
Landmark Heuristics for the Pancake Problem

Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de

Abstract

We describe the gap heuristic for the pancake problem, which
dramatically outperforms current abstraction-based heuristics
for this problem. The gap heuristic belongs to a family of
landmark heuristics that have recently been very successfully
applied to planning problems.

Introduction

The pancake problem is a famous search problem (e. g.,
Dweighter 1975; Gates and Papadimitriou 1979; Heydari
and Sudborough 1997) where the objective is to sort a se-
quence of objects (pancakes) through a minimal number of
prefix reversals (flips).

A state of the n-pancake problem represents a stack of
n pancakes of different size, commonly given as a permu-
tation in sequence notation. To ease notation later on, we
represent pancake stacks as sequences over {1, . . . , n + 1},
where the last sequence element is always n+1, representing
the “plate” on which the n pancakes are arranged. Successor
states are obtained by flipping k ∈ {2, . . . , n} pancakes at
the top of the stack (a k-flip, denoted by Fk), i. e., by revers-
ing the order of the first k sequence elements. The goal is to
transform a given state into the identity permutation with as
few flips as possible. Figure 1 shows a 6-pancake instance
with initial state 〈3, 2, 5, 1, 6, 4, 7〉. An optimal solution is
given by the flip sequence 〈F5, F6, F3, F4, F5〉.

The prevalent approach for the pancake problem in the
heuristic search literature is the use of pattern database
(PDB) heuristics; the most important representatives are the
nonadditive PDB heuristics of Zahavi et al. (2008) and the
additive PDB heuristics of Yang et al. (2008). The literature
does not provide experimental results for these approaches
for instances with more than 17 pancakes. Our own experi-
ments with the solver of Zahavi et al. suggest that it does not
reliably scale to instances of size beyond 20 within usual
memory constraints and a one-day timeout. According to
Yang et al. (personal communications), neither does their ap-
proach. Here, we describe an alternative heuristic, not based
on abstraction, that optimally solves instances with up to 60
pancakes in a matter of seconds for most cases and minutes
for hard cases.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

initial state goal state

Figure 1: A 6-pancake instance (s = 〈3, 2, 5, 1, 6, 4, 7〉).

The Gap Heuristic

Let s = 〈s1, . . . , sn+1〉 be an n-pancake state. Its heuristic
value is the number of stack positions for which the pancake
at that position is not of adjacent size to the pancake below:

hgap(s) := |{i | i ∈ {1, . . . , n}, |si − si+1| > 1}|.

We get hgap(s) = 5 for the state in Fig. 1 because there are 5
gaps in this pancake stack, namely below positions 2, 3, 4, 5,
and 6. For example, there is a gap below position 2 because
the 2nd and 3rd pancake in the sequence differ in size by
more than 1, and there is a gap below position 6 because
the 6th pancake and the “plate” differ in size by more than
1. The only place without a gap is below position 1, since
the two first pancakes in the sequence are of adjacent size.
A pancake problem goal state has no gaps at all, and hence
its heuristic value is 0. It is easy to see that a k-flip can
reduce the number of gaps by at most 1: the only gap it can
potentially “heal” is the one between positions k and k + 1.
Hence, hgap is a consistent and admissible heuristic.

As far as we know, the gap heuristic has not been previ-
ously proposed in the academic literature. However, it was
used by Tom Rokicki in his winning entry to a 2004 pro-
gramming contest for finding short (possibly suboptimal)
solutions for the pancake problem.1 Our discovery of the
heuristic is independent from Rokicki’s and was inspired by
the article by Gates and Papadimitriou (1979), the first aca-
demic paper on the pancake problem. Gates and Papadim-
itriou show that the n-pancake state space (n ≥ 4) has a di-
ameter of at least n because there exist arrangements with n
gaps, and flips can only eliminate one gap at a time. (Instead
of gaps, they speak of adjacencies, the absence of gaps.) We
call the heuristic hgap because it counts gaps and because it
is based on an idea of Gates and Papadimitriou.)

1See http://tomas.rokicki.com/pancake/.

Evaluation

We implemented the gap heuristic within a standard IDA∗

algorithm and evaluated it on instances with 2–60 pancakes.
The results in Tab. 1 show that the heuristic scales much bet-
ter than previous approaches. Further improvements should
be possible, e. g. by making the heuristic computation incre-
mental and by ordering gap-removing moves first.

As mentioned in the introduction, current PDB-based ap-
proaches do not reliably scale beyond size 19 or 20. The
advantage of hgap can be explained by theoretical consider-
ations: a PDB which distinguishes the k largest pancakes,
as considered by Zahavi et al., never gives heuristic values
beyond 2k. For a 60-pancake instance, a size-6 PDB of this
form already has at about 36 billion entries, yet its heuristic
values are bounded by 12. By contrast, we can show analyt-
ically that the expected value of hgap on a random n-pancake
state is n − 2 + 1

n
, i. e., about 58.02 for size-60 instances.

Beyond Pancakes

The gap heuristic can be seen in a wider context as a special
case of an admissible landmark heuristic, a family of heuris-
tics which set the current state of the art in optimal classical
planning (Helmert and Domshlak 2009). Indeed, if we de-
fine the pancake problem as a STRIPS planning domain in
a natural way (as a thought experiment – the representation
would be too large in practice), standard polynomial-time
techniques based on delete relaxation can prove that disjunc-
tions of the form on(i, i + 1) ∨ on(i + 1, i), expressing that
there is no gap between pancakes i and i + 1, are landmarks
(Richter, Helmert, and Westphal 2008). This means that they
must be achieved at some point in any solution, and by using
these landmarks within the admissible landmark heuristic of
Karpas and Domshlak (2009), we can exactly recover hgap.
This shows that techniques based on landmarks and delete
relaxation can be fruitfully applied to classical permutation
puzzles. In the future, we would like to further explore this
idea in the context of other puzzles, such as TopSpin.

References
Dweighter, H. 1975. Elementary problem E2569. The American
Mathematical Monthly 82(10):1010.

Gates, W. H., and Papadimitriou, C. H. 1979. Bounds for sorting
by prefix reversal. Discrete Math 27:47–57.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. ICAPS
2009, 162–169.

Heydari, M. H., and Sudborough, I. H. 1997. On the diameter of
the pancake network. Journal of Algorithms 25(1):67–94.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning with
landmarks. In Proc. IJCAI 2009, 1728–1733.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. AAAI 2008, 975–982.

Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions. JAIR
32:631–662.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008. Dual-
ity in permutation state spaces and the dual search algorithm. AIJ
172(4–5):514–540.

n L
∗

h(init) nodes time

2 0.515 0.515 2 0.002
3 1.503 1.338 3 0.002
4 2.506 2.249 7 0.002
5 3.545 3.211 13 0.002
6 4.601 4.193 25 0.002
7 5.601 5.144 46 0.002
8 6.677 6.155 87 0.002
9 7.721 7.186 164 0.002

10 8.692 8.093 293 0.002
11 9.732 9.034 517 0.002
12 10.689 9.974 782 0.002
13 11.791 11.078 1456 0.002
14 12.715 11.970 2042 0.002
15 13.735 12.979 3527 0.002
16 14.809 14.085 4264 0.003
17 15.770 15.088 6279 0.003
18 16.673 15.937 10295 0.003
19 17.707 16.999 12824 0.004
20 18.783 18.070 17050 0.005
21 19.707 19.015 24758 0.006
22 20.801 20.083 33120 0.008
23 21.721 21.019 40844 0.009
24 22.749 22.066 58086 0.013
25 23.723 23.000 76054 0.017
26 24.740 24.047 101902 0.022
27 25.741 25.052 116458 0.025
28 26.760 26.081 167192 0.036
29 27.683 27.009 162738 0.036
30 28.730 28.059 225059 0.050
31 29.688 28.965 314542 0.069
32 30.732 30.068 333153 0.074
33 31.684 31.024 455745 0.103
34 32.707 32.045 549673 0.126
35 33.731 33.053 762250 0.175
36 34.751 34.093 926060 0.217
37 35.694 35.040 930314 0.222
38 36.693 36.037 1308683 0.318
39 37.675 36.983 1817656 0.444
40 38.670 38.012 1913381 0.476
41 39.668 39.032 1793336 0.455
42 40.693 40.066 3096624 0.793
43 41.687 41.040 3227706 0.842
44 42.722 42.069 4511476 1.197
45 43.635 43.027 5127214 1.386
46 44.635 43.995 6368582 1.739
47 45.709 45.071 7076578 1.961
48 46.689 46.071 10832404 3.074
49 47.627 46.997 11700248 3.345
50 48.626 48.000 14933748 4.303
51 49.663 49.046 14654504 4.314
52 50.741 50.103 19757127 5.898
53 51.688 51.061 25437072 7.705
54 52.703 52.095 29253338 8.996
55 53.644 53.017 42889898 13.422
56 54.700 54.053 48810889 15.395
57 55.649 55.025 52892442 16.948
58 56.611 55.967 62612914 20.476
59 57.697 57.084 87169465 28.741
60 58.578 57.947 95385185 31.931

Table 1: IDA∗ + hgap performance. Each row gives aver-
ages for 1000 instances selected uniformly randomly. The
columns denote problem size, optimal solution length, ini-
tial hgap value, generated nodes, and runtime in seconds.

