Search Behavior of Greedy Best-First Search

Manuel Heusner
May 10th, 2019

University of Basel

State Spaces

State Space Search

State Space Search

input:

- initial state

State Space Search

input:

- initial state
- goal test function

State Space Search

input:

- initial state
- goal test function
- successor generator

State Space Search

input:

- initial state
- goal test function
- successor generator
- transition cost function

State Space Search

input:

- initial state
- goal test function
- successor generator
- transition cost function output:
- solution path

State Space Search

input:

- initial state
- goal test function
- successor generator
- transition cost function
output:
- solution path
additional information:
- heuristic
\rightsquigarrow heuristic best-first search

Motivation

information of A^{*}

- c^{*} : optimal solution path cost
- $f(s)$: estimate of optimal solution path cost

Motivation

information of A^{*}

- c^{*} : optimal solution path cost
- $f(s)$: estimate of optimal solution path cost
behavior of A*:
- necessary: $f(s)<c^{*}$
- never: $f(s)>c^{*}$
- potential: $f(s)=c^{*}$
- worst case: necessary \& potential
- best case: necessary \& shortest path of potential states
- progress: increase of f-value

Motivation

information of A^{*}

- c^{*} : optimal solution path cost
- $f(s)$: estimate of optimal solution path cost
behavior of A*:
- necessary: $f(s)<c^{*}$
- never: $f(s)>c^{*}$
- potential: $f(s)=c^{*}$
- worst case: necessary \& potential
- best case: necessary \& shortest path of potential states
- progress: increase of f-value

Can we get similar results for greedy best-first search?

Guiding Questions

Given a state space and a heuristic:

- When does GBFS make search progress?
- Which states does GBFS potentially, never or necessarily expand?
- Which are the best-case and worst-case search runs of GBFS?

Greedy Best-First Search

When does GBFS make search progress?

High-Water Mark of State [Wilt \& Ruml,2014]

The highest h-value that GBFS reaches during a search run starting in a state.

High-Water Mark of State [Wilt \& Ruml,2014]

The highest h-value that GBFS reaches during a search run starting in a state.

High-Water Mark of State [Wilt \& Ruml,2014]

The highest h-value that GBFS reaches during a search run starting in a state.

$\operatorname{hwm}(s):= \begin{cases}\min _{\rho \in P(s)}\left(\max _{s \in \rho} h(s)\right) & \text { if } P(s) \neq \emptyset \\ \infty & \text { otherwise }\end{cases}$

High-Water Mark Pruning [Wilt \& Ruml,2014]

GBFS never expands a state s with $h(s)>h w m\left(s_{\text {init }}\right)$.

High-Water Mark Pruning [Wilt \& Ruml,2014]

GBFS never expands a state s with $h(s)>h w m\left(s_{\text {init }}\right)$.

Search Progress

Search Progress

Search Progress

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

progress state:

$$
h w m(s)>h w m(\operatorname{succ}(s))
$$

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

progress state:

$$
h w m(s)>h w m(\operatorname{succ}(s))
$$

episodes of local searches!

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

progress state:

$$
h w m(s)>h w m(\operatorname{succ}(s))
$$

episodes of local searches!

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

progress state:

$$
h w m(s)>h w m(\operatorname{succ}(s))
$$

episodes of local searches!

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

progress state:
$h w m(s)>h w m(\operatorname{succ}(s))$
episodes of local searches!

Search Progress

high-water mark of set of states:

$$
h w m(S):=\min _{s \in S}(h w m(s))
$$

progress state:

$$
h w m(s)>h w m(\operatorname{succ}(s))
$$

episodes of local searches!

Search Progress

GBFS makes progress when expanding a progress state.

Which states does GBFS potentially or never expand?

Progress States

Benches

- progress state s induces bench $\mathcal{B}(s)$

Benches

- progress state s induces bench $\mathcal{B}(s)$

Bench Space

- connects the benches via progress states

Potentially or Never Expanded States

Potentially and Never

Expanded States

GBFS potentially expands a state that is on at least one bench from the bench space.

GBFS never expands all other states.

Which states does GBFS necessarily expand?

Crater and Surface States

- crater state: $h(s)<h w m$ of bench
- surface states: all other states on the bench

Craters

- surface state s induces crater $\mathcal{C}(s)$

Craters

- surface state s induces crater $\mathcal{C}(s)$

Craters

- surface state s induces crater $\mathcal{C}(s)$

Necessarily Expanded States If GBFS expands a surface state s on a bench, then it necessarily expands all the crater states from crater $\mathcal{C}(s)$.

Which is a best-case search run of GBFS?

Crater Space

- connects craters of a bench via surface states

Best-Case Search Run

Best-Case Search Run

- path in crater space
- minimize length of path and number of crater states

Best-Case Search Run

Best-Case Search Run

- path in crater space
- minimize length of path and number of crater states

Best-Case Search Run

Best-Case Search Run

- path in crater space
- minimize length of path and number of crater states

Complexity Results

Given a state space and heuristic:

- NP-complete
- polynomial-time if overlap-free or undirected

Which is a worst-case search run of GBFS?

Worst-Case Search Run

Worst-Case Search Run

- path in bench space
- maximize length of path and number of non-progress states

Worst-Case Search Run

Worst-Case Search Run

- path in bench space
- maximize length of path and number of non-progress states

Worst-Case Search Run

Worst-Case Search Run

- path in bench space
- maximize length of path and number of non-progress states

Complexity Results

Given a state space and heuristic:

- NP-complete
- polynomial-time if overlap-free or undirected

Experiments

- implemented algorithms for extracting the search behavior
- state spaces: classical planning tasks from international planning competitions
- heuristic: h^{ff}

all instances (3903)

instances solved by GBFS (2936)

potential state spaces (1320)

Feasibility: Best-Case and Worst-Case Search Runs

best case
potential state spaces (1320)
worst case
potential state spaces (1320)

NP-	
poly-time	
$(803$ of 814$)$	
complete	
(399 of	
$436)$	

Tie-Breaking Policies

without crater states

with crater states

Conclusion

- search progress based on high-water mark
- criterion for expanded states based on benches and craters
- characterization of best-case and worst-case search runs based on bench space and crate space
- demonstrated potential for improvement of tie-breaking

