
How Good is Almost Perfect?

Malte Helmert Gabriele Röger

Albert-Ludwigs-Universität Freiburg, Germany

AAAI 2008



Introduction Theoretical Results Experimental Results Conclusion

Outline

1 Introduction

2 Theoretical Results

3 Experimental Results

4 Conclusion



Introduction Theoretical Results Experimental Results Conclusion

Optimal sequential planning

Optimal sequential planning
= A∗ (or similar)
+ admissible heuristic
(mostly)



Introduction Theoretical Results Experimental Results Conclusion

Folklore

Everybody knows:

If a heuristic has constant absolute error,
A∗ requires a linear number of node expansions.



Introduction Theoretical Results Experimental Results Conclusion

Comparison: Heuristic vs. breadth-first search

Actually, state-of-the art optimal sequential planners
are not much better than breadth-first search.

Experiments of Helmert, Haslum & Hoffmann (2007)

BFHSP solved 37 tasks

A∗ + hmax solved 46 tasks

A∗ + hPDB solved 54 tasks

blind search solved 42 tasks



Introduction Theoretical Results Experimental Results Conclusion

Are our heuristics bad?

Two possible explanations:

Our heuristics aren’t that good.

There is something fishy going on.

(Or both.)



Introduction Theoretical Results Experimental Results Conclusion

Folklore + fine print

Everybody knows:

If a heuristic has constant absolute error,
A∗ requires a linear number of node expansions.

But. . .

This relies on several assumptions:

fixed branching factor

only a single goal state

no transpositions

These assumptions do not hold in any common planning task!



Introduction Theoretical Results Experimental Results Conclusion

Almost perfect heuristics

Almost perfect heuristics differ from the perfect heuristic h∗ only
by an additive constant:

Definition

Define heuristic h∗ − c (for c ∈ N1) as

(h∗ − c)(s) := max(h∗(s)− c, 0)

→ unlikely to be obtainable in practice



Introduction Theoretical Results Experimental Results Conclusion

The topic of this work

How many nodes must A∗ expand for a planning task T , given an
almost perfect heuristic h∗ − c?

Definition

N c(T ) := number of states s

with g(s) + (h∗ − c)(s) < h∗(T )

 If this number grows fast with scaling task size,
 we have a problem.

Objective

Results for N c(T ) for IPC domains
→ Focus on domains in APX



Introduction Theoretical Results Experimental Results Conclusion

Outline

1 Introduction

2 Theoretical Results

3 Experimental Results

4 Conclusion



Introduction Theoretical Results Experimental Results Conclusion

Our goal

Find sequence (Tn) of scaling tasks for which N c(Tn) grows
exponentially, even for small values of c.



Introduction Theoretical Results Experimental Results Conclusion

Gripper

initial state goal state

Tn: Task with n balls

Sn: Total number of reachable states of Tn

Sn = 2 · (2n + 2n2n−1 + n(n− 1)2n−2)



Introduction Theoretical Results Experimental Results Conclusion

Gripper
Theorem

Theorem

Let n ∈ N0 with n ≥ 3.
If n is even, then

N1(Tn) = N2(Tn) = 1
2Sn − 3

N c(Tn) = Sn − 2n− 2 for all c ≥ 3.

If n is odd, then

N1(Tn) = N2(Tn) = Sn − 3
N c(Tn) = Sn − 2 for all c ≥ 3.



Introduction Theoretical Results Experimental Results Conclusion

Gripper
Proof

Proof sketch

n is even
states with an even number of balls in each room

basically all are part of an optimal plan

states with an odd number of balls in each room

all are part of plans of length h∗(Tn) + 2

n is odd

basically all states are part of an optimal plan



Introduction Theoretical Results Experimental Results Conclusion

Miconic-Simple-Adl

initial state goal state

Tn: Task with n passengers (and n + 1 floors)

Sn: Total number of reachable states of Tn

Sn = 3n(n + 1)



Introduction Theoretical Results Experimental Results Conclusion

Miconic-Simple-Adl
Theorem

Theorem

For all c ≥ 4:

N c(Tn) = Sn − (2n − 1)(n + 1).



Introduction Theoretical Results Experimental Results Conclusion

Blocksworld

initial state goal state

Tn: Task with n blocks (n ≥ 2)



Introduction Theoretical Results Experimental Results Conclusion

Blocksworld
Theorem

Theorem

N1(Tn) = 4 ·
n−3∑
k=0

Bk + 3Bn−2 + 1

n N1(Tn) n N1(Tn)
2 4 9 3748
3 8 10 17045
4 15 11 84626
5 32 12 453698
6 82 13 2605383
7 253 14 15924744
8 914 15 103071652



Introduction Theoretical Results Experimental Results Conclusion

Outline

1 Introduction

2 Theoretical Results

3 Experimental Results

4 Conclusion



Introduction Theoretical Results Experimental Results Conclusion

Question

Theoretical results

There exist task families for which the number of states expanded
by h∗ − c grows exponentially, even for small c.

Interesting question

Can we observe this behaviour in practice?

→ Experiments with IPC tasks



Introduction Theoretical Results Experimental Results Conclusion

Problem

Problem

Values N c(T ) are defined in terms of h∗.

Usually h∗ cannot be determined efficiently.

Naive way of computing N c(T )

Completely explore the state space of T .

Search backwards from the goals to determine
the h∗(s) values.

→ Observation: Generating all states is not necessary.



Introduction Theoretical Results Experimental Results Conclusion

Search space

h∗(T )

h∗(T ) + c− 1

goal node

node belongs to Nc(T )

node does not belong to Nc(T )

 Poster session: today, 6:00-9:30 PM



Introduction Theoretical Results Experimental Results Conclusion

Results
Blocksworld

task h∗(T ) N1(T ) N2(T ) N3(T ) N4(T ) N5(T )
04-1 10 10 10 16 16 29
05-2 16 28 28 72 72 162
06-2 20 27 27 144 144 476
07-1 22 106 106 606 606 2244
08-1 20 66 66 503 503 2440
09-0 30 411 411 3961 3961 21135



Introduction Theoretical Results Experimental Results Conclusion

Results
Gripper

task h∗(T ) N1(T ) N2(T ) N3(T ) N4(T )
01 11 125 125 246 246
02 17 925 925 1842 1842
03 23 5885 5885 11758 11758
04 29 34301 34301 68586 68586
05 35 188413 188413 376806 376806
06 41 991229 991229 1982434 1982434
07 47 5046269 5046269 10092510 10092510



Introduction Theoretical Results Experimental Results Conclusion

Results
Logistics (IPC 2)

task h∗(T ) N1(T ) N2(T ) N3(T ) N4(T ) N5(T )
4-0 20 159 408 1126 1780 2936
5-0 27 459 2391 5693 14370 21124
6-0 25 411 2160 5712 14485 23967
7-1 44 17617 111756 427944 1173096
8-1 44 4843 27396 157645 558869
9-0 36 2778 15878 61507 183826 460737
10-0 45 10847
11-0 48 10495



Introduction Theoretical Results Experimental Results Conclusion

Results
Miconic-Simple-Adl

task h∗(T ) N1(T ) N2(T ) N3(T ) N4(T ) N5(T )

1-0 4 4 4 4 4 4
2-1 6 6 22 26 26 26
3-1 10 58 102 102 102 102
4-2 14 148 280 470 560 560
5-1 15 209 759 1136 1326 1399
6-4 18 397 948 1936 2844 3436
7-4 23 3236 7654 11961 15780 16968
8-3 24 1292 5870 15188 25914 34315
9-3 28 20891 39348 39348 39348 39348
10-3 28 6476 16180 65477 129400 224495
11-3 32 58268 130658 258977 399850 497030
12-4 34 83694 181416 541517 970632 1640974
13-2 40 461691 947674 2203931 3443154 4546823



Introduction Theoretical Results Experimental Results Conclusion

Results
Miconic-Strips

task h∗(T ) N1(T ) N2(T ) N3(T ) N4(T ) N5(T )

1-0 4 4 4 4 4 4
2-1 7 18 29 34 37 37
3-1 11 70 138 195 241 251
4-4 15 166 507 814 1182 1348
5-4 18 341 1305 2708 4472 5933
6-4 21 509 2690 7086 13657 21177
7-4 25 3668 13918 32836 61852 95548
8-3 28 4532 35529 97529 205009 349491
9-3 32 25265 114840 321202 700640 1239599
10-3 34 8150 97043 423641 1151402 2505892



Introduction Theoretical Results Experimental Results Conclusion

1 Introduction

2 Theoretical Results

3 Experimental Results

4 Conclusion



Introduction Theoretical Results Experimental Results Conclusion

Dismal prospects

Depressing theoretical and experimental results

Other (similar) search techniques cannot
perform better than A∗.

With other (real) heuristics it gets worse.



Introduction Theoretical Results Experimental Results Conclusion

What is the cause of this behaviour?

Main problem

many independently solvable subproblems
which can be arbitrarily permuted

many possible orders

Why is this not common knowledge?
→ does not happen in 15-Puzzle, Rubik’s Cube, etc.



Introduction Theoretical Results Experimental Results Conclusion

What do the results mean for us?

Some possible conclusions:

Conclusion?

We need heuristics that are better than almost perfect.
How feasible is this?

Conclusion?

We need more search enhancements.
Look to domain-dependent search for guidance?



Introduction Theoretical Results Experimental Results Conclusion

What can the search community offer us?

Domain-specific search enhancements for Sokoban (Junghanns and
Schaeffer, 2001):

transposition table

move ordering

deadlock tables

tunnel macros

goal macros

goal cuts

pattern search

relevance cuts

overestimation

rapid random restart

 irrelevant to analysis

 irrelevant to analysis

 irrelevant to analysis

 generalizable?

 incomplete

 incomplete

 heuristic improvement

 incomplete

 suboptimal

 irrelevant to analysis

 Poster session: today, 6:00-9:30 PM



Introduction Theoretical Results Experimental Results Conclusion

General search enhancements

Some techniques that might work in general:

partial-order reduction

symmetry elimination

problem simplification



Introduction Theoretical Results Experimental Results Conclusion

What do the results mean for us?

Some alternative conclusions:

Conclusion?

Heuristic search doesn’t cut it.
What about more global reasoning methods, such as
SAT planning, or symbolic exploration techniques like breadth-first
search with BDDs?

Conclusion?

Optimal planning, beyond a certain point, is too hard.
We can hope to scale a bit better than blind search, but not very
far. Maybe study near-optimal planning in a more principled way
instead?



Introduction Theoretical Results Experimental Results Conclusion

The end

Thank you for your attention!


	Introduction
	Theoretical Results
	Experimental Results
	Conclusion

