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1 Einleitung

1.1 Aufgabenstellung

Planung ist ein Kernbereich der Künstlichen Intelligenz und dient der Lösung
von Problemen, die in einem allgemeinen, problemunabhängigen Formalismus
gegeben sind. Neuere Erfolge [8, 15] in der symbolischen Exploration von Pro-
blemen in der Modellprüfung und von Einpersonenspielen legen die Verallgemei-
nerung des auf die Datenstruktur der binären Entscheidungsdiagramme aufbau-
enden Suchansatzes in der Planung nahe.

In dieser Studienarbeit wird die Konzeption und Implementation eines voll-
wertigen Planungssystems vorgestellt. Insbesondere werden die folgenden drei
Phasen im Planungsprozess realisiert und dokumentiert:

• Einlesen und Parsen der Problemspezifikation aus einer Datei

• Inferenz einer effizienten binären Zustandskodierung aus der so gewonne-
nen Information

• Aufbau der Übergangsfunktion und symbolische Exploration

1.2 Gliederung

Im folgenden wird zunächst die Problemstellung angesprochen und motiviert,
warum BDDs zur Lösung von Planungsproblemen sinnvoll sein können. Dazu
müssen zunächst einige Schwierigkeiten überwunden werden; insbesondere muß
die Eingabe für den Planer in eine kompakte und gut handhabbare binäre Ko-
dierung überführt werden. Dieses Thema bildet den algorithmischen Kern der
Arbeit. Abgeschlossen wird der algorithmische Teil durch die Anbindung des
eigentlichen Explorationsalgorithmus und die Vorstellung eines Verfahren zur
Extraktion der Lösung aus den erzeugten Zustandsmengen.

Anschließend werden einige der dabei beobachteten empirischen Ergebnis-
se diskutiert und zu den Fähigkeiten anderer Planungssysteme in Beziehung
gesetzt sowie ein Ausblick auf mögliche Erweiterungen des hier vorgestellten
Ansatzes geboten.

Alle hier vorgestellten Verfahren wurden im Rahmen dieser Studienarbeit in
C++ implementiert. Der abschließende Teil beschreibt die interne Struktur des
Planungssystems und geht auf dessen Bedienung ein.

1.3 Klassische Handlungsplanung

Das Problem der Handlungsplanung besteht grob gesagt darin, eine Folge von
Operationen zu finden, die einen gegebenen Startzustand in einen bestimmten
Endzustand überführen [16]. Der dabei verwendete Formalismus ist recht allge-
mein, so daß Planungsprobleme sehr verschiedenartig sein können. Klassische
Beispiele sind Logistik- und Packprobleme, aber auch viele typische Suchpro-
bleme können als Planungsprobleme ausgedrückt werden.

Abbildung 1 zeigt ein Beispiel für die Spezifikation eines Planungsproblems
in der sogenannten STRIPS -Notation (für STanford Research Institute Planning
System) [9]. Es handelt sich um das bekannte Problem der Türme von Hanoi,
hier gegeben durch drei Scheiben lit, med und big und drei Stäben l, m und r.
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(define (domain towers-of-hanoi)

(:predicates (smaller ?d1 ?d2) (on ?d1 ?d2) (clear ?d))

(:action move :parameters (?move ?from ?to)

:precondition (and (smaller ?move ?to) (on ?move ?from)

(clear ?move) (clear ?to))

:effect (and (clear ?from) (on ?move ?to)

(not (clear ?to)) (not (on ?move ?from)))))

(define (problem hanoi-3) (:domain towers-of-hanoi)

(:objects l m r lit med big)

(:init (smaller lit med) (smaller lit big) (smaller med big)

(smaller lit l) (smaller lit m) (smaller lit r)

(smaller med l) (smaller med m) (smaller med r)

(smaller big l) (smaller big m) (smaller big r)

(on big l) (on med big) (on lit med)

(clear lit) (clear m) (clear r))

(:goal (and (on lit med) (on med big) (on big r))))

Abbildung 1: Die Türme von Hanoi als STRIPS-Files

Für eine formale Definition des Planungsproblems müssen nun zunächst ei-
nige Begriffe eingeführt werden:

• Ein Objekt ist ein eindeutiger Bezeichner, der für eine Entität in der mo-
dellierten Domäne steht, in obigem Problem etwa die drei Scheiben lit,
med und big.

• Ein Prädikat ist ein eindeutiger Bezeichner, der zur Modellierung allgemei-
ner Eigenschaften dient, die Objekten zukommen können, etwa die Prädi-
kate smaller und clear in obigem Beispiel. Jedem Prädikat p ist eine Stel-
ligkeit σ(p) ∈ N0 zugeordnet. So ist z.B. σ(smaller) = 2, σ(clear) = 1.

• Ein n-stelliges Prädikat und ein n-Tupel von Objekten bilden zusammen
einen Fakt (oder auch ein instantiiertes Prädikat). Ein Fakt modelliert eine
Eigenschaft, die einem Objekt oder einem Tupel von Objekten zukommt.
So wird durch den Fakt (smaller, (med, big)) in obigem Beispiel aus-
gedrückt, daß die Scheibe med kleiner ist als die Scheibe big. Wir werden
Fakten im folgenden nach dem Schema smaller(med, big) notieren.

• Eine Menge von Fakten bildet einen Zustand des Planungsproblems. Der
momentane Zustand der Planungswelt ist durch die Menge der derzeit
gültigen Fakten eindeutig beschrieben. Ein Beispiel ist der oben angegebe-
ne Startzustand init. Die Endzustände des Problems sind alle Zustände,
die die in goal spezifizierten Fakten als Teilmenge enthalten.

• Ein Operator ist ein 3-Tupel (V, A, D) von Vorbedingungen, Add-Effekten
und Del-Effekten, wobei V , A und D jeweils Mengen von Fakten sind. Ein
Operator ist auf einem Zustand Z anwendbar, wenn die Vorbedingungen
erfüllt sind, d.h. V ⊆ Z gilt. Er überführt Z in den Zustand Z ′ = (Z ∪
A) \ D, wobei gefordert wird, daß A und D disjunkt sind.

• Operatoren werden durch Operator-Schemata oder Aktionen definiert. So
lassen sich etwa aus der obigen Aktion move durch Einsetzen beliebiger
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Objekte für die freien Variablen ?move, ?from und ?to z.B. die Operato-
ren move(big, l, m) und move(lit, med, big) erzeugen. Für letzteren
Operator gilt beispielsweise V = { smaller(lit, big), on(lit, med),
clear(lit), clear(med) }, A = { clear(med), on(lit, big) } und
D = { clear(big), on(lit, med) }.

Mit diesen Begriffen läßt sich das Problem nun wie folgt formulieren: Gege-
ben seien eine Menge P von Prädikaten, eine Menge A von Aktionen (über der
Prädikatsmenge), eine Menge O von Objekten, der Startzustand Z0 sowie der
Endzustand Ze (jeweils Zustände über P und O). Gesucht ist eine Folge von
Operatoren (gemäß den Schemata aus A), die den Zustand Z0 in einen Zustand
Z ′

e mit Ze ⊆ Z ′
e überführt, sofern eine solche Folge überhaupt existiert. Wenn

keine solche Folge existiert, dann soll der Algorithmus dies feststellen und eine
entsprechende Ausgabe erzeugen.

1.4 Handlungsplanung als Erfüllbarkeitsproblem

Im Laufe der Zeit hat es zum Teil sehr unterschiedliche Ansätze zur Lösung
von Planungsproblemen gegeben [1, 6, 14]. Einer der klassischen Ansätze be-
steht darin, das Problem in ein Erfüllbarkeitsproblem zu transformieren und
mit einem geeigneten Algorithmus eine erfüllende Belegung zu bestimmen, aus
der sich dann wiederum die erforderlichen Operationen zur Lösung des Pla-
nungsproblems ableiten lassen [11]. Dabei soll die Gültigkeit des Fakts f nach
t Zeitschritten durch die aussagenlogische Variable xf,t formalisiert werden. Im
folgenden bezeichnet F die Menge aller Fakten, Z0 den Startzustand, Ze den
Endzustand und Op die Menge aller Operatoren.

• Die Gültigkeit des Startzustands im ersten Zeitschritt wird durch folgende
Konjunktion sichergestellt:

start =
∧

f∈Z0

xf,0 ∧
∧

f∈F\Z0

¬xf,0.

• Das Erreichen des Endzustands im Zeitschritt t formalisiert die Konjunk-
tion

end(t) =
∧

f∈Ze

xf,t.

• Die Anwendung eines Operators o = (V, A, D) zum Zeitpunkt t läßt sich
formalisieren als

apply(o, t) =
∧

f∈V

xf,t∧
∧

f∈A

xf,t+1∧
∧

f∈D

¬xf,t+1∧
∧

f∈F\(A∪D)

xf,t ↔ xf,t+1.

Aus diesen Bestandteilen läßt sich dann das Gesamtproblem zusammenset-
zen:

Problem(n) = start ∧ end(n) ∧
∧

0≤t<n

∨

o∈Op

apply(o, t).

Kann man nun eine erfüllende Belegung für Problem(n) finden, und sei n0

das kleinste n, so daß dies möglich ist, so kann man aus den Variablen xf,t für
t ∈ {0, 1, . . . , n0} eine Folge von Zuständen extrahieren, die den Startzustand in
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einen Endzustand transformieren. Für die so gefundene Zustandssequenz ist es
nicht weiter schwierig, eine korrespondierende Operatorsequenz zu bestimmen,
die die Lösung des Problems darstellt. Die so gefundene Lösung ist optimal in
dem Sinne, daß sie aus einer minimalen Anzahl an Operatoren besteht.

Ein Problem des SAT-basierten Ansatzes besteht darin, daß sowohl die For-
mel selbst als auch die Anzahl der verwendeten aussagenlogischen Variablen
bereits bei vergleichsweise einfachen Problemen sehr groß werden können. Da-
durch, daß aus den Operatorschemata sehr viele gleichartige Operationen er-
zeugt werden, entsteht eine Vielzahl ähnlicher Teilformeln. Wünschenswert wäre
demnach eine Repräsentation in einer Datenstruktur, die diese inhärenten Sym-
metrien ausnutzen kann.

1.5 Boolesche Funktionen und BDDs

Aus diesem Grunde liegt es nahe, sich im Zusammenhang mit Planungsproble-
men mit binären Entscheidungsdiagrammen (binary decision diagrams, BDDs)
zu beschäftigen. BDDs bieten eine Möglichkeit, boolesche Funktionen (speziell
Funktionen des Typs f : B

n → B) kompakt zu repräsentieren und in effizien-
ter Weise wesentliche Operationen (etwa Konjunktion, Disjunktion oder Exi-
stenzquantifizierung bzgl. bestimmter Variablen) auf ihnen durchzuführen. Wie
BDDs intern strukturiert sind und wie die auf ihnen operierenden Algorithmen
funktionieren, wird in dieser Arbeit nicht diskutiert; BDDs werden hier als black
box betrachtet und lediglich als Vehikel zur Implementation des Planungsalgo-
rithmus benutzt [4].

Wir konzentrieren uns hier vielmehr auf die Frage, wie man BDDs benutzen
kann, um eine Belegung der obigen booleschen Formel zu bestimmen. Zunächst
lassen sich Zustandsmengen in einer Planungswelt ohne weiteres als boolesche
Funktionen darstellen lassen, indem man sie durch ihre charakteristische Funk-
tion repräsentiert, d.h. die boolesche Funktion, die auf einen gegebenen binär
kodierten Zustand angewendet genau dann den Wert “Wahr” annimmt, wenn
dieser Zustand in der jeweiligen Zustandsmenge liegt. Ebenso lassen sich Re-
lationen über Zuständen, also Mengen von Tupeln von Zuständen, über ihre
charakteristische Funktion repräsentieren.

Damit kann man nun die drei wesentlichen Bestandteile der obigen Formel:
Startzustand, Endzustand und Übergang von einem Zeitschritt zum nächsten
(die Transitionsrelation) als BDDs repräsentieren. Durch Berechnung des rela-
tionalen Produkts einer Zustandsmenge mit der Transitionsrelation kann man
nun die Menge der Nachfolgezustände berechnen. Im Kontext der obigen Formel
bedeutet das also: Aus der Menge der konsistenten Belegungen der Variablen
xf,t (die gültigen Zustände zum Zeitpunkt t) wird die Menge der konsistenten
Belegungen der Variablen xf,t+1 (der gültigen Zustände zum Zeitpunkt t+1) be-
rechnet. Sobald eine dieser Mengen einen Endzustand enthält, ist eine erfüllende
Belegung gefunden. Diese muß anschließend noch aus den BDDs extrahiert wer-
den; das dafür verwendete Verfahren wird später noch vorgestellt. Mit anderen
Worten wird also eine Breitensuche über dem Zustandsraum durchgeführt. Da-
bei ist hervorzuheben, daß durch die Verwendung von BDDs der Übergang von
einem Niveau zum nächsten in einem einzigen Schritt und nicht Zustand für
Zustand geschieht.
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1.6 Von STRIPS-Files zur Binärkodierung

Leider ist das Verfahren in der bislang beschriebenen Form noch zu einfach, um
größere Planungsprobleme zu lösen. Kodiert man jeden Fakt in einer eigenen
booleschen Variable (die sogenannte naive Kodierung), kommt man leicht auf
BDDs mit fünfstelliger Variablenzahl und wird bei der Exploration unweigerlich
an der Komplexität des Problems scheitern.

Außerdem ist nicht klar, wie man aus der Beschreibung des Planungspro-
blems in STRIPS-Notation zu einer Kodierung durch boolesche Variablen kom-
men kann und wie man die für den Aufbau der Transitionsrelation notwendigen
Operatoren bestimmen kann (alle denkbaren Operatoren zu betrachten, ist auf-
grund der kombinatorischen Explosion normalerweise nicht machbar, und der
weitaus größte Teil von ihnen kann ohnehin aufgrund unerfüllbarer Vorbedin-
gungen unberücksichtigt bleiben).

Diese offenen Fragen bilden das eigentliche Problem beim Planen mithilfe
von binären Entscheidungsdiagrammen, und in den folgenden Abschnitten soll
es darum gehen, dieses Problem zu lösen [7].

2 Die Algorithmen

2.1 Parsing der STRIPS-Files

Der erste Schritt bei der Verarbeitung des Problems besteht darin, die Einga-
bedateien einzulesen und in geeigneten Datenstrukturen abzulegen. In unserem
Fall wurden als Eingabeformat PDDL-Dateien verwendet. Das PDDL-Format
ist das heute allgemein akzeptierte Eingabeformat für Planungsprobleme. Es
gibt verschiedene Ebenen der Ausdrucksmächtigkeit innerhalb von PDDL. Wir
haben uns auf die Teilmenge von PDDL beschränkt, die im Wesentlichen dem
STRIPS-Formalismus entspricht und daher auf Erweiterungen wie etwa negierte
Vorbedingungen verzichtet, auch wenn einige dieser Erweiterungen problemlos
in den vorliegenden Rahmen integriert werden könnten.

Probleme in PDDL werden immer durch zwei Dateien spezifiziert:

• Eine Domänen-Datei, die Prädikate und Aktionen definiert, sowie

• eine Problem-Datei, die Objekte, Start- und Endzustand definiert.

Diese Aufteilung ermöglicht es, für ähnliche Probleme (etwa Varianten der
Türme von Hanoi mit unterschiedlich vielen Scheiben) dieselbe Domänen-Datei
zu verwenden und nur die Problem-Datei zu variieren. Das Beispiel aus Abbil-
dung 1 zeigt sowohl die Domänen- als auch die Problemdatei; letztere beginnt
ab der Zeile define (problem hanoi-3).

Eine erste Version des Planers verwendete die Programme flex und bison
(Varianten der Unix-Programme lex und yacc), um die Daten einzulesen, aber
dieser Ansatz wurde zugunsten einer manuellen Implementation verworfen, da
sich zum einen PDDL-Files nur unzureichend durch kontextfreie Grammati-
ken beschreiben lassen und zum anderen die von flex und bison erzeugten
Programmteile schlecht in eine objektorientierte Umgebung integriert werden
können.

Die Arbeit in dieser Phase besteht darin, die Daten in einer geeigneten Struk-
tur abzulegen. Dafür werden im Wesentlichen Vektoren verwendet, die von der
C++ Standard Template Library (STL) zur Verfügung gestellt werden.
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Anschließend kann auf alle Prädikate, Aktionen und Objekte über ihren Na-
men oder einen ganzzahligen Schlüssel zugegriffen werden. Auch den verschiede-
nen möglichen Fakten werden Schlüssel zugewiesen, so daß Zustände entweder
als Listen von ganzen Zahlen gespeichert werden (was sich für Zustände mit
wenigen Fakten empfiehlt) oder auch durch Bitvektoren repräsentiert werden
können, in denen ein gesetztes Bit an Position i bedeutet, daß der Fakt mit
dem Index i diesem Zustand angehört (man sagt: in diesem Zustand wahr ist).
Diese Repräsentation ist bei Zuständen empfehlenswert, in denen sehr viele der
möglichen Fakten auftreten.

Das eigentliche Parsing läßt sich problemlos in linearer Zeit in der Länge
der Eingabe bewältigen. Der Aufbau der angesprochenen Datenstrukturen zum
Zugriff auf die verschiedenen Entitäten über ihren Namen benötigt insgesamt
Zeit O(n log n) (wobei n die Anzahl der dargestellten Entitäten bezeichnet),
da balancierte Binärbäume verwendet werden. Die in dieser Phase aufgebauten
Datenstrukturen reflektieren die Eingabe selbst und benötigen daher linearen
Platz in der Größe der Eingabe.

2.2 Erkennen konstanter Prädikate

Nach diesen vorbereitenden Maßnahmen beginnt die eigentliche Verarbeitung
der Daten mit der Erkennung konstanter Prädikate. Ein konstantes Prädikat ist
ein Prädikat, das niemals in einer Effekt-Liste (A oder D) eines Operators auf-
tritt. Derartige Prädikate sind in Planungsproblemem sehr häufig. Sie dienen
zur Modellierung statischer Informationen, in obigem Beispiel etwa der Tat-
sache, daß die kleine Scheibe lit kleiner ist als die mittelgroße Scheibe med.
Weiterhin werden konstante Prädikate oft als Ersatz für Typen verwendet, die
es im reinen STRIPS-Formalismus nicht gibt. Beispiele dafür sind die Prädikate
PACKAGE, TRUCK und LOCATION im Logistik-Beispiel aus Abbildung 2, das uns
(gemeinsam mit der zugehörigen Problemdefinition aus Abbildung 3) eine Weile
begleiten wird.

(define (domain easy-logistics)

(:predicates (PACKAGE ?p) (TRUCK ?t) (LOCATION ?loc)

(at ?x ?loc) (in ?p ?truck))

(:action LOAD :parameters (?p ?truck ?loc)

:precondition (and (PACKAGE ?p) (TRUCK ?truck) (LOCATION ?loc)

(at ?truck ?loc) (at ?p ?loc))

:effect (and (not (at ?p ?loc)) (in ?p ?truck)))

(:action UNLOAD :parameters (?p ?truck ?loc)

:precondition (and (PACKAGE ?p) (TRUCK ?truck) (LOCATION ?loc)

(at ?truck ?loc) (in ?p ?truck))

:effect (and (not (in ?p ?truck)) (at ?p ?loc)))

(:action DRIVE :parameters (?truck ?from ?to)

:precondition (and (TRUCK ?truck) (LOCATION ?from) (LOCATION ?to)

(at ?truck ?from))

:effect (and (not (at ?truck ?from)) (at ?truck ?to))))

Abbildung 2: Eine einfache Logistik-Domäne

Da unser Ziel die Erzeugung einer effizienten Zustandskodierung ist, ist es
wichtig, konstante Prädikate zu erkennen. Diese enthalten offenbar keine dyna-
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(define (problem easy-logistics-10)

(:domain easy-logistics)

(:objects package1 ... package10 truck1 ... truck10 loc1 ... loc10)

(:init (PACKAGE package1) ... (PACKAGE package10)

(TRUCK truck1) ... (TRUCK truck10)

(LOCATION loc1) ... (LOCATION loc10)

(at truck1 loc1) ... (at truck10 loc10)

(at package1 loc1) ... (at package10 loc10))

(:goal (and (at package1 loc10) (at package2 loc10) ...

(at package9 loc10) (at package10 loc10))))

Abbildung 3: Ein einfaches Logistik-Problem

mische Information und müssen daher nicht mitkodiert werden. Der Algorith-
mus zum Erkennen konstanter Prädikate ist sehr einfach: Wir betrachten für
jede Aktion die Effektlisten und markieren alle dort auftretenden Prädikate.
Alle am Ende noch unmarkierten Prädikate sind konstant.

Auf dieselbe Weise wäre es möglich, Prädikate zu erkennen, deren Fakten
entweder nur gelöscht oder nur hinzugefügt werden können (sogenannte Einweg-
Prädikate, z.B. das fuelled-Prädikat in der rocket world, denn hier können
Raketen nicht mehr betankt werden, nachdem sie einmal ihren Sprit verbraucht
haben). Wir verzichten darauf, diese Informationen zu nutzen, da eine spätere
Phase, die Exploration des Faktraums, detailliertere Resultate derselben Art
liefert.

Das Erkennen konstanter Prädikate erfordert es nur, jeden Effekt jeder Akti-
on einmal zu betrachten und ist damit in linearer Zeit in der Anzahl der Effekte
zu bewältigen. Der zusätzliche Platzbedarf für die Speicherung der gewonnenen
Informationen ist linear in der Anzahl der Aktionen.

2.3 Erkennen balancierter Prädikate

Eine naive Kodierung eines Zustands könnte darin bestehen, für jeden einzelnen
Fakt mit einem Bit zu speichern, ob er in diesem Zustand wahr ist, oder nicht.

Betrachtet man das obige Logistik-Beispiel, so zählt man 30 Objekte (je-
weils zehn Pakete, Lastwagen und Orte), drei einstellige Prädikate (PACKAGE,
TRUCK, LOCATION) sowie zwei zweistellige Prädikate (at, in). Für jedes einstel-
lige Prädikat wären 30 Bits zur Kodierung nötig, für jedes zweistellige Prädikat
30 · 30 = 900 Bits, insgesamt also 3 · 30 + 2 · 900 = 1890 Bits, eine viel zu
große Zahl, die auch durch Weglassen der konstanten Prädikate nur auf 1800
verringert werden kann.

Es geht wesentlich besser. Dem menschlichen Beobachter wird schnell auf-
fallen, daß es z.B. keineswegs nötig ist, 30 Bits für die diversen Varianten von
at(package1, x) zu verwenden: Wenn das Paket an einem bestimmten Ort ist,
so kann es nicht gleichzeitig an einem anderen Ort sein. Es würde also reichen,
einen Schlüssel zu kodieren, der den Aufenthaltsort des Pakets kennzeichnet,
wofür ⌈log2 30⌉ = 5 Bits ausreichend wären.
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2.3.1 Balancierte Prädikate

Die Frage ist also, wie eine derartige Information aus der Beschreibung der
Domäne automatisch abgeleitet werden kann. Leider ist dies nicht möglich, denn
es handelt sich hierbei um eine Eigenschaft, die nicht nur von der Domäne, son-
dern auch vom Startzustand abhängt: Enthielte der Startzustand etwa sowohl
die Fakten at(package1, loc1) und at(package1, loc2), dann könnte man
diese beiden Aufenthaltsorte nicht ohne weiteres in einer einzelnen Zahl kodie-
ren.

Man könnte jedoch zumindest versuchen zu zeigen, daß die Aktionen in der
Domäne garantieren, daß die Zahl der Aufenthaltsorte eines gegebenen Objekts
niemals steigt, d.h. formaler, daß für jedes Objekt o ∈ O gilt, daß at2(o, Z) :=
|{(at o x) ∈ Z | x ∈ O}| durch Anwendung eines beliebigen Operators im
Zustand Z niemals steigt. In diesem Fall sprechen wir davon, daß at balanciert
im zweiten Parameter ist. Allgemeiner nennen wir das n-stellige Prädikat pred
balanciert im k-ten Parameter, wenn für beliebige Objekte oi der Ausdruck
predk(o1, . . . , ok−1, ok+1, . . . , on, Z) bei Anwendung eines Operators im Zustand
Z niemals steigt, sich also |{(pred(o1, . . . ok−1, x, ok+1, . . . on) ∈ Z | x ∈ O}|
beim Zustandsübergang nicht erhöht.

Was nützt das nun für die Kodierung? Falls bekannt ist, daß at im zweiten
Parameter balanciert ist, dann muß für jedes Objekt o einer der folgenden drei
Fälle gelten (Z0 bezeichnet den Startzustand):

• at2(o, Z0) = 0: In diesem Fall muß über den Aufenthaltsort von o über-
haupt keine Information gespeichert werden.

• at2(o, Z0) = 1: Dann kann o nur an maximal einem Ort auf einmal sein,
d.h. wir kommen mit ⌈log2(|O|+1)⌉ Bits aus (Die Addition der 1 dient da-
zu, auch den Fall repräsentieren zu können, daß das Objekt schließlich an
keinem Ort mehr ist, denn die Zahl der Aufenthaltsorte darf ja durchaus
sinken, nur eben niemals steigen).

• at2(o, Z0) > 1: In diesem Fall begnügen wir uns mit einer naiven Kodie-
rung.

Es stellt sich nun die Frage, wie man im vorliegenden Beispiel zeigen kann,
daß at balanciert ist. Betrachtet man die Aktionen genauer, stellt man fest,
daß dies gar nicht der Fall ist, denn es gibt zwei Aktionen, die die Balance
verändern: bei LOAD-Operatoren kann sie dekrementiert, bei UNLOAD-Operatoren
inkrementiert werden. Es fällt jedoch auf, daß, wann immer at2(o) steigt, in2(o)
entsprechend sinkt, und umgekehrt. Würde man also diese beiden Prädikate zu
einem neuen Prädikat at+in zusammenfassen, so ergäbe sich ein balanciertes
Prädikat, denn (at + in)2 = at2 + in2 bleibt unter jedem Operator invariant,
wie man leicht anhand der Definition der Aktionen nachvollziehen kann.

2.3.2 Der Algorithmus

Wir sind nun in der Lage, den Algorithmus zum Überprüfen der Balance von
predi für ein gegebenes Prädikat pred und einen Parameter i ∈ {1, . . . , σ(pred)}
wie folgt zu beschreiben: Für jedes Aktionsschema und jeden Add-Effekt a über-
prüfen wir, ob dieser sich auf das Prädikat pred bezieht. Falls ja, suchen wir
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einen zugehörigen Del-Effekt d, d.h. einen solchen Del-Effekt, der sich gleich-
falls auf pred bezieht und dieselbe Argumentliste hat wie a, abgesehen vom i-ten
Argument, das abweichend sein darf (und normalerweise sein wird). Finden wir
zu jedem Add-Effekt einen passenden Del-Effekt, dann gleichen sich die Effekte
gegenseitig aus und das Prädikat ist balanciert.

Gibt es jedoch einen Add-Effekt ohne Partner, dann durchsuchen wir die
Liste der Del-Effekte nach einem beliebigen Effekt mit einer passenden Argu-
mentliste - dieses Mal muß es sich dabei nicht um einen Effekt mit demselben
Prädikat handeln. Gibt es keinen solchen Partner, dann kann keine Balance ge-
funden werden. Finden wir aber einen Partner, der sich auf das Prädikat other
bezieht, dann rufen wir den Algorithmus rekursiv mit dem zusammengefaßten
Prädikat pred+other auf. Der Ausdruck “passende Argumentliste” impliziert
dabei nicht, daß other seine Argumente auch in derselben Reihenfolge nehmen
muß wie pred, was den Algorithmus etwas verkompliziert, da gegebenenfalls
verschiedene Permutationen der Argumentliste von other betrachtet werden
müssen.

Da das i-te Argument von pred nicht in der Argumentliste des Partners
auftauchen muß, ist es sogar möglich, ein Prädikat mit einem Prädikat zu verei-
nigen, dessen Stelligkeit um 1 geringer ist. Dies ist ein Spezialfall, den wir hier
nicht näher ausführen möchten. Er tritt aber durchaus häufig auf, etwa in der
Gripper -Domäne, wo ein Gripper entweder einen beliebigen Ball tragen kann
(carry ?ball ?gripper) oder derzeit frei ist (free ?gripper), wobei immer
eine der beiden Situationen zutreffen muß, d.h. carry+free ist balanciert.

Es kann beim Vereinigen von Prädikaten natürlich auch mehrere unterschied-
liche Kandidaten geben. In diesem Fall werden alle sich ergebenden Möglichkei-
ten verfolgt. Obwohl die Rekursionstiefe theoretisch nur durch die Gesamtzahl
der Prädikate beschränkt ist, ist uns kein praktisches Beispiel bekannt, indem
es nötig ist, mehr als zwei Prädikate zu vereinigen, um Balance zu erreichen
(sofern überhaupt Balance vorliegt).

Führt man diesen Algorithmus nun für alle Prädikate pred und alle mögli-
chen i durch, so erhält man am Ende eine Menge von (ggfs. vereinigten) Prädi-
katen, die balanciert sind.

2.3.3 Beispiel und Komplexität

Im vorliegenden Beispiel ergibt sich das erwartete Resultat, daß at+in im zwei-
ten Parameter balanciert ist. Betrachtet man den Startzustand, so stellt man
mit obiger Fallunterscheidung fest, daß nur die Aufenthaltsorte der Pakete und
Trucks gespeichert werden müssen. Für jedes Objekt gibt es 30 verschiedene
Ausprägungen von at-Fakten und 30 verschiedene Ausprägungen von in-Fakten
sowie den (in dieser Domäne allerdings unmöglichen) Fall, daß keiner dieser 60
Fakten gilt, also reichen insgesamt ⌈log2 61⌉ = 6 Bits für jedes Paket und jeden
Truck aus. Damit ergibt sich insgesamt eine Kodierungsgröße von (10+10) ·6 =
120 Bits. Ein achtbares Resultat im Vergleich zu der vorherigen Größe von 1800
Bits, aber es geht noch kompakter, wie sich im folgenden Abschnitt herausstellen
wird.

Vorher aber noch einige Worte zur Komplexität des vorgestellten Algorith-
mus. Bei ungünstigen Eingaben könnte theoretisch jede Teilmenge der Prädi-
katsmenge, abgesehen von konstanten Prädikaten, für eine Überprüfung in Frage
kommen, weswegen exponentielle Zeit in der Zahl der Prädikate notwendig sein
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kann.
Dies ist jedoch aus zwei Gründen unkritisch: zum einen tritt dieser ungünsti-

ge Fall bei allen betrachteten Benchmarkproblemen nicht auf – eine Rekursions-
tiefe von zwei wurde nie überschritten –, zum anderen läßt sich bei der geringen
Zahl nicht-konstanter Prädikate, wie sie in Handlungsplanungsproblemen auf-
treten, ein exponentieller Aufwand durchaus akzeptieren.

Abgesehen von dem Platz zur Speicherung der ermittelten Informationen
besteht kein nennenswerter zusätzlicher Speicherbedarf; er ist linear in der ma-
ximalen Anzahl an Add-Effekten der Aktionen der Domäne (für die Speicherung
der Effekte, zu denen später ein Partner gefunden werden muß) zuzüglich der
Anzahl der Prädikate (für die Rekursion).

2.4 Exploration des Faktraums

In den meisten Fällen ist es nicht notwendig, zum Kodieren der balancierten
Prädikate den vollen Wertebereich zuzulassen. Beispielsweise kann ein Paket
sich nur an einem Ort oder in einem Truck befinden, aber nicht in einem anderen
Paket, in einem Ort usw.

Dazu eine Definition: Wenn ein Fakt im Startzustand enthalten ist oder
es eine anwendbare Folge von Operatoren gibt, die diesen Fakt erzeugt, dann
bezeichnen wir ihn als erreichbar, ansonsten als unerreichbar. Ein Operator heißt
entsprechend erreichbar, wenn alle seine Vorbedingungen erreichbar sind.

Bei vielen Fakten kann man durch einfaches Betrachten der Operatorsche-
mata auf die Unerreichbarkeit schließen. So kann ein LOAD-Operator Aktionen
beispielsweise Objekte nur in Trucks verladen, wie man an den Vorbedingun-
gen leicht erkennen kann. Diese Art der Analyse reicht aber bei komplexeren
Beispielen nicht mehr aus.

Außerdem benötigen wir in einem späteren Stadium für die Konstruktion
der Transitionsrelation eine Liste aller erreichbaren Operatoren.

2.4.1 Naive Exploration

Sowohl erreichbare Operatoren als auch erreichbare Fakten lassen sich über eine
Breitensuche vom Startzustand ausgehend ermitteln: Zu Beginn des Algorith-
mus ist nur der Startzustand erreichbar. In einem Iterationsschritt werden al-
le möglichen Operatoren instantiiert. Diejenigen davon, deren Vorbedingungen
erfüllt sind, werden als erreichbar markiert, ebenso die Fakten aus ihren Add-
Effekt-Menge. Solange noch weitere Fakten erzeugt werden können, wird dieser
Vorgang iteriert.

Der Algorithmus bricht ab, weil aufgrund der endlichen Zahl möglicher Fak-
ten irgendwann ein Fixpunkt erreicht sein muß. Jedoch ist die naive Explora-
tion sehr zeitaufwendig, denn die Zahl der theoretisch denkbaren Operatoren
wächst bei großen Problemen sehr schnell, obwohl nur ein winziger Bruchteil
der Operatoren tatsächlich erreichbar ist. Als Beispiel hierfür möge das Pro-
blem Mprime-14 aus der AIPS’98-Suite1 herangezogen werden, bei dem es ca.
3 · 1013 theoretisch denkbare Operatoren gibt, von denen nur ca. 120.000 er-
reichbar sind.

1http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html
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2.4.2 Fakt-basierte Exploration

Besser wäre daher ein Ansatz, der unnötige Instantiierungen von nicht erreichba-
ren Operatoren vermeidet. Dafür verwenden wir einen fakt-zentrierten Ansatz.
Die zentrale Datenstruktur hierbei ist eine Schlange, in der die Fakten, die als
nächstes als erreichbar markiert werden sollten, gespeichert werden. Zu Beginn
enthält diese Schlange genau die Fakten des Startzustandes. Ein Verarbeitungs-
schritt besteht nun darin, den obersten Fakt aus dieser Schlange zu entnehmen,
als erreichbar zu markieren und alle dadurch erreichbar gewordenen Operato-
ren als erreichbar zu markieren und zu instantiieren, d.h. die Fakten aus ihrer
Add-Effekt-Menge in die Schlange aufzunehmen, falls sie bisher noch nicht als
erreichbar markiert sind und auch noch nicht in der Schlange gespeichert sind.
Dieser Vorgang wird wiederholt, bis die Schlange leer ist.

Die entscheidende Beobachtung besteht darin, daß es bei der Instantiierung
der Operatoren ausreicht, solche Operatoren zu betrachten, in deren Vorbedin-
gungen der neue Fakt auftritt, denn alle anderen zu diesem Zeitpunkt erreich-
baren Operatoren müssen nach Konstruktion des Algorithmus schon vorher be-
trachtet worden sein. Dadurch wird kein Operator mehr als einmal betrachtet,
denn jeder Operator, der instantiiert wird, enthält eine Vorbedingung, die im
vorherigen Verarbeitungsschritt noch nicht erreichbar war und kann daher nicht
bereits früher instantiiert worden sein.

Es bleibt die Frage, wie man in effizienter Weise die Menge der Operatoren
bestimmen kann, die in einem bestimmten Verarbeitungsschritt betrachtet wer-
den müssen. Zunächst ist klar, daß nur Operatoren in Frage kommen, die den
aktuell betrachteten Fakt als Vorbedingung beinhalten. Operatorschemata, die
das entsprechende Prädikat nicht enthalten, scheiden von vorneherein aus, und
bei den in Frage kommenden Schemata ist es möglich, bestimmte Parameter
von vorneherein an bestimmte Werte zu binden.

Dazu ein Beispiel: Betrachten wir das bekannte Logistik-Problem, der ak-
tuelle Fakt sei in(package4, truck2). Damit können die Schemata LOAD und
DRIVE komplett ignoriert werden, denn in beiden tritt das Prädikat in nicht als
Vorbedingung auf. Es bleibt nur noch das Schema UNLOAD mit den Parametern
?p, ?truck und ?loc. Damit in(package4, truck2) eine Vorbedingung ist,
muß ?p = package4 und ?truck = truck2 gelten, es bleibt also nur noch ?loc

als einzig frei wählbarer Parameter.

2.4.3 Optimierungen

Es gibt noch zwei weitere Optimierungen, die verwendet werden, um unnöti-
ge Instantiierungen zu vermeiden. Zum einen wird nach jeder Belegung eines
Parameters überprüft, ob der Operator erreichbar sein kann, nicht erst, nach-
dem alle Parameter belegt wurden. Sollte also etwa bereits durch die Belegung
?p = package4, ?truck = truck2 klar sein, daß eine der Vorbedingungen noch
nicht erreichbar ist, kann auch der Operator nicht erreichbar sein, unabhängig
davon, wie ?loc belegt werden sollte, und die Suche nach einer Instantiierung
mit einer solchen Belegung wird sofort abgebrochen.

Zweitens merkt sich der Algorithmus für jedes Prädikat pred, jede Position
i ∈ {1, . . . , σ(p)} und jedes Objekt o, ob es bereits einen erreichbaren Fakt von
pred gibt, dessen i-tes Objekt o ist, d.h. für jedes Prädikat werden alle Projek-
tionen der Menge der erreichbaren Fakten auf die i-te Komponente gespeichert.
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Damit kann der Bereich, der für die Belegung der noch offenen Parameter
in Frage kommt, weiter eingeschränkt werden. In unserem Beispiel tritt der
Parameter ?loc bei den Vorbedingungen LOCATION ?loc und at ?truck ?loc

auf. Wenn bisher die einzigen erreichbaren Fakten des Prädikats LOCATION die
Fakten LOCATION(loc1), LOCATION(loc2), LOCATION(loc3), LOCATION(loc5)
und LOCATION(loc7) und die erreichbaren Fakten von at etwa at(package1,

loc1), at(truck2, loc2), at(truck3, loc3) und at(truck2, loc4) sind,
dann sind die entsprechenden Projektionen die beiden Mengen {loc1, loc2,
loc3, loc5, loc7} und {loc1, loc2, loc3, loc4}, so daß nur Elemente aus deren
Schnittmenge, also aus {loc1, loc2, loc3} als mögliche Belegungen für ?loc in
Frage kommen.

Die Projektionen können leicht über Bitvektoren in konstanter Zeit auf dem
neuesten Stand gehalten und abgefragt werden. Der Schnitt zweier Projektionen
läßt sich über bitweise Und-Verknüpfung zweier Bitleisten ebenfalls sehr schnell
berechnen (in einer Zeit, die zwar linear in der Anzahl der Objekte ist, aber
durch die Einfachheit der Operationen effektiv sehr niedrig ist).

Damit brauchen wir im vorliegenden Fall also nur noch drei verschiedene
Belegungen zu betrachten. Trotz aller Optimierungen kommt man aber nicht
umhin, auch hin und wieder bisher unerreichbare Operatoren zu konstruieren,
im vorliegenden Fall etwa bei der Belegung ?loc = loc1, da at(truck2, loc1)

noch nicht erreichbar ist. Die Zahl der unnötig betrachteten Operatoren ist
jedoch gegenüber dem nicht optimierten Algorithmus drastisch reduziert.

2.4.4 Analyse

Dennoch bleibt die Laufzeit dieser Phase kritisch, denn sie orientiert sich nicht
an der Zahl der Prädikate oder an einer anderen Größe, die linear in der Größe
der Eingabe ist, sondern an der Anzahl der Fakten, die exponentiell in der
maximalen Stelligkeit der Prädikate ist.

Die Zahl der Fakten ist durch |P | · |O|σmax nach oben beschränkt, wobei P
die Menge der nicht-konstanten Prädikate, O die Objektmenge und σmax die
größte Stelligkeit aller Prädikate aus P bezeichnet.

Die Gesamtzahl der Fakten ist eine obere Schranke für die Anzahl der Fakten,
die jemals in der verarbeitenden Schlange landen, und damit für die Anzahl
der durchgeführten Schritte in dieser Phase. Die Laufzeit eines Schrittes kann
jedoch sehr groß sein, wenn es komplizierte Aktionen mit vielen Parametern gibt,
insbesondere wenn diese viele mehrstellige Prädikate als Vorbedingungen haben,
so daß das Betrachten der Projektionen die Zahl der möglichen Instantiierungen
nicht wirkungsvoll genug einschränken kann.

Dies ist zum Glück nur ein theoretisches Problem, denn wie bereits erwähnt
gibt es Planungsprobleme mit ca. 3 · 1013 theoretisch denkbaren Aktionsinstan-
tiierungen, und auch bei diesen Problemgrößen kommt der Algorithmus noch in
wenigen Sekunden zum Ziel.

Es ist jedoch problemlos möglich, Eingaben zu konstruieren, bei denen die
Zahl der zu betrachtenden Instantiierungen nicht wirkungsvoll eingeschränkt
werden kann, so daß die Zahl der zu betrachtenden Instantiierungen in einem ein-
zelnen Schritt von der Größenordnung Θ(|A|·|O|pmax ) ist, wobei A die Menge der
Aktionen, O wiederum die Menge der Objekte und pmax die maximale Anzahl an
Parametern einer Aktion ist, so daß die Gesamtlaufzeit als Produkt dieser Größe
mit der Anzahl der Fakten von der Größenordnung O(|P | · |A| · |O|σmax+pmax)
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ist, was bei typischen Werten von pmax von ca. 5 schon schnell nicht mehr hand-
habbar wird.

Der Platzbedarf dieser Phase ist zunächst linear in der Zahl der erreichbaren
Fakten und Operatoren, denn die Ergebnisse müssen gespeichert werden. Au-
ßerdem werden noch |P | · |O| · σmax Bits für die Speicherung der Projektionen
benötigt. Alle anderen Platzerfordernisse dieser Phase werden von diesen bei-
den Größen dominiert und können daher vernachlässigt werden. In der Praxis
ist dieser Platzverbrauch tragbar.

Was ist nun in unserem Beispiel das Ergebnis der Exploration? Zum einen
erhält man eine Liste aller anwendbaren Operatoren, die später noch benötigt
wird. Zum anderen ermittelt der Algorithmus, daß Trucks nur an Orten, Pakete
nur in Trucks oder an Orten befindlich sein können. Damit benötigt man pro
Truck nur noch log2(10 + 1) = 4, pro Paket nur noch ⌈log2(10 + 10 + 1)⌉ = 5,
insgesamt also 90 Bits gegenüber 120 Bits vor dem Explorationsschritt. Damit
ergibt sich ein gutes Endergebnis, das auch mit einer Handkodierung konkur-
rieren kann.

2.5 Generierung der Zustandskodierung

Im vorliegenden Beispiel ist die Erzeugung der Zustandskodierung nach Explo-
ration des Faktraums eine einfache Angelegenheit: Durch die Balance von at+in

ist klar, daß die erreichbaren Fakten in Teilmengen sich gegenseitig ausschlie-
ßenden Fakten (wie etwa at(package1, loc1) und in(package1, truck1))
zerfallen. Solche Teilmengen bezeichnen wir als Faktgruppen. Da die Fakten
in einer Faktgruppe sich gegenseitig ausschließen, können sie gemeinsam mit
⌈log2(|G| + 1)⌉ Bits kodiert werden.

Auch bei anderen Problemen wird durch die Exploration des Faktraums
zunächst die Menge der erreichbaren Fakten eingeschränkt, durch das Wissen
über balancierte Prädikate lassen sich dann Faktgruppen bilden. Fakten, die
in keine Faktgruppe fallen, weil die zugehörigen Prädikate in keiner Balance-
Beziehung stehen, werden naiv mit 1 Bit pro Fakt kodiert (Ein Beispiel dafür
ist das locked-Prädikat in der Grid -Domäne: Alle Türen können unabhängig
voneinander offen oder geschlossen sein, es wird daher für jede Tür ein eigenes
Bit benötigt).

Unklar ist jedoch, was zu tun ist, wenn die verschiedenen Faktgruppen nicht
disjunkt sind. Ein Beispiel dafür findet sich in der Gripper-Domäne mit den drei
Prädikaten carry, free und at. Das Prädikat carry gibt an, welcher Roboter-
arm gerade welchen Ball trägt, free, ob ein bestimmter Roboterarm gerade
keinen Ball trägt, und at, in welchem Raum sich ein gegebener Ball gerade
befindet. Es gelten folgende zwei Balancen:

• Ein Ball ist stets in genau einem Raum oder wird von genau einem Robo-
terarm getragen, d.h. at+carry ist balanciert.

• Ein Roboterarm trägt stets genau einen Ball oder ist frei, d.h. carry+free
ist balanciert.

Es ergeben sich also hier Überschneidungen. So könnte eine Faktgruppe
die Fakten {carry(arm1, ball1), carry(arm1, ball2), free(arm1)} enthal-
ten, eine zweite Gruppe {at(room1, ball1), at(room2, ball1), carry(arm1,
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ball1), carry(arm2, ball1)} und eine dritte Gruppe {at(room1, ball2),
at(room2, ball2), carry(arm1, ball2), carry(arm2, ball2)}.

Kodiert man zunächst alle Informationen, die sich aus der Balance von
carry+free ergeben, dann müssen bei den Gruppen aus at+carry nur noch
die at-Fakten kodiert werden, da die anderen bereits kodiert wurden; bei einer
umgekehrten Reihenfolge müßten von carry+free nur noch die free-Fakten
kodiert werden.

Da nicht ohne Weiteres klar ist, welche Reihenfolge die beste ist – das hängt
von der Anzahl der Räume, Bälle und Tragearme ab – und es außerdem in
der Regel nur wenige in Frage kommende Alternativen gibt, geht der Kodie-
rer so vor, daß er alle möglichen Reihenfolgen systematisch durchprobiert und
schließlich diejenige wählt, bei der sich die kleinste Kodierung ergibt. Um den
Vorgang etwas zu beschleunigen (was eigentlich nicht nötig ist, da dies keine
zeitkritische Phase ist), merkt sich der Algorithmus immer das Minimum der
Kodierungslängen der bisher verwirklichten Alternativen und bricht einen neu-
en Kodierungsversuch ab, sobald klar wird, daß dieses bisherige Optimum nicht
mehr verbessert werden kann.

2.6 Aufbau der Transitionsrelation

Damit ist der Aufbau der Zustandskodierung abgeschlossen. In den abschlie-
ßenden drei Phasen geht es nun darum, die eigentliche Suche vorzubereiten,
durchzuführen und den gesuchten Plan aus den bei der Suche erzeugten Zu-
standsmengen zu extrahieren.

Wie bereits in der Einleitung kurz angeklungen, werden zur Exploration drei
BDDs benötigt:

• Die Kodierung der aktuellen Zustandsmenge (zu Beginn also einfach eine
Kodierung des Startzustands) als BDD,

• die Kodierung der Endzustandsmenge sowie

• die Kodierung der Transitionsrelation, also der Menge der Zustands-Tupel
(Z, Z ′), die der Anwendung von Operatoren entsprechen.

Nachdem eine Zustandskodierung bestimmt wurde, ist es trivial, die ersten
beiden BDDs zu erzeugen. Das BDD der Transitionsrelation ist die Vereinigung
(logische Oder-Verknüpfung) der Transitions-BDDs der einzelnen Operatoren.
Durch die vorherige Exploration des Faktraums sind wir in der Lage, uns auf
diejenigen Operatoren zu beschränken, die wir als erreichbar markiert haben,
was für die praktische Durchführbarkeit des Algorithmus entscheidend ist.

Ein einzelner Operator op = (P, A, D) entspricht der Relation

Rop = {(Z, Z ′)|P ⊆ Z, A ⊆ Z ′, D ∩ Z ′ = ∅, Z \ (A ∪ D) = Z ′ \ (A ∪ D)}

Die charakteristische Funktion von Rop ist also durch den folgenden logischen
Ausdruck festgelegt:

∀f ∈ F (f ∈ P → f ∈ Z) ∧ (f ∈ A → f ∈ Z ′) ∧ (f ∈ D → f /∈ Z ′)∧

(f /∈ (A ∪ D) → (f ∈ Z ↔ f ∈ Z ′)).
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F bezeichnet dabei die Menge aller erreichbaren Fakten. Dieser logische Aus-
druck läßt sich direkt in eine BDD-Darstellung transformieren.

Nachdem die BDDs der einzelnen Operatoren erzeugt wurden, müssen diese
nur noch durch logische Oder-Verknüpfung zu einem Gesamt-BDD zusammen-
gesetzt werden. Dazu werden zunächst jeweils zwei BDDs von einzelnen Ope-
ratoren verschmolzen, wodurch BDDs entstehen, die jeweils zwei Operatoren
kodieren. Von diesen werden wiederum jeweils zwei verschmolzen, usf., bis am
Ende nur noch ein einzelnes großes BDD übrigbleibt, das die komplette Transi-
tionsrelation kodiert.

Diese Phase ist von der Laufzeit her durchaus kritisch. Die zur Konstruktion
des BDDs zu einem einzelnen Operator benötigte Zeit ist linear in der Größe der
Zustandskodierung. Die Zeit, die für die Oder-Verknüpfung zweier BDDs not-
wendig ist, ist theoretisch nur durch das Produkt der Größen (Knotenzahl) der
beiden beteiligten BDDs beschränkt. Durch die dem Problem inhärente Struk-
tur (sehr viele Operatoren stammen aus demselben Operatorschema) sinken
Laufzeit und Platzbedarf bedeutend, ohne daß sich dieses Verhalten theoretisch
quantifizieren ließe.

Auch über den Platzbedarf des resultierenden BDDs kann man nur aussagen,
daß er theoretisch sehr groß werden kann (es gelten dieselben Abschätzungen
wie für die Laufzeit), normalerweise aber nicht wird.

Die Variablenordnung im verwendeten BDD hat einen entscheidenden Ein-
fluß auf Zeit- und Speicherbedarf; leider ist das Problem, eine optimale Va-
riablenordnung zu bestimmen, aber selbst NP-schwierig [2] und damit, falls
P 6= NP , nicht in polynomialer Zeit zu lösen. Bei großen Problemen kann
der Algorithmus in dieser Phase an Laufzeit- oder Speicherplatzbeschränkun-
gen scheitern. Wenn die Zahl der erreichbaren Operatoren in den fünfstelligen
Bereich kommt, beginnt der Aufbau der Transitionsfunktion zu schwierig zu
werden.

2.7 BDD-Exploration

Nach dem Aufbau der Transitionsrelation kann nun die eigentliche BDD-Explo-
ration beginnen. Abbildung 4 zeigt den benutzten Algorithmus in Pseudocode.

function explore(start, end, transition: BDD): BDD array

S[0] := start

explored := 0

i := 0

while (S[i] & end) = 0 do

S[i+1] := apply(S[i], transition)

if S[i+1] is subset of Explored then

output "no solution"

return []

explored := explored | S[i+1]

i := i + 1

return S

Abbildung 4: Der Algorithmus zur BDD-Exploration

Es wird also solange mittels apply (dem relationalen Produkt, einer Funk-
tion aus dem BDD-Paket) von der Zustandsmenge S[i] zur Zustandsmen-
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ge S[i+1] übergegangen, bis entweder ein Endzustand gefunden wurde, d.h.
current und end nicht mehr disjunkte Mengen repräsentieren, oder aber der
komplette Zustandsraum durchsucht wurde, d.h. die Menge explored einen
Fixpunkt erreicht hat.

Als Ausgabe liefert der Algorithmus ein leeres Array, falls keine Lösung exi-
stiert und ansonsten die BDDs, die die Zustandsmengen auf den verschiedenen
Niveaus repräsentieren.

Es wurde weiterhin auch eine bidirektionale Variante dieses Algorithmus
implementiert, die hier aber nicht näher besprochen werden soll.

Diese Phase dominiert Zeit- und Platzbedarf des Planungssystems. Gleich-
zeitig kann man über ihren Aufwand leider am wenigsten aussagen, da die we-
sentliche Verarbeitung innerhalb des BDD-Pakets geschieht. Die Laufzeit der
Exploration wird dominiert von der Berechung des relationalen Produkts, was
ein NP-schwieriges Problem ist und dementsprechend in der verwendeten Im-
plementation in ungünstigen Fällen exponentielle Zeit benötigt. Auch der Platz-
bedarf der BDDs kann exponentiell anwachsen, so daß diese Phase sowohl an
Zeit- als auch an Speicherbeschränkungen scheitern kann.

2.8 Lösungsextraktion

Sollte die Exploration ergeben haben, daß ein Plan existiert, dann besteht die
letzte zu erledigende Aufgabe nun darin, aus den ermittelten BDDs den gefun-
denen Plan zu extrahieren.

Dazu beginnt man damit, die letzte Zustandsmenge S[n] mit der Menge der
Endzustände goal zu schneiden und einen beliebigen Zustand aus der Schnitt-
menge zu extrahieren (der Schnitt ist nicht leer, da der Algorithmus sonst nicht
abgebrochen hätte). Damit hat man nun einen in n Schritten erreichbaren End-
zustand Zn ermittelt.

Über die inverse Transitionsrelation T−1 = {(Z ′, Z)|(Z, Z ′) ∈ T } ermittelt
man nun alle Zustände, von denen aus Zn durch Anwendung eines einzelnen
Operators erreicht werden kann. Offenbar muß mindestens einer dieser Zustände
in n − 1 Schritten erreichbar sein, also in der Schnittmenge mit S[n-1] liegen.
Es wird ein beliebiger solcher Zustand ausgewählt und mit Zn−1 bezeichnet.

Das Verfahren wird iteriert, bis schließlich eine Folge (Z0, Z1, . . . , Zn−1, Zn)
von Zuständen bestimmt wurde, so daß für alle i ∈ {0, . . . , n− 1} ein Operator-
BDD opi existiert, so daß (Zi, Zi+1) in opi kodiert ist.

Der letzte Schritt besteht nun darin, die richtigen Operatoren zu bestim-
men, indem einfach der Reihe nach für jeden Zustandsübergang alle möglichen
Operator-BDDs überprüft werden.

Schließlich wird der so erzeugte Plan ausgegeben.
In bezug auf die Komplexität ist diese Phase unkritisch. Für die Rückwarts-

schritte zur Extraktion der Zustandsfolge wird zwar wieder das relationale Pro-
dukt benötigt, aber da die Zustandsmenge jeweils nur ein Element hat, ist das
hier nicht schwierig, der Aufwand liegt in O(m · t), wobei m die Lösungslänge,
t die Größe (Anzahl der BDD-Knoten) der Transitionsrelation bezeichnet.

Wurde die Zustandsfolge erzeugt, muß man im schlechtesten Fall noch einmal
für jeden Schritt in der Lösung alle erreichbaren Operatoren daraufhin untersu-
chen, ob sie für den jeweiligen Zustandsübergang in Frage kommen. Eine solche
Anfrage benötigt lineare Zeit in der Größe der Zustandskodierung, so daß ins-
gesamt für diesen Teil ein Zeitbedarf von O(m · |Op| · c) notwendig ist, wobei
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m wiederum die Länge der Lösung, Op die Anzahl der Operatoren und c die
Größe der Zustandskodierung bezeichnet (c kann sehr grob durch die Anzahl
der Fakten nach oben abgeschätzt werden).

Dies ist nicht zeitkritisch und gewiß auch nicht platzkritisch: Für die Zu-
standsfolge wird Platz benötigt, der linear in dem Produkt aus Kodierungsgröße
und Lösungslänge ist.

3 Empirische Ergebnisse

Die klassische Handlungsplanung ist ein PSPACE-vollständiges Problem [5],
es können also alle Probleme, die unter einem geeigneten Berechnungsmodell
(etwa einer Mehrband-Turingmaschine) mit polynomialem Platzbedarf gelöst
werden können, auf dieses Problem zurückgeführt werden. Daher ist es nicht
überraschend, daß es nicht gelang, für die vorliegenden Algorithmen günstige
obere Schranken für die Laufzeit anzugeben.

In der Tat sind Algorithmen, die mit Planungsproblemen umgehen, schwer zu
analysieren, denn Worst-Case-Abschätzungen liefern in der Regel unrealistische
Ergebnisse, denn durch ihre “natürliche Struktur” sind praktische Probleme
in aller Regel wesentlich einfacher zu handhaben als eine theoretisch denkbare
schlechteste Eingabe derselben Größe. Eine Analyse im average case ist ebenso
wenig sinnvoll oder durchführbar, denn es ist unklar, über was für eine Menge
von möglichen Eingaben hier gemittelt werden sollte.

Daher soll das Schwergewicht bei diesen Untersuchungen hier nicht bei theo-
retischen Resultaten liegen, sondern bei empirisch ermittelten Werten aus prak-
tischen Problemen. Dies ist ohnehin die einzig sinnvolle Möglichkeit zum Ver-
gleich verschiedener Planungsalgorithmen, da auch über die Performance ande-
rer Planungssysteme kaum verwertbare theoretische Resultate vorliegen.

3.1 AIPScomp’98

Im Rahmen der AIPS’98 fand ein Wettbewerb für Programme zur klassischen
Handlungsplanung, genannt AIPScomp’98, statt. Wir haben die dabei verwen-
deten STRIPS-Probleme zur Grundlage unserer Experimente gemacht.

Dabei ergab sich, daß bei keinem der 155 Probleme die Phasen vor dem
Aufbau der Transitionsfunktion zeitlich problematisch waren. Im schlechtesten
Fall wurden 8 Sekunden (auf einer Sun Ultra Sparc Station) verbraucht, nur 7
der 155 Probleme benötigten überhaupt mehr als 1 Sekunde für diese Phase.

Der Aufbau der Transitionsfunktion und die eigentliche BDD-Exploration
waren dann in vielen Fällen aber nicht in akzeptabler Zeit zu bewältigen. Bei
einer Laufzeitbeschränkung von zehn Minuten waren wir in der Lage, 30 der 30
Probleme in der Domäne Movie, 20 der 20 Probleme in der Domäne Gripper, 4
der 35 Probleme in der Domäne Logistics, 10 der 35 Probleme in der Domäne
Mprime, 9 der 30 Probleme in der Domäne Mystery und 1 der 5 Probleme in der
Domäne Grid zu lösen. Dies gibt eine Gesamtzahl von 74 gelösten Problemen.
Zum Vergleich: die Teilnehmer am AIPS’98-Wettbewerb lösten zwischen 71 und
91 Problemen. Dabei gelang es nur dem Planungssystem HSP [3], das einen
heuristischen Suchansatz verfolgt, mehr als 72 Probleme zu lösen. Allerdings
liefert HSP vergleichsweise lange Lösungen, im Gegensatz zum vorliegenden
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Problem Plan- Zeit Kodie- Fakten (zu Operatoren
länge (in sec) rung kodieren) (erreichbar)

Movie 1-28 7 0,22 7 Bits 160 (7) 809 (162)

Movie 1-29 7 0,23 7 Bits 165 (7) 834 (167)

Movie 1-30 7 0,23 7 Bits 170 (7) 859 (172)

Gripper 1-18 113 32,39 79 Bits 3.738 (156) 149.940 (460)

Gripper 1-19 119 262,18 83 Bits 4.092 (164) 172.304 (484)

Gripper 1-20 125 418,95 87 Bits 4.462 (172) 196.788 (508)

Logistics 1-01 26 343,70 42 Bits 3.264 (144) 1.212.416 (727)

Logistics 1-05 22 65,11 35 Bits 5.805 (151) 3.816.336 (699)

Logistics 2-02 20 43,99 28 Bits 1.449 (80) 240.786 (341)

Mystery 1-01 5 0,39 28 Bits 3.192 (58) 12.252.303 (269)

Mystery 1-07 ∞
† 2,86 82 Bits 12.558 (181) 392.073.696 (521)

Mystery 1-27 5 9,49 63 Bits 7.788 (152) 117.406.179 (2.280)

MPrime 1-07 5 74,94 126 Bits 12.558 (352) ≈ 231 · 109 (3.291)

MPrime 1-11 7 15,79 61 Bits 4.862 (131) ≈ 8 · 109 (3.189)

MPrime 1-28 7 4,57 41 Bits 4.152 (90) ≈ 5 · 109 (2.544)

Grid 2-01 14 23,01 67 Bits 6.043 (276) 2.144.340 (4.295)

Tabelle 1: Experimentelle Ergebnisse

System, das aufgrund des Breitensuche-Ansatzes immer einen kürzestmöglichen
Plan findet.

Tabelle 1 zeigt für einige charakteristische Probleme die Länge der Lösung,
die zu deren Auffindung benötigte Zeit, die Größe der erzeugten Zustandsko-
dierung, die Gesamtzahl aller Fakten, die Zahl der zu kodierenden Fakten, die
Gesamtzahl aller Operatoren und die Zahl der als erreichbar markierten Ope-
ratoren.

Die Abbildungen 5, 6, 7, 8 und 9 zeigen den Zusammenhang zwischen Größe
der Zustandskodierung und Handhabbarkeit des Problems durch das Planungs-
system (die wenig interessante Domäne Movie wurde nicht berücksichtigt).

3.2 Bewertung und Ausblick

Zunächst einmal kann festgehalten werden, daß es möglich ist, mit symboli-
schen Explorationstechniken auf Basis von BDDs ein Planungssystem zu im-
plementieren, das von seiner Leistungsfähigkeit dem heutigen Stand der Tech-
nik entspricht. Die Erzeugung der Zustandskodierung läßt sich effizient genug
verwirklichen, um auch bei extrem schwierigen Problemen noch handhabbar
zu bleiben. Wenn der Planer scheitert, dann liegt es meistens an der BDD-
Explorationsphase selbst.

Daher wäre es sinnvoll, hier über mögliche Verbesserungen nachzudenken,
für die es noch viel Raum gibt. Eine einfache Breitensuche kann nicht das
Maß aller Dinge sein. Bereits der Übergang von der unidirektionalen zur bi-
direktionalen Suche liefert bereits bei vielen Domänen eine spürbare Verbesse-
rung. Als weitere Optimierung könnte man eine Vereinfachung der Suchfront
anstreben, etwa durch forward set simplification oder Anwendung des Restrict-

†Beim Problem Mystery 1-07 konnte das Planungssystem beweisen, daß kein Plan zur

Lösung des Problems existiert.
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Abbildung 5: Kodierungsgröße vs. Lösbarkeit in Gripper
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Abbildung 6: Kodierungsgröße vs. Lösbarkeit in Logistics
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Abbildung 7: Kodierungsgröße vs. Lösbarkeit in Mystery
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Abbildung 8: Kodierungsgröße vs. Lösbarkeit in Mystery Prime
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Abbildung 9: Kodierungsgröße vs. Lösbarkeit in Grid
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Abbildung 10: Die Architektur des Planungssystems

Operators. Um die Bildung des relationalen Produkts zu vereinfachen, könnte
man auch die Transitionsfunktion in mehrere Teile aufspalten, für die dann sepa-
rate Übergänge vorgenommen werden können, anstatt wie im hier beschriebenen
Ansatz alle Operatoren in einem einzelnen BDD zu vereinigen.

Schließlich liegt es nahe, eine Kombination des symbolischen Suchansatzes
mit heuristischen Strategien anzustreben, wofür etwa die Algorithmen BDDA*
oder Pure BDDA* verwendet werden können [8]. Experimente haben gezeigt,
daß diese Algorithmen einen weiteren großen Schritt nach vorne bringen können.
Insbesondere die Ergebnisse bei der Domäne Logistics konnten massiv verbessert
werden – wenn auch teilweise auf Kosten der Optimalität der Lösung.

Auch andere Erweiterungen und Verbesserungen wären denkbar, etwa die
Erkennung und Behandlung von Symmetrien in der Eingabe oder das Elimi-
nieren unnötiger Objekte und Operatoren, wie andere Planungssysteme (etwa
STAN [10] und IPP [12]) sie teilweise vornehmen, um die Suchphase zu er-
leichtern – es gibt hier ein großes Potential, das bislang kaum ausgeschöpft ist.
Auch eine Ausweitung auf einen ausdrucksmächtigeren Eingabeformalismus, et-
wa ADL (Abstract Description Language)[13] mit negierten Vorbedingungen,
bedingten Effekten und quantifizierten Effekten, ist denkbar.

4 Der Planer

4.1 Architektur des Planungssystems

Abbildung 10 stellt die grobe Architektur des Planungssystems dar.
Die einzelnen Teile haben dabei folgende Funktionen:

• main.cc: Das Hauptprogramm. Es ist dafür verantwortlich, die Komman-
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dozeile auszulesen, das Planungssystem zu starten und bei Bedarf eine
Fehlermeldung auszugeben.

• data.domain.cc: Das Herzstück des Planungssystems. Von hier aus wer-
den die Datenstrukturen des Planungssystems verwaltet und die einzelnen
Phasen nacheinander aufgerufen.

• data.object.cc: Verantwortlich für die Behandlung von Objekten des
Planungsproblems, z.B. Routinen zur Umwandlung zur Ermittlung des
Namens eines Objekts aus seiner internen Kodierung.

• data.predicate.cc: Verantwortlich für die Behandlung von Prädikaten
des Planungsproblems. In der zugehörigen Klasse Predicate werden z.B.
die Projektionen der Prädikate verwaltet.

• data.fact.cc: Verantwortlich für die Behandlung von Fakten des Pla-
nungsproblems. Die Klasse Fact enthält beispielsweise Methoden zur Um-
wandlung von Fakten von textueller Darstellung in einen ganzzahligen
Code und zurück.

• data.action.cc: Verantwortlich für die Behandlung von Aktionen des
Planungsproblems. In der Klasse Action wird auch über die erreichbaren
Operator-Instantiierungen Buch geführt.

• data.symbolicFact.cc: Wird vor allem von der Klasse Action benutzt,
um sog. symbolische, d.h. parametrisierte Fakten zu verwalten, wie sie in
den Vorbedingungs- und Effektlisten der Operatorschema auftauchen.

• step.parse.cc: Hier werden die Eingabedateien eingelesen und die Da-
tenstrukturen entsprechend aufgebaut. Dafür wird parser.cc, ein einfa-
cher Parser für LISP -Dateien, verwendet.

• step.constant.cc: Hier werden konstante Prädikate erkannt.

• step.merge.cc: Hier werden balancierte Prädikate ermittelt und Prädika-
te vereinigt, falls das für das Sicherstellen der Balance notwendig ist. Die
Dateien data.mergedPredicate.cc und data.partPredicate.cc ent-
halten alle Methoden zur Verwaltung vereinigter Prädikate.

• step.explore.cc: Hier ist der im Abschnitt über die Exploration des
Faktraums beschriebene Algorithmus implementiert.

• step.coding.cc: Hier ist der im Abschnitt über die Erzeugung der Zu-
standskodierung beschriebene Algorithmus implementiert.

• bddEngine.cc: Dies ist der zentrale Teil derjenigen Komponente des Sy-
stems, die sich mit BDDs befaßt. Hier wird insbesondere die BDD-Explora-
tion durchgeführt. Die Erzeugung der Transitionsrelation wird an die Datei
transitionBuilder.cc, die Extraktion des Plans teilweise an die Datei
bdd.map.cc delegiert.

• tools.cc: Einige Hilfsroutinen, die an verschiedenen Stellen im Programm
benötigt werden (Abhängigkeiten der Dateien des Moduls “Utility” sind
im Schaubild nicht explizit angegeben). Im einzelnen sind dies Routinen
zur Fehlerbehandlung, Zeitmessung, Verwaltung von Tupeln und Permu-
tationen sowie einige mathematische Routinen.
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• bitarray.cc: Eine Klasse zur Verwaltung von Bitvektoren.

• option.cc: Dient der Verwaltung der Kommandozeilenoptionen.

4.2 Verwendung und Aufrufparameter

Der Befehl zum Starten des Planungssystems ist
planer <Optionen> <Domänendatei> <Problemdatei>.
Jeder der drei Parameter kann auch weggelassen werden. Wird nur eine Datei

angegeben, dann wird diese als Problemdatei betrachtet und als Domänenda-
tei die Datei domain.pddl im aktuellen Verzeichnis verwendet. Wird gar keine
Datei angegeben, dann wird die Problemdatei problem.pddl und die Domänen-
datei domain.pddl verwendet.

Gültige Optionen sind:

• -?, -h (help): Zeigt eine kurze Anleitung an. Das Planungssystem wird
nicht gestartet.

• -p (preprocess): Es werden nur die Schritte bis zur Erzeugen der Zustands-
kodierung durchgeführt. Danach wird das Programm beendet.

• -t (transition): Es werden nur das preprocessing und der Aufbau der
Transitionsfunktion ausgeführt, aber nicht exploriert.

• -u (unidirectional): Die BDD-Exploration wird unidirektional (wie be-
schrieben) durchgeführt. Standardmäßig wird bidirektional exploriert.

• -s (silent mode): Veranlaßt das Planungssystem, weniger Ausgaben zu
tätigen.

• -n (normal mode): Veranlaßt das Programm, die normalen Ausgaben aus-
zugeben. Ist nur in Verbindung mit spezialisierten Versionen von -s, -v
oder -d sinnvoll (siehe weiter unten).

• -v (verbose output): Veranlaßt das Programm, umfangreichere Ausgaben
zu tätigen. Beispielsweise wird in jedem BDD-Explorationsschritt die ver-
brauchte Zeit und die Zahl der im BDD kodierten Zustände ausgegeben.

• -d (debug output): Veranlaßt das Programm, die maximale Menge an In-
formationen auszugeben. Beispielsweise wird bei der Exploration des Fak-
traums der Status der Schlange protokolliert.

Den letzten vier Optionen können beliebige Zeichen aus pcmeobts angehängt
werden, um die Wirkung der Option auf bestimmte Phasen zu beschränken (wird
darauf verzichtet, wirkt die Option auf alle Phasen).

Dabei steht p für parsing, c für constant predicates, m für merging, e für
exploring (fact space), o für coding, b für BDD package handling, t für transition
function creation und s für BDD search, also die Phasen in der Reihenfolge, in
der sie hier besprochen wurden (abgesehen von dem zusätzlichen Schalter b

und davon, daß die Planerzeugung nicht beeinflußt werden kann – hier werden
unabhängig vom Modus immer dieselben Ausgaben getätigt).

Beispiel: planer -u -s -vo gripper.pddl gripper.prob.10.pddl star-
tet das Planungssystem mit der Domänendatei gripper.pddl und der Problem-
datei gripper.prob.10.pddl. Es wird unidirektional gesucht (-u), es werden
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nur minimale Ausgaben getätigt (-s), abgesehen von der Codierungsphase, bei
der erweiterte Ausgaben getätigt werden (-vo).

Literatur

[1] A. Blum and M. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1–2):281–300, 1997.

[2] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

[3] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection
mechanism for planning. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence (AAAI-97), pages 714–719. AAAI Press,
1997.

[4] R. E. Bryant. Symbolic manipulation of boolean functions using a graphical
representation. In H. Ofek and L. A. O’Neill, editors, Proceedings of the
22nd ACM/IEEE Conference on Design Automation (DAC 1985), pages
688–694, 1985.

[5] T. Bylander. The computational complexity of propositional STRIPS plan-
ning. Artificial Intelligence, 69(1–2):165–204, 1994.

[6] J. G. Carbonell, J. Blythe, O. Etzioni, Y. Gil, R. Joseph, D. Kahn, C. Kno-
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