Studienarbeit

Implementation eines Planers zur
symbolischen Exploration mit
bindren Entscheidungsdiagrammen

Malte Helmert

= W
r -
e - "]
g o

Studienarbeit
am Institut fir Informatik
der Universitiat Freiburg

18.12.1999

Betreuer:

Prof. Dr. Th. Ottmann
Dr. St. Edelkamp

Inhaltsverzeichnis

1 Einleitung
1.1 Aufgabenstellung oo
1.2 Gliederung
1.3 Klassische Handlungsplanung
1.4 Handlungsplanung als Erfiillbarkeitsproblem
1.5 Boolesche Funktionen und BDDs
1.6 Von STRIPS-Files zur Bindrkodierung

2 Die Algorithmen
2.1 Parsing der STRIPS-Files
2.2 Erkennen konstanter Priadikate
2.3 Erkennen balancierter Pradikate
2.3.1 Balancierte Pradikate
2.3.2 Der Algorithmus
2.3.3 Beispiel und Komplexitdt
2.4 Exploration des Faktraums
2.4.1 Naive Exploration
2.4.2 Fakt-basierte Exploration
2.4.3 Optimierungen
244 Analyse
2.5 Generierung der Zustandskodierung L.
2.6 Aufbau der Transitionsrelation
2.7 BDD-Exploration
2.8 Losungsextraktion oL

3 Empirische Ergebnisse
3.1 AIPScomp™@8
3.2 Bewertung und Ausblick L.

4 Der Planer
4.1 Architektur des Planungssystems
4.2 Verwendung und Aufrufparameter

1 Einleitung

1.1 Aufgabenstellung

Planung ist ein Kernbereich der Kiinstlichen Intelligenz und dient der Losung
von Problemen, die in einem allgemeinen, problemunabhéngigen Formalismus
gegeben sind. Neuere Erfolge [8, 15] in der symbolischen Exploration von Pro-
blemen in der Modellpriifung und von Einpersonenspielen legen die Verallgemei-
nerung des auf die Datenstruktur der bindren Entscheidungsdiagramme aufbau-
enden Suchansatzes in der Planung nahe.

In dieser Studienarbeit wird die Konzeption und Implementation eines voll-
wertigen Planungssystems vorgestellt. Insbesondere werden die folgenden drei
Phasen im Planungsprozess realisiert und dokumentiert:

e Einlesen und Parsen der Problemspezifikation aus einer Datei

e Inferenz einer effizienten bindren Zustandskodierung aus der so gewonne-
nen Information

e Aufbau der Ubergangsfunktion und symbolische Exploration

1.2 Gliederung

Im folgenden wird zunéchst die Problemstellung angesprochen und motiviert,
warum BDDs zur Losung von Planungsproblemen sinnvoll sein kénnen. Dazu
miissen zunéchst einige Schwierigkeiten iiberwunden werden; insbesondere mufl
die Eingabe fiir den Planer in eine kompakte und gut handhabbare binire Ko-
dierung iiberfiihrt werden. Dieses Thema bildet den algorithmischen Kern der
Arbeit. Abgeschlossen wird der algorithmische Teil durch die Anbindung des
eigentlichen Explorationsalgorithmus und die Vorstellung eines Verfahren zur
Extraktion der Losung aus den erzeugten Zustandsmengen.

Anschliefflend werden einige der dabei beobachteten empirischen Ergebnis-
se diskutiert und zu den Fahigkeiten anderer Planungssysteme in Beziehung
gesetzt sowie ein Ausblick auf mogliche Erweiterungen des hier vorgestellten
Ansatzes geboten.

Alle hier vorgestellten Verfahren wurden im Rahmen dieser Studienarbeit in
C++ implementiert. Der abschlielende Teil beschreibt die interne Struktur des
Planungssystems und geht auf dessen Bedienung ein.

1.3 Klassische Handlungsplanung

Das Problem der Handlungsplanung besteht grob gesagt darin, eine Folge von
Operationen zu finden, die einen gegebenen Startzustand in einen bestimmten
Endzustand tiberfiithren [16]. Der dabei verwendete Formalismus ist recht allge-
mein, so dafl Planungsprobleme sehr verschiedenartig sein konnen. Klassische
Beispiele sind Logistik- und Packprobleme, aber auch viele typische Suchpro-
bleme konnen als Planungsprobleme ausgedriickt werden.

Abbildung 1 zeigt ein Beispiel fiir die Spezifikation eines Planungsproblems
in der sogenannten STRIPS-Notation (fiir STanford Research Institute Planning
System) [9]. Es handelt sich um das bekannte Problem der Tiirme von Hanoi,
hier gegeben durch drei Scheiben 1it, med und big und drei Stdben 1, m und r.

(define (domain towers-of-hanoi)
(:predicates (smaller 7d1 7d2) (on 7d1l ?7d2) (clear ?7d))
(:action move :parameters (7move 7from 7to)

:precondition (and (smaller ?7move 7to) (on ?7move 7from)
(clear 7move) (clear 7to))
:effect (and (clear 7from) (on 7move 7to)
(not (clear ?to)) (not (on 7move ?from)))))

(define (problem hanoi-3) (:domain towers-of-hanoi)
(:objects 1 m r 1it med big)
(:init (smaller lit med) (smaller 1lit big) (smaller med big)

(smaller 1lit 1) (smaller lit m) (smaller 1lit r)
(smaller med 1) (smaller med m) (smaller med r)
(smaller big 1) (smaller big m) (smaller big r)

(on big 1) (on med big) (on lit med)
(clear 1lit) (clear m) (clear r))
(:goal (and (on 1lit med) (on med big) (on big r))))

Abbildung 1: Die Tiirme von Hanoi als STRIPS-Files

Fiir eine formale Definition des Planungsproblems miissen nun zunéchst ei-
nige Begriffe eingefiihrt werden:

Ein Objekt ist ein eindeutiger Bezeichner, der fiir eine Entitéit in der mo-
dellierten Doméne steht, in obigem Problem etwa die drei Scheiben 1it,
med und big.

Ein Pradikat ist ein eindeutiger Bezeichner, der zur Modellierung allgemei-
ner Eigenschaften dient, die Objekten zukommen kénnen, etwa die Pradi-
kate smaller und clear in obigem Beispiel. Jedem Préadikat p ist eine Stel-
ligkeit o(p) € Ny zugeordnet. So ist z.B. o(smaller) = 2, o(clear) = 1.

Ein n-stelliges Priadikat und ein n-Tupel von Objekten bilden zusammen
einen Fakt (oder auch ein instantiiertes Pridikat). Ein Fakt modelliert eine
Eigenschaft, die einem Objekt oder einem Tupel von Objekten zukommt.
So wird durch den Fakt (smaller, (med, big)) in obigem Beispiel aus-
gedriickt, dafl die Scheibe med kleiner ist als die Scheibe big. Wir werden
Fakten im folgenden nach dem Schema smaller (med, big) notieren.

Eine Menge von Fakten bildet einen Zustand des Planungsproblems. Der
momentane Zustand der Planungswelt ist durch die Menge der derzeit
giiltigen Fakten eindeutig beschrieben. Ein Beispiel ist der oben angegebe-
ne Startzustand init. Die Endzustinde des Problems sind alle Zusténde,
die die in goal spezifizierten Fakten als Teilmenge enthalten.

Ein Operator ist ein 3-Tupel (V, A, D) von Vorbedingungen, Add-Effekten
und Del-Effekten, wobei V, A und D jeweils Mengen von Fakten sind. Ein
Operator ist auf einem Zustand Z anwendbar, wenn die Vorbedingungen
erfiillt sind, d.h. V' C Z gilt. Er iiberfiihrt Z in den Zustand Z’ = (Z U
A)\ D, wobei gefordert wird, da A und D disjunkt sind.

Operatoren werden durch Operator-Schemata oder Aktionen definiert. So
lassen sich etwa aus der obigen Aktion move durch Einsetzen beliebiger

Objekte fiir die freien Variablen ?move, ?from und ?to z.B. die Operato-
ren move(big, 1, m) und move(lit, med, big) erzeugen. Fiir letzteren
Operator gilt beispielsweise V' = { smaller(lit, big), on(lit, med),
clear(lit), clear(med) }, A = { clear(med), on(lit, big) } und
D = { clear(big), on(lit, med) }.

Mit diesen Begriffen 148t sich das Problem nun wie folgt formulieren: Gege-
ben seien eine Menge P von Pridikaten, eine Menge A von Aktionen (iiber der
Pridikatsmenge), eine Menge O von Objekten, der Startzustand Zy sowie der
Endzustand Z. (jeweils Zustidnde iiber P und O). Gesucht ist eine Folge von
Operatoren (gemifl den Schemata aus A), die den Zustand Z in einen Zustand
Z! mit Z, C Z! iiberfiihrt, sofern eine solche Folge iiberhaupt existiert. Wenn
keine solche Folge existiert, dann soll der Algorithmus dies feststellen und eine
entsprechende Ausgabe erzeugen.

1.4 Handlungsplanung als Erfiillbarkeitsproblem

Im Laufe der Zeit hat es zum Teil sehr unterschiedliche Ansétze zur Losung
von Planungsproblemen gegeben [1, 6, 14]. Einer der klassischen Ansétze be-
steht darin, das Problem in ein Erfiillbarkeitsproblem zu transformieren und
mit einem geeigneten Algorithmus eine erfiillende Belegung zu bestimmen, aus
der sich dann wiederum die erforderlichen Operationen zur Losung des Pla-
nungsproblems ableiten lassen [11]. Dabei soll die Giiltigkeit des Fakts f nach
t Zeitschritten durch die aussagenlogische Variable z ¢, formalisiert werden. Im
folgenden bezeichnet F' die Menge aller Fakten, Z, den Startzustand, Z. den
Endzustand und Op die Menge aller Operatoren.

e Die Giiltigkeit des Startzustands im ersten Zeitschritt wird durch folgende
Konjunktion sichergestellt:

start = /\ Tro N /\ Tf0-

f€Zo feF\Zo

e Das Erreichen des Endzustands im Zeitschritt ¢ formalisiert die Konjunk-

tion
end(t) = /\ Tft.
fez.

e Die Anwendung eines Operators o = (V, A, D) zum Zeitpunkt ¢ 148t sich
formalisieren als

apply(o, t) = /\ T /\ L1 N /\ X f 1 A /\ Tt Tl
fev feA feD FEF\(AUD)

Aus diesen Bestandteilen 148t sich dann das Gesamtproblem zusammenset-
zen:
Problem(n) = start A end(n) A /\ \/ apply(o,).
0<t<n o€Op
Kann man nun eine erfiillende Belegung fiir Problem(n) finden, und sei ng

das kleinste n, so daf} dies moglich ist, so kann man aus den Variablen x; fiir
t €{0,1,...,n0} eine Folge von Zusténden extrahieren, die den Startzustand in

einen Endzustand transformieren. Fiir die so gefundene Zustandssequenz ist es
nicht weiter schwierig, eine korrespondierende Operatorsequenz zu bestimmen,
die die Loésung des Problems darstellt. Die so gefundene Losung ist optimal in
dem Sinne, daf} sie aus einer minimalen Anzahl an Operatoren besteht.

Ein Problem des SAT-basierten Ansatzes besteht darin, dafl sowohl die For-
mel selbst als auch die Anzahl der verwendeten aussagenlogischen Variablen
bereits bei vergleichsweise einfachen Problemen sehr groff werden kénnen. Da-
durch, dafl aus den Operatorschemata sehr viele gleichartige Operationen er-
zeugt werden, entsteht eine Vielzahl &hnlicher Teilformeln. Wiinschenswert wire
demnach eine Représentation in einer Datenstruktur, die diese inhérenten Sym-
metrien ausnutzen kann.

1.5 Boolesche Funktionen und BDDs

Aus diesem Grunde liegt es nahe, sich im Zusammenhang mit Planungsproble-
men mit bindren Entscheidungsdiagrammen (binary decision diagrams, BDDs)
zu beschéftigen. BDDs bieten eine Méglichkeit, boolesche Funktionen (speziell
Funktionen des Typs f : B® — B) kompakt zu représentieren und in effizien-
ter Weise wesentliche Operationen (etwa Konjunktion, Disjunktion oder Exi-
stenzquantifizierung bzgl. bestimmter Variablen) auf ihnen durchzufithren. Wie
BDDs intern strukturiert sind und wie die auf ihnen operierenden Algorithmen
funktionieren, wird in dieser Arbeit nicht diskutiert; BDDs werden hier als black
box betrachtet und lediglich als Vehikel zur Implementation des Planungsalgo-
rithmus benutzt [4].

Wir konzentrieren uns hier vielmehr auf die Frage, wie man BDDs benutzen
kann, um eine Belegung der obigen booleschen Formel zu bestimmen. Zunéchst
lassen sich Zustandsmengen in einer Planungswelt ohne weiteres als boolesche
Funktionen darstellen lassen, indem man sie durch ihre charakteristische Funk-
tion représentiert, d.h. die boolesche Funktion, die auf einen gegebenen binér
kodierten Zustand angewendet genau dann den Wert “Wahr” annimmt, wenn
dieser Zustand in der jeweiligen Zustandsmenge liegt. Ebenso lassen sich Re-
lationen iiber Zustédnden, also Mengen von Tupeln von Zustédnden, iiber ihre
charakteristische Funktion repréasentieren.

Damit kann man nun die drei wesentlichen Bestandteile der obigen Formel:
Startzustand, Endzustand und Ubergang von einem Zeitschritt zum nichsten
(die Transitionsrelation) als BDDs reprisentieren. Durch Berechnung des rela-
tionalen Produkts einer Zustandsmenge mit der Transitionsrelation kann man
nun die Menge der Nachfolgezustdnde berechnen. Im Kontext der obigen Formel
bedeutet das also: Aus der Menge der konsistenten Belegungen der Variablen
x5 (die giiltigen Zustdnde zum Zeitpunkt t) wird die Menge der konsistenten
Belegungen der Variablen x ;41 (der giiltigen Zustédnde zum Zeitpunkt ¢t+1) be-
rechnet. Sobald eine dieser Mengen einen Endzustand enthélt, ist eine erfiillende
Belegung gefunden. Diese muf3 anschliefend noch aus den BDDs extrahiert wer-
den; das dafiir verwendete Verfahren wird spéter noch vorgestellt. Mit anderen
Worten wird also eine Breitensuche iiber dem Zustandsraum durchgefiihrt. Da-
bei ist hervorzuheben, da durch die Verwendung von BDDs der Ubergang von
einem Niveau zum néchsten in einem einzigen Schritt und nicht Zustand fir
Zustand geschieht.

1.6 Von STRIPS-Files zur Bindrkodierung

Leider ist das Verfahren in der bislang beschriebenen Form noch zu einfach, um
groflere Planungsprobleme zu 16sen. Kodiert man jeden Fakt in einer eigenen
booleschen Variable (die sogenannte naive Kodierung), kommt man leicht auf
BDDs mit fiinfstelliger Variablenzahl und wird bei der Exploration unweigerlich
an der Komplexitdt des Problems scheitern.

AuBlerdem ist nicht klar, wie man aus der Beschreibung des Planungspro-
blems in STRIPS-Notation zu einer Kodierung durch boolesche Variablen kom-
men kann und wie man die fiir den Aufbau der Transitionsrelation notwendigen
Operatoren bestimmen kann (alle denkbaren Operatoren zu betrachten, ist auf-
grund der kombinatorischen Explosion normalerweise nicht machbar, und der
weitaus grofite Teil von ihnen kann ohnehin aufgrund unerfiillbarer Vorbedin-
gungen unberiicksichtigt bleiben).

Diese offenen Fragen bilden das eigentliche Problem beim Planen mithilfe
von bindren Entscheidungsdiagrammen, und in den folgenden Abschnitten soll
es darum gehen, dieses Problem zu lésen [7].

2 Die Algorithmen

2.1 Parsing der STRIPS-Files

Der erste Schritt bei der Verarbeitung des Problems besteht darin, die Einga-
bedateien einzulesen und in geeigneten Datenstrukturen abzulegen. In unserem
Fall wurden als Eingabeformat PDDL-Dateien verwendet. Das PDDL-Format
ist das heute allgemein akzeptierte Eingabeformat fiir Planungsprobleme. Es
gibt verschiedene Ebenen der Ausdrucksméchtigkeit innerhalb von PDDL. Wir
haben uns auf die Teilmenge von PDDL beschriankt, die im Wesentlichen dem
STRIPS-Formalismus entspricht und daher auf Erweiterungen wie etwa negierte
Vorbedingungen verzichtet, auch wenn einige dieser Erweiterungen problemlos
in den vorliegenden Rahmen integriert werden kénnten.
Probleme in PDDL werden immer durch zwei Dateien spezifiziert:

e Eine Doménen-Datei, die Priadikate und Aktionen definiert, sowie

e cine Problem-Datei, die Objekte, Start- und Endzustand definiert.

Diese Aufteilung ermdoglicht es, fiir dhnliche Probleme (etwa Varianten der
Tiirme von Hanoi mit unterschiedlich vielen Scheiben) dieselbe Doménen-Datei
zu verwenden und nur die Problem-Datei zu variieren. Das Beispiel aus Abbil-
dung 1 zeigt sowohl die Doménen- als auch die Problemdatei; letztere beginnt
ab der Zeile define (problem hanoi-3).

Eine erste Version des Planers verwendete die Programme flex und bison
(Varianten der Unix-Programme lez und yacc), um die Daten einzulesen, aber
dieser Ansatz wurde zugunsten einer manuellen Implementation verworfen, da
sich zum einen PDDL-Files nur unzureichend durch kontextfreie Grammati-
ken beschreiben lassen und zum anderen die von flex und bison erzeugten
Programmteile schlecht in eine objektorientierte Umgebung integriert werden
konnen.

Die Arbeit in dieser Phase besteht darin, die Daten in einer geeigneten Struk-
tur abzulegen. Dafiir werden im Wesentlichen Vektoren verwendet, die von der
C++ Standard Template Library (STL) zur Verfiigung gestellt werden.

Anschlieflend kann auf alle Priadikate, Aktionen und Objekte iiber ihren Na-
men oder einen ganzzahligen Schliissel zugegriffen werden. Auch den verschiede-
nen moglichen Fakten werden Schliissel zugewiesen, so dafl Zusténde entweder
als Listen von ganzen Zahlen gespeichert werden (was sich fiir Zustinde mit
wenigen Fakten empfiehlt) oder auch durch Bitvektoren repriisentiert werden
konnen, in denen ein gesetztes Bit an Position ¢ bedeutet, dal der Fakt mit
dem Index i diesem Zustand angehort (man sagt: in diesem Zustand wahr ist).
Diese Reprisentation ist bei Zustinden empfehlenswert, in denen sehr viele der
moglichen Fakten auftreten.

Das eigentliche Parsing 148t sich problemlos in linearer Zeit in der Lange
der Eingabe bewiltigen. Der Aufbau der angesprochenen Datenstrukturen zum
Zugriff auf die verschiedenen Entitéiten iiber ihren Namen benotigt insgesamt
Zeit O(nlogn) (wobei n die Anzahl der dargestellten Entitéiten bezeichnet),
da balancierte Bindrbdume verwendet werden. Die in dieser Phase aufgebauten
Datenstrukturen reflektieren die Eingabe selbst und benotigen daher linearen
Platz in der Grole der Eingabe.

2.2 FErkennen konstanter Pridikate

Nach diesen vorbereitenden Mafinahmen beginnt die eigentliche Verarbeitung
der Daten mit der Erkennung konstanter Priadikate. Ein konstantes Prddikat ist
ein Pridikat, das niemals in einer Effekt-Liste (A oder D) eines Operators auf-
tritt. Derartige Priadikate sind in Planungsproblemem sehr hiufig. Sie dienen
zur Modellierung statischer Informationen, in obigem Beispiel etwa der Tat-
sache, daf} die kleine Scheibe 1it kleiner ist als die mittelgrofie Scheibe med.
Weiterhin werden konstante Pradikate oft als Ersatz fiir Typen verwendet, die
es im reinen STRIPS-Formalismus nicht gibt. Beispiele dafiir sind die Pradikate
PACKAGE, TRUCK und LOCATION im Logistik-Beispiel aus Abbildung 2, das uns
(gemeinsam mit der zugehorigen Problemdefinition aus Abbildung 3) eine Weile
begleiten wird.

(define (domain easy-logistics)
(:predicates (PACKAGE 7p) (TRUCK 7t) (LOCATION 7loc)
(at 7x 7loc) (in 7p ?7truck))
(:action LOAD :parameters (7p 7truck 7loc)
:precondition (and (PACKAGE ?7p) (TRUCK 7truck) (LOCATION ?loc)
(at 7truck 7loc) (at ?p 7loc))
reffect (and (not (at ?p 7loc)) (in ?p 7truck)))
(:action UNLOAD :parameters (7p ?truck 7loc)
:precondition (and (PACKAGE ?7p) (TRUCK 7truck) (LOCATION ?loc)
(at 7truck ?loc) (in ?p 7truck))
reffect (and (not (in 7p 7truck)) (at ?p 7loc)))
(:action DRIVE :parameters (7truck 7from ?7to)
:precondition (and (TRUCK 7truck) (LOCATION ?from) (LOCATION ?to)
(at ?truck ?from))
reffect (and (not (at 7truck ?from)) (at 7truck 7to))))

Abbildung 2: Eine einfache Logistik-Doméne

Da unser Ziel die Erzeugung einer effizienten Zustandskodierung ist, ist es
wichtig, konstante Prédikate zu erkennen. Diese enthalten offenbar keine dyna-

(define (problem easy-logistics-10)
(:domain easy-logistics)

(:objects packagel ... packagelO truckl ... trucklO locl ... locl0)
(:init (PACKAGE packagel) ... (PACKAGE packagel0)

(TRUCK truckl) ... (TRUCK truck10)

(LOCATION locl) ... (LOCATION loc10)

(at truckl locl) ... (at trucklO loc10)

(at packagel locl) ... (at packagelO locl0))

(:goal (and (at packagel locl10) (at package2 locl0)
(at package9 loc10) (at packagelO loc10))))

Abbildung 3: Ein einfaches Logistik-Problem

mische Information und miissen daher nicht mitkodiert werden. Der Algorith-
mus zum Erkennen konstanter Priddikate ist sehr einfach: Wir betrachten fiir
jede Aktion die Effektlisten und markieren alle dort auftretenden Pradikate.
Alle am Ende noch unmarkierten Pridikate sind konstant.

Auf dieselbe Weise wiire es moglich, Pridikate zu erkennen, deren Fakten
entweder nur geldscht oder nur hinzugefiigt werden kénnen (sogenannte Finweg-
Pradikate, z.B. das fuelled-Pradikat in der rocket world, denn hier kénnen
Raketen nicht mehr betankt werden, nachdem sie einmal ihren Sprit verbraucht
haben). Wir verzichten darauf, diese Informationen zu nutzen, da eine spitere
Phase, die Exploration des Faktraums, detailliertere Resultate derselben Art
liefert.

Das Erkennen konstanter Priadikate erfordert es nur, jeden Effekt jeder Akti-
on einmal zu betrachten und ist damit in linearer Zeit in der Anzahl der Effekte
zu bewéltigen. Der zusétzliche Platzbedarf fiir die Speicherung der gewonnenen
Informationen ist linear in der Anzahl der Aktionen.

2.3 Erkennen balancierter Pridikate

Eine naive Kodierung eines Zustands konnte darin bestehen, fiir jeden einzelnen
Fakt mit einem Bit zu speichern, ob er in diesem Zustand wahr ist, oder nicht.

Betrachtet man das obige Logistik-Beispiel, so z#hlt man 30 Objekte (je-
weils zehn Pakete, Lastwagen und Orte), drei einstellige Pridikate (PACKAGE,
TRUCK, LOCATION) sowie zwei zweistellige Priadikate (at, in). Fiir jedes einstel-
lige Pradikat wéren 30 Bits zur Kodierung notig, fiir jedes zweistellige Pradikat
30 - 30 = 900 Bits, insgesamt also 3 - 30 + 2 - 900 = 1890 Bits, eine viel zu
grofle Zahl, die auch durch Weglassen der konstanten Pridikate nur auf 1800
verringert werden kann.

Es geht wesentlich besser. Dem menschlichen Beobachter wird schnell auf-
fallen, daf es z.B. keineswegs notig ist, 30 Bits fiir die diversen Varianten von
at (packagel, x) zu verwenden: Wenn das Paket an einem bestimmten Ort ist,
so kann es nicht gleichzeitig an einem anderen Ort sein. Es wiirde also reichen,
einen Schliissel zu kodieren, der den Aufenthaltsort des Pakets kennzeichnet,
wofiir [log, 30] = 5 Bits ausreichend wéren.

10

2.3.1 Balancierte Pridikate

Die Frage ist also, wie eine derartige Information aus der Beschreibung der
Doméne automatisch abgeleitet werden kann. Leider ist dies nicht moglich, denn
es handelt sich hierbei um eine Eigenschaft, die nicht nur von der Doméne, son-
dern auch vom Startzustand abhéngt: Enthielte der Startzustand etwa sowohl
die Fakten at(packagel, locl) und at(packagel, loc2), dann kénnte man
diese beiden Aufenthaltsorte nicht ohne weiteres in einer einzelnen Zahl kodie-
ren.

Man koénnte jedoch zumindest versuchen zu zeigen, daf§ die Aktionen in der
Doméne garantieren, dafl die Zahl der Aufenthaltsorte eines gegebenen Objekts
niemals steigt, d.h. formaler, daf§ fiir jedes Objekt o € O gilt, dal ats(0,Z) :=
H{(at 0o z) € Z | z € O}| durch Anwendung eines beliebigen Operators im
Zustand Z niemals steigt. In diesem Fall sprechen wir davon, dafl at balanciert
im zweiten Parameter ist. Allgemeiner nennen wir das n-stellige Pradikat pred
balanciert im k-ten Parameter, wenn fiir beliebige Objekte o, der Ausdruck
predi (01, ..., 0k—1,0k41,- - -,0n, Z) bel Anwendung eines Operators im Zustand
Z niemals steigt, sich also |{(pred(o1,...0k—1,%,0k+1,...0n) € Z | x € O}
beim Zustandsiibergang nicht erhéht.

Was niitzt das nun fiir die Kodierung? Falls bekannt ist, dafl at im zweiten
Parameter balanciert ist, dann muf fiir jedes Objekt o einer der folgenden drei
Fille gelten (Zy bezeichnet den Startzustand):

e ats(0,Zp) = 0: In diesem Fall muf} iiber den Aufenthaltsort von o iiber-
haupt keine Information gespeichert werden.

e ats(0,Zp) = 1: Dann kann o nur an maximal einem Ort auf einmal sein,
d.h. wir kommen mit [log,(|O|+1)] Bits aus (Die Addition der 1 dient da-
zu, auch den Fall représentieren zu konnen, dafl das Objekt schliefflich an
keinem Ort mehr ist, denn die Zahl der Aufenthaltsorte darf ja durchaus
sinken, nur eben niemals steigen).

e ats(0,Zp) > 1: In diesem Fall begniigen wir uns mit einer naiven Kodie-
rung.

Es stellt sich nun die Frage, wie man im vorliegenden Beispiel zeigen kann,
dafl at balanciert ist. Betrachtet man die Aktionen genauer, stellt man fest,
dafl dies gar nicht der Fall ist, denn es gibt zwei Aktionen, die die Balance
verdandern: bei LOAD-Operatoren kann sie dekrementiert, bei UNLOAD-Operatoren
inkrementiert werden. Es fillt jedoch auf, da}, wann immer ats(0) steigt, inz(o)
entsprechend sinkt, und umgekehrt. Wiirde man also diese beiden Pradikate zu
einem neuen Prédikat at+in zusammenfassen, so ergibe sich ein balanciertes
Priadikat, denn (at + in)2 = ate + iny bleibt unter jedem Operator invariant,
wie man leicht anhand der Definition der Aktionen nachvollziehen kann.

2.3.2 Der Algorithmus

Wir sind nun in der Lage, den Algorithmus zum Uberpriifen der Balance von
pred; fiir ein gegebenes Pridikat pred und einen Parameter i € {1,...,o(pred)}
wie folgt zu beschreiben: Fiir jedes Aktionsschema und jeden Add-Effekt a iiber-
priifen wir, ob dieser sich auf das Priadikat pred bezieht. Falls ja, suchen wir

11

einen zugehorigen Del-Effekt d, d.h. einen solchen Del-Effekt, der sich gleich-
falls auf pred bezieht und dieselbe Argumentliste hat wie a, abgesehen vom i-ten
Argument, das abweichend sein darf (und normalerweise sein wird). Finden wir
zu jedem Add-Effekt einen passenden Del-Effekt, dann gleichen sich die Effekte
gegenseitig aus und das Préadikat ist balanciert.

Gibt es jedoch einen Add-Effekt ohne Partner, dann durchsuchen wir die
Liste der Del-Effekte nach einem beliebigen Effekt mit einer passenden Argu-
mentliste - dieses Mal muf} es sich dabei nicht um einen Effekt mit demselben
Pradikat handeln. Gibt es keinen solchen Partner, dann kann keine Balance ge-
funden werden. Finden wir aber einen Partner, der sich auf das Préddikat other
bezieht, dann rufen wir den Algorithmus rekursiv mit dem zusammengefafiten
Priadikat pred+other auf. Der Ausdruck “passende Argumentliste” impliziert
dabei nicht, dafl other seine Argumente auch in derselben Reihenfolge nehmen
muf} wie pred, was den Algorithmus etwas verkompliziert, da gegebenenfalls
verschiedene Permutationen der Argumentliste von other betrachtet werden
miissen.

Da das i-te Argument von pred nicht in der Argumentliste des Partners
auftauchen muf, ist es sogar moglich, ein Priadikat mit einem Pradikat zu verei-
nigen, dessen Stelligkeit um 1 geringer ist. Dies ist ein Spezialfall, den wir hier
nicht nédher ausfithren mochten. Er tritt aber durchaus hiufig auf, etwa in der
Gripper-Doméne, wo ein Gripper entweder einen beliebigen Ball tragen kann
(carry ?ball ?gripper) oder derzeit frei ist (free ?gripper), wobei immer
eine der beiden Situationen zutreffen mufi, d.h. carry+free ist balanciert.

Es kann beim Vereinigen von Prédikaten natiirlich auch mehrere unterschied-
liche Kandidaten geben. In diesem Fall werden alle sich ergebenden Moglichkei-
ten verfolgt. Obwohl die Rekursionstiefe theoretisch nur durch die Gesamtzahl
der Pridikate beschréankt ist, ist uns kein praktisches Beispiel bekannt, indem
es notig ist, mehr als zwei Préddikate zu vereinigen, um Balance zu erreichen
(sofern iiberhaupt Balance vorliegt).

Fithrt man diesen Algorithmus nun fiir alle Pridikate pred und alle mogli-
chen i durch, so erhiilt man am Ende eine Menge von (ggfs. vereinigten) Pridi-
katen, die balanciert sind.

2.3.3 Beispiel und Komplexitét

Im vorliegenden Beispiel ergibt sich das erwartete Resultat, dafl at+in im zwei-
ten Parameter balanciert ist. Betrachtet man den Startzustand, so stellt man
mit obiger Fallunterscheidung fest, dafl nur die Aufenthaltsorte der Pakete und
Trucks gespeichert werden miissen. Fiir jedes Objekt gibt es 30 verschiedene
Ausprigungen von at-Fakten und 30 verschiedene Ausprigungen von in-Fakten
sowie den (in dieser Doméne allerdings unméglichen) Fall, dafl keiner dieser 60
Fakten gilt, also reichen insgesamt [log, 611 = 6 Bits fiir jedes Paket und jeden
Truck aus. Damit ergibt sich insgesamt eine KodierungsgroBe von (10+10)-6 =
120 Bits. Ein achtbares Resultat im Vergleich zu der vorherigen Grofie von 1800
Bits, aber es geht noch kompakter, wie sich im folgenden Abschnitt herausstellen
wird.

Vorher aber noch einige Worte zur Komplexitéit des vorgestellten Algorith-
mus. Bei ungiinstigen Eingaben konnte theoretisch jede Teilmenge der Prédi-
katsmenge, abgesehen von konstanten Pridikaten, fiir eine Uberpriifung in Frage
kommen, weswegen exponentielle Zeit in der Zahl der Prédikate notwendig sein

12

kann.

Dies ist jedoch aus zwei Griinden unkritisch: zum einen tritt dieser ungiinsti-
ge Fall bei allen betrachteten Benchmarkproblemen nicht auf — eine Rekursions-
tiefe von zwei wurde nie iiberschritten —, zum anderen 148t sich bei der geringen
Zahl nicht-konstanter Prédikate, wie sie in Handlungsplanungsproblemen auf-
treten, ein exponentieller Aufwand durchaus akzeptieren.

Abgesehen von dem Platz zur Speicherung der ermittelten Informationen
besteht kein nennenswerter zusétzlicher Speicherbedarf; er ist linear in der ma-
ximalen Anzahl an Add-Effekten der Aktionen der Doméne (fiir die Speicherung
der Effekte, zu denen spiiter ein Partner gefunden werden muf}) zuziiglich der
Anzahl der Pridikate (fiir die Rekursion).

2.4 Exploration des Faktraums

In den meisten Féllen ist es nicht notwendig, zum Kodieren der balancierten
Préadikate den vollen Wertebereich zuzulassen. Beispielsweise kann ein Paket
sich nur an einem Ort oder in einem Truck befinden, aber nicht in einem anderen
Paket, in einem Ort usw.

Dazu eine Definition: Wenn ein Fakt im Startzustand enthalten ist oder
es eine anwendbare Folge von Operatoren gibt, die diesen Fakt erzeugt, dann
bezeichnen wir ihn als erreichbar, ansonsten als unerreichbar. Ein Operator heif3t
entsprechend erreichbar, wenn alle seine Vorbedingungen erreichbar sind.

Bei vielen Fakten kann man durch einfaches Betrachten der Operatorsche-
mata auf die Unerreichbarkeit schlielen. So kann ein LOAD-Operator Aktionen
beispielsweise Objekte nur in Trucks verladen, wie man an den Vorbedingun-
gen leicht erkennen kann. Diese Art der Analyse reicht aber bei komplexeren
Beispielen nicht mehr aus.

Auflerdem bendtigen wir in einem spéteren Stadium fiir die Konstruktion
der Transitionsrelation eine Liste aller erreichbaren Operatoren.

2.4.1 Naive Exploration

Sowohl erreichbare Operatoren als auch erreichbare Fakten lassen sich iiber eine
Breitensuche vom Startzustand ausgehend ermitteln: Zu Beginn des Algorith-
mus ist nur der Startzustand erreichbar. In einem Iterationsschritt werden al-
le moglichen Operatoren instantiiert. Diejenigen davon, deren Vorbedingungen
erfiillt sind, werden als erreichbar markiert, ebenso die Fakten aus ihren Add-
Effekt-Menge. Solange noch weitere Fakten erzeugt werden kénnen, wird dieser
Vorgang iteriert.

Der Algorithmus bricht ab, weil aufgrund der endlichen Zahl méglicher Fak-
ten irgendwann ein Fixpunkt erreicht sein mufl. Jedoch ist die naive Explora-
tion sehr zeitaufwendig, denn die Zahl der theoretisch denkbaren Operatoren
wéchst bei groflen Problemen sehr schnell, obwohl nur ein winziger Bruchteil
der Operatoren tatséichlich erreichbar ist. Als Beispiel hierfiir mége das Pro-
blem Mprime-14 aus der AIPS’98-Suite! herangezogen werden, bei dem es ca.
3 - 10'3 theoretisch denkbare Operatoren gibt, von denen nur ca. 120.000 er-
reichbar sind.

Thttp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html

13

2.4.2 Fakt-basierte Exploration

Besser wire daher ein Ansatz, der unnotige Instantiierungen von nicht erreichba-
ren Operatoren vermeidet. Dafiir verwenden wir einen fakt-zentrierten Ansatz.
Die zentrale Datenstruktur hierbei ist eine Schlange, in der die Fakten, die als
néchstes als erreichbar markiert werden sollten, gespeichert werden. Zu Beginn
enthilt diese Schlange genau die Fakten des Startzustandes. Ein Verarbeitungs-
schritt besteht nun darin, den obersten Fakt aus dieser Schlange zu entnehmen,
als erreichbar zu markieren und alle dadurch erreichbar gewordenen Operato-
ren als erreichbar zu markieren und zu instantiieren, d.h. die Fakten aus ihrer
Add-Effekt-Menge in die Schlange aufzunehmen, falls sie bisher noch nicht als
erreichbar markiert sind und auch noch nicht in der Schlange gespeichert sind.
Dieser Vorgang wird wiederholt, bis die Schlange leer ist.

Die entscheidende Beobachtung besteht darin, dafl es bei der Instantiierung
der Operatoren ausreicht, solche Operatoren zu betrachten, in deren Vorbedin-
gungen der neue Fakt auftritt, denn alle anderen zu diesem Zeitpunkt erreich-
baren Operatoren miissen nach Konstruktion des Algorithmus schon vorher be-
trachtet worden sein. Dadurch wird kein Operator mehr als einmal betrachtet,
denn jeder Operator, der instantiiert wird, enthélt eine Vorbedingung, die im
vorherigen Verarbeitungsschritt noch nicht erreichbar war und kann daher nicht
bereits frither instantiiert worden sein.

Es bleibt die Frage, wie man in effizienter Weise die Menge der Operatoren
bestimmen kann, die in einem bestimmten Verarbeitungsschritt betrachtet wer-
den miissen. Zun#chst ist klar, dafl nur Operatoren in Frage kommen, die den
aktuell betrachteten Fakt als Vorbedingung beinhalten. Operatorschemata, die
das entsprechende Préadikat nicht enthalten, scheiden von vorneherein aus, und
bei den in Frage kommenden Schemata ist es moglich, bestimmte Parameter
von vorneherein an bestimmte Werte zu binden.

Dazu ein Beispiel: Betrachten wir das bekannte Logistik-Problem, der ak-
tuelle Fakt sei in(package4, truck2). Damit kénnen die Schemata LOAD und
DRIVE komplett ignoriert werden, denn in beiden tritt das Prédikat in nicht als
Vorbedingung auf. Es bleibt nur noch das Schema UNLOAD mit den Parametern
7p, Ptruck und 7loc. Damit in(package4, truck2) eine Vorbedingung ist,
muf} ?7p = package4 und 7truck = truck?2 gelten, es bleibt also nur noch ?1loc
als einzig frei wihlbarer Parameter.

2.4.3 Optimierungen

Es gibt noch zwei weitere Optimierungen, die verwendet werden, um unnéti-
ge Instantiierungen zu vermeiden. Zum einen wird nach jeder Belegung eines
Parameters iiberpriift, ob der Operator erreichbar sein kann, nicht erst, nach-
dem alle Parameter belegt wurden. Sollte also etwa bereits durch die Belegung
7p = package4, 7truck = truck2 klar sein, dafl eine der Vorbedingungen noch
nicht erreichbar ist, kann auch der Operator nicht erreichbar sein, unabhéingig
davon, wie ?loc belegt werden sollte, und die Suche nach einer Instantiierung
mit einer solchen Belegung wird sofort abgebrochen.

Zweitens merkt sich der Algorithmus fiir jedes Pridikat pred, jede Position
i€{l,...,0(p)} und jedes Objekt o, ob es bereits einen erreichbaren Fakt von
pred gibt, dessen i-tes Objekt o ist, d.h. fiir jedes Préadikat werden alle Projek-
tionen der Menge der erreichbaren Fakten auf die i-te Komponente gespeichert.

14

Damit kann der Bereich, der fiir die Belegung der noch offenen Parameter
in Frage kommt, weiter eingeschrinkt werden. In unserem Beispiel tritt der
Parameter ?1oc bei den Vorbedingungen LOCATION 7loc und at 7truck 7loc
auf. Wenn bisher die einzigen erreichbaren Fakten des Prédikats LOCATION die
Fakten LOCATION(loc1), LOCATION(loc2), LOCATION (1loc3), LOCATION (1oc5)
und LOCATION(loc7) und die erreichbaren Fakten von at etwa at(packagel,
locl), at(truck2, loc2), at(truck3, loc3) und at(truck2, loc4) sind,
dann sind die entsprechenden Projektionen die beiden Mengen {loci,loc2,
loc3,loch,loc7} und {locl,loc2,loc3, locd}, so dal nur Elemente aus deren
Schnittmenge, also aus {locl,1loc2,loc3} als mogliche Belegungen fiir ?1oc in
Frage kommen.

Die Projektionen kénnen leicht iiber Bitvektoren in konstanter Zeit auf dem
neuesten Stand gehalten und abgefragt werden. Der Schnitt zweier Projektionen
148t sich tiber bitweise Und-Verkniipfung zweier Bitleisten ebenfalls sehr schnell
berechnen (in einer Zeit, die zwar linear in der Anzahl der Objekte ist, aber
durch die Einfachheit der Operationen effektiv sehr niedrig ist).

Damit brauchen wir im vorliegenden Fall also nur noch drei verschiedene
Belegungen zu betrachten. Trotz aller Optimierungen kommt man aber nicht
umbhin, auch hin und wieder bisher unerreichbare Operatoren zu konstruieren,
im vorliegenden Fall etwa bei der Belegung ?1oc = locl, da at (truck2, locl)
noch nicht erreichbar ist. Die Zahl der unnétig betrachteten Operatoren ist
jedoch gegeniiber dem nicht optimierten Algorithmus drastisch reduziert.

2.4.4 Analyse

Dennoch bleibt die Laufzeit dieser Phase kritisch, denn sie orientiert sich nicht
an der Zahl der Prédikate oder an einer anderen Grofe, die linear in der Grofie
der Eingabe ist, sondern an der Anzahl der Fakten, die exponentiell in der
maximalen Stelligkeit der Pradikate ist.

Die Zahl der Fakten ist durch |P| - |O|7m=x nach oben beschrinkt, wobei P
die Menge der nicht-konstanten Pridikate, O die Objektmenge und onax die
grofite Stelligkeit aller Préadikate aus P bezeichnet.

Die Gesamtzahl der Fakten ist eine obere Schranke fiir die Anzahl der Fakten,
die jemals in der verarbeitenden Schlange landen, und damit fiir die Anzahl
der durchgefiihrten Schritte in dieser Phase. Die Laufzeit eines Schrittes kann
jedoch sehr grof} sein, wenn es komplizierte Aktionen mit vielen Parametern gibt,
insbesondere wenn diese viele mehrstellige Pradikate als Vorbedingungen haben,
so dafl das Betrachten der Projektionen die Zahl der moglichen Instantiierungen
nicht wirkungsvoll genug einschréinken kann.

Dies ist zum Gliick nur ein theoretisches Problem, denn wie bereits erwihnt
gibt es Planungsprobleme mit ca. 3 - 10'® theoretisch denkbaren Aktionsinstan-
tiierungen, und auch bei diesen Problemgrofien kommt der Algorithmus noch in
wenigen Sekunden zum Ziel.

Es ist jedoch problemlos moglich, Eingaben zu konstruieren, bei denen die
Zahl der zu betrachtenden Instantiierungen nicht wirkungsvoll eingeschrankt
werden kann, so daf} die Zahl der zu betrachtenden Instantiierungen in einem ein-
zelnen Schritt von der Gréflenordnung ©(|A|-|OPmax) ist, wobei A die Menge der
Aktionen, O wiederum die Menge der Objekte und py,.x die maximale Anzahl an
Parametern einer Aktion ist, so dafl die Gesamtlaufzeit als Produkt dieser Grofie
mit der Anzahl der Fakten von der Grofienordnung O(|P] - |A] - |O|7maxFPmax)

15

ist, was bei typischen Werten von pmax von ca. 5 schon schnell nicht mehr hand-
habbar wird.

Der Platzbedarf dieser Phase ist zunéichst linear in der Zahl der erreichbaren
Fakten und Operatoren, denn die Ergebnisse miissen gespeichert werden. Au-
Berdem werden noch |P| - |O| - omax Bits fiir die Speicherung der Projektionen
benétigt. Alle anderen Platzerfordernisse dieser Phase werden von diesen bei-
den Groflen dominiert und kénnen daher vernachlissigt werden. In der Praxis
ist dieser Platzverbrauch tragbar.

Was ist nun in unserem Beispiel das Ergebnis der Exploration? Zum einen
erhélt man eine Liste aller anwendbaren Operatoren, die spéter noch benttigt
wird. Zum anderen ermittelt der Algorithmus, dal Trucks nur an Orten, Pakete
nur in Trucks oder an Orten befindlich sein kénnen. Damit benttigt man pro
Truck nur noch log,(10 + 1) = 4, pro Paket nur noch [log,(10 4+ 10+ 1)] = 5,
insgesamt also 90 Bits gegeniiber 120 Bits vor dem Explorationsschritt. Damit
ergibt sich ein gutes Endergebnis, das auch mit einer Handkodierung konkur-
rieren kann.

2.5 Generierung der Zustandskodierung

Im vorliegenden Beispiel ist die Erzeugung der Zustandskodierung nach Explo-
ration des Faktraums eine einfache Angelegenheit: Durch die Balance von at+in
ist klar, daf} die erreichbaren Fakten in Teilmengen sich gegenseitig ausschlie-
Benden Fakten (wie etwa at(packagel, locl) und in(packagel, truckl))
zerfallen. Solche Teilmengen bezeichnen wir als Faktgruppen. Da die Fakten
in einer Faktgruppe sich gegenseitig ausschliefen, kénnen sie gemeinsam mit
[log, (|G| + 1)] Bits kodiert werden.

Auch bei anderen Problemen wird durch die Exploration des Faktraums
zundchst die Menge der erreichbaren Fakten eingeschréinkt, durch das Wissen
iiber balancierte Priddikate lassen sich dann Faktgruppen bilden. Fakten, die
in keine Faktgruppe fallen, weil die zugehorigen Pridikate in keiner Balance-
Beziehung stehen, werden naiv mit 1 Bit pro Fakt kodiert (Ein Beispiel dafiir
ist das locked-Pridikat in der Grid-Doméne: Alle Tiiren kénnen unabhéngig
voneinander offen oder geschlossen sein, es wird daher fiir jede Tiir ein eigenes
Bit benétigt).

Unklar ist jedoch, was zu tun ist, wenn die verschiedenen Faktgruppen nicht
disjunkt sind. Ein Beispiel dafiir findet sich in der Gripper-Doméne mit den drei
Préadikaten carry, free und at. Das Pradikat carry gibt an, welcher Roboter-
arm gerade welchen Ball tragt, free, ob ein bestimmter Roboterarm gerade
keinen Ball tragt, und at, in welchem Raum sich ein gegebener Ball gerade
befindet. Es gelten folgende zwei Balancen:

e Ein Ball ist stets in genau einem Raum oder wird von genau einem Robo-
terarm getragen, d.h. at+carry ist balanciert.

e Ein Roboterarm trégt stets genau einen Ball oder ist frei, d.h. carry+free
ist balanciert.

Es ergeben sich also hier Uberschneidungen. So kénnte eine Faktgruppe
die Fakten {carry(arml, balll),carry(arml, ball2),free(arml)} enthal-
ten, eine zweite Gruppe {at (rooml, balll),at(room2, balll),carry(arml,

16

balll),carry(arm2, balll)} und eine dritte Gruppe {at(rooml, ball2),
at(room2, ball2),carry(arml, ball2),carry(arm2, ball2)}.

Kodiert man zunichst alle Informationen, die sich aus der Balance von
carry+free ergeben, dann miissen bei den Gruppen aus at+carry nur noch
die at-Fakten kodiert werden, da die anderen bereits kodiert wurden; bei einer
umgekehrten Reihenfolge miiffiten von carry+free nur noch die free-Fakten
kodiert werden.

Da nicht ohne Weiteres klar ist, welche Reihenfolge die beste ist — das hingt
von der Anzahl der Rédume, Bille und Tragearme ab — und es auflerdem in
der Regel nur wenige in Frage kommende Alternativen gibt, geht der Kodie-
rer so vor, dafl er alle moglichen Reihenfolgen systematisch durchprobiert und
schliefflich diejenige wihlt, bei der sich die kleinste Kodierung ergibt. Um den
Vorgang etwas zu beschleunigen (was eigentlich nicht nétig ist, da dies keine
zeitkritische Phase ist), merkt sich der Algorithmus immer das Minimum der
Kodierungsléangen der bisher verwirklichten Alternativen und bricht einen neu-
en Kodierungsversuch ab, sobald klar wird, daf} dieses bisherige Optimum nicht
mehr verbessert werden kann.

2.6 Aufbau der Transitionsrelation

Damit ist der Aufbau der Zustandskodierung abgeschlossen. In den abschlie-
Benden drei Phasen geht es nun darum, die eigentliche Suche vorzubereiten,
durchzufithren und den gesuchten Plan aus den bei der Suche erzeugten Zu-
standsmengen zu extrahieren.

Wie bereits in der Einleitung kurz angeklungen, werden zur Exploration drei
BDDs benttigt:

e Die Kodierung der aktuellen Zustandsmenge (zu Beginn also einfach eine
Kodierung des Startzustands) als BDD,

e die Kodierung der Endzustandsmenge sowie

e die Kodierung der Transitionsrelation, also der Menge der Zustands-Tupel
(Z,7"), die der Anwendung von Operatoren entsprechen.

Nachdem eine Zustandskodierung bestimmt wurde, ist es trivial, die ersten
beiden BDDs zu erzeugen. Das BDD der Transitionsrelation ist die Vereinigung
(logische Oder-Verkniipfung) der Transitions-BDDs der einzelnen Operatoren.
Durch die vorherige Exploration des Faktraums sind wir in der Lage, uns auf
diejenigen Operatoren zu beschrinken, die wir als erreichbar markiert haben,
was fiir die praktische Durchfithrbarkeit des Algorithmus entscheidend ist.

Ein einzelner Operator op = (P, A, D) entspricht der Relation

R, ={(Z2,Z"\PCZ,ACZ',DNZ =0,Z\(AUD)=2Z"\(AUD)}

Die charakteristische Funktion von R,,, ist also durch den folgenden logischen
Ausdruck festgelegt:

VfeF (feP—feZ)N(feA—feZ)N(feD—f¢g&Z)A
(f¢(AUD)— (fe Z— feZ)).

17

F bezeichnet dabei die Menge aller erreichbaren Fakten. Dieser logische Aus-
druck 148t sich direkt in eine BDD-Darstellung transformieren.

Nachdem die BDDs der einzelnen Operatoren erzeugt wurden, miissen diese
nur noch durch logische Oder-Verkniipfung zu einem Gesamt-BDD zusammen-
gesetzt werden. Dazu werden zunichst jeweils zwei BDDs von einzelnen Ope-
ratoren verschmolzen, wodurch BDDs entstehen, die jeweils zwei Operatoren
kodieren. Von diesen werden wiederum jeweils zwei verschmolzen, usf., bis am
Ende nur noch ein einzelnes grofles BDD {ibrigbleibt, das die komplette Transi-
tionsrelation kodiert.

Diese Phase ist von der Laufzeit her durchaus kritisch. Die zur Konstruktion
des BDDs zu einem einzelnen Operator benotigte Zeit ist linear in der Grofle der
Zustandskodierung. Die Zeit, die fiir die Oder-Verkniipfung zweier BDDs not-
wendig ist, ist theoretisch nur durch das Produkt der Groflen (Knotenzahl) der
beiden beteiligten BDDs beschrankt. Durch die dem Problem inhérente Struk-
tur (sehr viele Operatoren stammen aus demselben Operatorschema) sinken
Laufzeit und Platzbedarf bedeutend, ohne daf sich dieses Verhalten theoretisch
quantifizieren liefle.

Auch iiber den Platzbedarf des resultierenden BDDs kann man nur aussagen,
dafl er theoretisch sehr grofi werden kann (es gelten dieselben Abschitzungen
wie fiir die Laufzeit), normalerweise aber nicht wird.

Die Variablenordnung im verwendeten BDD hat einen entscheidenden Ein-
flul auf Zeit- und Speicherbedarf; leider ist das Problem, eine optimale Va-
riablenordnung zu bestimmen, aber selbst NP-schwierig [2] und damit, falls
P # NP, nicht in polynomialer Zeit zu losen. Bei groflen Problemen kann
der Algorithmus in dieser Phase an Laufzeit- oder Speicherplatzbeschrinkun-
gen scheitern. Wenn die Zahl der erreichbaren Operatoren in den fiinfstelligen
Bereich kommt, beginnt der Aufbau der Transitionsfunktion zu schwierig zu
werden.

2.7 BDD-Exploration

Nach dem Aufbau der Transitionsrelation kann nun die eigentliche BDD-Explo-
ration beginnen. Abbildung 4 zeigt den benutzten Algorithmus in Pseudocode.

function explore(start, end, transition: BDD): BDD array
S[0] := start
explored := 0
i::=0
while (S[i] & end) = 0 do
S[i+1] := apply(S[il], transition)
if S[i+1] is subset of Explored then
output "no solution"
return []
explored := explored | S[i+1]
i=1i+1
return S

Abbildung 4: Der Algorithmus zur BDD-Exploration

Es wird also solange mittels apply (dem relationalen Produkt, einer Funk-
tion aus dem BDD-Paket) von der Zustandsmenge S[i] zur Zustandsmen-

18

ge S[i+1] iibergegangen, bis entweder ein Endzustand gefunden wurde, d.h.
current und end nicht mehr disjunkte Mengen repréisentieren, oder aber der
komplette Zustandsraum durchsucht wurde, d.h. die Menge explored einen
Fixpunkt erreicht hat.

Als Ausgabe liefert der Algorithmus ein leeres Array, falls keine Losung exi-
stiert und ansonsten die BDDs, die die Zustandsmengen auf den verschiedenen
Niveaus représentieren.

Es wurde weiterhin auch eine bidirektionale Variante dieses Algorithmus
implementiert, die hier aber nicht ndher besprochen werden soll.

Diese Phase dominiert Zeit- und Platzbedarf des Planungssystems. Gleich-
zeitig kann man tiber ihren Aufwand leider am wenigsten aussagen, da die we-
sentliche Verarbeitung innerhalb des BDD-Pakets geschieht. Die Laufzeit der
Exploration wird dominiert von der Berechung des relationalen Produkts, was
ein NP-schwieriges Problem ist und dementsprechend in der verwendeten Im-
plementation in ungiinstigen Fillen exponentielle Zeit benotigt. Auch der Platz-
bedarf der BDDs kann exponentiell anwachsen, so daf3 diese Phase sowohl an
Zeit- als auch an Speicherbeschrinkungen scheitern kann.

2.8 Losungsextraktion

Sollte die Exploration ergeben haben, dafl ein Plan existiert, dann besteht die
letzte zu erledigende Aufgabe nun darin, aus den ermittelten BDDs den gefun-
denen Plan zu extrahieren.

Dazu beginnt man damit, die letzte Zustandsmenge S [n] mit der Menge der
Endzusténde goal zu schneiden und einen beliebigen Zustand aus der Schnitt-
menge zu extrahieren (der Schnitt ist nicht leer, da der Algorithmus sonst nicht
abgebrochen hétte). Damit hat man nun einen in n Schritten erreichbaren End-
zustand Z,, ermittelt.

Uber die inverse Transitionsrelation T~! = {(Z', 2)|(Z,Z') € T} ermittelt
man nun alle Zustdnde, von denen aus Z,, durch Anwendung eines einzelnen
Operators erreicht werden kann. Offenbar mufl mindestens einer dieser Zustédnde
in n — 1 Schritten erreichbar sein, also in der Schnittmenge mit S[n-1] liegen.
Es wird ein beliebiger solcher Zustand ausgewihlt und mit Z,_1 bezeichnet.

Das Verfahren wird iteriert, bis schlielich eine Folge (Zy, Z1, ..., Zn-1,Zn)
von Zustinden bestimmt wurde, so da8 fiir alle s € {0,...,n — 1} ein Operator-
BDD op; existiert, so dal (Z;, Z;+1) in op; kodiert ist.

Der letzte Schritt besteht nun darin, die richtigen Operatoren zu bestim-
men, indem einfach der Reihe nach fiir jeden Zustandsiibergang alle méglichen
Operator-BDDs iiberpriift werden.

SchlieBlich wird der so erzeugte Plan ausgegeben.

In bezug auf die Komplexitit ist diese Phase unkritisch. Fiir die Riickwarts-
schritte zur Extraktion der Zustandsfolge wird zwar wieder das relationale Pro-
dukt bendétigt, aber da die Zustandsmenge jeweils nur ein Element hat, ist das
hier nicht schwierig, der Aufwand liegt in O(m - t), wobei m die Lésungslinge,
t die Grofie (Anzahl der BDD-Knoten) der Transitionsrelation bezeichnet.

Wurde die Zustandsfolge erzeugt, mufl man im schlechtesten Fall noch einmal
fiir jeden Schritt in der Losung alle erreichbaren Operatoren daraufhin untersu-
chen, ob sie fiir den jeweiligen Zustandsiibergang in Frage kommen. Eine solche
Anfrage benttigt lineare Zeit in der Grofle der Zustandskodierung, so dafl ins-
gesamt fiir diesen Teil ein Zeitbedarf von O(m - |Op| - ¢) notwendig ist, wobei

19

m wiederum die Linge der Losung, Op die Anzahl der Operatoren und c die
Grofle der Zustandskodierung bezeichnet (¢ kann sehr grob durch die Anzahl
der Fakten nach oben abgeschitzt werden).

Dies ist nicht zeitkritisch und gewifl auch nicht platzkritisch: Fiir die Zu-
standsfolge wird Platz benotigt, der linear in dem Produkt aus Kodierungsgrofe
und Losungslédnge ist.

3 Empirische Ergebnisse

Die klassische Handlungsplanung ist ein PSPACE-vollstindiges Problem [5],
es konnen also alle Probleme, die unter einem geeigneten Berechnungsmodell
(etwa einer Mehrband-Turingmaschine) mit polynomialem Platzbedarf geldst
werden konnen, auf dieses Problem zuriickgefithrt werden. Daher ist es nicht
iiberraschend, dafl es nicht gelang, fiir die vorliegenden Algorithmen giinstige
obere Schranken fiir die Laufzeit anzugeben.

In der Tat sind Algorithmen, die mit Planungsproblemen umgehen, schwer zu
analysieren, denn Worst-Case-Abschétzungen liefern in der Regel unrealistische
Ergebnisse, denn durch ihre “natiirliche Struktur” sind praktische Probleme
in aller Regel wesentlich einfacher zu handhaben als eine theoretisch denkbare
schlechteste Eingabe derselben Grofie. Eine Analyse im average case ist ebenso
wenig sinnvoll oder durchfithrbar, denn es ist unklar, iiber was fiir eine Menge
von moglichen Eingaben hier gemittelt werden sollte.

Daher soll das Schwergewicht bei diesen Untersuchungen hier nicht bei theo-
retischen Resultaten liegen, sondern bei empirisch ermittelten Werten aus prak-
tischen Problemen. Dies ist ohnehin die einzig sinnvolle Moglichkeit zum Ver-
gleich verschiedener Planungsalgorithmen, da auch iiber die Performance ande-
rer Planungssysteme kaum verwertbare theoretische Resultate vorliegen.

3.1 AIPScomp’98

Im Rahmen der AIPS’98 fand ein Wettbewerb fiir Programme zur klassischen
Handlungsplanung, genannt AIPScomp’98, statt. Wir haben die dabei verwen-
deten STRIPS-Probleme zur Grundlage unserer Experimente gemacht.

Dabei ergab sich, dafl bei keinem der 155 Probleme die Phasen vor dem
Aufbau der Transitionsfunktion zeitlich problematisch waren. Im schlechtesten
Fall wurden 8 Sekunden (auf einer Sun Ultra Sparc Station) verbraucht, nur 7
der 155 Probleme bendétigten iiberhaupt mehr als 1 Sekunde fiir diese Phase.

Der Aufbau der Transitionsfunktion und die eigentliche BDD-Exploration
waren dann in vielen Féllen aber nicht in akzeptabler Zeit zu bewéltigen. Bei
einer Laufzeitbeschriankung von zehn Minuten waren wir in der Lage, 30 der 30
Probleme in der Doméne Mowvie, 20 der 20 Probleme in der Doméne Gripper, 4
der 35 Probleme in der Doméne Logistics, 10 der 35 Probleme in der Doméne
Mprime, 9 der 30 Probleme in der Doméne Mystery und 1 der 5 Probleme in der
Doméne Grid zu losen. Dies gibt eine Gesamtzahl von 74 gelosten Problemen.
Zum Vergleich: die Teilnehmer am AIPS’98-Wettbewerb 16sten zwischen 71 und
91 Problemen. Dabei gelang es nur dem Planungssystem HSP [3], das einen
heuristischen Suchansatz verfolgt, mehr als 72 Probleme zu l6sen. Allerdings
liefert HSP vergleichsweise lange Losungen, im Gegensatz zum vorliegenden

20

Problem Plan- Zeit Kodie- Fakten (zu Operatoren
lange | (in sec) rung kodieren) (erreichbar)
Movie 1-28 7 0,22 7 Bits 160 (7) 809 (162)
Movie 1-29 7 0,23 7 Bits 165 (7) 834 (167)
Movie 1-30 7 0,23 7 Bits 170 (7) 859 (172)
Gripper 1-18 | 113 | 32,39 | 79 Bits | 3.738 (156) 149.940 (460)
Gripper 1-19 119 262,18 83 Bits 4.092 (164) 172.304 (484)
Gripper 1-20 | 125 | 418,95 | 87 Bits | 4.462 (172) 106.788 (508)
Logistics 1-01 | 26 | 343,70 | 42 Bits | 3.264 (144) 1.212.416 (727)
Logistics 1-05 22 65,11 35 Bits | 5.805 (151) 3.816.336 (699)
Logistics 2-02 | 20 | 43,99 | 28 Bits | 1.449 (80) 240.786 (341)
Mystery 1-01 5 0,39 28 Bits 3.192 (58) 12.252.303 (269)
Mystery 1-07 | oo T 2,86 82 Bits | 12.558 (181) | 392.073.696 (521)
Mystery 1-27 | 5 9,49 | 63 Bits | 7.788 (152) | 117.406.179 (2.230)
MPrime 1-07 | 5 74,94 | 126 Bits | 12.558 (352) | ~ 231-10° (3.291)
MPrime 1-11 7 15,79 | 61 Bits | 4.862 (131) | ~8-10° (3.189)
MPrime 1-28 | 7 457 | 41 Bits | 4.152 (90) ~5-10° (2.544)
Grid 2-01 14 23,01 67 Bits 6.043 (276) 2.144.340 (4.295)

Tabelle 1: Experimentelle Ergebnisse

System, das aufgrund des Breitensuche-Ansatzes immer einen kiirzestmoglichen
Plan findet.

Tabelle 1 zeigt fiir einige charakteristische Probleme die Liange der Losung,
die zu deren Auffindung benétigte Zeit, die Grofle der erzeugten Zustandsko-
dierung, die Gesamtzahl aller Fakten, die Zahl der zu kodierenden Fakten, die
Gesamtzahl aller Operatoren und die Zahl der als erreichbar markierten Ope-
ratoren.

Die Abbildungen 5, 6, 7, 8 und 9 zeigen den Zusammenhang zwischen Grofie
der Zustandskodierung und Handhabbarkeit des Problems durch das Planungs-
system (die wenig interessante Doméne Movie wurde nicht beriicksichtigt).

3.2 Bewertung und Ausblick

Zunéchst einmal kann festgehalten werden, dafl es moglich ist, mit symboli-
schen Explorationstechniken auf Basis von BDDs ein Planungssystem zu im-
plementieren, das von seiner Leistungsfahigkeit dem heutigen Stand der Tech-
nik entspricht. Die Erzeugung der Zustandskodierung 148t sich effizient genug
verwirklichen, um auch bei extrem schwierigen Problemen noch handhabbar
zu bleiben. Wenn der Planer scheitert, dann liegt es meistens an der BDD-
Explorationsphase selbst.

Daher wére es sinnvoll, hier iiber mogliche Verbesserungen nachzudenken,
fir die es noch viel Raum gibt. Eine einfache Breitensuche kann nicht das
Ma# aller Dinge sein. Bereits der Ubergang von der unidirektionalen zur bi-
direktionalen Suche liefert bereits bei vielen Doménen eine spiirbare Verbesse-
rung. Als weitere Optimierung kénnte man eine Vereinfachung der Suchfront
anstreben, etwa durch forward set simplification oder Anwendung des Restrict-

TBeim Problem Mystery 1-07 konnte das Planungssystem beweisen, daB kein Plan zur
Losung des Problems existiert.

21

gelGst

nein

ja R I

Bits
0 10 20 30 40 50 60 70 80 90 100

Abbildung 5: Kodierungsgrofie vs. Losbarkeit in Gripper

gelost
nein OOZ gOO OC())OOOOO 800000 Oo o o o o o o
ja o
Bits
0 100 200 300 400 500 600 700 800

Abbildung 6: Kodierungsgrofle vs. Losbarkeit in Logistics

gelGst
nein o oooZ So o o & o 8 °
ja oo oo el
Bits
0 50 100 150 200 250 300

Abbildung 7: Kodierungsgrofie vs. Losbarkeit in Mystery

22

1 So ogooooooooo ° o oo o
nem > °

ja soee el $

Bits
0 50 100 150 200 250 300 350

Abbildung 8: Kodierungsgrofie vs. Losbarkeit in Mystery Prime

gelost
nein o o o o
ja .
Bits
0 20 40 60 80 100 120 140

Abbildung 9: Kodierungsgrofle vs. Losbarkeit in Grid

23

data.

data.predicatefy | symbolicFact

data.object data.fact data.action

step.parse step.constant step.merge

|
data.part-
Prec'ii cate
data.merged-
Predicate

parser step.explore

step.coding

Abbildung 10: Die Architektur des Planungssystems

Operators. Um die Bildung des relationalen Produkts zu vereinfachen, konnte
man auch die Transitionsfunktion in mehrere Teile aufspalten, fiir die dann sepa-
rate Uberginge vorgenommen werden koénnen, anstatt wie im hier beschriebenen
Ansatz alle Operatoren in einem einzelnen BDD zu vereinigen.

SchlieBlich liegt es nahe, eine Kombination des symbolischen Suchansatzes
mit heuristischen Strategien anzustreben, wofiir etwa die Algorithmen BDDA *
oder Pure BDDA* verwendet werden konnen [8]. Experimente haben gezeigt,
daf diese Algorithmen einen weiteren grofien Schritt nach vorne bringen kénnen.
Insbesondere die Ergebnisse bei der Doméne Logistics konnten massiv verbessert
werden — wenn auch teilweise auf Kosten der Optimalitit der Losung.

Auch andere Erweiterungen und Verbesserungen wéren denkbar, etwa die
Erkennung und Behandlung von Symmetrien in der Eingabe oder das Elimi-
nieren unnétiger Objekte und Operatoren, wie andere Planungssysteme (etwa
STAN [10] und IPP [12]) sie teilweise vornehmen, um die Suchphase zu er-
leichtern — es gibt hier ein grofies Potential, das bislang kaum ausgeschopft ist.
Auch eine Ausweitung auf einen ausdrucksméchtigeren Eingabeformalismus, et-
wa ADL (Abstract Description Language)[13] mit negierten Vorbedingungen,
bedingten Effekten und quantifizierten Effekten, ist denkbar.

4 Der Planer

4.1 Architektur des Planungssystems

Abbildung 10 stellt die grobe Architektur des Planungssystems dar.
Die einzelnen Teile haben dabei folgende Funktionen:

e main.cc: Das Hauptprogramm. Es ist dafiir verantwortlich, die Komman-

24

dozeile auszulesen, das Planungssystem zu starten und bei Bedarf eine
Fehlermeldung auszugeben.

data.domain.cc: Das Herzstiick des Planungssystems. Von hier aus wer-
den die Datenstrukturen des Planungssystems verwaltet und die einzelnen
Phasen nacheinander aufgerufen.

data.object.cc: Verantwortlich fiir die Behandlung von Objekten des
Planungsproblems, z.B. Routinen zur Umwandlung zur Ermittlung des
Namens eines Objekts aus seiner internen Kodierung.

data.predicate.cc: Verantwortlich fiir die Behandlung von Pradikaten
des Planungsproblems. In der zugehorigen Klasse Predicate werden z.B.
die Projektionen der Pridikate verwaltet.

data.fact.cc: Verantwortlich fiir die Behandlung von Fakten des Pla-
nungsproblems. Die Klasse Fact enthélt beispielsweise Methoden zur Um-
wandlung von Fakten von textueller Darstellung in einen ganzzahligen
Code und zuriick.

data.action.cc: Verantwortlich fir die Behandlung von Aktionen des
Planungsproblems. In der Klasse Action wird auch iiber die erreichbaren
Operator-Instantiierungen Buch gefiihrt.

data.symbolicFact.cc: Wird vor allem von der Klasse Action benutzt,
um sog. symbolische, d.h. parametrisierte Fakten zu verwalten, wie sie in
den Vorbedingungs- und Effektlisten der Operatorschema auftauchen.

step.parse.cc: Hier werden die Eingabedateien eingelesen und die Da-
tenstrukturen entsprechend aufgebaut. Dafiir wird parser.cc, ein einfa-
cher Parser fiir LISP-Dateien, verwendet.

step.constant.cc: Hier werden konstante Prédikate erkannt.

step.merge.cc: Hier werden balancierte Pradikate ermittelt und Pradika-
te vereinigt, falls das fiir das Sicherstellen der Balance notwendig ist. Die
Dateien data.mergedPredicate.cc und data.partPredicate.cc ent-
halten alle Methoden zur Verwaltung vereinigter Pradikate.

step.explore.cc: Hier ist der im Abschnitt {iber die Exploration des
Faktraums beschriebene Algorithmus implementiert.

step.coding.cc: Hier ist der im Abschnitt iiber die Erzeugung der Zu-
standskodierung beschriebene Algorithmus implementiert.

bddEngine.cc: Dies ist der zentrale Teil derjenigen Komponente des Sy-
stems, die sich mit BDDs befaf}t. Hier wird insbesondere die BDD-Explora-
tion durchgefiihrt. Die Erzeugung der Transitionsrelation wird an die Datei
transitionBuilder.cc, die Extraktion des Plans teilweise an die Datei
bdd.map. cc delegiert.

tools.cc: Einige Hilfsroutinen, die an verschiedenen Stellen im Programm
benotigt werden (Abhiingigkeiten der Dateien des Moduls “Utility” sind
im Schaubild nicht explizit angegeben). Im einzelnen sind dies Routinen
zur Fehlerbehandlung, Zeitmessung, Verwaltung von Tupeln und Permu-
tationen sowie einige mathematische Routinen.

25

e bitarray.cc: Eine Klasse zur Verwaltung von Bitvektoren.

e option.cc: Dient der Verwaltung der Kommandozeilenoptionen.

4.2 Verwendung und Aufrufparameter

Der Befehl zum Starten des Planungssystems ist

planer <Optionen> <Dom&dnendatei> <Problemdatei>.

Jeder der drei Parameter kann auch weggelassen werden. Wird nur eine Datei
angegeben, dann wird diese als Problemdatei betrachtet und als Doménenda-
tei die Datei domain.pddl im aktuellen Verzeichnis verwendet. Wird gar keine
Datei angegeben, dann wird die Problemdatei problem.pddl und die Domé&nen-
datei domain.pddl verwendet.

Giiltige Optionen sind:

e -7, -h (help): Zeigt eine kurze Anleitung an. Das Planungssystem wird
nicht gestartet.

e -p (preprocess): Es werden nur die Schritte bis zur Erzeugen der Zustands-
kodierung durchgefiihrt. Danach wird das Programm beendet.

e -t (transition): Es werden nur das preprocessing und der Aufbau der
Transitionsfunktion ausgefiihrt, aber nicht exploriert.

e -u (unidirectional): Die BDD-Exploration wird unidirektional (wie be-
schrieben) durchgefiihrt. StandardméBig wird bidirektional exploriert.

e -s (silent mode): VeranlaBt das Planungssystem, weniger Ausgaben zu
tatigen.

e -n (normal mode): Veranlafit das Programm, die normalen Ausgaben aus-
zugeben. Ist nur in Verbindung mit spezialisierten Versionen von -s, -v
oder -d sinnvoll (siehe weiter unten).

e -v (verbose output): VeranlaBt das Programm, umfangreichere Ausgaben
zu tétigen. Beispielsweise wird in jedem BDD-Explorationsschritt die ver-
brauchte Zeit und die Zahl der im BDD kodierten Zusténde ausgegeben.

e —d (debug output): VeranlaBit das Programm, die maximale Menge an In-
formationen auszugeben. Beispielsweise wird bei der Exploration des Fak-
traums der Status der Schlange protokolliert.

Den letzten vier Optionen kénnen beliebige Zeichen aus pcmeobts angehéngt
werden, um die Wirkung der Option auf bestimmte Phasen zu beschrinken (wird
darauf verzichtet, wirkt die Option auf alle Phasen).

Dabei steht p fiir parsing, c fiir constant predicates, m fiir merging, e fiir
exploring (fact space), o fiir coding, b fix BDD package handling, t fir transition
function creation und s fiir BDD search, also die Phasen in der Reihenfolge, in
der sie hier besprochen wurden (abgesehen von dem zusétzlichen Schalter b
und davon, daf} die Planerzeugung nicht beeinflu3t werden kann — hier werden
unabhiingig vom Modus immer dieselben Ausgaben getétigt).

Beispiel: planer -u -s -vo gripper.pddl gripper.prob.10.pddl star-
tet das Planungssystem mit der Doménendatei gripper.pddl und der Problem-
datei gripper.prob.10.pddl. Es wird unidirektional gesucht (-u), es werden

26

nur minimale Ausgaben getéitigt (-s), abgesehen von der Codierungsphase, bei
der erweiterte Ausgaben getiitigt werden (-vo).

Literatur

[1]

2]

3]

A. Blum and M. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281-300, 1997.

B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45(9):993-1002, 1996.

B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection
mechanism for planning. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence (AAAI-97), pages 714-719. AAAT Press,
1997.

R. E. Bryant. Symbolic manipulation of boolean functions using a graphical
representation. In H. Ofek and L. A. O’Neill, editors, Proceedings of the
22nd ACM/IEEE Conference on Design Automation (DAC 1985), pages
688-694, 1985.

T. Bylander. The computational complexity of propositional STRIPS plan-
ning. Artificial Intelligence, 69(1-2):165-204, 1994.

J. G. Carbonell, J. Blythe, O. Etzioni, Y. Gil, R. Joseph, D. Kahn, C. Kno-
block, S. Minton, A. Pérez, S. Reilly, M. Veloso, and X. Wang. Prodigy
4.0: The manual and tutorial. Technical Report CMU-CS-92-150, Compu-
ter Science Department, Carnegie-Mellon University, 1992.

S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems
to minimize state encoding length. In M. Fox and S. Biundo, editors, Recent
Advances in AI Planning. 5th European Conference on Planning (ECP’99),
volume 1809 of Lecture Notes in Artificial Intelligence, pages 135-147, New
York, 1999. Springer-Verlag.

S. Edelkamp and F. Reffel. OBDDs in heuristic search. In O. Herzog and
A. Giinter, editors, Proceedings of the 22nd Annual German Conference on
Artificial Intelligence (KI 1998), volume 1504 of Lecture Notes in Computer
Science, pages 81-92. Springer-Verlag, 1998.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189-208,
1971.

M. Fox and D. Long. The automatic inference of state invariants in TIM.
Journal of Artificial Intelligence Research, 9:367-421, 1998.

H. Kautz and B. Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), pages 1194-1201. AAAT
Press, 1996.

27

[12]

[13]

[14]

[15]

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending plan-
ning graphs to an ADL subset. In S. Steel and R. Alami, editors, Recent
Advances in AI Planning. 4th European Conference on Planning (ECP’97),
volume 1348 of Lecture Notes in Artificial Intelligence, pages 273-285, New
York, 1997. Springer-Verlag.

E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and
the situation calculus. In R. J. Brachman, H. J. Levesque, and R. Reiter,
editors, Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning (KR’89), pages 324-332. Morgan
Kaufmann, 1989.

J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order
planner for ADL. In B. Nebel, C. Rich, and W. Swartout, editors, Pro-
ceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning (KR’92), pages 103—114. Morgan Kaufmann,
1992.

F. Reffel and S. Edelkamp. Error detection with directed symbolic model
checking. In J. M. Wing, J. Woodcock, and J. Davies, editors, Proceedings of
the World Congress on Formal Methods in the Development of Computing
Systems (FM 1999), volume 1708 of Lecture Notes in Computer Science,
pages 195-211. Springer-Verlag, 1999.

S. Russell and P. Norvig. Artificial Intelligence — A Modern Approach.
Prentice Hall, 1995.

28

