
Fast Downward
Making use of causal dependencies in the problem representation

Malte Helmert and Silvia Richter
Institut für Informatik, Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee, Gebäude 052, 79110 Freiburg, Germany
{helmert, srichter}@informatik.uni-freiburg.de

Abstract

Fast Downward is a propositional planning system based on
heuristic search. Compared to other heuristic planners such
as FF or HSP, it has two distinguishing features: First, it is
tailored towards planning tasks with non-binary (but finite
domain) state variables. Second, it exploits the causal de-
pendency between state variables to solve relaxed planning
problems in a hierarchical fashion.

Fast Downward is a planning system based on heuristic
state space search, in the spirit of HSP or FF (Bonet &
Geffner 2001; Hoffmann & Nebel 2001). It makes use of
the causal graph (or CG) heuristic, introduced in an ICAPS
2004 paper (Helmert 2004). In this extended abstract, we
aim at providing a high-level overview of Fast Downward,
emphasizing the features that are not described in the CG
article. While the CG heuristic was introduced for pure
STRIPS domains, Fast Downward is capable of dealing with
the complete propositional, non-temporal part of PDDL. In
other words, it handles arbitrary ADL constructs and derived
predicates (axioms).

Vancouver

tSquamish

pWhistler

Figure 1: A simple planning task. Get the ICAPS participant
p to Vancouver, using the taxi t.

The key feature of the CG heuristic — and the origin of
Fast Downward’s name — is the use of hierarchical decom-
position to solve relaxed planning tasks. To illustrate this,
consider the planning task in Fig. 1: The objective is to move
the ICAPS participant p from Whistler (W) to Vancouver
(V), using a taxi (t) initially located at Squamish (S).

The CG heuristic solves this problem hierarchically. The
high-level goal is to change the state of the participant from

V

WS

T

d
e
b
a
rk

V
[t

:
V

] e
n
te

r
V

[t
:
V

]

debark
W

[t
: W

]
enterW

[t
: W

]debarkS
[t
: S

]enterS
[t
: S

]

V

S

W

d
ri

v
e
V
,
S

d
riv

e
S
,
V

d
riv

e
W

,
S

d
ri

v
e
S
,
W

Figure 2: Domain transition graphs for the participant p
(left) and taxi t (right).

“at Whistler” to “at Vancouver”. The easiest way to do this
is to board the taxi at Whistler and debark at Vancouver; at
this point we do not care that these actions are not immedi-
ately applicable. This plan is found by looking at the ICAPS
participant’s domain transition graph, a directed graph de-
picting the ways in which p can change locations (Fig. 2).
The different locations or states of p form the nodes of the
graph, while the arcs correspond to operators affecting these
states, annotated with their preconditions.

To estimate the cost of the “high-level plan” p : W ❀

T ❀ V , the heuristic solver inserts steps to satisfy the pre-
conditions of the two operators by recursive invocations of
the same algorithm. The transition p : W ❀ T requires the
taxi to be at Whistler, as evidenced by the labeling of that
arc in p’s domain transition graph. So we recursively find
a (one-step) plan to move the taxi from its initial location
Squamish to Whistler. Because there are no conditions on
the transitions of the taxi (Fig. 2), there is no further recur-
sion. We have thus computed that the cost of changing the
state of the participant fromW to T is 2, counting one action
for the transition itself and one for the recursively calculated
set-up cost. Similarly, we compute that the second transition
p : T ❀ V is 3, because the taxi is now located in Whistler
and thus needs two actions to get to Vancouver, in addition
to the one action required to move p out of the taxi. Adding
the transition costs together, the CG heuristic approximates
the goal distance as 5 = 2 + 3.

Observe that state transitions of the passenger are condi-



tioned on the state of the taxi, while the converse is not the
case. We say that state variable p is causally dependent on
state variable t. The set of causal dependencies of a planning
tasked defines the causal graph of that task. Hierarchical de-
composition is most suited to planning domains with acyclic
causal graphs. In fact, the CG heuristic can only be calcu-
lated for tasks with acyclic causal graphs, and hence Fast
Downward’s heuristic estimator breaks causal cycles for the
purposes of the heuristic estimator, by ignoring (some) op-
erator preconditions. Contrast this relaxation to HSP’s ap-
proach of ignoring (some) operator effects.

We hope that this small example provides the reader with
some intuition of the basic ideas of the CG heuristic. Again,
we point to the reference for a detailed exposition (Helmert
2004). In the following, we discuss the overall structure of
the Fast Downward planner, emphasizing aspects that go be-
yond the STRIPS planner described in the conference paper.

Structure of the planner

Fast Downward currently consists of three independent pro-
grams:

1. the translator (written in Python),

2. the preprocessor (written in C++), and

3. the search engine (also written in C++).

To solve a planning task, the three programs are called in se-
quence; they communicate via text files. We have found that
this clear separation facilitates simultaneous development of
the planner by several people in its current prototype stage.
Of course the current state of affairs leads to some inefficien-
cies, especially when solving easy or moderately difficult
planning tasks. For hard tasks, runtime is typically domi-
nated by the search engine.

Translator

The translator has the following responsibilities:

• Compiling away (most) ADL features.

• Grounding the operators and axioms.

• Converting the propositional (binary) representation to
one with multi-valued state variables.

It is commonly known that some features of ADL can
be compiled away easily, i.e. without significantly increas-
ing the problem representation, while others cannot (Nebel
1999). However, in the presence of axioms, all ADL con-
structs except for conditional effects can be translated to
STRIPS quite easily.

Fast Downward applies the following transformations, in
order, to simplify the problem representation:

• Translate implications to disjunctions and translate all
conditions to negation normal form (NNF).

• Compile away universal quantifiers in conditions.

• Translate conditions to prenex normal form.

• Translate the quantifier-free part of conditions into dis-
junctive normal form.

• Split operators or axioms with disjunctive conditions into
several operators or axioms, and split conditional effects
with disjunctive conditions into several effects.

All these transformations are fairly basic, except maybe
for the elimination of universal quantifiers explained now.
Using the equivalence ∀xϕ ≡ ¬∃x¬ϕ, the translator intro-
duces a new axiom for ∃x¬ϕ and replaces the universally
quantified condition ∀xϕ by the literal ¬new-axiom(V ),
where V is the set of free variables in ∃x¬ϕ.

For example, the blocked axiom in the Promela domain
contains the condition (ignoring types):

∀t(∀s′¬trans(q, t, s, s′) ∨ blocked-trans(p, t)).

This is translated to the condition ¬new-axiom(p, q, s),
where new-axiom(p, q, s) is defined as:

∃t¬(∀s′¬trans(q, t, s, s′) ∨ blocked-trans(p, t)),

which is translated to NNF, resulting in:

∃t(∃s′trans(q, t, s, s′) ∧ ¬blocked-trans(p, t)).

After all transformations, all conditions are essentially
simple conjunctions of literals (the remaining existential
quantifiers can be considered action, axiom or effect param-
eters), so the resulting planning task is expressed in STRIPS
with negation plus universal conditional effects and axioms.

For such planning tasks, efficient grounding is compar-
atively easy. Following the idea of Mips (Edelkamp &
Helmert 1999), we avoid instantiating operators which can
never be applied by first computing the set of propositions
which are reachable in a relaxed exploration, ignoring neg-
ative conditions and effects. This amounts to the evaluation
of a set of Horn logic rules derived from the actions and ax-
ioms. For example, the above axiom corresponds to the rule

new-axiom(p,q,s) :- trans(q,t,s,s’).

The final translation step consists of replacing the set of
binary state variables obtained by grounding with a smaller
set of finite domain state variables capturing the same in-
formation. This is done by synthesizing invariants of the
planning task, again using the algorithm of Mips.

To illustrate this, the variables p and t of our earlier exam-
ple task are derived from the original PDDL representation
by use of invariants. Specifically, the invariant

∃=1l : taxi-at(l),

justifies replacing the three binary variables taxi-at(V),
taxi-at(S) and taxi-at(W) by the variable t with do-
main {V, S,W}.

Preprocessor

The preprocessor is responsible for:

• Computing the causal graph of the planning task.

• Computing the domain transition graphs for each state
variable.

• Computing the successor generator, a data structure that
supports efficiently computing the successor states of a
world state. (We do not discuss the successor generator in
detail.)



Computing the causal graph is straight-forward: Variable
A depends on variableB iff there is an operator (axiom) with
A as an effect (consequence) and B as a condition or other
effect. One notable optimization is employed at this point:
All variables which are not mentioned in the goal and on
which the goal does not depend directly or indirectly can be
eliminated. For example, in the PSR domain, all instances
of the upstream axiom for which the first parameter is not
a circuit breaker may be safely removed.

As noted before, an acyclic causal graph is required for
the CG heuristic. Therefore, for the purposes of the do-
main transition graphs, we compute an acyclic skeleton of
the causal graph, i.e. a maximal acyclic subgraph. Cycles
are broken by removing the weakest edges; this means that
every dependency is weighted according to how often it oc-
curs in the operators, and the edges with least weight are
removed iteratively, until no cycle remains.

The central part of the preprocessor is the computation of
the domain transition graphs. The domain transition graph
of a variable contains arcs for all operators or axioms af-
fecting this variable. For example, the graph for p in Fig. 2
contains an arc from V to T because there exists an operator
with precondition p = V and effect p = T , corresponding
to the action of boarding the taxi in Vancouver. The arc is
annotated with the condition t = V because the operator
requires the taxi to be in Vancouver as an additional pre-
condition. We would omit this condition if the causal link
between p and t were not part of the acyclic skeleton of the
causal graph computed earlier. Thus, this is the part of the
planner where some preconditions get ignored.

The reference (Helmert 2004) explains the details of do-
main transition graph construction for basic STRIPS-like
operators; we note that the conditional effects present in the
more general case do not lead to complications because do-
main transition graphs deal with operators one effect at a
time, and for unary operators effect conditions can safely be
considered part of the operator precondition.

Search Engine

After so much preprocessing, the actual search algorithm is
not very mysterious. Fast Downward uses greedy best-first
search, always expanding the node with the best heuristic
estimate. The heuristic is computed from the domain transi-
tion graphs as follows: The goal distance of a state is taken
to be the sum of the costs for all necessary changes of vari-
ables. The cost for changing the value of one variable V
from v to v′ is the sum of the costs for all transitions of V
on the shortest path from v to v′ in V ’s domain transition
graph, computed using Dijkstra’s algorithm.

The cost for traversing a single arc in the domain transi-
tion graph — the arc weight in Dijkstra’s algorithm — is one
plus the set-up cost of the transition, the sum of the (recur-
sively computed) costs for achieving all necessary precondi-
tions according to the arc label.1 This follows the informal
description of the CG heuristic in the introduction.

1If the arc corresponds to the derivation rule of an axiom, not to
an action, then the weight is just the set-up cost, without adding 1.

Helpful Actions

As a further enhancement, Fast Downward incorporates the
CG counterpart of FF’s helpful actions: The planner collects
all operators that correspond to domain transition graph arcs
which contribute to the heuristic estimate of the given state.
It then checks which of these operators are applicable in the
current state. These form the set of helpful actions in that
state. This set can be empty although the heuristic estimate
is finite, because domain transition graphs do not respect all
operator preconditions, as discussed before.

The overall best first search algorithm integrates helpful
actions by maintaining two separate open lists; all states are
first inserted into the first open list. When a state from this
list is expanded, the “helpful” successors are generated and
the state is inserted into the second open list. When a state
from the second list is expanded, its “non-helpful” succes-
sors are expanded. The search control always selects that
open list for expansion which has generated fewer search
states so far. This means that if an average state encountered
during search has 4 helpful and 40 other successors, the first
open list is selected ten times out of eleven, thus biasing the
exploration towards helpful actions.

Fast Diagonally Downward

As a final twist, we have also implemented a modified ver-
sion of the search engine which combines CG heuristic and
FF heuristic. This is based on the observation that CG and
FF heuristic perform badly in different planning domains
(Helmert 2004). Combining the forward and downward
thrust by a simple vector addition, we have called this variant
of the Fast Downward planner Fast Diagonally Downward.

Fast Diagonally Downward’s search engine computes
both the CG and FF heuristic for each state, as well as mak-
ing use of helpful actions of both kinds. It uses separate
open lists for the two heuristics, alternately expanding the
node preferred by the FF estimate and the node preferred by
the CG estimate. Newly generated states are always added
to both open lists, making the approach different to simply
running two planners in parallel. The hope is that the heuris-
tics can lead each other out of their respective local minima,
and indeed in some domains the combined approach works
better than either of the original heuristics.

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Proc. ECP 1999, 135–147.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Nebel, B. 1999. What is the expressive power of disjunc-
tive preconditions? In Proc. ECP 1999, 294–307.


