of polynomial length (it is also a very wide-spread intuition in the SWS community that composed
web services will not contain exceedingly large numbers of web services). Finally, unbounded plan
existence is the most general decision problem involved, and thus is of generic interest.

All the problems turn out to be very hard. To prove this, we reuse and adapt various results from
the literature. We start with the complexity of plan checking, for which hardness follows from a
long established result (Eiter & Gottlob, 1992) regarding the complexity of belief update. For all
the results, detailed proofs are available in Appendix A.

Theorem 1 (Plan Checking in WSC) Assume a WSC task with fixed arity, and a sequence
(ai,...,an) of actions. It is I1-complete to decide whether (a1, . .., a,) is a plan.

Proof Sketch: Membership can be shown by a guess-and-check argument. Guess the proposition
values along (aj,..., a,). Then check whether these values comply with res, and lead to an
inconsistent action, or to a final state that does not satisfy the goal. (a1, ..., ay) is a plan iff this is
not the case for any guess of proposition values. Checking goal satisfaction is polynomial, checking
compliance with res is in coNP, checking consistency is in NP.

Hardness follows by a simple adaptation of the proof of Lemma 6.2 from Eiter and Gottlob
(1992). That proof uses a reduction from checking validity of a QBF formula VX.3Y.¢[X, Y]. The
lemma considers the case where a propositional belief ® is updated with an arbitrary (propositional)
formula ¢, and the decision problem is to ask whether some other formula @’ is implied by the
updated belief. In the proof, ® is a complete conjunction of literals, i.e., ® corresponds to a single
world state. ' is a single propositional fact » which is true in ®. The semantics of VX.3Y.¢[X, Y]
are encoded in a complicated construction defining the update ¢. In a nutshell, ¢ is a CNF telling
us that for every assignment to X (which will yield a world state s’ in the updated belief), we either
have to find an assignment to Y so that ¢)[X, Y] holds (“completing” "), or we have to falsify .

The difference in our setting lies in our very restricted “update formulas” — action effects — and
in the fact that the integrity constraints are supposed to hold in every belief. We adapt the above
proof by, first, taking the integrity constraints to be the clauses in Eiter and Gottlob’s CNF formula
¢. We then modify the constraints so that they need only be true if a new fact ¢ holds —i.e., we insert
=t into every clause. The initial belief has ¢ false, and otherwise corresponds exactly to ® as above.
The only action of the plan makes ¢ true. The goal is Eiter and Gottlob’s fact 7. O

We remark that membership in Theorem 1 remains valid when allowing actions with multiple
conditional effects, when allowing parallel actions, and even when allowing their combination. On
the other hand, by virtue of the proof argument as outlined, hardness holds even if the initial state
literals ¢g are complete (describe a single world state), the plan consists of a single action with a
single positive effect literal, and the goal is a single propositional fact that is initially true.

We next consider polynomially bounded plan existence. For this, membership follows directly
from Theorem 1. To prove hardness, we construct a planning task that extends Eiter and Gottlob’s
construction from above with actions that allow to choose a valuation for a third, existentially quanti-
fied, set of variables, and hence reduces validity checking of a QBF formula 3X.VY.3Z.4[X,Y, Z].

67

HOFFMANN, BERTOLI, HELMERT & PISTORE

Theorem 2 (Polynomially Bounded Plan Existence in WSC) Assume a WSC task with fixed ar-
ity, and a natural number b in unary representation. It is 5-complete to decide whether there exists
a plan of length at most b.

Proof: For membership, guess a sequence of at most b actions. By Theorem 1, we can check with
a IT5 oracle whether the sequence is a plan.

For hardness, validity of a QBF formula 3X.VY.3Z.4[X,Y, Z], where 1 is in CNF, is reduced
to testing plan existence. Say X = {z1,...,z,}. In the planning task, there are n actions (operators
with empty input/output parameters) 0" and o™%¢ of which the former sets x; to true and the latter
sets x; to false. Further, there is an action o' which corresponds to the action used in the hardness
proof of Theorem 1. The actions are equipped with preconditions and effects ensuring that any
plan must first apply, for all 1 < i < n, either 0% or 0%, and thereafter must apply o’ (of course
enforcing the latter also requires a new goal fact that can be achieved only by o'). Hence, choosing
a plan candidate in this task is the same as choosing a value assignment ax for the variables X.

In our construction, after all the 0™ and o™ actions have been executed, one ends up in a belief
that contains a single world state, where the value assignment a x for the variables X corresponds
to the chosen actions. This world state basically corresponds to the belief ® as in the hardness proof
of Theorem 1. The only difference is that the construction has been extended to cater for the third
set of variables. This is straightforward. Then, the belief that results from executing o' satisfies the
goal iff Eiter and Gottlob’s fact r holds in all its world states. By virtue of similar arguments to
those of Eiter and Gottlob, the latter is the case iff VY.3Z.¢[ax /X, Y, Z], i.e., the substitution of
AX.VY.3Z[X,Y, Z] with ax, is valid. From this, the claim follows. O

Our final result regards unbounded plan existence in YWSC. The result is relatively easy to
obtain from the generic reduction described by Bylander (1994) to prove PSPACE-hardness of plan
existence in STRIPS. Somewhat shockingly, it turns out that plan existence in YWSC is undecidable
even without any integrity constraints, and with a complete initial state description. The source of
undecidability is, of course, the ability to generate new constants on-the-fly.

Theorem 3 (Unbounded Plan Existence in WSC) Assume a WSC task. The decision problem
asking whether a plan exists is undecidable.

Proof Sketch: By a modification of the proof by Bylander (1994) that plan existence in propo-
sitional STRIPS planning is PSPACE-hard. The original proof proceeds by a generic reduction,
constructing a STRIPS task for a Turing Machine with polynomially bounded space. The latter re-
striction is necessary to model the machine’s tape: tape cells are pre-created for all positions within
the bound. Exploiting the ability to create constants on-the-fly, we can instead introduce simple
operators that allow to extend the tape, at both ends. O

Not being able to decide plan existence is, of course, a significant limitation in principle. How-
ever, this limitation is probably of marginal importance in practice, because most planning tools
just assume that there is a plan, and they try to find it — rather than trying to prove that there is
no plan. In that sense, most planning tools are, by their nature, semi-decision procedures anyway.
What matters more than decidability in such a setting is the question whether one can find a plan

68

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

quickly enough, i.e., before exhausting time or memory.!! This is also the most relevant question in
web service composition.

4. Forward Effects

The high complexity of planning in YWSC motivates the search for interesting special cases. We
define a special case, called forward effects, where every change an action makes to the state involves
a newly generated constant.

We start the section by defining the forward effects case and making a core observation about
its semantics. We then discuss the modeling power of this special case. Next, we discuss for-
ward effects from a more general perspective of belief update. We analyze the main computational
properties of forward effects, and we conclude the section with an assessment of how an existing
planning tool could be adapted to handle forward effects.

4.1 WSC|f,q and its Semantics

The forward effects special case of WSC is defined as follows.

Definition 1 Assume a WSC task (P, ®1c, O, Cy, ¢o, ¢c). The task has forward effects iff:
1. Forall o € O, and for all [[X] € eff,, we have X NY, # (.

2. For all clauses ¢ € ®rc, where ¢ = Vrxq,...,xx : 1[X1] V -+ V [,[X,], we have X1 =
=X,

The set of all WSC tasks with forward effects is denoted with VWSC| f.4.

The first condition says that the variables of every effect literal contain at least one output vari-
able. This implies that every ground effect literal of an action contains at least one new constant. The
second condition says that, within every integrity constraint, all literals share the same arguments.
This implies that effects involving new constants can only affect literals involving new constants.
Note that, since z1, ...,z are by definition exactly the variables occurring in any of the literals,
for each X; we have X; = x1,...,x,. Note further that we may have £ = 0, i.e., the literals
in the clause may be ground. This is intentional. The constants mentioned in the clause must be
taken from Cy, cf. the discussion in Section 3.1. Therefore, such clauses have no interaction with
statements about the new constants generated by a WSC]| 7,4 action.

We will discuss the modeling power of WSC| f,,q below (Section 4.2). First, we observe that
the semantics of WSC| f,,¢ is much simpler than that of general WSC. One no longer needs the
notion of minimal change with respect to the previous state. To state this more precisely, assume a
WSC task with predicates P. Say I’ is an interpretation over P<", where C" is a set of constants.
Say that C' C C’. We denote by I’|¢ the restriction of I’ to PC, i.e., the interpretation of P that
coincides with I’ on all these propositions. Given a state s and an action a, we define:

{(C" 1| C"=CsUEI'lc, =Is,I' = P10 Neff,} appl(s,a)

res|fwd(8,a) = { {s} otherwise)

11. Indeed the planning community is generally rather unconcerned by undecidability, cf. the numeric track of the inter-
national planning competitions, and Helmert’s (2002) results on the decidability of numerical planning problems.

69

HOFFMANN, BERTOLI, HELMERT & PISTORE

Compare this to Equation (3), where I’ is defined to be a member of update(s, C', ®;c A effy,),
which returns all interpretations that satisfy ®rc A eff, and that differ minimally from /. In Equa-
tion (7), I’ is simply set to be identical to I, on the constants (on the propositions over the constants)
that existed beforehand. In other words, the set of new states we get is the cross-product of the old
state with all satisfying assignments to &y A eff,.

Lemma 1 (Semantics of WSC|f.,q) Assume a WSC| 4 task, a reachable state s, and an action
a. Then res(s,a) = res| fwa(s,a).

Proof Sketch: In WSC| 4, if ' differs minimally from s, then it follows that s” agrees totally with
s, on the set of propositions P interpreted by s. To see this, denote as before with PCs*Fa the
set of all propositions with arguments in Cs U F,, and with at least one argument in F,, and denote
with ®;¢[Cs + E,] the instantiation of ® ;¢ with all constants from Cs U E,, where in each clause
at least one variable is instantiated from E,. The key argument is that s’ = ® ;¢ A eff, is equivalent
to s’ = ®;0[Cs U E,] A eff,, which in turn is equivalent to s’ = ®;¢[Cs] A @ [Cs + E,) A eff,.
In the last formula, ®;-[C;] only uses the propositions PC% | whereas ® 1c]|Cs + E,) N eff, only
uses the propositions P+« Since s is reachable, we have s |= ®;0[Cs]. Therefore, to satisfy
®;c A effy, there is no need to change any of the values assigned by s. O

4.2 Modeling Power

Intuitively, WSC|¢,,q covers the situation where a web service outputs some new constants, sets
their characteristic properties relative to the inputs, and relies on the ontology axioms to describe any
ramifications concerning the new constants. As was detailed in Section 2, this closely corresponds
to the various notions of message-based WSC explored in the literature. In that sense, the modeling
power of WSC|,,q is comparable to that of message-based WSC, one of the most-widespread
approaches in the area.

A simple concrete way of assessing the modeling power of WSC| 74,4 is to consider the allowed
and disallowed axioms. Examples of axioms that are not allowed by WSC| f,,4 are: attribute domain
restrictions, taking the form Vz,y : =G(z,y) V H(x); attribute range restrictions, taking the form
Va,y : ~G(z,y) V H(y); and relation transitivity, taking the form Vx, y, z : =G(z,y) VvV -G (y, z) V
G(z, z). Note that, for all these axioms, it is easy to construct a case where an action effect, even
though it involves a new constant, affects the “old belief”. For example, if constants c and e existed
beforehand, and an action outputs d and sets G(c, d) A G(d, e), then the axiom Vz,y : =G (z,y) V
-Gy, z) V G(z, z) infers that G(c, e) — a statement that does not involve the new constant d.

Typical ontology axioms that are allowed by WS&C|,,q are: subsumption relations, taking
the form Vx : —=G(x) vV H(y); mutual exclusion, taking the form Vz : =G(z) V = H(y); rela-
tion reflexivity, taking the form Va : —G(x,x); and relation symmetry, taking the form Vz,y :
-G(z,y) V G(y,z). We can also express that a concept G is contained in the union of concepts
H,,..., H,, and more generally we can express any complex dependencies between concepts, tak-
ing the form of clausal constraints on the allowed combinations of concept memberships.

One example where complex dependencies are important is the domain of proteins as illustrated
in Example 1. Capturing the dependencies is important here in order to be able to select the cor-
rect web services. Similar situations arise in many domains that involve complex interdependencies
and/or complex regulations. An example for the latter is the Virtual Travel Agency which we dis-
cussed before. For example, in the German rail system there are all kinds of regulations regarding

70

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

which train may be booked with which kind of discount under which conditions. Modeling these
regulations would enable a WSC algorithm to select the appropriate booking services. Another in-
teresting case is the hospital domain described by de Jonge, van der Linden, and Willems (2007).
There, the problem of hospital asset tracking is handled by means of a set of tracking, logging and
filter services, which transform logs to extract various kinds of information. In this setting, it would
make sense to model complex dependencies so that the web service composer may determine which
hospital assets need to be tracked and retrieved. Namely, the latter depends on the type of operation
in question, and on the kind of examinations which that operation requires. Accordingly, what we
need to model is a categorization of operations, their mapping to sets of required examinations, and
how those examinations are associated with hospital assets. Further complications arise since the
required examinations/assets may depend on particular circumstances. Clearly, we can express the
categorization and dependencies in terms of clauses. While this of course captures only a fraction
of what is relevant in a hospital, it is considerably more informed than a composer which always
just tracks all the assets.

The main weakness of WSC| 1,4 is that it does not allow us to express changes regarding pre-
existing objects. This is best illustrated when considering the case of negative effects.'> In the
planning community, these are commonly used to model how previous properties of objects are
invalidated by an action. For illustration, reconsider Example 1. Say there is an additional operator
dropCoffeeIn3Dmachine, with effect —Info3D(y). One would normally expect that, when this
operator is applied, the fact Info3D(y) is deleted and must be re-established. This is not so in
WSC| fwa. According to the restrictions this special case imposes, the variable y in —Info3D(y)
must be an output of dropCoffeeIn3Dmachine. That is, dropping coffee into the machine creates a
new object, whose characteristic property happens to be ~Info3D(y) rather than Info3D(y). Clearly,
this is not the intended semantics of the operator.

To model the intended semantics, we would need to instantiate y with a pre-existing constant.
Say that, as in belief b3 in Example 1, a constant e with Info3D(e) was previously created by
getInfo3D,,55(c,). Then WSC|t,,q does allow us to instantiate dropCoffeeIn3Dmachine with
e, so that we have the effect —Info3D(e). However, by virtue of the definition of action applicability,
that action will be applicable only in states where e does not yet exist — corresponding to execution
paths where getInfo3D1,,55(c, e) was not executed. Hence the property Info3D(e) does not get
deleted from any state, and e as used by dropCoffeeIn3Dmachine is still regarded as a newly
created object whose characteristic property is —Info3D(y). The only difference the new action
makes is that, now, the plan uses the same name (e) to refer to two different information objects
(output of getInfo3D1,,55(c, €) vs. output of dropCoffeeIn3Dmachine) that do not play the same
role in the plan, cf. the discussion in Section 3.2.

An interesting workaround is to let the operators output “time steps”, in a spirit reminiscent of
the situation calculus (McCarthy & Hayes, 1969; Reiter, 1991). Every operator obtains an extra
output variable ¢, which is included into every effect literal. The new time step ¢ is stated to stand
in some relation to the previous time steps, e.g., next(tprev,t) where tprev is an input variable
instantiated to the previous time step. In such a setting, we can state how the world changes over
time. In particular we can state that some object property is different in ¢ than in ¢prev. For
example, if an action moves a file f from “RAEDME” to “README” then we could state that
name(f, “RAEDME” tprev) and name(f, “README”,t). The problem with such a construction

12. Or, in WSC, positive effects triggering negative effects via ® ¢, cf. Proposition 1.

71

HOFFMANN, BERTOLI, HELMERT & PISTORE

is that the time steps have no special interpretation, they are just ordinary objects.!> This causes at
least two difficulties. (1) If we want to refer to an object property, we have to know the time step
in the first place — that is, we have to know whether the actual time step is ¢ or ¢prev. Note here
that we cannot maintain a predicate actualTime(x) because this would require us to invalidate a
property of tprev. (2) There is no solution to the frame problem. The operators must explicitly state
every relevant property of the previous time step, and how each property is changed in the new time
step.

To conclude this sub-section, let us consider how WWSC]| 7,4 can be generalized without losing
Lemma 1. Most importantly, instead of requiring that every effect literal involves a new constant,
one can postulate this only for literals that may actually be affected by the integrity constraints. In
particular, if a predicate does not appear in any of the clauses, then certainly an effect literal on
that predicate is not harmful even if it does not involve an output constant. One obtains a poten-
tially stronger notion by considering ground literals, rather than predicates. Note that this kind of
generalization solves difficulty (1) of the time-step construction, presuming that time steps are not
constrained by the clauses. (The frame problem, however, persists.)

Another possibility, deviating somewhat from the way WSC and WSC| 1,4 are currently de-
fined, is to define the integrity constraints in terms of logic programming style rules, along the lines
of Eiter et al. (2003, 2004). The requirement on WSC| f,,4 can then be relaxed to postulate that the
effect literals without new constants do not appear in the rule heads.

We remark that the latter observation suggests a certain strategic similarity with the aforemen-
tioned derived predicates (Thiébaux et al., 2005) previously used in Al Planning to manage the
complexity of integrity constraints. There, the integrity constraints take the form of stratified logic
programming style derivation rules, and the predicates appearing in rule heads are not allowed to
appear in operator effects. This is an overly restricted solution, in the WSC context. The effects
of web services are indeed very likely to affect concepts and relations appearing in the ontology
axioms. They may do so in WSC]| 4, as long as output constants are involved.

4.3 Belief Update

Lemma 1 is specific to the possible models approach (Winslett, 1988) that underlies our semantics
of action applications. It is interesting to consider the semantics of WWSC| ¢,,q from a more general
perspective of belief update. Recall that such an update involves a formula characterizing the current
belief, and a formula describing the update. We seek a formula that characterizes the updated belief.

A wide variety of definitions has been proposed as to how the updated belief should be defined.
However, some common ground exists. Katzuno and Mendelzon (1991) suggest eight postulates,
named (U1) ... (U8), which every sensible belief update operation should satisfy. Herzig and Rifi
(1999) discuss in detail to what degree the postulates are satisfied by a wide range of alternative
belief update operators. In particular they call a postulate “uncontroversial” if all update operators
under investigation satisfy them. We will take up these results in the following. We examine to what
extent we can draw conclusions about the updated belief, ®’, in the setting of the forward effects
case, when relying only on Herzig and Rifi’s “uncontroversial postulates”.

13. Note that here the similarity to the situation calculus ends. Whereas time steps are assigned a specific role in the
formulas used in the situation calculus, here they are just ordinary objects handled by actions, as if they were packages
or blocks.

14. Despite these difficulties, Theorem 6 below shows that a time step construction can be used to simulate an Abacus
machine, and hence to prove undecidability of plan existence in WSC| fa.

72

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

We assume that a planning task with predicates P is given. We need the following notations:

o If & and ¢ are formulas, then ® o ¢ denotes the formula that results from updating the belief
® with the update ¢, under some semantics for the belief update operator o.

e Given disjoint sets of constants C' and E, P¢*F denotes the set of all propositions formed
from predicates in P, where all arguments are contained in C'U E' and there exists at least one
argument contained in E. (Recall that P¢ denotes the set of all propositions formed from
predicates in P and arguments from C'.)

e Given a set of constants C', ®;-[C] denotes the instantiation of ® ;¢ with C. That is, ® ;0 [C]
is the conjunction of all clauses that result from replacing the variables of a clause ¢ € ®;¢,
¢ =Vri,...,xx: L[X1] V- VI, [X,], withatuple (¢, . .., c) of constants in C.

e Given disjoint sets of constants C' and E, ®;¢[C + E] is the conjunction of all clauses that

result from replacing the variables of a clause ¢ € ®;c, ¢ = Va1, ...,z : [X1] V-V
ln[Xy], with a tuple (cq, ..., cx) of constants in C' U E, where at least one constant is taken
from E.'3

e If ¢ is a ground formula then by P(v) we denote the set of propositions occurring in 1.

We will denote the current belief by ® and the update by ¢. As another convention, given a set of
constants C, by writing 9/ we indicate that P()) C PC. Similarly, given disjoint sets of constants
C and E, by writing »“*# we indicate that P(¢)) C PETF. If 5 is a state, then by s we denote
the conjunction of literals satisfied by s.

We first consider the case where, similar to the claim of Lemma 1, & corresponds to a single
concrete world state s. We want to apply an action a. We wish to characterize the set of states
res(s,a), i.e., we wish to construct the formula ® o ¢. For simplicity of notation, denote C' := Cj
and E := E,. If a is not applicable to s, there is nothing to do. Otherwise, we have that:

D) & = &;c[C] Atp© where P(y©) C PC.

For example, we can set 1)C := 1),. Since s = ®;c, we get the desired equivalence. Further, we
have that:

(la) ¢ = @1c[C] A Prc[C + E] Aeffy;
(IIb) P(®;c[C + E]) € PO¥ and P(eff,) C PETE.

(ITa) holds trivially: ¢ is defined as ®;¢ A eff,, which is equivalent to ®;-[C U E] A eff, which is
equivalent to ;¢ [C] A @1c[C + E] Aeff,. As for (IIb), this is a consequence of the forward effects
case. Every effect literal contains at least one output constant, hence eff, contains only propositions
from P+, For ®;c[C + E], we have that at least one variable in each clause is instantiated with
a constant e € E. Since, by definition, all literals in the clause share the same variables, e appears
in every literal and therefore ®;-[C + E] contains only propositions from P¢+F.

As an illustration, consider our simple VTA example. There are four predicates, train(x),
ticket(z), trainTicket(x), and ticketFor(x,y). The set of integrity constraints ® ;¢ consists of

15. If no clause in ®;¢ contains any variable, then ®;¢[C + E] is empty. As is customary, an empty conjunction is
taken to be true, i.e., 1.

73

HOFFMANN, BERTOLI, HELMERT & PISTORE

the single axiom Vz : trainTicket(z) = ticket(x). In our current state s, we have Cs = {c},
and I sets all propositions to 0 except for train(c). We consider the application of the action
a = bookTicket(c, d), whose precondition is train(c), whose set E of output constants is {d},
and whose effect eff, is trainTicket(d) A ticketFor(d,c). In this setting, we have: ®;0[C] =
(trainTicket(c) = ticket(c)); ¥C = (train(c)A—ticket(c) A—train Ticket(c) A—ticketFor(c,c));
and ;0 [C + E] = (trainTicket(d) = ticket(d)).

We will derive in the following that:

) ® o ¢ = (P1c[C] AYE) A (Prc][C + E] Aeffy).

That is, we can characterize the updated belief simply by the conjunction of the previous belief
with the action effect and the extended instantiation of the ontology axioms. This corresponds
exactly to Lemma 1. To illustrate, we will continue the VTA example. The left hand side of (III)
refers to the four propositions based only on ¢, and sets them according to s. The right hand side
refers to propositions based only on d — trainTicket(d) and ticket(d) — as well as the proposition
ticketFor(d, c¢) which links ¢ and d.

As one prerequisite of our derivation of (III), we have to make an assumption which, to the best
of our knowledge, is not discussed anywhere in the belief update literature:

(IV) Let ¢by, v}, o, 4% be formulas where P(451) N P(4) = 0, P(v1) N P(t) = 0, P(42) N
P(¢4}) = 0. and P(y2) N P(¢%) = 0. Then (1 A4}) o (b2 Ath) = (11 0 tha) A (1] 0 1),

This assumption postulates that formulas talking about disjoint sets of variables can be updated
separately. Since formulas with disjoint variables essentially speak about different aspects of the
world, this seems a reasonable assumption.

Now, we start from the formula ® o ¢. We make replacements according to (I) and (Ila), leading
to the equivalent formula (®;¢[C] A %©) o (®;0[C] A ®1c[C + E] A eff,). We can map this
formula onto (IV) by taking 11 to be ®;c[C] A 9C, 1 to be 1, ¥ to be ®;¢[C], and 1 to be
®;c[C + E] A eff,. Hence, we can separate our update into two parts as follows:

(A) (®0¢)C = (®1c][C] AYY) 0 B1c[C]
B) (®o¢)“HF =10 (®;c[C + E] Neff,)

According to (IV), we then obtain our desired formula ® o p by ® 0 ¢ = (® 0 ¢)C A (P 0 $)+E.
Illustrating this with the VTA example, we simply separate the parts of the update that talk

only about ¢ from those that talk only about d or the combination of both constants. The (A) part

of the update is trainTicket(c) = ticket(c) conjoined with 1), updated with trainTicket(c) =

ticket(c). The (B) part of the update is 1 — representing the (empty) statement that the previous state

s makes about d — updated with (trainTicket(d) = ticket(d)) A trainTicket(d) A ticketFor(d, c).
It remains to examine (® o ¢)¢ and (® o ¢)“+F. We need to prove that:

(©) (®o¢)C = P1c[C] ApC, and
(D) (@0 ¢)FE = d1c[C + E] A eff,.

Essentially, this means to prove that: (C) updating a formula with something it already implies does
not incur any changes; (D) updating 1 with some formula yields a belief equivalent to that formula.
To see this, compare (A) with (C) and (B) with (D).

74

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

While these two statements may sound quite trivial, it is in fact far from trivial to prove them for
the wide variety of, partly rather complex, belief update operations in the literature. Here we build
on the works by Katzuno and Mendelzon (1991) and Herzig and Rifi (1999). We need two of the
postulates made by Katzuno and Mendelzon (1991), namely:

(U1) For any 1 and v2: (¢1 0 ¥2) = 1a.
(U2) For any 1 and v9: if 11 = 109 then (1)1 0 ¢2) = 1.

Herzig and Rifi (1999) prove that (U1) is “uncontroversial”, meaning it is satisfied by all belief
update operators they investigated (cf. above). They also prove that (U2) is equivalent to the con-
junction of two weaker statements, of which only one is uncontroversial, namely:

(U2a) For any v and ¥a: (Y1 A 1) = (11 0 o).

The other statement is not uncontroversial. However, it is proved to be satisfied by all non-causal
update operators under investigation, except the so-called Winslett’s standard semantics (Winslett,
1990). The latter semantics is not useful in our context anyway. The only restriction it makes on
the states in res(s, a) is that they differ from s only on the propositions mentioned in the update
formula. In our case, these include all propositions appearing in ®;¢[C' U E], which is bound to be
quite a lot. So, if we were to use Winslett’s standard semantics, then res(s, a) would be likely to
retain hardly any information from s.

Consider now the formula (® o ¢)© as specified in (A), (® 0 ¢)¢ = (®;c[C] A ¢T) o ®1c[C].
We will now prove (C). This is indeed quite simple. We have that (®;c[C] A ¥©) = ®;0[C),
so we can instantiate 1, in (U2) with ®;0[C] A 1C, and 1) in (U2) with ®;c[C]. We obtain
(®1c[C] Ap©) 0 @1 = ®1c[C] A 4C, and hence (P 0 ¢)¢ = ®;0[C] A YC as desired. With
what was said above, this result is not uncontroversial, but holds for all non-causal update operators
(except Winslett’s standard semantics) investigated by Herzig and Rifi (1999). In terms of the VTA
example, (U2) allowed us to conclude that the update trainTicket(c) = ticket(c) does not make
any change to the previous belief, which already contains that property.

Next, consider the formula (®o¢)“+F as specified in (B), (Pop)+F = 1o(®;c[C+E]Neff,).
We now prove (D). By postulate (U1), we get that (® o ¢)°tF = ®;5[C + E] A eff,, because
@ ;0 [C+ E] Neff, is the update formula v)5. For the other direction, we exploit (U2a). We instantiate
1 in (U2a) with 1, and get that 1 A (®;c[C + E] Aeff,) = 10 (®;c[C + E] Aceff,), which is the
same as 1 A (®7¢[C + E] Aeff,) = (@ o $)°TF, which is equivalent to ®;¢[C + E| A eff, =
(® 0 ¢)CTF. This proves the claim. Note that we have used only postulates that are uncontroversial
according to Herzig and Rifi (1999). Reconsidering the VTA example, we have ®;[C'+ E| Aeff, =
(trainTicket(d) = ticket(d)) A trainTicket(d) A ticketFor(d, c). The previous state does not say
anything about these propositions, and is thus represented as 1. The postulates allow us to conclude
that (for all belief update operators investigated by Herzig & Rifi, 1999) the resulting belief will be
equivalent to (trainTicket(d) = ticket(d)) A trainTicket(d) A ticketFor(d, c).

So far, we were restricted to the case where ®, the belief to be updated, corresponds to a single
world state s. Consider now the more general case where ® characterizes a belief b, and we want
to characterize the set of states res(b, a). At first glance, it seems that not much changes, because
Katzuno and Mendelzon (1991) also make this following postulate:

(U8) For any 11, 12, and ¥: (Y1 V ihg) 0 = (Y1 09)) V (P2 0).

75

HOFFMANN, BERTOLI, HELMERT & PISTORE

This means that, if ® consists of two alternate parts, then updating & is the same as taking the union
of the updated parts. In other words, we can compute the update on a state-by-state basis. The
statement (I) from above is still true, it’s just that now ¢ is the disjunction over 1), for all states
s € b, rather than only the single 1);. The rest of the argumentation stays exactly the same. Herzig
and Rifi (1999) prove that (U8) is uncontroversial and leave it at that.

However, matters are not that simple. The source of complications is our use of a partial
matches/conditional effects semantics. The update formula ¢ is different for the individual states
s € b. Hence we cannot directly apply (US8). Obviously, states s; € b where a is applicable are up-
dated differently from states sy € b where a is not applicable — the latter are not updated at all.'® A
somewhat more subtle distinction between states in b is which constants exist in them: for different
sets of constants, the integrity constraints in the update are different. Hence, to obtain a “generic”
update of ®, we have to split ® into equivalence classes @1, ..., ®,, where the states within each
®; cannot be distinguished based on pre, and based on the existing constants. Then, (U8) and the
argumentation from above can be used to show the equivalent of (II) for each ®/. The last step,
defining the final ® o ¢ to be the disjunction of the individual ®; o ¢;, appears sensible. But it does
not follow immediately from Katzuno and Mendelzon (1991).

For illustration, consider a variant of the VTA example where we have two preceding states, one
state s where we have train(c) as before, and a new state s’ where we have ticket(c) instead. In s/,
bookTicket(c, d) is not applicable, and hence the update is different for s and s’. The s part is as
above, yielding the result 15 A (trainTicket(d) = ticket(d)) A trainTicket(d) A ticketFor(d,c).
The update to s’ is trivial, and yields 1 as its result. The final outcome is the disjunction of these
two beliefs.

We point out that the situation is much easier if we consider plug-in matches (i.e., forced pre-
conditions) instead of partial matches. There, a is applicable to all states, and it is also easy to
see that every state in b has the same constants. Therefore, for plug-in matches, (III) follows im-
mediately with (U8). In the above VTA example, an update would not be computed at all since
bookTicket(c, d) would not be considered to be applicable to the preceding belief. If s satisfies
train(c) but disagrees in some other aspect, e.g. (quite nonsensically) that also ticket(c) holds, then
the updated belief is equivalent to (15 V ¥) A (trainTicket(d) = ticket(d)) A trainTicket(d) N
ticketFor(d, c).

4.4 Computational Properties

Paralleling our analysis for general WSC from Section 3.3, we now perform a brief complexity
analysis of the WSC|,,q special case. As before, we consider the “propositional” case which
assumes a fixed upper bound on the arity of predicates, on the number of input/output parameters
of each operator, on the number of variables appearing in the goal, and on the number of variables
in any clause. Also as before, we consider the decision problems of checking plans, of deciding
polynomially bounded plan existence, and of deciding unbounded plan existence, in that order.

In contrast to before, we cannot reuse results from the literature as much because, of course, the
particular circumstances of WSC| ,,q have not been investigated before. We include proof sketches
here, and refer to Appendix A for the detailed proofs.

16. One might speculate that the common update would be pre, = ¢, but that is not the case. For example, under the
possible models approach that we adopt in WSC, updating s where s = pre, with pre, = ¢ gives rise to result
states that change s to violate pre, instead of changing it to satisfy ¢.

76

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Thanks to the simpler semantics as per Lemma 1, plan checking is much easier in WSC| f,,q
than in WSC.

Theorem 4 (Plan Checking in WSC|¢,,q) Assume a WSC|fyq task with fixed arity, and a se-
quence (a1, . .., ay) of actions. It is coNP-complete to decide whether (a1, ..., ay,) is a plan.

Proof Sketch: Hardness is obvious, considering an empty sequence. Membership can be shown
by a guess-and-check argument. Say C' is the union of Cy and all output constants appearing in
(ai,...,a,). We guess an interpretation I of all propositions over P and C. Further, for each
1 <t < n, we guess a set C; of constants. I needs not be time-stamped because, once an action has
generated its outputs, the properties of the respective propositions remain fixed forever. Thanks to
Lemma 1, we can check in polynomial time whether (a) I and the C} correspond to an execution of
(ai,...,ay). Also, we can check in polynomial time whether (b) I and C,, satisfy ¢¢. (a1, ..., an)
is a plan iff there is no guess where the answer to (a) is “yes” and the answer to (b) is “no”. O

Membership in Theorem 4 remains valid when allowing parallel actions and multiple condi-
tional effects — provided one imposes restrictions ensuring that the effects/actions applied simul-
taneously (in one step) can never be self-contradictory. Otherwise, checking plans also involves a
consistency test for each plan step, which is an NP-complete problem. Note that it is quite rea-
sonable to demand that simultaneous actions/effects do not contradict each other. Widely used
restrictions imposed to ensure this are mutually exclusive effect conditions, and/or non-conflicting
sets of effect literals.

We next consider polynomially bounded plan existence. Membership follows directly from The-
orem 4. To prove hardness, we reduce from validity checking of a QBF formula 3X.VY.¢[X,Y].
The constructed planning task allows to choose values for X, and thereafter to apply actions evalu-
ating ¢ for arbitrary values of Y. The goal is accomplished iff a setting for X exists that works for
allY.

Theorem 5 (Polynomially Bounded Plan Existence in WSC| 7,,q) Assume a WSC| t,,q task with
fixed arity, and a natural number b in unary representation. It is ¥5-complete to decide whether
there exists a plan of length at most b.

Proof Sketch: For membership, guess a sequence of at most b actions. By Theorem 4, we can
check with an NP oracle whether the sequence is a plan.

Hardness can be proved by reduction from validity checking of a QBF formula 3X.VY.¢[X, Y]
where ¢ is in DNF normal form, i.e., ¢ = \/;?:1 ¢;. The key idea is to use outputs for the creation
of “time steps”, and hence ensure that the operators adhere to the restrictions of WSC| f,,4. Setting
x; is allowed only at time step 4. That is, for each 2; we have operators 0! and 0%". These take
as input a set of time steps {to, . .., t;—1} which are required to be successive, by the precondition
start(to) A\ next(to,t1) A --- A next(t;_2,t;—1). They output a new time step ¢; which they attach
as a successor of ¢;_1, and they set z; to 1 and 0, respectively, at time step ¢. That is, they have an
effect literal of the form z;(¢;) and —x;(¢;), respectively. The rest of the planning task consists of:
operators o' that allow extending a sequence of time steps until step B, for a suitable value B (see
below); and of operators 0% which allow achieving the goal, given ¢; is true at the end of a time
step sequence of length B. There are no integrity constraints ($;¢ is empty). The values of the y;
are not specified, i.e., those variables can take on any value in the initial belief.

77

HOFFMANN, BERTOLI, HELMERT & PISTORE

If 3X.VY.¢[X, Y] is valid then obviously one can construct a plan for the task simply by setting
the x; accordingly, using the o for stepping on to time B, and applying all the 0%/. What necessitates
our complicated construction is the other direction of the proof: namely, the plan may cheat by
setting a z; to both 1 and 0. The construction ensures that this is costly, because such a plan is
forced to maintain two parallel sequences of time steps, starting from the faulty x;. We can choose a
sufficiently large value for B, together with a sufficiently small plan length bound b, so that cheating
is not possible. O

Our final result regards unbounded plan existence. Somewhat surprisingly, it turns out that this
is still undecidable in WSC| f,,4. Similar to the above, the key idea again is to let actions output a
new “time step”, thereby ensuring membership of the constructed task in WSC| f,y4.

Theorem 6 (Unbounded Plan Existence in WSC| t,,q) Assume a WSC|f.q task. The decision
problem asking whether a plan exists is undecidable.

Proof Sketch: By reduction from the halting problem for Abacus machines, which is undecidable.
An Abacus machine consists of a tuple of integer variables vy, ..., vy (ranging over all positive
integers including 0), and a tuple of instructions I7,...,1,. A state is given by the content of
v1, ...,V plus the index pc of the active instruction. The machine stops iff it reaches a state where
pc = n. All v; are initially 0, and pc is initially 0. The instructions either increment a variable
and jump to another instruction, or they decrement a variable and jump to different instructions
depending on whether or not the variable was already 0.

It is not difficult to encode an Abacus machine as a WSC| 4 task. The two key ideas are: (1)
design an operator that “outputs” the next successor to an integer; (2) design operators simulating
the instructions, by stepping to successors or predecessors of integer values. In the latter kind of
operators, membership in WSC| 1,4 is ensured by letting the operators output a new “time step” to
which the new variable values are associated. The goal asks for the existence of a time step where
the active instruction is I,,. O

As argued at the end of Section 3.3 already, we don’t deem undecidability of unbounded plan
existence a critical issue in practice. Most planning tools are by nature semi-decision procedures,
anyway. In particular, web service composition is typically expected to occur in a real-time setting,
where severe time-outs apply.

4.5 Issues in Adapting CFF

In our view, the most crucial observation about WSC| t,,4 is that we can now test plans in coNP,
rather than in IT} as for general WWSC. Standard notions of planning under uncertainty have the same
complexity of plan testing, and research has already resulted in a sizable number of approaches and
(comparatively) scalable tools (Cimatti et al., 2004; Bryce et al., 2006; Hoffmann & Brafman,
2006; Palacios & Geffner, 2007). We will show in the next section that, under certain additional
restrictions on W.SC| 1,4, these tools can be applied off-the-shelf. Regarding general WSC| 4, the
match in the complexity of plan testing suggests that the underlying techniques can be successfully
adapted. In the following, we consider in some detail the CFF tool (Hoffmann & Brafman, 2006).
Other promising options would be to extend MBP (Cimatti et al., 2004) or POND (Bryce et al.,
2006), or to look into the compilation techniques investigated by Palacios and Geffner (2007).
CFF can be characterized as follows:

78

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

(1) Search is performed forward in the space of action sequences.

(2) For each sequence a, a CNF formula ¢(a) is generated that encodes the semantics of a, and
SAT reasoning over ¢(a) checks whether a is a plan.

(3) Some reasoning results — namely the literals that are always true after executing @ — are cached
to speed up future tests.

(4) Search is guided by an adaptation of FF’s (Hoffmann & Nebel, 2001) relaxed plan heuristic.

(5) Relaxed planning makes use of a strengthened variant of the CNF formulas ¢(a) used for
reasoning about action sequences, where most of the clauses are projected onto only 2 of
their literals (i.e., all but 2 of the literals are removed from each respective clause).

All of these techniques should be self-explanatory, except possibly the last one. Projecting the CNF
formulas ensures that the relaxed planning remains an over-approximation of the “real” planning,
because the projected formulas allow us to draw more conclusions. At the same time, the projected
formulas can be handled sufficiently runtime-efficiently.!” The method for 2-projecting “most” of
the clauses is, in a nutshell, to ignore all but one of the condition literals of each conditional effect
in the relaxed planning graph.

It is fairly obvious that the basic answers given by CFF, i.e., the techniques (1) — (5), also apply
in WSC| fwd- Note that, indeed, the main enabling factor here is that we can check plans in coNP,
rather than in IT5 as for general WSC. This enables us to design the desired CNF formulas ¢(a)
in a straightforward fashion. If plan checking is IT5-hard, then we either need to replace the CNF
formulas with QBF formulas, or we have to create worst-case exponentially large CNF formulas.
Both are, at the least, technically quite challenging.

The adaptation of CFF to WSC| ¢4 is of more immediate promise, but is not trivial. It involves
technical challenges regarding the on-the-fly creation of constants as well as the computation of
the heuristic function. The latter also brings significant new opportunities in the WSC context,
pertaining to the exploitation of typical forms of ontology axioms. Let us consider these issues in a
little detail.

First, like most of today’s planning tools, CFF pre-instantiates PDDL into a purely propositional
representation, based on which the core planning algorithms are implemented. If one allows on-the-
fly creation of constants, then pre-instantiation is no longer possible, and hence the adaptation to
WSC| f1pq involves re-implementing the entire tool. While this is a challenge in itself, there are
more difficult obstacles to overcome. A sloppy formulation of the key question is: How many
constants should we create? One can, of course, create a new tuple of constants for (the outputs of)
each and every new action application. However, it seems likely that such an approach would blow
up the representation size very quickly, and would hence be infeasible. So one should instead share
output constants where reasonable. But how does one recognize the “reasonable” points? This issue
is especially urgent inside the heuristic function. Namely, it is easy to see that, in the worst case,
the relaxed planning graph grows exponentially in the number of layers. Just imagine an example
where web service wy takes an input of type A and generates an output of type B, whereas ws takes
an input of type B and generates an output of type A. Starting with one constant of type A and
one of type B, we get 2 constants of each type in the next graph layer. Then, each of w; and wo

17. Inside the heuristic function, the formulas come from relaxed planning graphs which can be quite big. So handling
them without further approximations seems hopeless. This is discussed in detail by Hoffmann and Brafman (2006).

79

HOFFMANN, BERTOLI, HELMERT & PISTORE

can be applied two times, and we get 4 constants of each type in the next graph layer, and so forth.
This dilemma probably cannot be handled without making further approximations in the relaxed
planning graph.

One a more positive note, it seems possible to exploit the most typical structures of ontologies
in practice. In particular, most practical ontologies make extensive use of subsumption relations,
structuring the domain of interest into a concept hierarchy. Additional ontology axioms often come
in the form of constraints on relations (reflexivity, symmetry, transitivity) or on the typing or number
of relation arguments. It may make sense to exploit some of these structures for optimizing the
formulas ¢(a) and the associated SAT reasoning. Certainly, it makes sense to exploit these structures
inside the heuristic function. One can include specialized analysis and sub-solver techniques that
recognize these structures and solve them separately in order to obtain more precise relaxed plans.
One can even try to take into account only these structures inside the relaxed planning, and hence
(potentially) obtain a very fast heuristic function.

5. Compilation to Initial State Uncertainty

We now show that, under certain additional restrictions, off-the-shelf scalable tools for planning
under uncertainty can be exploited to solve WSC| f,,q. The main limiting factors are: (1) These
tools do not allow the generation of new constants. (2) These tools allow the specification of a
clausal formula only for the initial state, not for all states. Our approach to deal with (1) considers
a set of constants fixed a priori, namely the initially available constants plus additional “potential”
constants that can be used to instantiate outputs. Our more subtle observation is that, within a special
case of WSC| ¢,,4, where the dynamics of states become predictable a priori, one can also deal with
(2) in a natural way.

In what follows, we first introduce our core observation of a case where the state space becomes
“predictable”, in a certain sense. We then observe that predictability is naturally given in a special
case of forward effects, which we term strictly forward effects. We discuss the strengths and lim-
itations of this new special case. We finally provide a compilation of strictly forward effects into
planning under initial state uncertainty.

5.1 Predictable State Spaces

Our core observation is based on a notion of compatible actions. Assume a WSC| 4 task (P, @1,
O, Cy, do, ¢¢). Two actions a, a’ are compatible if either E, N E, = (), or eff, = eff,,. That is,
a and o' either have disjunct outputs — and hence affect disjunct sets of literals since we are in
WSC| fyq — or their effects agree completely. A set A of actions is compatible if E, N Cy = () for
all a € A, and every pair of actions in A is compatible.

Lemma 2 states that, given the used actions are compatible, every state that can ever be reached
satisfies all action effects, modulo the existing constants.

Lemma 2 (Predictable State Spaces in WSC|¢,q) Assume a WSC|yq task, a compatible set of
actions A, and a state s that can be reached with actions from A. Then s = ¢ and, for all a € A,
if E, C Cs then s = eff,.

Proof: The proof is by induction. In the base case, for s € by, the claim holds by definition since
CsN E, = () for all a € A. Say s’ is reached from s by an action a € A. If a is not applicable

80

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

to s, with induction assumption there is nothing to prove. Otherwise, because we are in WSC| ¢y,q,
by Lemma 1 we have that res(s,a) = {(C",I') | C" = Cs U Ey, I'|c, = Is,s = ®ro A effy}.
With induction assumption applied to s, we have res(s,a) = {(C",I') | C" = Cs U E,,s
oo A /\a'eA,E ,co, effa AN @1 Aeff,}. Now, if any ' € Ahas E € Cs U E, but By € Cs, then
we have E/ N E, # () and hence eff,, = eff, by prerequisite. This concludes the argument. O

By virtue of this lemma, the possible configurations of all constants that can be generated by
actions from A are characterized by the formula ®;c A ¢ A A ac ffq. Since all parts of this
formula are known prior to planning, the set of possible configurations is “predictable”. Before
we even begin to plan, we already know how the constants will behave if they are generated. So
we can list the possible behaviors of all potential constants in our initial belief, and let the actions
affect only those constants which actually exist. In other words, we can compile into initial state
uncertainty. We will detail this further below. First, we need to identify a setting in which Lemma 2
can actually be applied.

5.2 Strictly Forward Effects

Given a WSC| .4 task, we must settle for a finite set A of compatible actions that the planner
should try to compose the plan from. One option is to simply require every action to have its own
unique output constants. This appears undesirable since planning tasks often contain many actions,
and so the set of potential constants would be huge. Further, to enable chaining over several actions,
the potential constants should be allowed to instantiate the input parameters of every operator, hence
necessitating the creation of a new action and, with that, more new potential constants. It is unclear
where to break this recursion, in a sensible way.

Herein, we focus instead on a restriction of WSC| ¢,,q Where it suffices to assign unique output
constants to individual operators, rather than to individual actions.

Definition 2 Assume a WSC task (P, ®c, O, Cy, ¢o, o). The task has strictly forward effects
l:f‘f:'

1. Forallo € O, and for all [X] € eff,, we have | X| > 0and X CY,,.

2. For all clauses ¢ € ®rc, where ¢ = Vrxq,...,xg : 1[X1] V -+ V [,[X,], we have X, =
=X,

The set of all WSC tasks with strictly forward effects is denoted with WSC| s fd-

The second condition is identical to the corresponding condition for WSC| f,,4. The first con-
dition is strictly stronger. While WSC| f.,q requires that at least one effect literal variable is taken
from the outputs, WSC|, ¢,,q requires that all these variables are taken from the outputs. Therefore,
obviously, WSC|s fiya C WSC| fa. Note that the WSC task formulated in Example 2 is a member
of WSC | sfwd-

The key property of WSC|s .4 is that, without input variables in the effect, all actions based
on the operator will have the same effect. So, for the action set to be compatible, all we need is to
choose a set of unique output constants for every operator. Indeed, we can do so for every set of
operators whose effects are pairwise identical. We can also choose several sets of output constants
for each such group of operators.

81

HOFFMANN, BERTOLI, HELMERT & PISTORE

5.3 Modeling Power

The limitations of WSC| ¢4, discussed in Section 4.2, are naturally inherited by WSC| £4,q. More-
over, unlike WSC| t,,4, we cannot state any properties in the effect that connect the inputs to the
outputs. This is a serious limitation. For illustration, consider the small VTA example we have
been using. The operator bookTicket has an effect ticketFor(y,), relating the produced ticket y
to the train x given as input. Clearly, the notion of a “ticket” is rather weak if we cannot state
what the ticket is actually valid for. Another interesting case is the one where we extend Ex-
ample 2 by considering two proteins rather than just one. That is, we set Cy = {c¢,c'}, ¢ =
cellProtein(c) A cellProtein(c’). We wish to encode that we need the combined presentation for both
of those, i.e., ¢ = Jy : combinedPresentation(y, c) A combinedPresentation(y, ¢’). In WSC| f,,4,
we can solve this by including, for every information providing operator, the input variable x into
the effect literal. For example, we set getInfo3D 1,55 := ({z}, In55(x), {y}, Info3D(y, x)). This is
not possible in WSC|s fd-

To some extent, these difficulties can be overcome by encoding the relevant inputs into pred-
icate names. To handle composition for the two proteins ¢ and ¢/, this would essentially mean
making a copy of the entire model and renaming the part for ¢. The goal would be ¢ = Ty, :
combinedPresentation(y) A combinedPresentation’ ('), and the operator preconditions would make
sure that combinedPresentation(y) is generated as before, while combinedPresentation’(y’) is gen-
erated using the new operators. Note that this a rather dirty hack, and that it depends on knowing the
number of copies needed, prior to planning. The equivalent solution for the VTA would introduce
a separate “ticketFor-x” predicate for every entity x for which a ticket may be bought. At the very
least, this would result in a rather oversized and unreadable model. A yet more troublesome case is
the time-step construction outlined in Section 4.2, where we added a new output variable ¢ into each
effect and related that via an effect literal next(prevt,t) to a previous time step prevt provided as
input. In WSC|s 4, We can no longer relate ¢ to prevt so there is no way of stating which time
step happens after which other one. Trying to encode this information into predicate names, we
would have to include one predicate per possible time step. This necessitates assuming a bound on
the number of time steps, a clear limitation with respect to the more natural encoding.

Despite the above, WSC|s .4 is far from a pathological and irrelevant special case. An example
where it applies is the domain of proteins as shown in Example 1. Similarly, the hospital domain
discussed in Section 4.2 can be naturally modeled in WSC|,,,4. More generally, there is in fact a
wealth of WSC formalisms which do not encode any connections between inputs and outputs. For
example, that category contains all formalisms which rely exclusively on specifying the “types” of
input and output parameters. The information modeled with such types is only what kind of input
a service requires, and what kind of output it produces — for example, “input is a train” and “output
is a ticket”. Examples of such formalisms are various notions of message-based composition (Zhan
et al., 2003; Constantinescu et al., 2004a; Lecue & Leger, 2006; Lecue & Delteil, 2007; Kona
et al., 2007; Liu et al., 2007). In fact, the early versions of OWL-S regarded inputs and outputs as
independent semantic entities, using a Description Logic formalization of their types.

Thus, the existence of a compilation from WSC|,f,,q into planning under uncertainty is quite
interesting. It shows how a composition model similar to the early versions of OWL-S, in a general
form with partial matches and powerful background ontologies, can be attacked by off-the-shelf
planning techniques. This opens up a new connection between WSC and planning.

82

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

5.4 Compilation

We compile a WSC|fyq task into a task of conformant planning under initial state uncertainty,
which takes the form (P, A, ¢g, ¢c). P is the finite set of propositions used. A is a finite set of
actions, where each a € A takes the form (pre(a), eff(a)) of a pair of sets of literals over P. ¢y is
a CNF formula over P, ¢ is a conjunction of literals over P. These notions are given a standard
belief state semantics. A state is a truth value assignment to P. The initial belief is the set of states
satisfying ¢o. The result of executing an action a in a state s is res(s, a) := s if s % pre(a),'® and
otherwise res(s,a) := (sUadd(a))\ del(a). Here we use the standard notation that gives s in terms
of the set of propositions that it makes true, uses add(a) to denote the positive literals in eff(a), and
del(a) to denote the negative literals in eff(a). Extension of res to beliefs and the definition of a
plan remain unchanged.

Assume a WSC| s task (P, @1¢, O, Co, ¢o, dc). The compiled task (P, A, ¢, ¢,) makes
use of a new unary predicate Ex that expresses which constants have yet been brought into ex-
istence. The compilation is obtained as follows. For each operator o € O, with outputs Y, =
{y1,..,yr}, we create a set of new constants £, = {e1,...,ex}. Then, C := Co U, cp Eo will
be the set of constants fixed a priori. Initialize A := (). For each operator o € O, include into A
the set of actions resulting from using C' to instantiate the precondition pre, A (A, cx, Ex(x)) A
(Aecr, ~Ex(e)). Give each of these actions the same effect, A\ . FEz(e). In words, we instan-
tiate o’s outputs with F,, we enrich o’s precondition by saying that all inputs exist and that all
outputs do not yet exist, and we replace o’s effect with a statement simply bringing the outputs into
existence.

Replacing the effects in this way, where do the original effects go? They are included into the
initial state formula. That is, we initialize ¢, as the conjunction of eff,[E, /Y] for all operators
o € O. Then, we instantiate all clauses in ® ;- with C' and conjoin this with gi){). We obtain our final
¢y by further conjoining this with ¢o A (A .cc, Ex(c)) A Ncecrnc, 7Ex(c)) A ~Goal. Here, Goal
is a new proposition. It serves to model the goal. Namely, we have to introduce a set of artificial
goal achievement actions. The goal has the form ¢ = x4, ..., zk.¢[x1, ..., zk]. The new actions
are obtained by instantiating the operator ({z1, ..., 21}, ¢ A N, Ex(x;),0, Goal) with C. That
is, the goal achievement actions instantiate the existentially quantified variables in the goal with all
possible constants. Those actions are added to the set .A. The overall compiled task now takes the
form (P, A, ¢, Goal), where P’ is simply the set of mentioned propositions.

In summary, we compile a WSC|, q task (P, ®1¢, O, Co, ¢o, ¢¢) into a conformant planning
task (P’, A, ¢, o) as follows:

e For each operator o € O, create a unique set of new constants £, = {ei,..., e} where
Y, ={y1,...,yx}. Wedenote C' := Co U, Eo.

e P’ contains all instantiations, with C, of P plus two new predicates, Fx and Goal. Ex has
arity 1 and expresses which constants have yet been brought into existence. Goal has arity 0
and forms the new goal, i.e., gb’G = Goal.

e The actions A are the instantiations of all o € O, where X, is instantiated with C, and Y}, is in-
stantiated with F,. The preconditions are enriched with (A x, E2(2)) A (A cp, ~Ez(€)),
the effects are replaced by A cp, Ex(e).

18. As before, we give the actions a conditional effects semantics, rather than the more usual distinction between forced
preconditions, and non-forced effect conditions.

83

HOFFMANN, BERTOLI, HELMERT & PISTORE

e Further, A contains goal achievement actions, achieving Goal under preconditions instanti-
ating ¢g with C.

e The original action effects, i.e., the conjunction of eff,[E,/Y,] for all operators 0 € O, is
moved into ¢. Further, ¢ contains ¢o, ®;c instantiated with C, and (A ¢, Ez(c)) A
/\ceC\Co —Fz(c)) N —Goal.

In the terminology of Section 5.1, this means that we choose the set .4 of actions as all actions
that can be obtained from an operator o € O by instantiating the inputs with constants from C,
and the outputs with E,. As suggested by Lemma 2, the initial state formula ¢, of the compiled
task describes the possible configurations of the constants C', and the only effect of applying an
action is to bring the respective output constants into existence. Note that, although the effects of
the compiled actions are all positive, planning is still hard (coNP-complete, to be precise) due to the
uncertainty. (If we allow WSC operators to also delete constants, then we have negative effects —
deleting constants — in the compiled task.)

According to the above strategy, we create only one set of output constants per operator, and
we do not take into account sets of operators that have identical effects. This is only to simplify
the presentation. Our results carry over immediately to more complicated strategies that create
more than one set of output constants per operator, as well as to strategies that share sets of output
constants between operators with identical effects. It should be noted, however, that operators
whose effects are not identical can not, in general, share their outputs. In particular, if the two
effects are in conflict, e.g., InfoDSSP(d) and —InfoDSSP(d), then the initial state formula ¢, as
above is unsatisfiable. The compiled planning task is then trivially solved by the empty plan, and,
of course, does not encode solutions in the original problem.

Example 3 Re-consider the planning task defined in Example 2. We specify a compiled task. We set
C = {c,d, e, f} where c is the only initially available constant, and d, e, f are potential constants
for operator outputs. The compiled planning task (P, A, ¢y, ¢(;) is the following:

e P’ = {protein, cellProtein, G, H, I, In55, 1kw3, combinedPresentation, InfoDSSP,
Info3D, Ex, Goal}, where all the predicates except Goal are unary (have one argument).

o A consists of all instantiations of:

- getInfoDSSP;[d/y]: ({z}, G(x) A Ex(x) A ~Ex(d), Ex(d))

- getInfoDSSP [d/y]: ({z},H(z) N Ex(x) A —~Ex(d), Ex(d))

- getInfoDSSP;[d/y]: ({z},I(z) A Ex(x) A —~Ex(d), Ex(d))

- getInfo3D1,,55(e/y]: ({z}, In55(x) A Ex(z) A ~Exz(e), Ex(e))

- getInfo3D . 3(e/y]: ({z}, Ikw3(z) A Ex(x) A —Ex(e), Ex(e))

- combinelnfo[f /y]: ({z1,z2}, InfoDSSP(x1) A Info3D(z2) N Ex(x1) A Ex(xa) A
—Ex(f), Ex(f))

GoalOp: ({z}, combinedPresentation(x) N\ Ex(z), Goal)

e ¢, is the conjunction of:

— all instantiations of ® o — [consisting of the five axioms given in Example 2]

84

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

cellProtein(c) — [¢po]

InfoDSSP(d) A Info3D(e)\ combinedPresentation(f) — [original action effects]
Ex(c)\ ~Ex(d)\ ~Ex(e)\ ~Ex(f) — [constants existence]

=Goal — [goal not yet achieved]

o ¢, = Goal

Now consider again the plan for the original task (see Example 2): (getInfoDSSP¢(c,d),
getInfoDSSPy; (c, d), getInfo3D,,55(c,), getInfo3D,1,,3(c, €), combinelnfo(d, e, f)).

To illustrate, we now verify that this plan yields a plan for the compiled task. In that task,
the initial belief by consists of all states s where c is the only existing constant, d, e, f satisfy the
respective effects, and s |= ® ¢ A cellProtein(c). Now we apply the action sequence:

1. Apply getInfoDSSP¢ (c, d) to by. We get to the belief by which is the same as by except that,
inall s € by where s |= G(c), d now also exists.

2. Apply getInfoDSSP;(c, d) to by. We get to the belief by which is the same as by except that,
inall s € by where s |= H(c), d exists.

3. Apply getInfo3D,,55(c, €) to be, yielding bs.

4. Apply getInfo3D,3(c, €) to bs. This brings us to by where we have Ex(e) for all s € by
with s = In55(c) or s |= 1Tkw3(c).

5. Apply combinelnfo(d, e, f) to by. This brings us to bs which is like by except that all s € by
where both d and e exist now also have Ex(f).

6. Apply GoalOp(f) to bs, yielding bg.

The same reasoning over ®;c used in Example 2 to show that bs satisfies the original goal, can
now be used to show that GoalOp(f) is applicable in all s € bs and hence the resulting belief bg
satisfies the goal. So we obtain a plan for the compiled task simply by attaching a goal achievement
action to the original plan.

To prove soundness and completeness of the compilation, we need to rule out inconsistent
operators, i.e., operators whose effects are in conflict with the background theory (meaning that
O;0 AN 3X,, Y, : eff, is unsatisfiable). For example, this is the case if Vo : —A(x) V —B(x) is
contained in ®;¢, and eff, = A(y) A B(y). In the presence of such an operator, the initial belief
of the compiled task is empty, making the task meaningless. Note that inconsistent operators can
never be part of a plan, and hence can be filtered out as a pre-process. Note also that, in WSC|s .4,
an operator is inconsistent iff all actions based on it are inconsistent.

Non-goal achievement actions in .4 correspond to actions in the original task, in the obvious
way. With this connection, we can transform plans for the compiled task directly into plans for the
original task, and vice versa.

Theorem 7 (Soundness of Compilation) Consider the WSC|stq task (P, ®1c, O, Cy, ¢o, dc)
without inconsistent operators and a plan (a1, ...,an) for the compiled task (P', A, ¢;, o).
Then the sub-sequence of non-goal achievement actions in {(ay,...,a,) is a plan for the task

(Pa ®107 Oa 007 ¢07 d)G)

85

HOFFMANN, BERTOLI, HELMERT & PISTORE

Proof Sketch: For an arbitrary sequence of non-goal achievement actions, denote by b the belief
after execution in the original task, and by b the belief after execution in the compiled task. For a
state s in the original task, denote by [s] the class of all compiled-task states S over the constants
Co U Upep Eo sothat {c | 5(Exz(c)) = 1} = Cs, 5lc, = I, and 5 |= @10 A o A N\, eo effo[o).
One can prove that b = | J,;[s]. The claim follows directly from that. O

Theorem 8 (Completeness of Compilation) Consider the WSC|pya task (P, ®rc, O, Co, ¢o,
o) without inconsistent operators and a plan (a1, . . ., a,) where every operator o appears with at
most one instantiation E, of the outputs. Then (ay, . .., a,) can be extended with goal achievement
actions to form a plan for the compiled task (P', A, ¢, ¢;) obtained using the outputs E,.

Proof Sketch: Follows immediately from b = (J,,[s] as shown for the proof of Theorem 7. Say
one executes (ay,...,ay) in the compiled task, ending in a belief b. From there, a plan for the
compiled task can be obtained simply by attaching one goal achievement action for every tuple of
constants satisfying ¢ in a world state from b. O

The reader may have noticed that the number of instantiations of the goal achievement operator
is exponential in the arity of the goal. In the worst case, all these instantiations must be included
in the plan for the compiled task. In particular, this may happen in the plan constructed as per the
proof of Theorem 8. However, for practical purposes it appears reasonable to assume a fixed upper
bound on the number of goal variables.

As indicated, the proofs of Theorems 7 and 8 remain valid when allowing more than one E,
per operator, and/or when operators with identical effects share output constants. Note that opera-
tors have identical effects if several web services provide alternative ways of achieving something.
Example 3 illustrates such a situation (cf. our earlier discussion in Section 3.2). In our experiments
as described in the next section, all groups of operators with identical effects are assigned the same
output constants.

6. Empirical Results

To show that the compilation approach has merits, we now report on a number of empirical experi-
ments using CFF as the underlying planner. We start with a discussion of the general experimental
setup and then discuss the results for two different test scenarios.

6.1 Experiments Setup

We implemented the compilation from WSC|sfy,q into planning under uncertainty as described
above, and connected it to the CFF tool. It should be noted here that, although the compiled planning
tasks do not have delete effects, they are not solved by CFF’s relaxed-plan-based heuristic function.
That function makes a further relaxation ignoring all but one of the conditions of each effect (see
the earlier discussion of CFF in Section 4.5). Ignoring all but one condition significantly affects the
compiled tasks because their effects typically involve many conditions, particularly those conditions
stating that all inputs exist and all outputs do not yet exist.

One problematic point in evaluating planning-based WSC is the choice of test cases. The field
is still rather immature, and due to the widely disparate nature of existing WSC tools, there is

86

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

no common set of benchmarks.!® In fact, because web service composition is such a new topic
posing so many challenges to existing techniques, the different works differ widely in terms of both
their underlying purpose, and the specific aspect of WSC they address. A detailed discussion of
existing WSC tools is given below in Section 7. The method we choose for evaluation is to design
two test scenarios that reflect what are intuitively relevant kinds of problem structures in potential
applications of planning-based WSC, and that are scalable in a number of interesting parameters.
We test the reaction of our approach to these parameters.

While our test scenarios are artificial benchmarks, and cannot lead to broad conclusions of sig-
nificance for practice, they do allow us to draw conclusions about planning behavior in differently
structured test problems. Our solution method scales quite well in most of the tested cases, effi-
ciently finding solutions that involve many web service calls, and that successfully employ only
those services that are really necessary. Viewing these results in isolation, one can conclude that
representation techniques and heuristic functions from planning under uncertainty may be useful to
attack large and complex planning-like WSC instances.

A comparison to alternative WSC tools is, again, problematic, due to the broad range of prob-
lems the tools can solve, the different kinds of solutions they find, and the different kinds of input
syntax/language they read. To obtain at least some notion of empirical comparison to these tools,
in the following we consider only expressivity (“How general is the input language of a tool?”’) and
scalability (“How quickly can the tool compose?”’). Each of the existing WSC tools constitutes a
separate point in the trade-off between these two. The question then is whether our compilation
approach, restricting to WSC|, s.q and using CFF to solve the compiled tasks, is a sensible point in
that trade-off.

In terms of expressivity, our approach is located in between very general planning methods (like
Eiter et al., 2003, 2004; Giunchiglia et al., 2004), inspired by the actions and change literature, and
the more restricted methods that have been applied to WSC so far. The question is whether we gain
scalability in comparison to the more expressive methods.

We confirm in our experiments that the answer is, as expected, “yes”. We run the DLVK tool
(Eiter et al., 2003, 2004), which handles a powerful planning language based on logic programming.
That language in particular features “static causal rules” which are similar to the integrity constraints
in fully general WSC.2° 1In that sense, from our perspective DLVK is a “native WSC tool” that
handles ontology axioms directly rather than via restricting their expressivity and compiling them
away. In particular, we encoded our WWSC test problems directly in DLVK’s input language, without
the compilation that we use for CFF.

DLVK relies on answer set programming, instead of relaxed plan heuristics, to find plans. Fur-
ther, in the style of many reasoning-based planners, DLVK requires as input a length bound on the
plan, and can hence be used to find optimal plans by running it several times with different bounds.
In all cases, we ran DLVK only once, with the bound corresponding to the optimal plan length.
Even so, DLVK is much slower than CFF, solving only a small fraction of our test instances. We do
not wish to over-interpret these results. All we conclude is that WSC| s fwd constitutes an interesting
point in the trade-off between expressivity and scalability in WSC.

19. While the VTA example could be considered one such benchmark, essentially every individual approach defines its
own particular version of that example.

20. The similarity lies in that both static causal rules and fully general integrity constraints can, as a side effect of applying
an action, yield ramifications affecting the properties inherited from the previous state.

87

HOFFMANN, BERTOLI, HELMERT & PISTORE

When running some first tests with the compilation approach, we noticed that the encoding as
per Section 5.4 is unnecessarily generous about the set of initial states. Observe that our compiled
tasks are always easier to solve if more propositions are true in the initial state. This is, simply, be-
cause all literals in operator preconditions, effects, and the goal are positive. Hence, if a proposition
p does not appear positively in any initial state clause, then one can set p to 0 initially, and thereby
reduce the number of initial states, without introducing any new plans.?! Setting a proposition to
0 may cause unit propagations, setting other propositions to 1 or 0. We iterate these steps until a
fixpoint occurs. The resulting initial state description is stricter than before, and yields better perfor-
mance both for CFF and for DLVK. We use this optimized encoding in all the experiments reported
below.

We also experimented with another optimization. That optimization makes the assumption that
the constants requested by the goal will be generated in a step-wise fashion, where each intermediate
constant is generated with certainty before generating the next constant. Recall that in the encoding
as per Section 5.4, the existence of the inputs of operators, i.e., the condition A, X, exists(x), is
part of the operator precondition and is thus interpreted under a conditional effects semantics. How-
ever, both CFF and DLVK offer a distinction between effect conditions and forced preconditions
that must hold in the entire belief for the action to be applicable. We can exploit that distinction to
postulate that the condition A\ .y ewists(z) is forced. This reduces the state space, but may cut
out solutions. The reduction is quite beneficial both for CFF and for DLVK. Since the optimization
affects the set of plans, we switch it on only in part of the test cases, to point out the possible speed-
up. The tests where the optimization is switched on are discussed in the text, and indicated by the
keyword forced in the name of the test case.

We use two versions of CFF. One is CFF’s default configuration which makes use of FF’s “en-
forced Hill-climbing” search algorithm as well as its “helpful actions pruning” technique (Hoffmann
& Nebel, 2001). In the other configuration, CFF helpful actions pruning is turned off, and the search
proceeds in standard “greedy best-first” fashion, with an open queue ordered by increasing heuristic
values. We henceforth denote the former configuration with CFF-def and the latter configuration
with CFF-std.

All results were obtained on a 2.8 GHz Pentium IV PC running Linux. All tests were run with a
time-out of 600 seconds CPU, and limiting memory usage to 1 GB.

6.2 Subsumption Hierarchies

We first investigate how well our approach can deal with scaling subsumption hierarchies, and with
building chains of successively created entities (outputs). For that purpose, we design a test scenario
called SH, which demands the composition of web services realizing a chain of generation steps,
where every generation step has to deal with a subsumption hierarchy.

The scenario is depicted in Figure 2. There are n “top-level” concepts T'L1, ..., T L, depicted
with “TL” in Figure 2. The goal input is 1L, the goal output is T'L,,. Beneath each T'L;, there
is a tree-shaped hierarchy of sub-concepts. More precisely, the tree is perfectly balanced with
branching factor b, and has depth d. The inner nodes of the tree are called “intermediate-level”
(or simply “intermediate”) concepts, depicted with “IL” in Figure 2. The leaf nodes of the tree
are called “basic-level” (or simply “basic”’) concepts, depicted with “BL” in Figure 2. For every
non-leaf concept C' in the tree, with children C1, . .., Cy, we have the axioms Vz : C;(z) = C(x)

21. Of course, reducing the set of initial states does not invalidate any old plans, either.

88

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

SWS SWSs SWS SWSs SWsS SWS

Figure 2: Schematic illustration of the SH scenario.

expressing subsumption, as well as an axiom Vz : C(z) = C1(z) V - - - V Cy(z) expressing that the
parent is covered by its children.

The available web services are defined as follows. For each top level concept T'L;, and for
each leaf BL; ; of the corresponding tree structure, there is a web service available that takes
BL; ; as input and that outputs T'L;11. The corresponding WSC operator takes the form o; ; =
({z}, BL; j(z),{y},TLi+1(y)). Then, by applying, for each 1 < i < n in order, all services o; ;,
it is possible to make sure that a constant of concept 1'L; 1 is created in all possible cases. Hence,
sequencing all these steps is a plan, of length (n — 1) % b%. Note here that, as we already stated
in Section 5.4, in our experiments groups of operators with identical effects are assigned the same
output constants. For the SH scenario, this means that for each 1 < i < n, all the o; ; share the
same output constant. Hence the total number of output constants generated, i.e., the number of
“potential constants” in the initial state, is equal to the number of top-level concepts, n.

Although the SH scenario is of an abstract nature, it is representative for a variety of relevant
situations. Specifically, the scenario can model situations where sets of different services must be
used to address a request which none of them can handle alone. The role of each single service is
then to handle some particular possible case. In our example, the “set of different services” is the
set of services o; ; assembled for each T'L;. Given a constant ¢ which is a member of T'L;, i.e.,
T'L;(c) holds, the “particular possible case” handled by service o; ; is the case where ¢ happens to
be a member of leaf BL; ; — one of those cases must hold due to the coverage clauses in the tree.
Similar situations arise, e.g., for geographically located (regional) services when the composition
request is not location-specific or addresses locations at a higher (inter-regional) level. A similar

89

HOFFMANN, BERTOLI, HELMERT & PISTORE

pattern can also be found in e-government scenarios where a clear-cut classification of activities
leads to establishing several “parallel” services that serve different departmental areas.

Orthogonal to this “horizontal” composition, the scenario can model “vertical” composition,
where one function has to be pursued by concatenating existing functions. This is the case for most
complex procedures in such diverse areas as e-government or e-commerce.

The scenario can be instantiated to study different aspects of the scalability of our approach.
Our empirical tests measure scalability in both the horizontal and the vertical direction. Further,
we consider two extreme cases of the possible shapes of the individual concept trees in the chain,
giving us instances with identical numbers of leaves. We set up the test scenario SH-broad, where
d = 1 and b scales over 2,4, 8,16,32. We set up the test scenario SH-deep, where b = 2 and d
scales over 1,2, 3,4, 5. In both scenarios, n scales from 2 to 20.

Further, we designed a SH-trap variant where a second chain of n concepts can be linked,
but is completely irrelevant for the goal service. This variant is suitable for testing to what extent
the composition techniques are affected by irrelevant information. Finally, recall that the encoding
method comes in two versions as explained above, where the default method treats input existence
— Necx, evists(z) — by a conditional effects semantics, whereas the non-default method, forced,
compromises completeness for efficiency by treating input existence as a forced precondition.

All in all, we have the following choices: 3 different planners (CFF-def, CFF-std, DLVK);
2 different encoding methods; SH with or without the trap; SH-broad or SH-deep. The cross-
product of these choices yields 24 experiments, within each of which there are 19 possible values
for n and 5 possible values for b or d, i.e., 95 test instances. For CFF, we measured 3 performance
parameters: total runtime, number of search states inserted into the open queue, and number of
actions in the plan. For DLVK, we measured total runtime and number of actions in the plan. Of
course, not all of this large amount of data is interesting. In what follows, we summarize the most
important observations. Figure 3 shows the data we selected for this purpose. Part (a) of the figure
shows CFF-std on SH-broad; (b) shows CFF-std on SH-deep; (c) shows CFF-def on SH-forced-
broad; (d) shows DLVK on SH-broad and SH-deep; (e) shows DLVK on SH-forced-broad and
SH-forced-deep; (f) shows DLVK and CFF-std on SH-trap. The vertical axes all show log-scaled
runtime (sec). The horizontal axes show 7 in (a), (b) and (c). In (d), (e) and (f), n is fixed to n = 2
and the horizontal axes show the number of leaves in the concept hierarchy.

Consider first Figure 3 (a) and (b). These plots point out how efficiently CFF can handle this
kind of WSC problem, even with no forced optimization. Comparing the two plots points out the
difference between handling broad and deep concept hierarchies. In both plots, CFF-std runtime
is shown over n, the length of the chain to be built. In (a), we show 5 curves for the 5 different
values of b (the number of leaves in a hierarchy of depth 1), and in (b) we show 5 curves for the 5
different values of d (the depth of a hierarchy with branching factor 2). In both cases, the scaling
behavior is fairly good. With small concept hierarchies (b = 2 or d = 1), chains of almost arbitrary
length can be built easily. As the hierarchies grow, runtime becomes exponentially worse. Note,
however, that from one curve to the next the size of the hierarchies doubles, so that growth is itself
exponential. With concept hierarchies of 16 leaves, i.e., 16 alternative cases to be handled in each
step, we can still easily build chains of 6 steps, where the solution involves 96 web services. The
most interesting aspect of comparing the two plots, (a) and (b), is that the underlying search spaces
are actually identical: the open queues are the same. The only difference in performance stems
from an overhead in CFF’s reasoning techniques, which consume more runtime in the case of deep
concept hierarchies. Hence the slightly worse behavior in (b).

90

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

—s ‘ ‘ ‘
100 | 100 | 7 X]
5 X
. I
10 | 0%
@
1t 14
id
i =
01l] 01} g:% BV
d:3 Heren
§ d=4 E3
T d=5
0.01 0.01 ¥ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
(a) CFF-std on SH-broad (b) CFF-std on SH-deep
10000 T T T
T T T T T T T T 1l SH-broad —+—
& SH-deep
)
|
100 | 5 1
g8 K
G K
10 R S 4
o *
*
a ¥
L X 1
1 5 T
| *
0.1 * L
Y F 1 A — : ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14 16 18 20 O00% 5 - s .
(c) CFF-def on SH-forced-broad (d) DLVK on SH-broad and SH-deep
10000 T T T T T 10000 T T T T T T
SH-forced-broad —— DLVK SH-trap-broad —+—
SH-forced-deep DLVK SH-forced-trap-broad
CFF-std SH-trap-broad -+ -+
1000 1000 —
100 100‘0: —
10 | 10 b - 3
1 1F B
LK
01| 01 | 4
0.01 P I I T I I 0.01K I I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 6 8 10 12 14 16 18 20 22 24 26 28 30 32

(e) DLVK on SH-forced-broad and SH-forced-deep

(f) DLVK and CFF-std on SH-trap

Figure 3: Selected results for SH scenario. See detailed explanation in text.

91

HOFFMANN, BERTOLI, HELMERT & PISTORE

If we run CFF-def on the test suites of Figure 3 (a) and (b), then we obtain much worse behavior.
For example, with b = 8 we only get up to n = 3. The reason seems to be that FF’s helpful actions
pruning and enforced hill-climbing are too greedy in this domain. A simple way to overcome this is
to use a standard heuristic search algorithm instead, as done by CFF-std shown in Figure 3 (a) and
(b). On the other hand, if the forced optimization is switched on, then helpful actions pruning and
enforced hill-climbing work much better, and we obtain a significant performance boost when using
CFF-def. The latter is pointed out by Figure 3 (c), showing data for CFF-def on SH-forced-broad.
Like Figure 3 (a) for CFF-std on SH-broad, this plot shows 5 curves, one for each of the 5 values
of b (legend omitted from the plot because it would overlap the curves). We see that, in this case,
we can easily build arbitrarily long chains even for b = 16, giving us a solution involving 320 web
services for n = 20. Even for b = 32, we still getup ton = 9.

Figure 3 (d) and (e) show what one gets when trying to solve the same examples, encoding them
directly for DLVK instead of using the compilation and solving them with CFF. As expected, the
performance is much worse. Since hardly any test instance is solved for n > 2, we fixed n to its
minimum value 2 in these plots, unlike (a), (b) and (c). Each of (d) and (e) shows data for both the
broad and deep variants, showing the number of leaves on the horizontal axis. In order to obtain a
more fine-grained view, for the broad variant we increase that number by steps of 1 rather than by
a multiplicative factor of 2 as before. We see that, without the forced optimization — Figure 3 (d) —
performance is poor, and the largest case we can solve is n = 2, b = 6 where the solution involves
6 web services. As we switch forced on — Figure 3 (e) — performance is dramatically improved but
is still on a different level than what we obtain by compilation+CFF.

Figure 3 (f), finally, exemplifies the results we get in the trap scenario. We show data for
the broad version, on the default encoding with CFF-std, and on both the default and the forced
encoding with DLVK. DLVK is quite affected by the irrelevant chain of concepts, now solving only
the single instance n = 2, b = 2 for the default encoding, and getting up to n = 2, b = 16 for
the forced encoding, instead of n = 2, b = 20 without the trap. This behavior is expected since
DLVK does not make use of heuristic techniques that would be able to detect the irrelevance of the
second chain of concepts. The question then is whether CFF’s techniques are better at that. Figure 3
(f) shows that CFF-std is largely unaffected for n = 2 — one can see this by comparing that curve
with the points on the vertical axis in Figure 3 (a). However, for n > 2 the performance of CFF-std
drastically degrades: the only instances solved are n = 3, b = 2 and n = 4, b = 2. The reason
seems to be that the additional actions yield a huge blow-up in the open queue used by the global
heuristic search algorithm in CFF-std. Indeed, the picture is very different when using CFF-def and
the forced encoding instead: the search spaces are then identical to those explored with no trap, and
the behavior we get is identical to that shown in Figure 3 (c).

All plans found in the SH scenario are optimal, i.e., the plans returned contain only those web
services that are needed. The single exception is DLVK in trap, where the solutions include some
useless web services from the trap chain.??

22. Note here that DLVK’s plans are parallel. Their parallel length is optimal (because we provided the correct plan
length bound, cf. Section 6.1. However, each parallel step may contain unnecessary actions, on top of the necessary
ones. That’s what happens in trap.

92

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

6.3 Complex Concept Dependencies

The two variants of the SH scenario feature tightly structured relationships between the involved
concepts, and allow the investigation of scalability issues by varying the size of the structure. We
now consider a more advanced scenario, where the way top-level concepts are covered by lower-
level concepts is subject to complex concept dependencies, similar to the axioms constraining pro-
tein classes and their characteristics in Example 1. Therefore we investigate how performance is
impacted by more complex concept structures than just subsumption hierarchies.

SWS SwWs SWS SWS SWS SWS SWS SWS SWS SWs SWS SWS

Figure 4: Schematic illustration of the CD scenario vs. the SH scenario.

Our new scenario is called CD, for concept dependencies. Figure 4 illustrates this scenario, and
contrasts it with the SH scenario. Similarly to what we had in SH, we have top-level concepts,
of which each one is associated to a set of basic sub-concepts. There are b basic concepts for
every top-level concept. There are n top-level concepts T'L, ...,T L,, and the goal is to achieve
TL, starting from T'L;. As before, this is done through combining web services that cover all
possibilities. Namely, for every top-level concept T'L; and for every basic concept BL; ; associated
with it, we have the operator o; ; = (({z}, BL; j(z), {y}, TLi11(y)).

The difference lies in the connection between the basic concepts and the top-level concepts.
In SH, this was rigidly given in terms of a tree structure of subsumption and coverage axioms
over intermediate concepts. Every basic concept — i.e., every operator o; ; corresponding to such a
concept — had to be included in the plan in order to cover all possible cases. In CD, we use instead a
complex set of axioms to connect the basic concepts to the top-level. Each top-level concept has m
intermediate concepts I L; 1, ..., IL; y, for which as before we have axioms stating that each IL; ;

23. Note here again that, for the same 4, all these operators are assigned the same output constant by our compilation
technique.

93

HOFFMANN, BERTOLI, HELMERT & PISTORE

is a sub-concept of T'L;, as well as the axiom Vz : TL;i(z) = IL;1(x) V ---V IL; () stating
that T'L; is covered by IL; 1, ..., IL; y,. For the connection between the intermediate concepts and
the basic concepts, complex dependencies are used. Each intermediate subconcept is constrained to
be covered by some non-empty set of combinations of the basic subconcepts. Precisely, we create a
random DNF, of only positive literals, using the basic concepts as the predicates. We then take that
DNF to imply IL; ;. Note here that, in the implication, the DNF is negated and hence becomes a
CNF, which we can directly encode into our formalism. We do this for every IL; ;.

In such a setting, it is interesting to control how many combinations are required to cover the
top-level concept T'L;. This directly corresponds to the total number of random combinations (ran-
dom DNF disjuncts) that are generated, for all of the intermediate concepts /L; ; taken together.
We control this via what we call the coverage factor, c, ranging in (0, 1]. From the 2° — 1 possible
combinations of basic concepts, we pick a random subset of size [c¢ x (2° — 1)]. Each such com-
bination is associated to the DNF of a randomly chosen intermediate concept. Note that the CNF
formulas generated this way may be enormous. To minimize the size of the encoding, we use the
formula minimization software Espresso (Brayton, Hachtel, McMullen, & Sangiovanni-Vincentelli,
1984; McGeer, Sanghavi, Brayton, & Sangiovanni-Vincentelli, 1993).

If — hypothetically — c is set to O then the task is unsolvable. In the experiments reported below,
whenever we write ¢ = 0% this means that exactly one combination was selected, and associated
with every intermediate concept.

By escaping from the rigid schema of relationships presented by SH, the CD scenario is suit-
able to test whether the performance of our approach is tied to the specific structure of the SH
problem. Moreover, the way CD is designed allows us to determine to what degree the planners
react intelligently to different concept structures. In particular, the scenario allows the analysis of:

1. The ability of our approach, and in particular of the selected underlying planner CFF, to iden-
tify plans that contain only relevant actions. Especially when the “coverage factor” c is low,
some basic subconcepts may never appear in any partition of intermediate concepts, and thus,
the plan does not need to include the respective operators. Still, due to the conditional ef-
fects/partial matches semantics, plans that include those operators are valid plans. Evaluating
plan length performance over varying c is therefore interesting.

2. The ability of our approach to deal with complex axiomatizations. This can be measured in
terms of the impact of the coverage factor on runtime performance. The randomization of
the choice of combinations of basic factors, in different settings of ¢, may induce significant
differences in the CNF axiomatizations, and as a result, subject the underlying reasoning
engine to very different situations.

In summary, the CD scenario is representative for situations where complex dependencies must be
taken into account in order to select the correct services. Examples of such domains were discussed
in Sections 4.2 and 5.3. In particular, the CD scenario corresponds closely to (a scalable version of)
our protein domain example. The different values for the DSSP code correspond to different basic
concepts, and the respective getInfoDSSP services are the operators taking them to an intermediate
concept, InfoDSSP(y). This is similar for amino-acids, 3-D shapes, and shapes in complexes. The
top level concept combinedPresentation(y) can be achieved once constants for every intermediate
concept have been created. So, the only difference to CD lies in that, rather than having just a single
top-level concept generated from its intermediates, CD has a sequence of top-level concepts that
need to be generated in turn.

94

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

As with the SH scenario, the total data of our experiments is extensive, even more so since we
now have 4 scenario parameters rather than 2 as before, and since individual instances now contain
a random element. In Figure 5, we report selected results pointing out the main observations. Part
(a)/(b) of the figure show CFF-std runtime/plan length over n for m = 4, b = 5; (c)/(d) show CFF-
std runtime/search nodes over ¢ for n = 5, m = 3, b = 7; (e) shows DLVK and CFF-std runtime
over bin CD for n = 2, ¢ = 100%; () show the latter data for CFF-def and CD-forced.

Figure 5 (a) and (b) consider the scalability and solution lengths of the test varying the size of
the scenario, and representing different coverage factors as different lines. We report data for CFF-
std. Results are very similar for CD-forced and CFF-def, i.e., contrary to SH, in CD this setting of
options does not bring a significant performance gain. We see in Figure 5 (a) that CFF scales up
pretty well, though not as well as in SH, being easily able to solve tasks with 7 top level concepts of
which each has 4 intermediate concepts and 5 basic concepts. Tasks with minimum coverage factor,
¢ = 0%, are solved particularly effortlessly. For higher ¢ values, one can observe somewhat of an
easy-hard-easy pattern, where, for example, the curve for ¢ = 100% lies significantly below the
curves for ¢ = 40% and ¢ = 60%. We examine this easy-hard-easy pattern in more detail below.

In Figure 5 (b), an obvious and expected observation is that plan length grows linearly with
n, i.e., with the number of top level concepts. A likewise obvious, but much more important,
observation is that plan length grows monotonically with the coverage factor c. As reported above,
a lower coverage factor opens up the opportunity to employ less basic services, namely only the
relevant ones. Figure 5 (b) clearly shows that CFF-std is effective at determining which of the
services are relevant and which are not.

Let us get back to the intriguing observation from Figure 5 (a), the easy-hard-easy pattern over
growing c. Figure 5 (¢) and (d) examine this phenomenon in more detail. Both plots scale ¢ on
the horizontal axis, for a fixed setting of n, m and b. Runtime is shown in (c), while (d) shows
the number of search states inserted into the open queue. For each value of ¢, the plots give the
average and standard deviation of the results for 30 randomized instances. We clearly see the easy-
hard-easy pattern in (c) for runtime, with high variance particularly for ¢ = 80%. In (d), we
see that there is no such pattern for the number of search states, and that the variance is much less
pronounced. This shows that the easy-hard-easy pattern is not due to differences in the actual search
performed by CFF, but due to the effort spent in the search nodes. We traced the behavior of CFF
in detail, and found that the reason for the easy-hard-easy pattern lies in the runtime CFF spends
in its SAT reasoning for “state transitions”, i.e., in the reasoning it uses to determine which facts
are definitely true/false in each belief. For high but non-100 values of ¢, the CNF encodings of the
concept dependency structures take on a rather complex form. In the cases where CFF takes a lot
of runtime, almost all of the runtime is spent within a single call to the SAT solver. That is, it seems
that CFF’s SAT solver exhibits a kind of heavy-tailed behavior on these formulas, a phenomenon
well known in the SAT and CP community, see for example the work of Gomes, Selman, Crato, and
Kautz (2000). It should be noted here that, in typical planning benchmarks, the CNFs have a much
simpler structure, which motivates the use of a fairly naive SAT solver in CFF, using neither clause
learning nor restarts, in order to save overhead on formulas that are simple anyway. It seems likely
that the addition of advanced SAT techniques to the solver could ameliorate the observed problem.

Finally, Figure 5 (e) and (f) compare the performances of compilation+CFF and DLVK (with
no compilation). Both plots fix n = 2, i.e., data is shown for only 2 top level concepts. The only
instances that DLVK solves for n > 2 are the ones where the forced optimization is used and n = 3,
m = 2, b = 2. Further, in both plots ¢ is fixed to ¢ = 100%. The reason for this is that we did

95

1000 T

HOFFMANN, BERTOLI, HELMERT & PISTORE

100

c=0% —+—
c=20%
C=40% - %o
€c=60% &
30 - c=80%
€=100%

20 -

15 -

10

(b) CFF-std plan length over n

‘ ; 250 ‘ g
— —
! T
100 | T 1
| 200 | T I]
10 ¢ 1 150}]
1r 1 100} 1
0.1 9 50 + i
0.01 ‘ ‘ ‘ o ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
(c) CFF-std runtime over ¢ (d) CFF-std plan length over ¢
10000 T 1000 T
DLVK m=2 —+— DLVK m=2 —+—
DLVK m=4 DLVK m=4
DLVK m=6 ---%--- DLVK m=6 ---%---
CFF:S[d mfZ a CFF:dE; m;i a
1000 SERmE 1 Ll Crr s
«
100 | { // 4
/ “ 4
Y
10 | i/ |
: 7
L/ =
i/ . i
i/
1t / “ 1
// a
/ a
Y.]
01} //f * . 4 =
0.01 ./ - L L 0.01 it s ‘ = - L L
2 4 6 8 10 12 2 4 6 8 10

(e) DLVK and CFF-std runtime over b

(f) DLVK and CFF-def runtime over b

Figure 5: Selected results for CD scenario. See detailed explanation in text.

not find a significant difference in the performance of DLVK for different values of c. DLVK was
unable to exploit lower ¢ for lower runtime, and neither did it show an easy-hard-easy pattern. We
speculate that DLVK’s answer set programming solver tends to perform exhaustive search anyway
and is accordingly not as affected by different structures as the heuristic techniques employed by

CFF. However, like CFF, DLVK was able to exploit lower coverage factors c for shorter plans.

96

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Figure 5 (e) shows the default setting without the forced optimization. We see that the perfor-
mance of DLVK explodes quickly while CFF does not experience as much trouble. CFF fails at the
upper ends of its curves, both in Figure 5 (e) and (f), only because the problem files, i.e., the CNFs
describing the complex concept dependencies, become too large to parse (> 4 MB). That notwith-
standing, CFF’s runtime behavior is clearly exponential. Note, however, that the actual encodings,
i.e., the problem instances to be solved, also grow exponentially over c.

We can further observe that DLVK exhibits quite some variance, particularly across different
settings of m: the curves cross in Figure 5 (e). This is even more pronounced in Figure 5 (f), where
we can also observe, as before for SH, that the forced optimization brings a huge advantage for
DLVK. For m = 2 and m = 6 in Figure 5 (f), DLVK fails on the first unsolved problem instance
due to running out of memory shortly after parsing the problem.

Concluding this section, we observe that the empirical behavior of CFF in the SH and CD sce-
narios is promising. These results should not be over-interpreted, though. While the test scenarios
do capture problem structure typical of a variety of potential applications of WSC technology, our
approach has yet to be put to the test of actual practice. The same, however, can be said of essentially
all current planning-based WSC technology, since the field as a whole is still rather immature.

7. Related Work

The relation of our work to the belief update literature has been covered in detail already in Sec-
tions 2.2 and 4.3. As for the relation to planning, our formalism basically follows all the commonly
used frameworks. Our notions of operators, actions, and conditional effects are exactly as used in
the PDDL framework (McDermott et al., 1998; Bacchus, 2000; Fox & Long, 2003), except for the
extension with outputs. Regarding the latter, it has been recognized for some time in the planning
community, for example by Golden (2002, 2003) and Edelkamp (2003), that on-the-fly creation of
constants is a relevant feature for certain kinds of planning problems. However, attempts to actually
address this feature in planning tools are scarce. In fact the only attempt we are aware of is the work
by Golden (2002, 2003) and Golden, Pand, Nemani, and Votava (2003). Part of the reason for this
situation is probably that almost all current state of the art tools employ pre-processing procedures
that compile the PDDL task into a fully grounded description. The core algorithms are then im-
plemented based on a propositional representation. Lifting such algorithms to a representation that
involves variables and on-the-fly instantiations requires a major (implementation) effort. In the work
herein, we circumvent that effort by using “potential” constants and feeding the resulting problem
to CFF, which like most planners employs the said pre-processing. Extending CFF for WSC| f,,4
will involve dealing with non-propositional representations as a sub-problem.

Our notion of initial state uncertainty and conformant plans closely follows the related literature
from planning under uncertainty (Smith & Weld, 1998; Cimatti et al., 2004; Hoffmann & Brafman,
2006). The formalization in terms of beliefs is adapted from the work by Bonet and Geftner (2000).
There are some related works in planning which allow a domain axiomatization, i.e., some form of
axioms constraining the possible world states (Eiter et al., 2003; Giunchiglia et al., 2004). To the
best of our knowledge, no work in planning exists, apart from the work presented herein, which
considers the combination of domain axioms and outputs.

A few words are in order regarding our notions of “partial” and “plug-in” matches. This termi-
nology originates from work on service discovery in the SWS community (see for example Paolucci
et al., 2002; Li & Horrocks, 2003; Kumar et al., 2007). In service discovery, one is concerned with

97

HOFFMANN, BERTOLI, HELMERT & PISTORE

matching service advertisements against service requests. The discovery result is the set of services
whose advertisement matches the request. The descriptions of services and requests are similar to
the functional-level service descriptions, i.e., the planning operators that we use here. However, the
terminology in these works is slightly different from ours, and they also describe additional kinds
of matches. The notions given by Li and Horrocks (2003) have the closest relation to ours. Service
descriptions are defined in terms of constructed Description Logic concepts. Say A is the concept
describing the advertisement, and R is the concept describing the request. Then Li and Horrocks
say that A and R have: an “exact match” if A = R; a “plug-in match” if A J R; a “subsume match”
if A C R; and an “intersection match” if AT R [Z L. To compare this to our setting, consider the
situation where A is the effect of action a, and R is the precondition of action r. Exact matches
are a special case of plug-in matches which we do not distinguish herein. Intersection matches
correspond to what we call partial matches. Concerning plug-in and subsume matches, matters are
more subtle. The intuitive meaning of “plug-in match” is that “the advertisement fully suffices to
fulfill the request”. In planning terms, this means that the effect of a implies the precondition of r.
However, in service discovery this is traditionally taken to mean that every requested entity is being
provided, i.e., A O R. The latter notion — where the precondition of » implies the effect of a — is
not meaningful in planning. Hence we use only one of the two notions, in correspondence to Li and
Horrocks’s “subsume matches”.

In contrast to the work of Li and Horrocks (2003), and to our work, Paolucci et al. (2002) and
Kumar et al. (2007) define matches for individual input/output parameters in service descriptions,
rather than for service descriptions on a more global level (precondition/effect for us, constructed
concept for Li & Horrocks, 2003). On the level of individual parameters, Paolucci et al. (2002)
suggest the same notions as Li and Horrocks (2003) except that they do it in a less formal notation,
and they do not define intersection matches. The same is true of Kumar et al. (2007). The latter
authors also define notions of “contains” and “part-of”” matches, relating to the building blocks of
constructed concepts. Obviously, such notions do not make sense in our framework, where there
aren’t any constructed concepts. Finally, Kumar et al. define some ways of aggregating matches for
individual parameters to matches for entire service descriptions. Again, this is not applicable in our
case since we work on a more global level in the first place.

A brief survey of the existing works on WSC is as follows. There is a variety of works that com-
pile composition into more or less standard deterministic planning formalisms (Ponnekanti & Fox,
2002; Srivastava, 2002; Sheshagiri et al., 2003). Some other works (Agarwal, Dasgupta, Karnik,
Kumar, Kundu, Mittal, & Srivastava, 2005b; Agarwal et al., 2005a) additionally focus on end-to-end
integration of SWS composition in the larger context. Akkiraju, Srivastava, Anca-Andreea, Good-
win, and Syeda-Mahmood (2006) investigate techniques to disambiguate concept names. Mcllraith
and Fadel (2002) achieve composition with particular forms of non-atomic services, by modeling the
latter as atomic actions that take the meaning of a kind of macro-actions. Narayanan and Mcllraith
(2002) obtain a composition ability as a side-effect of verifying SWS properties using Petri Nets.
Kuter, Sirin, Nau, Parsia, and Hendler (2005), Au, Kuter, and Nau (2005), and Au and Nau (2006)
focus on information gathering at composition time, rather than at plan execution time. McDermott
(2002) treats the actual interaction (communication) with a web service as a planning problem.

Mediratta and Srivastava (2006) design an approach to WSC based on conditional planning, i.e.,
a form of planning under uncertainty. While this suggests a close relation to our work, the focus
of Mediratta and Srivastava’s work is actually quite different from ours. Mediratta and Srivastava
do not consider output variables, and neither do they consider any domain axiomatizations. The

98

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

only overlap with our formalism lies in that they allow incomplete initial state descriptions, i.e.,
initial states that assign a value to only a subset of the propositions. They handle observation
actions which allow observing the value of any unspecified proposition. To ameliorate the need
for complete modeling, they consider a definition of “user acceptable” plans, where only a subset
of the plan branches, as specified by the user, are guaranteed to lead to the goal. The latter may be
an interesting option to look into when extending our framework to handle partial observability.

Two approaches explore how to adapt formalisms from so-called “hand-tailored planning” for
SWS composition. The approaches are based on Golog (Mcllraith & Son, 2002) and HTN plan-
ning (Sirin et al., 2004), respectively. These frameworks enable the human user to provide control
information. However, non-deterministic action choice is allowed. If no control information is
given, then planning is fully automatic. Hence, in this sense, these frameworks are strictly more
powerful than planning without such control information. Further, both approaches are capable of
handling advanced plan constructs such as loops and branches. In Golog, the possible plans — the
possible composition solutions — are described in a kind of logic where high-level instructions are
given by the programmer, and the planner will bind these instructions to concrete actions as part
of the execution. In HTN, the programmer supplies the planning algorithm with a set of so-called
“decomposition methods”, specifying how a certain task can be accomplished in terms of a com-
bination of sub-tasks. Recursively, there are decomposition methods for those sub-tasks. Thus the
overall task can be decomposed in a step-wise fashion, until atomic actions are reached. Neither
Mcllraith and Son (2002) nor Sirin et al. (2004) are concerned with handling ontology axioms, as
we do in this paper. Hence, combining the insights of both directions has synergetic potential, and
is an interesting topic for future work.

Another approach capable of handling advanced plan constructs (loops, branches) is described
by Pistore et al. (2005b), Pistore, Traverso, Bertoli, and Marconi (2005¢), Pistore et al. (2005a), and
Bertoli, Pistore, and Traverso (2006). In this work, “process level” composition is implemented, as
opposed to the profile/capability level composition as addressed in this paper. At the process level,
the semantic descriptions detail precisely how to interact with the SWS, rather than characterizing
them only in terms of preconditions and effects. Pistore et al. (2005b, 2005¢, 2005a) and Bertoli
et al. (2006) exploit BDD (Binary Decision Diagram) based search techniques to obtain complex
solutions fully automatically. However, ontology axioms are not handled and input/output types are
matched based on type names.

There are only a few approaches where ontology axioms are used and the requirements on the
matches are relaxed. One of those is described by Sirin, Hendler, and Parsia (2003), Sirin, Parsia,
and Hendler (2004), Sirin and Parsia (2004), and Sirin et al. (2006). In the first two papers of
this series (Sirin et al., 2003, 2004), a SWS composition support tool for human programmers is
proposed: at any stage during the composition process, the tool provides the user with a list of
matching services. The matches are found by examining the subconcept relation. An output A
is considered a match of input B if A C B. This corresponds to plug-in matches. In later work
(Sirin & Parsia, 2004; Sirin et al., 2006), the HTN approach (Sirin et al., 2004) mentioned above
is adapted to not work on the standard planning semantics, but on the description logics semantics
of OWL-S. The difficulties inherent in updating a belief are observed, but the connection to belief
update as studied in the literature is not made, and it remains unclear which solution is adopted.

As far as we are aware, all other methods with more relaxed matches follow what we have here
termed a message-based approach to WSC. These approaches were already discussed in some depth
in Section 2.3. Next, we give a few more details on the ones most closely related to our work. The

99

HOFFMANN, BERTOLI, HELMERT & PISTORE

approach by Liu et al. (2007) was discussed in sufficient detail already in Section 2.3, so we do not
reconsider this here.

Meyer and Weske (2006) handle ontology axioms in their WSC tool, but do not provide a
semantics for action applications. Reasoning is only used to determine whether a particular output
can be used to establish a particular input, so the approach can be classified as “message-based”,
in our terms. The kind of matches handled is said to be plug-in. To the best of our knowledge,
this tool is the only existing WSC tool that employs a relaxed plan based heuristic function, like
CFF. However, through various design decisions, the authors sacrifice scalability. They explicitly
enumerate all world states in every belief, and hence suffer from exponentially large beliefs. They
search forward with parallel actions and consequently suffer from a huge branching factor. They
take their heuristic to be relaxed planning graph length (rather than relaxed plan length) and thus
suffer from the fact that, most of the time, /%" is a much less informative heuristic than h* (Bonet
& Geffner, 2001; Hoffmann, 2005).

An approach rather closely related to ours, in that it can handle partial matches, is described
by Constantinescu and Faltings (2003) and Constantinescu et al. (2004a, 2004b). In this work the
ontology is assumed to take the form of a tree of concepts, where edges indicate the subconcept
relation. Such a tree is compiled into intervals, where each interval represents a concept and the
contents are arranged to correspond to the tree. The intervals are used for efficient implementation
of indexing in service lookup (discovery), as well as for matching during composition. The latter
searches forward in a space of “switches”. Starting at the initial input, if the current input is of type
A, then a service with input A; matches if A N A; # 0. Such services are collected until the set
of the collected A; covers A (that is, until the union of the intervals for the various A; contains the
interval for A). The collected services form a switch, and in the next step of the search, each of their
outputs becomes a new input that must be treated (i.e., the switch is an AND node). Composition
is interleaved with discovery, i.e., in every search state discovery is called to find the services that
match this state. The search proceeds in a depth-first fashion. Major differences to our work are
the following. First, the formalization is very different, using intervals vs. using standard notions
from planning based on logics. Second, the approach interleaves discovery and composition, which
are separate steps in our framework (web service discovery is needed to determine the “operators”
of a WSC task). Third, the approach considers concept trees vs. clausal integrity constraints. Last,
the approach uses depth-first search, whereas one of the main points we are making is that one can
exploit the heuristic techniques implemented in standard planning tools for scalable WSC.

Finally, an interesting approach related to planning is described by Ambite and Kapoor (2007).
To capture the dependencies between different input variables of a web service, the input is de-
scribed in terms of a relation between those variables. The same is done for the outputs. The
relations are formulated in terms of logical formulas relative to an ontology. The underlying for-
malism is first-order logic, so the modeling language is quite expressive.>* Reasoning is performed
in order to establish links (“messages”, in our terms) between inputs and outputs. The algorithmic
framework in which that happens is inspired by partial-order planning (Penberthy & Weld, 1992),
starting from the goal relation and maintaining a set of open links. The solution is a DAG of web
services where links correspond to different kinds of data exchanges (selection, projection, join,
union). Automatic insertion of mediator services, e.g., for converting a set of standard formats, is
also supported.

24. At the cost of undecidable reasoning, which according to the authors is not a major issue in practice.

100

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

To some extent, our preconditions/effects and clausal integrity constraints can be used to model
“relations” in the sense of Ambite and Kapoor (2007). Say r is a k-ary relation with definition
¢, describing the input of a web service. We set the corresponding operator’s precondition to
r(x1,...,xx), and we transform ¢ into a set of universally quantified clauses. As long as the
latter can be done, and as long as the ontology axioms can be likewise transformed, we obtain a
model equivalent to that of Ambite and Kapoor. In that sense, the main modeling advantage of the
approach of Ambite and Kapoor over WSC| 4 is existential quantification. It is an open question
whether such quantification can be accommodated in our framework. Insertion of mediator services
can be supported in WSC| f,,4, but only in the limited sense of recognizing, via particular precon-
ditions, that a particular kind of mediator is required. Modeling the actual data flow is bound to be
awkward. In summary, the work of Ambite and Kapoor is more advanced than ours from a data de-
scription and transformation point of view. On the other hand, Ambite and Kapoor neither consider
belief update, nor do they place their work in the context of a fully-fledged planning formalism, and
they are less concerned with exploiting the heuristic technologies of recent planners. Combining
the virtues of both approaches — within either framework — is an interesting direction for further
research.

8. Discussion

We have suggested a natural planning formalism for a significant notion of web service composition
at the profile / capability level, incorporating on-the-fly creation of constants to model outputs, in-
complete initial states to model incomplete user input, conditional effects semantics to model partial
matches, and, most importantly, clausal integrity constraints to model ontology axioms. We have
identified an interesting special case, forward effects, where the semantics of action applications
is simpler than in the general case. We have demonstrated how this relates to the belief update
literature, and we have shown how it results in reduced computational complexity. Forward effects
relate closely to message-based WSC, and our results serve both to put this form of WSC into con-
text, and to extend it towards a more general notion of partial matches. Further, we have identified a
compilation into planning under (initial state) uncertainty, opening up an interesting new connection
between the planning and WSC areas.

Our empirical results are encouraging, but should not be over-interpreted. While our test sce-
narios serve to capture some structural properties that are likely to appear in applications of WSC
technology, our approach has yet to be put to the test of actual practice. The same, however, can be
said of essentially all current planning-based WSC technology, since that field is still rather imma-
ture. In that sense, a more thorough evaluation of our approach, and of planning-based WSC as a
whole, is a challenge for the future.

Apart from such evaluation, there are several directions for research improving and extending
the technology introduced herein. A line of research that we find particularly interesting is to adapt
modern planning tools for WSC, starting from our special cases, where the complications incurred
by integrity constraints are more manageable. We have already outlined a few ideas for adapting
CFF, and pointed out that new challenges arise. It appears particularly promising to tailor generic
heuristic functions, originating in planning, to exploit the typical forms of ontology axioms as occur
in practice. Considering the wealth of heuristic functions available by now, this topic alone provides
material for a whole family of subsequent work.

101

HOFFMANN, BERTOLI, HELMERT & PISTORE

Acknowledgments

We thank the anonymous reviewers, as well as the managing editor Derek Long, for their comments,
which were of significant help for improving the paper.

Jorg Hoffmann performed part of this work while being employed at the University of Inns-
bruck, Austria. His work was partly funded through the European Union’s 6th Framework Pro-
gramme under the SUPER project (IST FP6-026850, http://www.ip-super.org).

Piergiorgio Bertoli’s and Marco Pistore’s work was partly supported by the project “Software
Methodology and Technology for Peer-to-Peer Systems” (STAMPS).

Malte Helmert’s work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). See www . avacs . org for more information.

Appendix A. Proofs

We first formally prove Proposition 1, stating that negative effects can be compiled away in WSC.
Before we do so, we first need to introduce the compilation formally. Assume a WSC task (P,
®r¢, O, Co, ¢o, pc:). We construct a second WSC task (P, @7, 0", Cy, ¢o, ¢c), where initially
Pt, <I>}”C and O are the same as P, ®;¢ and O, respectively. We proceed as follows. Let G €
P be a predicate with arity k, so that there exists o € O, o = (X,,pre,, Y, eff,) where eff,

contains a negative literal ~G(z1, ..., z). We introduce a new predicate notG into P+, and we
introduce the two new clauses V1, ...,z : G(x1,...,2k) V notG(xy,...,z) and Vo, ..., xg
-G(z1,...,xE) V "notG(z1,...,x). For every operator o whose effect contains a negation of
G, we replace, in eff,, =G(ay, ..., a;) with notG(aq, ... ,ak).25 We continue doing so until no

negative effect literals remain in O

If @ is an action in (P, ®;c, O, Cy, ¢g, d) then we denote by a™ the corresponding action
in (P, @}, 0%, Cy, ¢, ¢c:). We also use this notation vice versa, i.e., if a™ is an action in
(P, @}rc, O, Co, ¢o,) then a denotes the corresponding action in (P, ®;¢, O, Cy, ¢o, ¢). If
s = (C4, I) is a state using the predicates P, then we denote by s™ a state using the predicates P,
with the following properties: Cy+ = Cj; for all p € P we have I+ (p) = I,(p); for all notp
where p € P we have I+ (notp) = 1iff I,(p) = 0. Since there is, obviously, exactly one such
s, we will also use this correspondence vice versa.

Proposition 1 Assume a WSC task (P, ®;¢c, O, Cy, ¢o, ¢c). Let (PT, q)/;&, O+, Co, ¢o, i) be
the same task but with negative effects compiled away. Assume an action sequence (a1, ..., an).
Let b be the result of executing (a1, . ..,a,) in (P, ®1c, O, Co, ¢o, ¢c), and b* is the result of
executing (af ,...,a}) in (P¥, <I>;FC, O™, Cy, do, ¢c). Then, for any state s, we have that s € b iff
st ebt.
Proof: By induction over the length of the action sequence in question. If the sequence is empty,
then we have to consider the initial beliefs of the two tasks, for which the claim follows directly by
definition. For the inductive step, say that the claim holds for b and b™, and a is an action. We need
to show that, for any state s, we have that s € res(b, a) iff s™ € res(b™,a™).

For the direction from right to left, say s € res(b™,a™). By definition we have st €

res(sar, a™) for a state sar € b*. By induction hypothesis, so € b. It therefore suffices to show that

25. The arguments a; here may be either variables or constants.

102

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

s € res(so,a). We need to show that (1) s = ®7¢ Aeff,, and (2) s differs from s in a set-inclusion
minimal set of values. (1) is obvious from the definitions. Assume to the contrary of (2) that there
exists s1 so that s; = ®r¢ A eff, and s; is identical to s except that there exists at least one propo-
sition p where s1(p) = so(p) but s(p) # so(p). By definition, we get that s = @, A eff,+.
Further, we get that s (p) = s§ (p) but s™(p) # sg (p), and altogether that s; < sT. This is a

contradiction to sT € res(s™, a™), and hence proves that s € res(sg, a) as desired.

The direction from left to right proceeds in the same fashion. Say s € res(b, a). By definition
we have s € res(sp,a) for a state sy € b. By induction hypothesis, saL € b*. It then suffices to
show that sT € res(sg,a™). We need to show that (1) s™ |= @/, Aeff, and (2) sT differs from s
in a set-inclusion minimal set of values. (1) is obvious from the definitions. Assume to the contrary
of (2) that there exists sf so that sf = CIJ}FC A eff,+ and sf is identical to s™ except that there
exists at least one proposition p where s{ (p) = s (p) but s (p) # s (p). By definition, we get
that 51 = ®7¢ A eff,. Further, if p € P%o then we get that s1(p) = so(p) but s(p) # so(p). If
p = notq & PCo then we get the same property for ¢. Altogether, we get that s, <50 8. Thisisa

contradiction to s € res(s, a), and hence proves that st € res(s{, a™) as desired. O
Theorem 1 Assume a WSC task with fixed arity, and a sequence (ay,...,a,) of actions. It is
15 -complete to decide whether (a1, . .., ay) is a plan.

Proof: Membership is proved by a guess-and-check argument. First, observe that, for arbitrary s, s/,
and A, we can decide within coNP whether s’ € res(s, A). Guess a state s” where Cy» = C5 U E,.
Check whether s” = ®;c A eff,. Check whether Iy £ Igs. Then s’ € res(s,a) iff no guess
succeeds. Further, for an action a, deciding whether a is inconsistent is, obviously, equivalent
to a satisfiability test, so this is contained in NP. With these instruments at hand, we can design
a guess-and-check procedure to decide whether (ai,...,a,) is a plan. We guess the proposition
values along (ai,...,a,). We then check whether these values comply with res, and lead to an
inconsistent action, or to a final state that does not satisfy the goal. In detail, the checking proceeds
as follows. First, check whether the initial proposition values satisfy ® ;o A ¢g. If not, stop without
success. Otherwise, iteratively consider each action a;, with pre-state s and post-state s’. Check
with an NP oracle whether a is inconsistent. If yes, stop with success. If not, test with an NP oracle
whether s’ € res(s,a). If not, stop without success. Otherwise, if i < n, then go on to a;41. If
i = n, then test whether s’ |= ¢¢. Stop with success if s’ [~ ¢, stop without success if s’ = ¢g.
(a1, ...,ay) is a plan iff no guess of proposition values is successful.

Hardness follows by the following adaptation of the proof of Lemma 6.2 from Eiter and Gottlob
(1992). Validity of a QBF formula VX.3Y.¢[X, Y], where ¢ is in CNF, is reduced to plan testing
for a single action a. We use the O-ary predicates X = {z1,...,2m}, ¥ = {y1,...,yn}, and
new 0-ary predicates {z1,...,2m,7,t}. The set of operators contains the single operator o with
empty in/out parameters, empty precondition, and effect ¢. The initial constants are empty; ¢ is the
conjunction of all x;, all y;, all z;, r, and —t; ¢ is r. The theory is:

n

(N\Ctvaiva) AN\ -z v =z) A (N GtV =r v E) A (N (Vs V)

i=1 i=1 Ceo =1

103

HOFFMANN, BERTOLI, HELMERT & PISTORE

where ¢ is viewed as a set of clauses C'. More readably, the theory is equivalent to:

m n
t=[(Nwi=-z)A =) A\ w) =)
i=1 =1
We refer to the initial belief as b. The plan to test contains the single action ¢ based on (equal to, in
fact) 0. We refer to the resulting belief as . Obviously, b contains a single state s where everything
except ¢ is true. Also, a is consistent: any interpretation that sets r and all y; to 0 satisfies ® 7o Aeff,,.

The theory conjuncts x; = —z; make sure that each w € b’ makes exactly one of z;, z; true.
In particular, the different assignments to X are incomparable with respect to set inclusion. Hence,
we have that for every assignment a x of truth values to X, there exists a state s’ € b’ that complies
with ax: ax is satisfiable together with @7~ A eff,, and any other assignment a’X is more distant
from s in at least one variable (e.g., if ay (z;) = 1 and ax (z;) = 0 then ax is closer to s than dy
regarding the interpretation of z;).

We now prove that, if a is a plan, then VX.3Y.¢[X, Y] is valid. Let ax be a truth value assign-
ment to X. With the above, we have a state s’ € ¥’ that complies with ax. Since a is a plan, we
have s’ |= r. Therefore, due to the theory conjunct = ¢, we have s’ |= ¢. Obviously, the values
assigned to Y by s’ satisfy ¢ for ax.

For the other direction, say VX.3Y.¢[X, Y] is valid. Assume that, contrary to the claim, a is not
a plan. Then we have s’ € b’ so that s’ [~ r. But then, due to the theory conjunct (\/}_, y;) = r,
we have that s sets all y; to false. Now, because V.X.3Y.¢[X, Y] is valid, there exists a truth value
assignment ay to Y that complies with the setting of all z; and z; in s. Obtain s” by modifying s’
to comply with ay, and setting r to 1. We have that s” = ®;c A eff,. But then, s” is closer to s
than s’, and hence s’ & ' in contradiction. This concludes the argument. O

Theorem 2. Assume a WSC task with fixed arity, and a natural number b in unary representation.
Itis Eg—complete to decide whether there exists a plan of length at most b.

Proof: For membership, guess a sequences of actions containing at most b actions (note that the
size of such a sequence is polynomial in the size of the input representation). By Theorem 1, we
can check with a IT5 oracle whether the sequence is a plan.

Hardness follows by an extension of the proof of Lemma 6.2 of Eiter and Gottlob (1992). Valid-
ity of a QBF formula 3X.VY.3Z.¢[X, Y, Z], where ¢ is in CNF, is reduced to testing plan existence.
We use the O-ary predicates X = {z1,...,2,}, Y = {y1,...,ym}, Z = {z1,..., 2}, and new
O-ary predicates {q1, ..., qm,7t, f1,- .. fn, I, g}. The set of operators is composed of:

e ol =0, fiN--ANfuNh, Dt AgA—h)
e Forl <i<mn:o%:=(0,h0,z;Af)
e Forl <i<n:o™i:=(0,h,0 -x;Af)

The initial constants are empty. The initial literal conjunction ¢g is composed of all y;, all z;, all g;,
r, —t, all =f;, h, and —g. That is, the y;, z;, and ¢; as well as r and h are true, while the f; as well
as ¢ and g are false. No value is specified (only) for the z;. The goal ¢ is A g. The theory is:

(/\(ﬁt\/yi Vi) A (/\(ﬁt\/ —yi V =gi)) A (/\ (7t V-orvC)) A (/\(ﬁt\/ —z; V')
i=1 i=1 Ceo =1

104

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

where ¢ is viewed as a set of clauses C'. More readably, the theory is equivalent to:

zi) =)]

=

t=[(\wi=-a)AT=0) A
=1

=1

First, note a few obvious things about this construction:
e o' must be included in any plan.
e Once o' is applied, no action can be applied anymore.
e Before o is applied, either 0% or o™*i must be applied, for every 1 < i < n.

e The theory is “switched off”, i.e., made irrelevant because ¢ is false, up to the point where o'
is applied.

That is, any plan for this task must first apply o™ or 0”7, for every 1 < ¢ < n, thereby choosing a
value for every x;. Then, o' must be applied and the plan must stop. Before applying of, no changes
are made to the states except that the values of z; are set and that the f; are made true one after
the other. Hence, the belief b in which of is applied contains a single state s which corresponds to
an extension of ¢y with a value assignment for X, where the values of the f; have been flipped.
We denote the value assignment for X in s with ay. We further denote b’ := res(b, o). Note that
o' is consistent: any interpretation that sets 7 and all z; to 0, besides setting the immediate effects
t A\ g A —h, satisfies ;o A eff,:. Obviously, all of the applications of 0™ and o™*¢ are consistent as
well.

The theory conjuncts y; = —¢; make sure that each w € b’ makes exactly one of y;, g; true. In
particular, the different assignments to Y are incomparable with respect to set inclusion. Hence, we
have that for every assignment ay of truth values to Y, there exists a state s’ € b’ that complies with
ay: ay is satisfiable together with ® ;¢ A eff ¢, and any other assignment a}, is more distant from s
in at least one variable (e.g., if a}-(y;) = 1 and ay (y;) = 0 then ay is closer to s than a} regarding
the interpretation of ¢;).

We now prove that, if there exists a plan @ yielding assignment a x, then 3X.VY.37.¢[X,Y, Z]
is valid. Let ay be an arbitrary truth value assignment to Y. Then we have a state s’ € V' that
complies with ax and ay. ax and ay are satisfiable together with ® ;o A eff, .. With the above, any
other assignment a4 is more distant from s in at least one variable. And, of course, if one deviates
from a x then one is more distant from s in the respective variable. Since @ is a plan, we have s’ |= 7.
Therefore, due to the theory conjunct = ¢, we have s’ = ¢. Obviously, the values assigned to Z
by s’ satisfy ¢ for ax and ay. This proves the claim because ay can be chosen arbitrarily.

For the other direction, say 3X.VY.3Z.¢[X, Y, Z] is valid. Let a x be an assignment to X so that
VY.3Z.¢lax/X,Y, Z] is valid. Let d be the corresponding plan, i.e., @ first applies, for 1 < i < n,
either 0% or 0% according to ax. Thereafter, @ applies o'. Assume that @ is not a plan. Then we
have s’ € b’ so that s’ [~ r. But then, due to the theory conjunct (\/;"_ z;) = r, we have that s sets
all z; to false. Now, because VY.3Z.¢[ax/X,Y, Z] is valid, there exists a truth value assignment
az to Z that complies with the setting of all z;, y;, and ¢; in s. Obtain s” by modifying s’ to comply
with az, and setting r to 1. We have that s” |= ®;¢ A eff,:. But then, s” is closer to s than s’, and
hence s’ ¢ b in contradiction. This concludes the argument. O

105

HOFFMANN, BERTOLI, HELMERT & PISTORE

Theorem 3. Assume a WSC task. The decision problem asking whether there exists a plan is
undecidable.

Proof: This result holds even with an empty background theory, a complete specification of the
initial state, predicates of arity at most 2, operators of arity at most 2, a goal with no variables at all
(arity 0), and only positive literals in preconditions and the goal. The result follows with a minor
modification of Tom Bylander’s proof (Bylander, 1994) that plan existence in propositional STRIPS
planning is PSPACE-complete.?® The original proof proceeds by a generic reduction, constructing a
STRIPS task for a Turing Machine (TM) with polynomially bounded space. The latter restriction is
necessary to model the machine’s tape: tape cells are pre-created for all positions within the bound.
What makes the difference between PSPACE-membership and undecidability is the ability to create
constants. We can introduce simple operators that allow us to extend the tape, at both ends.

In detail, say the TM has (a finite number of) states ¢ and tape alphabet symbols a (where b is the
blank); ¢ is the transition function, qq is the initial state, and F' is the set of accepting states; w is the
input word. Our planning encoding contains the following predicates. State(q) indicates that the
current TM state is g. In(a, ¢) indicates that the current content of tape cell ¢ is a. Neighbors(c,c’)
is true iff ¢’ is the (immediate) right neighbor of ¢. At(c) indicates that the current position of the
TM head is c¢. Rightmost(c) (Le ftmost(c)) is true iff ¢ currently has no right (left) neighbor. The
set of initial constants contains all states g, all alphabet symbols a, and tape cells ¢ corresponding
to w. By the initial literals, all the propositions over these constants are assigned truth values as
obvious. For every transition (¢, a,¢’,a’, R) € § we include an operator:

({z,2'}, State(q) A In(z,a) A Neighbors(xz,z') A At(z),

0, State(q') A =State(q) A In(z,a’) A —=In(x,a) A At(x') A —~At(x)).

Obviously, this encodes exactly that transition. We do likewise for transitions (¢, a,q’,a’, L) € 6.
To model the final states, we introduce a 0-ary predicate (7, and include for each ¢ € F' an operator:

(0, State(q), 0, Q)
We finally include the operators:
({z}, Rightmost(z), {2}, Neighbors(x,z') A In(b,z') A Rightmost(z') A =Rightmost(x))
and
({2'}, Leftmost(z'), {x}, Neighbors(xz,x") A In(b,x) A Leftmost(z) A = Leftmost(z'))

With these definitions, it is easy to verify that there exists a plan iff the TM can reach an accepting
state on w. O

Lemma 1. Assume a WSC| 4 task, a reachable state s, and an action a. Then res(s,a) =

res| fwd(s, a).

26. Propositional STRIPS is like our framework, but with an empty background theory, a complete specification of
the initial state, a goal with no variables, only positive literals in preconditions and the goal, and with no output
parameters in the operators.

106

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Proof: If a is not applicable to s, then the claim holds trivially. Consider the other case. By
Equation 3, res(s, a) is defined as

(5.0) im {(C", ') | C" = Cs U Eg, I' € min(s,C', @10 Neff,)} appl(s,a)
res(s,a) := {s} otherwise

where min(s, C’, ® ;¢ A eff,) is the set of all C’-interpretations that satisfy ® ;o A eff, and that are
minimal with respect to the partial order defined by I; <, I :iff for all propositions p over Cj, if
Ir(p) = Is(p) then I1(p) = Is(p).

It is obvious that res| s,q(s, a) C res(s, a) —if Iy satisfies ®rc A eff, and Iy is identical to I,
on the propositions over Cy, then in particular /s is minimal according to <j.

For the other direction, let s’ € res(s,a). Assume that Iy (p) # Is(p) for some proposition p
over Cs. Define s” to be equal to s’ except that Iy (p) := Is(p). Obviously, Iy £ Io. It now
suffices to show that s” |= ® ;¢ A eff,: then, we get Iy & min(s, C’, ®;¢ A eff,) in contradiction,
hence I agrees with I on all propositions p over C, hence s’ € res| fa(s, a).

As before, denote with PCsTFa the set of all propositions with arguments in Cy U E,, and
with at least one argument in F, and denote with ®;¢[Cs + E,] the instantiation of ® ;o with all
constants from Cs U E,, where in each clause at least one variable is instantiated from E,. To see
that s” = ® ;¢ A eff,, consider first that this is equivalent to s” = ®;0[Cs U E,| A eff,, which in
turn is equivalent to s” |= ®;c[Cs] AP [Cs + E4] Aeff,. In the last formula, because the task is in
WSC| fwa» ®1¢[Cs] speaks only over the propositions P, whereas ® ;¢ [Cs+E,] Aeff,, speaks only
over the propositions P¢sTFe_ So we can treat these two parts separately. We have s” E ®70[C4)
because s = ®7o[C;s] by prerequisite since s is reachable. We have s” |= ®;¢[Cs + E,] A eff, by

definition. This concludes the argument. |
Theorem 4. Assume a WSC| .4 task with fixed arity, and a sequence (a1, . .., an) of actions. It
is coNP-complete to decide whether (a1, . . ., ay) is a plan.

Proof: Hardness is obvious, considering an empty sequence. Membership can be shown by the
following guess-and-check argument. Say C' is the union of Cj and all output constants appearing
in (Ay,..., Ay,). We guess an interpretation I of all propositions over P and C. Further, for each
1 <t < n, we guess a set C; of constants. We can then check in polynomial time whether 1
and the C; correspond to an execution of (Aj,...,A,). For 1 < ¢ < mnand a € A, say that a
is applicable if I = pre,, Cy C Cy, and E, N C; = (). First, we assert [= ®;¢. Second, for
all t and for all a € A, assert that, if a is applicable, then I |= eff,. Third, assert that Cy; =
CyU{E, | a € A, ais applicable}. Using Lemma 1, it is easy to see that I and the C} correspond
to an execution iff all three assertions hold. Note that I needs not be time-stamped because once
an action has generated its outputs then the properties of the respective propositions remain fixed
forever. The claim follows because, with fixed arity, we can also test in polynomial time whether [
and C,, satisfy ¢. A guess of I and C; is successful if it corresponds to an execution and does not
satisfy ¢¢. Obviously, (A1, ..., A,) is a plan iff there is no such guess of I and C. O

Theorem 5. Assume a WSC| y,q task with fixed arity, and a natural number b in unary represen-
tation. It is ¥5-complete to decide whether there exists a plan of length at most b.

Proof: For membership, guess a sequence of at most b actions. By Theorem 1, we can check with
a I oracle whether the sequence is a plan.

107

HOFFMANN, BERTOLI, HELMERT & PISTORE

To prove hardness, assume a QBF formula 3X.VY.¢[X, Y| where ¢ is in DNF normal form.
(This formula class is complete for Eg.) Say X =z1,...,20, Y =0y1,.. ., Ym,and ¢ =1 V-V
¢r. We design a WSC| f,,q task which has a plan iff 3X.VY.¢[X, Y] is true. The key construction
is to use outputs for the creation of “time steps”, and to allow setting x; only at time step 7. The
y; can take on arbitrary values. Once all x; are set, one operator per ¢, allows to achieve the goal
given ¢y is true. The main property we need to ensure in the construction is that each x; can be set
at most once, i.e., either to 1 or to 0. Then there is a plan for the task iff one can set X so that, for
all Y, at least one ¢; is true — which is the case iff 3X.VY.¢[X, Y] is true.

The predicates for our task are P = {z1(.),...,zn(.), ¥1(),--.,ym(), time(.), start(.),
next(..), goal(.)}. We indicate predicate arity here by the number of points in the parentheses.
For example, the predicate next(..) has arity 2. The theory ® ¢ is empty. The initial constants are
Co = {to}. The initial literals are ¢9 = time(ty). The goal is Jy.goal(y). The operators are as
follows:

e Forall 1 < i < n, we have: o%! = ({tg,...,t;i_1}, start(to)\ newxt(to,t1) A ---A
next(ti_o,ti—1), {t:}, time(t;) Anext(t;—1,t;) Ax;(t;)). Such an operator allows generating
time step ¢, and setting x; to 1 at that step.

e Forall 1 < i < n, we have: 0% = ({to,...,ti_1}, start(to)\ newxt(to,t1) A ---A
next(ti—o,ti—1), {t:}, time(t;) A next(t;_1,t;) A —x;(t;)). Such an operator allows gen-
erating time step ¢, and setting x; to 0 at that step.

e We will define a value B below. For all n < j < n + B, we have: o7 = ({t,...,tj_1},
start(to)\ next(to,t1) A --- A next(tj—a,tj—1), {t;}, time(t;) A next(tj_1,t;)). These
operators allow increasing the time step from n ton + B.

e For 1 <i < k,say ¢; = wlyjy A -+ Ay, A ylyj, A -+ Ayly;,, where xl; € {z;, -x;}
and yl; € {y;,~y;}. We have: 0% = ({to,...,tniB}, start(to)A next(to,t1) A -+ A
next(tnyB-1,tn+B)A Tlojy (tajy) N - N @lajy, (Cejon)N Ylyjy) A - A ylys,, (), {c},
goal(c)). Such an operator allows to achieve the goal after time step n + B, provided the
respective ¢; is true. Note here that the x; precondition literals refer to time step ¢;, i.e., the
value set for z; at an earlier time step, while the y; precondition literals have no arguments
and refer to the initial values of y;, which are arbitrary.

Assume we choose any value for B (polynomial in the input size). If 3X.VY.¢[X, Y] is true,
then, obviously, we can find a plan of size n+ B + k. We apply an 0% or 0®® operator for each z;,
depending on whether ; must be set to 1 or 0. We apply B operators o'/. We apply all operators
0. The respective input parameter instantiations are all obvious.

The opposite direction — proving truth of 3X.VY.¢[X, Y] based on a plan — is more problematic.
The plan might “cheat” by setting some x; to both 1 and 0. The reason why our construction is so
complicated is to be able to avoid precisely this case, based on specifying a strict enough plan length
bound b. The key property is that, in order to cheat for x;, the plan has to generate two sequences
of time steps t;,...,t,+p. Therefore, a lower bound on the length for a cheating plan is n + 2B.
As we have already seen, an upper bound on the length of a non-cheating plan is n + B + k. To
determine our plan length bound b, we now simply choose a B so that any cheating plan will have to
use too many steps: n+2B > n+ B4k is the case iff B > k. So we can set B := k+1, and obtain
b :=n+ 2k + 1. With this bound b, any plan will proceed by setting each x; to a value (n actions),

108

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

increasing the time step to n+ B = n+k+1 (k+ 1 actions), and applying a sufficient subset of the
0% (at most k actions). If the plan cheats, then it needs to apply at least n+2B = n+ 2k + 2 actions
before being able to apply o? actions exploiting different value settings for a 2;. This concludes
the argument. O

Theorem 6. Assume a WSC| t,,q task. The decision problem asking whether there exists a plan is
undecidable.

Proof: We reduce from the halting problem for Abacus machines, which is undecidable. An Aba-
cus machine consists of a tuple of integer variables vy, ..., v; (ranging over all positive integers
including 0), and a tuple of instructions [y, ..., I),. A state is given by the content of vy, . .., v plus
the index pc of the active instruction. The machine stops iff it reaches a state where pc = n. All v;
are initially 0, and pc is initially 0. There are two kinds of instructions. I; : INC j; GOTO I;s incre-
ments the value of v; and jumps to pc = ¢’. I; : DEC j; BRANCH I+ /I;0 asks whether v; = 0. If
so, it jumps to pc = i®. Otherwise, it decrements the value of v; and jumps to pc =i ™.
We map an arbitrary abacus program to a WSC| ¢4 instance as follows:

e Predicates: number(v), zero(v), succ(v',v), valuey(v,t), ..., valuey(v,t), instructiony (t),
..., instructiony,(t)

e Background theory: none (i.e., the trivial theory)
e Operators:

— An operator ({v}, {number(v)},{v'}, {number(v'), succ(v',v)})
— For instructions of the form I; : INC j; GOTO I/, the operator

<{U17 e ,’Uk;,t},

{instruction;(t), value1 (v1,t), . . ., valuey(vy, t), succ(v',v;)},

v},

{instructiony (t'), valuey (v1,t'), ... ,value;_1(vj_1,t'),value;(v', '),
valuej1(vjt1,t'), ..., valueg(vg, t')}).

— For instructions of the form I; : DEC j; BRANCH I+ /I,0, the operators

<{U1, o ,'Uk,t},

{instruction;(t), value1 (v1,t), . . ., valuey(vy, t), succ(v;,v')},

{t'},

{instruction;+ (t'), valuey (v1,t'), . .., value;_1(v;_1,t"), value;(v', 1),
valuej1(vjt1,t), ..., valueg(vg, t')}).

and

<{U1,. . .,Uk,t},

{instruction;(t), value, (v1,t), ..., valuey(vy,t),zero(vj)},

[},

{instructiony ('), valuey (v1,t'), ..., valuej_1(vj_1,t), value;(v;j,t'),
valuej1(vji1,t'), ..., value(vg, t')}).

109

HOFFMANN, BERTOLI, HELMERT & PISTORE

e [nitial constants: vy, to
e [nitial literals: number(vy) Azero(vg) Avaluey (vg,to) A- - - Avaluey(vo, to) Ainstructiony (to)
e Goal condition: 3t.instructiony,(t)

We now describe the intuitive meaning of the constants and predicates. There are two kinds of con-
stants: numbers, which represent natural numbers (including 0), and time points, which represent
computation steps of the Abacus machine. Variables that refer to time points are denoted as ¢ or ¢/
above. All other variables represent numbers.

Three predicates refer to numbers exclusively: number(v) is true iff v encodes a natural number
(and not a time point); zero(v) is true iff v encodes the number 0; and succ (v, v) is true iff v/
encodes the number that is one larger than the number encoded by v. The reduction does not
enforce that every number is uniquely represented (e.g., there may be several representations of the
number 3), but such a unique representation is not necessary. It is guaranteed that the number 0 is
uniquely represented, though.

The remaining predicates encode configurations of the Abacus machine: value; (v, t) is true iff,
at time point ¢, the i-th Abacus variable holds the number represented by v, and instruction;(t) is
true iff the current instruction at time point ¢ is ;.

Obviously, from an accepting run of the Abacus machine we can extract a plan for the task, and
vice versa. This proves the claim. O

To prove Theorems 7 and 8, we first establish a core lemma from which both theorems follow
relatively easily. We need a few notations. We denote beliefs (states) in (P, ®;c, O, Cy, ¢o, i)
with b (s), and we denote beliefs (states) in (P, A, ¢, ¢;) with b (5). Assume a sequence (a1, . . .,
a;) of non-goal achievement actions. Then we denote b := res(bo, (a1, ..., a;)) and b := res(by,
(a1, ..., a;)). Note here that we overload the res function to also denote state transitions in the
compiled task formalism. Further, for a state 5, by C(3) := {c | 3(Exz(c)) = 1} we denote
the constants that exist in 5. We denote by =¢ the relation over states s and ' that is true iff
C(3) = C(3') and 3|¢(5) = 5'|c(s). =c is an equivalence relation, where equivalent states agree on
which constants exist and how they are interpreted. Note that every state s reachable in the compiled
task satisfies s |= ®1c A go A N\, co effo[E,]. Note further that @70 A g A\ ¢ effo[E,] is actually
satisfiable be prerequisite, unless ® ;o A ¢g is unsatisfiable, because the outputs are instantiated with
unique constants and the operators are consistent. For a state s, we define [s] :=

{5 | 5 defined over Co U | J Eo, C(5) = Cs, 5], = I,s = e Ao A\ effy[Eo]}
ocO ocO

That is, [s] is the equivalence class of states 5 reachable in the compiled task that agree with s on
which constants exist and how they are interpreted.

Lemma 3 Assume a WSC|,fa task without inconsistent operators. Let (a1, ..., a;) consist of
non-goal achievement actions, and let b := res(bo, (a1,..., a;)) and b := res(bo, (a1, ..., a;)).

Then b = J).

Proof: The proof is by induction over ¢. In the base case, we have ¢ = 0, i.e., b = by and b = by.
We have by =

{s| Cs=Co,Is = Prc Ao}

110

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

On the other hand, we have by =

{51 C(5)=Co.5k e Ndo A |\ effo[Eo]}

0e0

Obviously, the latter is comprised of one equivalence class for each possibility to assign the propo-
sitions over Cp in a way compliant with 7 A ¢g. This is exactly the claim.

In the inductive case, say we add another action a to (a1, ..., a;). By induction assumption, we
have b = |J,,[s]. We need to prove that res(b, a) = Us eres(va) [8']- Obviously, it suffices to prove
that, for every s € b, we have res([s], a) = Uy gyes(s,0) (8] First, say a is not applicable to s. Then
s is neither applicable in any 5 € [s], and we have res([s], @) = [s] = Uy es(s,q)[8']- Second, say
a is applicable to s. Then by Lemma 1 we have res(s,a) =

{(CsUELT) | e, =1, I' = @ Aeff,}
On the other hand, we have res([s],a) =

{s'|ex.5€[s],C(5) = C(5) UE4,5 o) =5,5 = Pro Ago A /\ eff,[E,)}
ocO

We can re-write the latter into

{5 | C(5") = CaUE,, 5|0, = I,,5 = ®ro Ao A\ effo[Eo]}
ocO

Obviously, as desired, the latter set is comprised of one equivalence class for each possibility to
assign the propositions over C's U E, in a way compliant with s and ®;¢ A eff,. This concludes the
argument. O

Theorem 7. Assume a WSC|sfwa task (P, ®rc, O, Co, ¢o, ¢c) without inconsistent operators,
and a plan (a1, ..., ay) for the compiled task (P’, A, ¢, ¢¢). Then the sub-sequence of non-goal
achievement actions in (a1, . .., ay,) is a plan for (P, ®rc, O, Cy, ¢o, ¢c)-

Proof: If ;0 A ¢g is unsatisfiable, there is nothing to prove, because the start belief of the original
task is empty. For the non-trivial case, first note that, in any plan for the compiled task, the goal
achievement actions can be moved to the back of the plan. Hence, without loss of generality, we can
assume that (a1, . .., a;) consist entirely of non-goal achievement actions, and (a;1, . . . , a;) consist
entirely of goal achievement actions. Denote b := res(bg, (a1, ..., a;)) and b := res(bo, (a1, ...,
a;)). By Lemma 3, we have b = J,, [s]. Since (a1, ..., a,) is a plan for the compiled task, every
5 € b has a tuple of constants satisfying ¢g. With b = (J,,[s], it follows that every s € b satisfies

oG- 0

Theorem 8. Assume a WSC|fya task (P, ®rc, O, Co, ¢o, ¢c) without inconsistent operators,
and a plan {(ay, ..., a,) where every operator o appears with at most one instantiation E, of the
outputs. Then {(ay,...,a,) can be extended with goal achievement actions to form a plan for the
compiled task (P', A, ¢, ¢r;) obtained using the outputs E,,.

Proof: Denote b := res(bo, (a1, ..., ay)) and b := res(bo, (a1, . .., an)). By Lemma 3, we have
b = Usepls]- Since (a1, ..., an) is aplan, every s € b satisfies pi. With b = (J,,[s], it follows that

every s € b has a tuple of constants satisfying ¢g. Attaching all the respective goal achievement
actions yields a plan for the compiled task. O

111

HOFFMANN, BERTOLI, HELMERT & PISTORE

References

3DComplex.org (2008). A web server to browse protein complexes of known 3d structures.
http://supfam.mrc-lmb.cam.ac.uk/elevy/3dcomplex/data/hierarchy_1/root.html.

Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S., & Srivastava, B. (2005a).
Synthy: A system for end to end composition of web services. Journal of Web Semantics,
3(4).

Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., & Srivastava, B. (2005b).
A service creation environment based on end to end composition of web services. In /4th
International Conference on the World Wide Web (WWW’05), pp. 128—137.

Akkiraju, R., Srivastava, B., Anca-Andreea, 1., Goodwin, R., & Syeda-Mahmood, T. (2006). Sema-
plan: Combining planning with semantic matching to achieve web service composition. In
4th International Conference on Web Services (ICWS’06).

Ambite, J., & Kapoor, D. (2007). Automatically composing data workflows with relational descrip-
tions and shim services. In 6th International Semantic Web Conference (ISWC’07).

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Payne, T., & Sycara, K. (2002). DAML-S: Web service de-
scription for the semantic web. In Ist International Semantic Web Conference (ISWC’02).

Au, T.-C., Kuter, U., & Nau, D. (2005). Web service composition with volatile information. In 4th
International Semantic Web Conference (ISWC’05).

Au, T.-C., & Nau, D. (2006). The incompleteness of planning with volatile external information. In
17th European Conference on Artificial Intelligence (ECAI’06).

Baader, F., Lutz, C., Milicic, M., Sattler, U., & Wolter, F. (2005). Integrating description logics
and action formalisms: First results. In 20th National Conference on Artificial Intelligence
(AAAL0S).

Bacchus, F. (2000). Subset of PDDL for the AIPS2000 Planning Competition. The AIPS-00 Plan-
ning Competition Committee.

Bertoli, P, Pistore, M., & Traverso, P. (2006). Automated web service composition by on-the-fly
belief space search. In 16th International Conference on Automated Planning and Scheduling
(ICAPS’006).

Bonet, B., & Geffner, H. (2000). Planning with incomplete information as heuristic search in belief
space. In 5th International Conference on Artificial Intelligence Planning Systems (AIPS’00),
pp. 52-61.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1-2),
5-33.

Branden, C., & Tooze, J. (1998). Introduction to Protein Structure: Second Edition. Garland Pub-
lishing Company, New York. ISBN 0815323050.

Brayton, R., Hachtel, G., McMullen, C., & Sangiovanni-Vincentelli, A. (1984). Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic Publishers.

Brewka, G., & Hertzberg, J. (1993). How to do things with worlds: On formalizing actions and
plans. J. Logic and Computation, 3(5), 517-532.

112

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Bryce, D., Kambhampati, S., & Smith, D. E. (2006). Planning graph heuristics for belief space
search. Journal of Artificial Intelligence Research, 26, 35-99.

Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S., Narayanan, S., Paolucci, M.,
Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K., & Martin, D. (2004). OWL-S:
Semantic Markup for Web Services. OWL-S 1.1. http://www.daml.org/services/owl-s/1.1/.
Version 1.1.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69(1-2), 165-204.

Chasman, D. (Ed.). (2003). Protein Structure Determination, Analysis and Applications for Drug
Discovery. Marcel Dekker Ltd. 0-8247-4032-7.

Chen, Y., Wah, B., & Hsu, C. (2006). Temporal planning using subgoal partitioning and resolution
in SGPlan. Journal of Artificial Intelligence Research, 26, 323-369.

Cimatti, A., Roveri, M., & Bertoli, P. (2004). Conformant planning via symbolic model checking
and heuristic search. Artificial Intelligence, 159(1-2), 127-206.

Constantinescu, 1., & Faltings, B. (2003). Efficient matchmaking and directory services. In 2nd
International Conference on Web Intelligence (WI’03).

Constantinescu, 1., Faltings, B., & Binder, W. (2004a). Large scale, type-compatible service com-
position. In 2nd International Conference on Web Services (ICWS’04).

Constantinescu, 1., Faltings, B., & Binder, W. (2004b). Typed Based Service Composition. In /3th
International Conference on the World Wide Web (WWW’04).

de Giacomo, G., Lenzerini, M., Poggi, A., & Rosati, R. (2006). On the update of description
logic ontologies at the instance level. In 21st National Conference on Artificial Intelligence
(AAAT06).

de Giacomo, G., Lenzerini, M., Poggi, A., & Rosati, R. (2007). On the approximation of instance

level update and erasure in description logics. In 22nd National Conference of the American
Association for Artificial Intelligence (AAAI’07).

de Jonge, M., van der Linden, W., & Willems, R. (2007). eServices for hospital equipment. In 6t/
International Conference on Service-Oriented Computing (ICSOC’07), pp. 391-397.

Edelkamp, S. (2003). Promela planning. In /0th International SPIN Workshop on Model Checking
of Software (SPIN’03).

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003). A logic programming approach to
knowledge-state planning, II: The DLVK system. Artificial Intelligence, 144(1-2), 157-211.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2004). A logic programming approach to
knowledge-state planning: Semantics and complexity. Transactions on Computational Logic,
5(2), 206-263.

Eiter, T., & Gottlob, G. (1992). On the complexity of propositional knowledge base revision, up-
dates, and counterfactuals. Artificial Intelligence, 57(2-3), 227-270.

Fagin, R., Kuper, G., Ullman, J., & Vardi, M. (1988). Updating logical databases. Advances in
Computing Research, 3, 1-18.

113

HOFFMANN, BERTOLI, HELMERT & PISTORE

Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., & Domingue, J. (2006).
Enabling Semantic Web Services — The Web Service Modeling Ontology. Springer-Verlag.

Fersht, A. (1998). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and
Protein Folding. MPS. ISBN-13 9780716732686.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20, 61-124.

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and temporal
action graphs. Journal of Artificial Intelligence Research, 20, 239-290.

Gerevini, A., Saetti, A., Serina, 1., & Toninelli, P. (2005). Fast planning in domains with derived
predicates: An approach based on rule-action graphs and local search. In 20th National Con-
ference of the American Association for Artificial Intelligence (AAAI’0S).

Ginsberg, M., & Smith, D. (1988). Reasoning about action I: A possible worlds approach. Artificial
Intelligence, 35(2), 165-195.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic causal
theories. Artificial Intelligence, 153(1-2), 49-104.

Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation: Prelimi-
nary report. In /5th National Conference on Artificial Intelligence (AAAI’98).

Golden, K. (2002). DPADL: An action language for data processing domains. In Proc. of the 3rd
International NASA Planning and Scheduling Workshop.

Golden, K. (2003). A domain description language for data processing. In Proc. of the Workshop
on the Future of PDDL at ICAPS 03.

Golden, K., Pand, W., Nemani, R., & Votava, P. (2003). Automating the processing of earth ob-
servation data. In Proceedings of the 7th International Symposium on Artificial Intelligence,
Robotics and Automation for Space.

Gomes, C., Selman, B., Crato, N., & Kautz, H. (2000). Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. Journal of Automated Reasoning, 24(1/2), 67-100.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical state vari-
ables. In 6th International Conference on Artificial Intelligence Planning Systems (AIPS’02).

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence Re-
search, 26, 191-246.

Herzig, A. (1996). The PMA revisited. In 5th International Conference on Principles of Knowledge
Representation and Reasoning (KR’96).

Herzig, A., Lang, J., Marquis, P., & Polacsek, T. (2001). Updates, actions, and planning. In /7th
International Joint Conference on Artificial Intelligence (IJCAI’01), pp. 119-124.

Herzig, A., & Rifi, O. (1999). Propositional belief base update and minimal change. Artificial
Intelligence, 115(1), 107-138.

Hoffmann, J. (2005). Where ‘ignoring delete lists’ works: Local search topology in planning bench-
marks. Journal of Artificial Intelligence Research, 24, 685-758.

Hoffmann, J., & Brafman, R. (2006). Conformant planning via heuristic forward search: A new
approach. Artificial Intelligence, 170(6-7), 507-541.

114

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14, 253-302.

Katzuno, H., & Mendelzon, A. (1991). On the difference between updating a knowledge base and
revising it. In 2nd International Conference on Principles of Knowledge Representation and
Reasoning (KR’91).

Kona, S., Bansal, A., Gupta, G., & Hite, D. (2007). Automatic composition of semantic web ser-
vices. In 5th International Conference on Web Services (ICWS’07).

Kumar, A., Neogi, A., Pragallapati, S., & Ram, J. (2007). Raising programming abstraction from
objects to services. In 5th International Conference on Web Services (ICWS’07).

Kuter, U., Sirin, E., Nau, D., Parsia, B., & Hendler, J. (2005). Information gathering during planning
for web service composition. Journal of Web Semantics, 3(2-3), 183-205.

Lecue, F., & Delteil, A. (2007). Making the difference in semantic web service composition. In
22nd National Conference of the American Association for Artificial Intelligence (AAAIL’07).

Lecue, F., & Leger, A. (2006). A formal model for semantic web service composition. In 5th
International Semantic Web Conference (ISWC’06).

Li, L., & Horrocks, 1. (2003). A software framework for matchmaking based on semantic web
technology. In 12th International Conference on the World Wide Web (WWW’03).

Liberatore, P. (2000). The complexity of belief update. Artificial Intelligence, 119(1-2), 141-190.

Lin, F.,, & Reiter, R. (1994). State constraints revisited. Journal of Logic and Computation, 4(5),
655-678.

Liu, H., Lutz, C., Milicic, M., & Wolter, F. (2006a). Reasoning about actions using description
logics with general TBoxes. In 10th European Conference on Logics in Artificial Intelligence
(JELIA 2006).

Liu, H., Lutz, C., Milicic, M., & Wolter, F. (2006b). Updating description logic ABoxes. In /0th In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR’06).

Liu, Z., Ranganathan, A., & Riabov, A. (2007). A planning approach for message-oriented semantic
web service composition. In 22nd National Conference of the American Association for
Artificial Intelligence (AAAI’07).

Long, D., & Fox, M. (2003). The 3rd international planning competition: Results and analysis.
Journal of Artificial Intelligence Research, 20, 1-59.

Lutz, C., & Sattler, U. (2002). A proposal for describing services with DLs. In International
Workshop on Description Logics 2002 (DL’02).

McCain, N., & Turner, H. (1995). A causal theory of ramifications and qualifications. In /4th
International Joint Conference on Artificial Intelligence (IJCAI-95), pp. 1978-1984.

McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence, 4, 463—-502.

McDermott, D. (2002). Estimated-regression planning for interactions with web services. In 6th
International Conference on Artificial Intelligence Planning Systems (AIPS’02).

McDermott, D., et al. (1998). The PDDL Planning Domain Definition Language. The AIPS-98
Planning Competition Committee.

115

HOFFMANN, BERTOLI, HELMERT & PISTORE

McDermott, D. V. (1999). Using regression-match graphs to control search in planning. Artificial
Intelligence, 109(1-2), 111-159.

McGeer, P., Sanghavi, J., Brayton, R. K., & Sangiovanni-Vincentelli, A. (1993). ESPRESSO-
Signature: A new exact minimizer for logic functions. In Proceedings of the 30th ACM/IEEE
Design Automation Conference (DAC-93).

McGuinness, D. L., & van Harmelen, F. (2004). OWL Web Ontology Language Overview (W3C
Recommendation). online at http://www.w3.org/TR/owl-features/.

Mcllraith, S., & Fadel, R. (2002). Planning with complex actions. In 9th International Workshop
on Non-Monotonic Reasoning (NMR’02), pp. 356-364.

Mcllraith, S., & Son, T. C. (2002). Adapting Golog for composition of semantic Web services. In
8th International Conference on the Principles of Knowledge Representation and Reasoning
(KR’02).

Mediratta, A., & Srivastava, B. (2006). Applying planning in composition of web services with a
user-driven contingent planner. Tech. rep. RI 06002, IBM Research.

Meyer, H., & Weske, M. (2006). Automated service composition using heuristic search. In 4th
International Conference on Business Process Management (BPM’06).

Narayanan, S., & Mcllraith, S. (2002). Simulation, verification and automated composition of web
services. In 11th International Conference on the World Wide Web (WWW’02).

Palacios, H., & Geffner, H. (2007). From conformant into classical planning: Efficient translations
that may be complete too. In I7th International Conference on Automated Planning and
Scheduling (ICAPS’07).

Paolucci, M., Kawamura, T., Payne, T., & Sycara, K. (2002). Semantic matching of web services
capabilities. In /st International Semantic Web Conference (ISWC’02).

Pednault, E. P. (1989). ADL: Exploring the middle ground between STRIPS and the situation
calculus. In /st International Conference on the Principles of Knowledge Representation and
Reasoning (KR’89).

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order planner for ADL. In
3rd International Conference on the Principles of Knowledge Representation and Reasoning
(KR’92), pp. 103-114.

Petsko, G. A., & Ringe, D. (2004). Protein Structure and Function. New Science Press. ISBN
1405119225, 9781405119221.

Pistore, M., Marconi, A., Bertoli, P., & Traverso, P. (2005a). Automated composition of web ser-
vices by planning at the knowledge level. In 19th International Joint Conference on Artificial
Intelligence (IJCAI'05).

Pistore, M., Traverso, P., & Bertoli, P. (2005b). Automated composition of web services by planning
in asynchronous domains. In 15th International Conference on Automated Planning and
Scheduling (ICAPS’05).

Pistore, M., Traverso, P., Bertoli, P., & Marconi, A. (2005c). Automated synthesis of composite
BPEL4WS web services. In 3rd International Conference on Web Services (ICWS’05).

116

WEB SERVICE COMPOSITION AND PLANNING UNDER UNCERTAINTY: A NEW CONNECTION

Ponnekanti, S., & Fox, A. (2002). SWORD: A developer toolkit for web services composition. In
11th International Conference on the World Wide Web (WWW’02).

Reiter, R. (1991). The frame problem in the situation calculus: a simple solution (sometimes) and a
completeness result for goal regression. In Artificial intelligence and mathematical theory of
computation: papers in honour of John McCarthy, pp. 359-380.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C.,
Bussler, C., & Fensel, D. (2005). Web Service Modeling Ontology. Applied Ontology, 1(1),
77-106.

Sheshagiri, M., desJardins, M., & Finin, T. (2003). A planner for composing services described in
DAML-S. In Third Symposium on Adaptive Agents and Multi-Agent Systems (AAMAS’03).

Sirin, E., Parsia, B., Wu, D., Hendler, J., & Nau, D. (2004). HTN planning for web service compo-
sition using SHOP2. Journal of Web Semantics, 1(4).

Sirin, E., Hendler, J., & Parsia, B. (2003). Semi-automatic composition of web services using
semantic descriptions. In Workshop “Web Services” at ICEIS’03.

Sirin, E., & Parsia, B. (2004). Planning for semantic web services. In Workshop “Semantic Web
Services” at ISWC’04.

Sirin, E., Parsia, B., & Hendler, J. (2004). Composition-driven filtering and selection of semantic
web services. In AAAI Fall Symposium on Semantic Web Services.

Sirin, E., Parsia, B., & Hendler, J. (2006). Template-based composition of semantic web services.
In AAAI Fall Symposium on Agents and Search.

Smith, D. E., & Weld, D. (1998). Conformant Graphplan. In /5th National Conference of the
American Association for Artificial Intelligence (AAAI-98).

Srivastava, B. (2002). Automatic web services composition using planning. In Knowledge Based
Computer Systems (KBCS’02), pp. 467-477.

Thakkar, S., Ambite, J. L., & Knoblock, C. (2005). Composing, optimizing, and executing plans for
bioinformatics web services. VLDB Journal, Special Issue on Data Management, Analysis
and Mining for Life Sciences, 14(3), 330-353.

Thiébaux, S., Hoffmann, J., & Nebel, B. (2005). In defense of PDDL axioms. Artificial Intelligence,
168(1-2), 38-69.

Winslett, M. (1988). Reasoning about actions using a possible models approach. In 7th National
Conference of the American Association for Artificial Intelligence (AAAI’S8S).

Winslett, M. (1990). Updating Logical Databases. Cambridge University Press.

Zhan, R., Arpinar, B., & Aleman-Meza, B. (2003). Automatic composition of semantic web ser-
vices. In Ist International Conference on Web Services (ICWS’03).

117

