
A Planning Heuristic Based on Causal Graph Analysis

Malte Helmert
Institut für Informatik, Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee, Gebäude 052, 79110 Freiburg, Germany
helmert@informatik.uni-freiburg.de

Abstract

In recent years, heuristic search methods for classical plan-
ning have achieved remarkable results. Their most successful
representative, the FF algorithm, performs well over a wide
spectrum of planning domains and still sets the state of the art
for STRIPS planning. However, there are some planning do-
mains in which algorithms like FF and HSP perform poorly
because their relaxation method of ignoring the “delete lists”
of STRIPS operators loses too much vital information.
Planning domains which have many dead ends in the search
space are especially problematic in this regard. In some do-
mains, dead ends are readily found by the human observer
yet remain undetected by all propositional planning systems
we are aware of. We believe that this is partly because the
STRIPS representation obscures the important causal struc-
ture of the domain, which is evident to humans.
In this paper, we propose translating STRIPS problems to a
planning formalism with multi-valued state variables in or-
der to expose this underlying causal structure. Moreover, we
show how this structure can be exploited by an algorithm for
detecting dead ends in the search space and by a planning
heuristic based on hierarchical problem decomposition.
Our experiments show excellent overall performance on the
benchmarks from the international planning competitions.

Introduction
Many current algorithms for STRIPS-style planning are
based on heuristic forward search in the space of world
states. The first successful domain-independent planning
system using this approach was Bonet and Geffner’s HSP
(Bonet, Loerincs, & Geffner 1997; Bonet & Geffner 2001).
Other researchers adopted the general concept and applied
various modifications to it, leading to the development of
planners like GRT (Refanidis & Vlahavas 1999), MIPS
(Edelkamp & Helmert 2000), which uses heuristic forward
search among other planning strategies, and most promi-
nently Hoffmann’s very successful FF system (Hoffmann &
Nebel 2001). All these planners can be seen as using some
approximation of the h+ heuristic (Hoffmann 2002). The
h+ value of a world state is the length of a shortest plan for
a relaxed planning task, where all operator effects that make
state variables false are ignored.

As an illustration, consider the transportation task de-
picted in Fig. 1. The nodes in the figure correspond to lo-

A

B

C

D

E

F

Figure 1: An unsolvable transportation task.

cations, and solid arcs correspond to roads. Note that loca-
tion D has four incoming but no outgoing roads, and hence
can be entered but not left. The objective is to move a cargo
item located at E to location B, as indicated by the dashed
arrow. Two trucks initially located at C and F may be used
to achieve this goal (gray nodes). This task is similar in
structure to several MYSTERY tasks from the planning com-
petition benchmark suite, e. g. MYSTERY #22 and #23.1

We see that this task has no solution. Even if the cargo
item could traverse the roadmap by itself, without help of
the trucks, there would be no path from its initial location to
its destination. However, using a standard STRIPS encoding
of the planning task, the h+ value of the depicted state is 8,
not ∞. This is because the relaxed task allows vehicles to be
at several locations simultaneously: When they are moved,
the effect of no longer being at the original location is ig-
nored. This can be interpreted as an ability of the truck to
“teleport” to any previously visited location without cost and
regardless of the existence of a path to that location.

We thus obtain the following optimal relaxed plan: Move
the right truck to the cargo item and pick it up, then move to
D and drop it. Then move the left truck to D, pick up the
cargo item, “teleport” back to C (not counted as a plan step)
and finally move to B and drop the cargo.

Unrealized dead ends like this are not the only source of
problems for heuristic forward planners. Consider the exam-
ple in Fig. 2. Again, the objective is to transport the cargo

1In MYSTERY tasks, the roadmap is undirected in principle, but
lack of fuel at a node can lead to situations like the one above. This
is the case in the tasks mentioned, where locations “cherry” and
“hotdog” start with empty fuel depots and lie on all paths from the
initial location to the goal location of some cargo item.

A” B” C” D”

A’ B’ C’ D’

A B C D

Figure 2: A simple transportation task.

items as indicated by the dashed arrows, using the trucks
indicated by the gray vertices. The task is solved by first
moving the trucks to the initial cargo locations to pick up
everything, then moving them back to drop everything.

However, the task is troubling for h+-based planners. The
h+ heuristic does not favor moving a truck towards a cargo
item over moving it in the opposite direction, as the heuris-
tic anticipates the eventual need to move the truck back to
its origin. More precisely, all states in which no cargo items
have been picked up form a single plateau with the same
heuristic evaluation. Indeed, if we scale the number of trucks
and cargo items and the diameter of the graph to higher val-
ues, current heuristic forward planners fail quickly.

We should emphasize that we do not want to imply that
the h+ heuristic is inherently bad; in fact it yields exceed-
ingly good estimates in many planning domains. The point
we want to make is that the two examples are not at all triv-
ial to analyze at the propositional level of at-truck-A
and in-package-truck, on which h+ depends. In our
opinion, understanding the tasks is much easier if we realize
that they are really about multi-valued state variables like
“the position of the truck” (with values like A, B, C) or “the
state of the cargo item” (with values like at-A or in-truck),
and that these state variables only interact in specific, very
limited ways.

This paper discusses how such higher-level concepts and
their interactions can be found and used automatically by
a domain-independent planning system. In the sections to
come we will formalize these notions, analyze an impor-
tant special case of the resulting planning problem, and show
how solutions to a number of simplified tasks can serve as a
heuristic for the general case.

The SAS+ Planning Formalism
The SAS+ planning formalism is an alternative to propo-
sitional STRIPS that has been analyzed in depth by several
researchers. Unlike STRIPS, it allows state variables to have
non-binary (finite) domains. For example, the position of a
truck in our first example can be encoded as a single state
variable with six possible values.

Definition 1 SAS+ planning task
A SAS+ planning task or SAS+ task for short is a 4-tuple
Π = 〈V ,O, s0, s?〉 with the following components:

• V = {v1, . . . , vn} is a set of state variables, each with an
associated finite domain Dv .
A partial variable assignment over V is a function s on
some subset of V such that s(v) ∈ Dv wherever s(v) is
defined. If s(v) is defined for all v ∈ V , s is called a state.

• O is a set of operators, where an operator is a pair
〈pre, eff〉 of partial variable assignments called precon-
ditions and effects, respectively.

• s0 is a state called the initial state, and s? is a partial
variable assignment called the goal.

An operator 〈pre, eff〉 is applicable in a state s iff s(v) =
pre(v) whenever pre(v) is defined. Applying the operator
changes the value of v to eff(v) if eff(v) is defined. For a
precise definition of the semantics of SAS+ planning, we
refer to the paper by Bäckström and Nebel (1995). Our def-
inition differs slightly from the reference in order to more
closely resemble STRIPS. Like propositional STRIPS plan-
ning, SAS+ planning is PSPACE-complete.

Translating STRIPS to SAS+

Planning tasks specified in propositional STRIPS can be
straightforwardly translated into SAS+ planning tasks with
an identical set of (binary) state variables. However, we can
do better than that using non-binary variables.

A typical STRIPS encoding of the example in Fig. 1 uses
18 propositional variables ato,l to describe the location of
the trucks and cargo on the map, plus two state variable in t1
and int2 to model cargo inside either truck.

An alternative SAS+ encoding uses only three state vari-
ables. Two variables v1 and v2 specify the truck locations;
they can assume six different values corresponding to the six
locations. The third variable vc defines the state of the cargo
item and may assume eight different values corresponding to
being at any of the six locations or inside either truck. This
encoding is more concise in the sense that it only allows for
62 · 8 = 288 states, whereas the STRIPS encoding allows
for 220 = 1048576 states including ones where trucks are
at several locations simultaneously or nowhere at all. Of
course, the number of reachable states is the same for both
encodings, and there is a straightforward bijection between
reachable states that can be used for translating operators,
shown in Fig. 3.

STRIPS state S SAS+ state s
ato,l ∈ S s(vo) = l
int ∈ S s(vc) = t

Figure 3: STRIPS encoding vs. SAS+ encoding.

While it seems like human insight is required to come up
with this translation, several existing algorithms are capable
of doing the kind of mutual exclusion reasoning among state
variables that leads to the more concise encoding. Examples
include TIM (Fox & Long 1998) and the inference methods
of DISCOPLAN (Gerevini & Schubert 1998). In this paper,
we have used the preprocessing method applied by the MIPS
planner, described in detail in the paper by Edelkamp and

Helmert (1999). Fig. 4 shows the translation result for the
example.

V = {v1, v2, vc}

Dv1
= {A, B, C, D, E, F}

Dv2
= {A, B, C, D, E, F}

Dvc
= {A, B, C, D, E, F, t1, t2}

O = {〈{v1 7→ A}, {v1 7→ B}〉,

〈{v1 7→ B, vc 7→ B}, {vc 7→ t1}〉,

〈{v2 7→ E, vc 7→ t2}, {vc 7→ E}〉, . . . }

s0 = {v1 7→ C, v2 7→ F, vc 7→ E}

s? = {vc 7→ B}

Figure 4: SAS+ encoding of the running example (Fig. 1).
Three operators are shown, one instance each of a move-
ment, pick-up and drop action.

Subtasks and Causal Graphs
The basic idea of our approach is to decompose a planning
task into subtasks with limited interaction. Let us first for-
malize our notion of subtask.2

Definition 2 SAS+ subtask
Let Π = 〈V ,O, s0, s?〉 be a SAS+ task and V ′ ⊆ V be a
subset of its state variables. The subtask induced by V ′ is
the 4-tuple Π′ = 〈V ′,O|V ′, s0|V ′, s?|V ′〉, where we define
O|V ′ = { 〈pre|V ′, eff|V ′〉 | 〈pre, eff〉 ∈ O ∧ eff|V ′ 6= ∅ }.

Of course, subtasks of a SAS+ task are also SAS+ tasks.
It is easy to see that if Π has a solution, then so has Π′,
although the converse is often not the case. This implies that
if Π′ does not have a solution, then Π is also unsolvable.
This property leads to a method for detecting dead ends in
the search space of a planning task.

However, this method is fairly limited: In Fig. 1, all sub-
tasks except for the original task itself are solvable. For in-
stance, consider the subtask induced by {v1, vc}. It can be
solved in two steps by first moving the cargo item into the
second truck and then from there to the goal location B.
Note the fact that the absence of the state variable for the
second truck from the subtask does not lead to a situation
where the second truck is not available. Instead, it leads to
a situation where that truck is everywhere at the same time,
since all preconditions involving v2 are projected away.

Clearly, simplifying the planning task in such a way that
important preconditions disappear should be avoided. To
formalize this notion, we introduce the concept of causal
graphs. The idea is by no means new; early work discussing
it (although under a different name) includes the papers on
hierarchical problem solving by Knoblock (1994) and Bac-
chus and Yang (1994). More recently causal graphs have

2We write f |A for the restriction of function f to set A, i. e. for
the function { x 7→ f(x) | x ∈ A and f(x) is defined }.

been applied to planning in unary STRIPS domains (Domsh-
lak & Brafman 2002)3.

Definition 3 causal graph
Let Π = 〈V ,O, s0, s?〉 be a SAS+ task. Its causal graph
CG(Π) is the digraph (V , A) containing an arc (u, v) iff
u 6= v and there exists an operator 〈pre, eff〉 ∈ O such that
eff(v) is defined and either pre(u) or eff(u) are defined.

Informally, the causal graph contains an arc from a source
variable to a target variable if changes in the value of the tar-
get variable can depend on the value of the source variable.
Note that we have decided to include an arc in the causal
graph even if this dependency is only of the form of an ef-
fect on the source variable.

This is a conscious decision. With our definition, a state
s can be transformed into a state s′ if and only if this is
possible in the task induced by the causal graph ancestors
of all variables on which s and s′ differ. This important
property would not hold if arcs between variables affected
by the same operator were not part of the causal graph.

This separability property very much facilitates solving
tasks where variables have few ancestors in the causal graph,
which is one of the reasons why many papers focus on plan-
ning tasks with acyclic causal graphs (Domshlak & Brafman
2002; Williams & Nayak 1997). An acyclic causal graph im-
plies that all operators are unary, because operators with k
effects introduce k-cliques in the causal graph.

v1 v2

vc

Figure 5: Causal graph of the running example (Fig. 1).

STRIPS tasks with acyclic causal graphs are rare, but the
same is not necessarily true of SAS+. For example, LOGIS-
TICS tasks fall into this class, although more general trans-
portation tasks involving capacity or fuel constraints do not.
The causal graph of our first example is acyclic, as seen in
Fig. 5. In fact, the example belongs to a more restricted class
which we will now define.

Definition 4 SAS+-1
A SAS+-1 task is a SAS+ task Π with a designated variable
v such that CG(Π) has an arc from all other variables to
v, and no other arcs. This variable v is called the high-
level variable, whereas all other state variables are called
low-level variables. A goal must be defined for the high-
level variable, and goals must not be defined for the low-
level variables.4

3The reference discusses STRIPS with negative preconditions,
as deciding plan existence for plain propositional STRIPS is trivial
if all operators are unary.

4The restriction on goals is only for convenience of presentation
and could easily be lifted.

In SAS+-1 tasks, all low-level variables can be changed
independently, using operators that have no preconditions on
other variables. The subtask induced by the set of low-level
variables can thus be easily solved by basic graph search
techniques. However, solving SAS+-1 tasks is not easy, as
we shall see in the following section.

We are interested in SAS+-1 planning tasks because they
are comparatively simple in structure, yet still expressive
enough to capture complicated interactions between state
variables. In the following sections, we will discuss the the-
oretical properties of SAS+-1 planning and present some
algorithmic techniques. These techniques form the build-
ing blocks for a planning heuristic for general SAS+ tasks,
which is presented afterwards.

For the following discussion, it is useful to introduce
the notion of domain transition graphs. The domain tran-
sition graph of a state variable is a representation of the
ways in which the variable can change its value, and of the
conditions that must be satisfied for such value changes to
be allowed. Apart from minor notational differences, our
definition is identical to the one provided by Jonsson and
Bäckström (1998).

Definition 5 domain transition graph
Consider a SAS+ task with variable set V , and let v ∈ V .

The domain transition graph Gv is the labeled digraph
with vertex set Dv which contains an arc (d, d′) iff there is an
operator 〈pre, eff〉 where pre(v) = d or pre(v) is undefined,
and eff(v) = d′. The arc is labeled by pre|(V \ {v}).

For each arc (d, d′) with label L, we say that there is a
transition of v from d to d′ under the condition L.

Multiple transitions between the same values using differ-
ent conditions are possible. The domain transition graphs for
our running example are shown in Figs. 6 and 7 (the graphs
for v1 and v2 are identical). As the example indicates, arcs in
domain transition graphs of low-level variables of SAS+-1
tasks always have empty labels.

A

B

C

D

E

F

t1 t2

v
1

=
A

v1
=

B

v1
= C

v1 = D

v
1 =

Ev
1
=

F

v
2
=

Av
2 =

B

v2 = C

v2
= D

v2
=

E

v
2

=
F

Figure 6: Domain transition graph for vc.

If all operators of a task are unary, there is a strong cor-
respondence between domain transition graphs, states, and

A

B

C

D

E

F

Figure 7: Domain transition graph for v1 and v2.

state transitions. A state is characterized by the values of
the state variables, which in turn correspond to vertices in
their respective domain transition graphs. For a given state
s, we call s(v) the active vertex of Gv . An operator applica-
tion in a unary SAS+ task changes the value of exactly one
state variable, by changing the active vertex of some domain
transition graph to one of its successors. Such a transition is
allowed iff its conditions are satisfied, defining constraints
on the active vertices of other domain transition graphs.

Plan execution can thus be viewed as simultaneous traver-
sal of domain transition graphs, where a transition on a given
graph can be allowed or forbidden depending on the active
vertices of the other graphs. This is the view expressed in
the paper by Domshlak and Dinitz (2001a). In the case of
SAS+-1 tasks, only transitions of the high-level variable can
be constrained.

Theoretical Properties of SAS+-1
Intuition suggests that SAS+-1 planning should be easier
than SAS+ planning in general. This is in fact the case.
While SAS+ planning is PSPACE-complete, SAS+-1 plan-
ning is easily seen to be in NP. However, the problem is not
easy, as the following result shows. The proof is based on
an earlier result by Domshlak and Dinitz (2001a; 2001b) for
the closely related STS-F∨

π

n problem.

Theorem 6 PLANEX-SAS+-1 is NP-complete
The plan existence problem for SAS+-1 is NP-complete.
Proof: Membership in NP follows from a polynomial plan
length argument. In a minimal plan, the high-level variable
does not assume the same value twice, and a low-level vari-
able does not assume the same value twice unless the high-
level variable was changed in between. Together, this leads
to a quadratic length bound allowing a non-deterministic
guess-and-check algorithm to run in polynomial time.

For hardness, we reduce from the NP-complete PFP (path
with forbidden pairs) problem (Garey & Johnson 1979,
problem GT54): Given a digraph (V, A), vertices v0, v? ∈
V , and a set of arc pairs P ⊆ A×A, is there a path from v0

to v? containing at most one arc from each pair in P ?
The high-level variable vH of the corresponding SAS+-1

task has the domain V , initial value v0 and goal value v?. For
each forbidden pair (a, b) ∈ P , there is a low-level variable
v(a,b) with domain {⊥, a, b} and initial value ⊥.

Low-level transitions allow changing the value of v(a,b)

from ⊥ to either a or b. For each arc a = (u, v) ∈ A, a high-
level transition changes the value of vH from u to v if all
low-level variables which have a in their domain currently

assume that value. Thus, low-level transitions correspond
to selecting the usable arc of each forbidden pair, and high-
level transitions correspond to traversing the usable arcs.

This mapping is a polynomial reduction: If the planning
task is solvable, then the high-level transitions of a solution
plan define a legal path for the PFP instance. Conversely, if
there is a path for the PFP instance, the low-level variables
can be set accordingly so that the high-level variable can
follow that path to solve the planning task.

The result even holds if we restrict operators to define at
most one precondition on low-level variables, because PFP
is NP-complete even if all pairs are required to be disjoint.

However, some classes of SAS+-1 tasks can be solved
efficiently. For example, solutions are found in polynomial
time by explicit state space search if the number of low-level
variables is bounded by a constant.5 Unfortunately, typical
planning tasks, even those with acyclic causal graphs, do not
have this property. For example, in the LOGISTICS domain,
the causal graph indegree of the variables representing pack-
ages equals the number of vehicles, which can be fairly high.

Still, plan generation for LOGISTICS tasks is easy because
of an additional property: The domain transition graphs of
all state variables are strongly connected. Under this restric-
tion, SAS+-1 plans can be generated in polynomial time,
since all values of the low-level variables can be achieved
from any configuration, and thus all high-level transition
conditions can be satisfied at will. The following result
shows that the corresponding optimization problem is still
hard.

Theorem 7 PLANLEN-SAS+-1 is NP-complete
The bounded plan existence problem for SAS+-1 (deciding
whether a plan of a given maximum length M exists) is NP-
complete, even if all domain transition graphs are strongly
connected.
Proof: Membership in NP follows from the previous result.
For hardness, we reduce from the NP-complete X3C (exact
cover by 3-sets) problem (Garey & Johnson 1979, problem
SP2): Given a collection C of three-element subsets of the
set {1, . . . , 3q}, does C contain an exact cover, i. e. a subset
C ′ of cardinality q with

⋃

C ′ = {1, . . . , 3q}?
The corresponding SAS+-1 task has a high-level variable

vH with domain {0, . . . , 3q}, initial value 0 and goal value
3q. For each set S ∈ C, there is a low-level variable vS

with domain {⊥,>}, initially set to ⊥. The low-level vari-
ables can change their value between ⊥ and > arbitrarily;
the high-level variable can change its value from i to i + 1 if
some low-level variable vC with i+1 ∈ C is currently set to
>. If S contains multiple sets containing i + 1, there is one
high-level transition for each. Finally, we add an uncondi-
tional transition from 3q to 0 to ensure strong connectivity.
The maximum plan length M is set to 4q.

To see that this is a polynomial reduction, observe that
low-level transitions correspond to selecting elements for C ′

and high-level transitions correspond to checking that C ′ in-

5The related (and more general) planning problem for STRIPS
tasks with a polytree causal graph with bounded indegree is also
known to be tractable (Domshlak & Brafman 2002).

deed covers all of {1, . . . , 3q}. The length bound ensures
that only q elements of C are selected.

It is interesting to compare the previous result to LOGIS-
TICS planning with a single vehicle (Helmert 2001), where
domain transition graphs are also strongly connected and
causal graphs have one low-level variable and many high-
level variables. For these tasks, plan generation is also a
polynomial problem, and bounded plan existence is also NP-
complete.

A Planning Algorithm for SAS+-1
In this section, we describe a polynomial algorithm for solv-
ing SAS+-1 tasks. Because plan existence for SAS+-1 is an
NP-hard problem, the algorithm is not complete: While all
generated plans are valid, there are solvable tasks for which
no solution is found.

In the following, let 〈V ,O, s0, s?〉 be the given SAS+-1
task. Let vH be the high-level variable, with domain DH.

The algorithm is based on Dijkstra’s algorithm for the
single-source shortest path problem. Thus, it tries to find
a plan for achieving each value in DH, not just the desired
value s?(vH). Like Dijkstra’s algorithm, it first finds the
shortest plan for reaching any high-level value different to
s0(vH), then tries to reach the second-nearest value etc., un-
til no further values are reachable or a plan to the goal is
found. It is not complete because it does not reinvestigate
the plans used for achieving a certain high-level value, al-
though it might turn out that these lead to dead ends caused
by unfortunate modifications to the low-level variables.

It helps to view the low-level variables as “resources”
which are used to achieve a certain goal on the high-level
variable. The algorithm tries to reach each high-level value
as quickly as possible, without trying to preserve resources.
Because it commits to a certain plan for achieving each high-
level value, the complete world state is known during plan-
ning. The algorithm works as follows6:

1. Initialization:

plan(dH) =

{

〈〉 if dH = s0(vH)

undefined otherwise
Queue = DH

2. Let dH be an element of Queue minimizing ‖plan(dH)‖
(undefined plans have cost ∞). Remove dH from Queue.
Let π = plan(dH) and let s be the state that results from
applying π in the initial state.
For all high-level transitions op originating from dH with
target d′H and condition pre:

(a) Check if it is possible to satisfy all conditions in pre
starting from state s. If not, stop and consider the next
transition. If yes, let πL be a minimal cost plan achiev-
ing the preconditions. This can be computed by Di-
jkstra searches in the domain transition graphs of the
low-level variables. Define π′ as the concatenation of
π, πL and 〈op〉.

6The notation ‖π‖ denotes the cost of a plan. Usually, this is
the same as its length (number of operators), but we will later need
to consider cases in which operator costs are not uniform.

(b) If ‖plan(d′

H)‖ > ‖π′‖, then set plan(d′

H) = π′.

3. Repeat the previous step until Queue no longer contains
any values for which plan is defined (in which case the
algorithm fails), or until s?(vH) is removed from Queue,
in which case plan(s?(vH)) is the solution.

We note that the algorithm is complete if the domain
transition graphs of all low-level variables are strongly con-
nected: In this case it is always possible to satisfy the pre-
conditions of a high-level transition.

As an example, consider one of the three components of
the simple transportation task (Fig. 2). The cargo item, rep-
resented by the high-level state variable vH, must be moved
from location D to location A with the help of the truck, rep-
resented by the (only) low-level state variable vL. The do-
main of vH is the set {A, B, C, D, t}, where vH = t means
that the cargo item is being carried by the truck. The domain
of vL is the set {A, B, C, D}. Legal operators are pick-up,
drop, and truck movement actions, defined in the obvious
way.

Fig. 8 shows the order in which the different values for the
cargo variable are removed from the queue. It also denotes
the high-level transitions (pick-ups and drops) that are con-
sidered for each value removed from the queue and shows
the subplans generated during the planning process.

Initially, the queue contains the elements {A, B, C, D, t};
we have plan(D) = 〈〉 and no further plans are defined.

• Remove D from the queue s = 〈vH 7→ D, vL 7→ A〉.

– Consider pickup
D

:
Set plan(t) = 〈moveA,B, moveB,C, moveC,D, pickup

D
〉.

• Remove t from the queue s = 〈vH 7→ t, vL 7→ D〉.

– Consider drop
A

:
Set plan(A) = 〈moveA,B, moveB,C, moveC,D, pickup

D
,

moveD,C, moveC,B, moveB,A, drop
A
〉.

– Consider drop
B

:
Set plan(B) = 〈moveA,B, moveB,C, moveC,D, pickup

D
,

moveD,C, moveC,B, drop
B
〉.

– Consider drop
C

:
Set plan(C) = 〈moveA,B, moveB,C, moveC,D, pickup

D
,

moveD,C, drop
C
〉.

– Consider drop
D

: No improvement to plan(D).

• Remove C from the queue s = 〈vH 7→ C, vL 7→ C〉.

– Consider pickup
C

: No improvement to plan(t).

• Remove B from the queue s = 〈vH 7→ B, vL 7→ B〉.

– Consider pickup
B

: No improvement to plan(t).

• Remove A from the queue return plan(A).

Figure 8: Computing a plan for a subtask of the simple trans-
portation task (Fig. 2).

Dead-End Detection for SAS+-1
In this section, we investigate the complementary problem
of proving SAS+-1 tasks unsolvable. Again, the algorithm
is sound but not complete: None of the tasks shown as un-

solvable admit a solution, but some tasks without solution
pass unnoticed.

Let Π = 〈V ,O, s0, s?〉 be the given SAS+-1 task, with
high-level variable vH and low-level variables VL. We as-
sume that the domains of all variables are disjoint, which
can be achieved by renaming. The domain of vH is written
as DH, the union of the domains of VL as DL.

The solution algorithm from the previous section is overly
strict because it identifies a single world state with each
value of the high-level variable. Complementary to this, we
now associate high-level variables with many world states,
some of which might not actually be feasible. More pre-
cisely, we keep track whether or not each pair (dH, dL) ∈
DH × DL is reachable and assume that a state s is reach-
able whenever for each low-level variable vL, the pair
(s(vH), s(vL)) is reachable. In words, if the high-level
value/low-level value pairs can be achieved individually, we
assume that they can be achieved simultaneously.

Using this restriction, we obtain the following polynomial
algorithm for computing the set R of reachable pairs.

1. Initialization: R := { (s0(vH), s0(vL)) | vL ∈ VL }.

2. For each low-level transition from dL to d′L:
R := R ∪ { (dH, d′L) | (dH, dL) ∈ R }.

3. For each high-level transition from dH to d′H with condi-
tion {v1 7→ d1, . . . , vk 7→ dk} such that (dH, di) ∈ R for
all i = 1, . . . , k:
R := R ∪ { (d′

H, d1), . . . , (d
′

H, dk) }
∪ { (d′H, dL) | (dH, dL) ∈ R ∧ dL /∈ Dpre },

where Dpre is the union of the domains of {v1, . . . , vk}.

4. Fixpoint iteration: Repeat the two previous steps until R
no longer changes. The task is considered solvable iff
(s?(vH), dL) ∈ R for any dL ∈ DL.

The third step is the only one which needs some explana-
tion. First, we check whether a transition from dH to d′H is
applicable. This is the case whenever all values in the condi-
tion may occur together with dH. If the transition is applica-
ble, then we can apply it to change the value of the high-level
variable to d′

H. In the resulting state, the low-level variables
mentioned in the condition will have the values dictated by
the condition (first line of the update of R), while all other
low-level variables retain their values (second line of the up-
date of R).

Of course, in practice the algorithm should not be imple-
mented using the naı̈ve update method we described. One
possible implementation encodes the update rules in Horn
Logic, using a propositional variable R(dH,dL) for each pos-
sible element of R. The resulting formula has O(|O| · |DH|)
clauses of fixed length for the update rules in the second step
and O(|O| · |DL|) clauses of length bounded by the maximal
number of preconditions per operator for the update rules in
the third step, for a total bound of O(‖Π‖2). The relevant
reasoning problem in Horn Logic can be solved in linear
time in the formula size, yielding a quadratic algorithm.

Fig. 9 shows that the algorithm can prove the example
task of Fig. 1 unsolvable. In this case, a stable value for the
set R is reached after the third iteration. The result set does

not contain the pair (B, dL) for any low-level value dL, so
the cargo item cannot be transported to location B.

R1 = {(E, C1), (E, F2)}

R2 = R1 ∪ {(E, A1), (E, B1), (E, D1), (E, D2), (E, E2)}

R3 = R2 ∪ {(t2, E2), (t2, A1), (t2, B1), (t2, C1), (t2, D1)}

R
′

2 = R3 ∪ {(t2, D2), (t2, F2))}

R
′

3 = R
′

2 ∪ {(D, D2), (D, A1), (D, B1), (D,C1), (D, D1)}

∪ {(F, F2), (F, A1), (F, B1), (F, C1), (F, D1)}

R
′′

2 = R
′

3 ∪ {(F, D2), (F, E2))}

R
′′

3 = R
′′

2 ∪ {(t1, D1), (t1, D2)}

R
′′′

2 = R
′′

3

R
′′′

3 = R
′′

3 fixpoint

Figure 9: Proving the running example (Fig. 1) unsolvable.
To disambiguate the location values for the two trucks, in-
dices 1 and 2 are used. The indices for R correspond to the
numbers of the algorithm steps 1., 2., and 3.

Putting the Pieces Together
We did not discuss SAS+-1 planning for the reason that it
is interesting in its own right (although we think it is), but
rather because we want to use the algorithms derived in the
previous sections to find plans for general SAS+ tasks.

When considering planning tasks with a complex causal
structure, it is most important to capture the interactions be-
tween state variables which are connected by an arc in the
causal graph. Interactions between state variables where one
is a remote ancestor of the other are less critical because they
are mediated by other state variables. State variables where
neither is an ancestor of the other cannot interact at all except
via a common ancestor. Thus, instead of solving the plan-
ning task as a whole, we only consider small local portions
at a time, namely the subtasks induced by one state variable
and its immediate predecessors in the causal graph. Each of
these subtasks is a SAS+-1 task.

By splitting the planning task into parts like this, we no
longer obtain a solution algorithm, because typically the so-
lutions to the parts cannot be fitted together to form a whole.
However, we can combine the lengths of the solutions of the
parts to form a distance heuristic for the overall task. To
this end, we compute an estimate for the cost of changing
the value of state variable v from a given value d to another
value d′, written as costv(d, d′), where d, d′ ∈ Dv.

Naturally, the cost of changing the value of v depends on
the cost of changing the values of its causal predecessors.
The following algorithm for calculating costv(d, d′) reflects
this. The planning task is again given as Π = 〈V ,O, s0, s?〉.

1. If v has no causal predecessors, costv(d, d′) is the length
of the shortest path from d to d′ in the domain transition
graph Gv , or ∞ if no such path exists. Otherwise, con-
tinue.

2. Let Vv be the set consisting of v and all predecessors of
v in the causal graph of Π. Let Πv be the planning task
induced by Vv except that the initial value of v is set to d
and the goal value of v is set to d′.

3. costv(d, d′) = ‖π‖, where π is the plan for Πv found by
the SAS+-1 planning algorithm. Here, all high-level tran-
sitions have cost 1 and a low-level transition of variable
vL from dL to d′L has cost costvL

(dL, d′L).

Having computed the individual cost values, the total cost
for achieving the goal from a state s is defined as the sum of
costv(s(v), s?(v)) over all variables v for which the goal s?

is defined.
As a simple example of how the decomposition into

SAS+-1 tasks works, consider Fig. 2 for the last time. Goals
are defined for all cargo items, so for each cargo item vari-
able, we need to consider the subtask induced by that vari-
able and its sole causal predecessor, the variable of the truck
that is located in the same component of the roadmap.7 In
Fig. 8, we have shown that the SAS+-1 planner optimally
solves tasks of this kind. Adding the costs for the individual
subtasks together, we get an optimal heuristic for the overall
planning task in this case.

The observant reader will notice that the above algorithm
can only compute the transition costs in the case where the
causal graph is acyclic. Otherwise, the costs for variable
v can depend on the costs of variable v′, which can in turn
depend on the costs for variable v. There are several ways of
solving this problem. One is initializing all costs to ∞ and
then updating the costs iteratively until a fixpoint is reached.

A second, more radical approach is to ignore some pre-
conditions during the heuristic computation so that cycles in
the causal graph are broken. In our experiments, we used the
following strategy: When variables v, v′ are part of a cycle
in the causal graph and there is a transition for variable v′

with a condition on variable v, then this condition is ignored
if v is considered higher-level than v′. We consider v higher-
level than v′ iff v is a precondition of fewer operators than
v′. Thus, as many preconditions as possible are respected.

Somewhat surprisingly, in our implementation the more
radical approach leads to the better planner. Although typi-
cally more state evaluations are needed, faster computation
of the heuristic value results in better overall performance.

Because of space restriction, we do not discuss the gen-
eralization of the dead end detection algorithm to arbitrary
SAS+ tasks in detail. It is very similar to the generalization
of the planning algorithm.

Experimental Results
We implemented the heuristic described in the previous sec-
tion in a forward planner using best-first search, which we
called CG for “causal graph”. We tested CG on all STRIPS
benchmarks from the 1998, 2000, and 2002 planning com-
petitions, totaling 550 planning tasks. When the heuristic

7Depending on the way the task has been specified, the other
truck variables could also be causal predecessors. Whether or not
this is the case does not affect the heuristic estimate, since these
trucks can never pick up this cargo item and thus cannot interfere.

evaluator classified a state as unsolvable, this was verified
using the dead end detection algorithm. The heuristic may
consider a state unsolvable while the dead end detection
does not; in this case, the state was not explored further by
CG, but a failure of the search was not counted as a proof
that no solution exists. Thus, we have to consider four pos-
sible outcomes of the planning process:
• A plan is found. This is counted as a solved task.
• The search space is explored until all frontier states are

assigned a heuristic value of ∞ and verified to be dead
ends. This is counted as a task proven unsolvable.

• The search space is explored until all frontier states are
assigned a heuristic value of ∞, but some of them are not
verified to be dead ends. This is counted as a failure.

• The planner exhausts the time or memory bound. This is
counted as a failure.
The third outcome was never observed in the experiments.

The benchmark suite contains eleven unsolvable tasks (all
in the MYSTERY domain), for all of which CG could prove
that the initial state is already a dead end. All other tasks are
solvable.

We conducted two experiments. Both were run on a 3
GHz Linux machine where planners were allowed to use up
to 1 GB RAM and 5 minutes CPU time. In the first ex-
periment, we compared the quality of the heuristic function
used by CG to other heuristics which have proved successful
in other planners. Towards this end, we reimplemented the
FF heuristic and HSP’s hadd heuristic in our best-first-search
planner, resulting in two planners we call CGFF and CGHSP.
Note that we only changed the heuristic estimator.

400

420

440

460

480

500

520

540

0s 50s 100s 150s 200s 250s 300s

S
ol

ve
d

Ta
sk

s

Search Time

PSfrag replacements

CG
CGFF

CGHSP

Figure 10: Comparison of CG, FF and HSP heuristics.

All three planners used the same best-first search tech-
nique, and all applied the dead end detection routine to the
initial state of each task, identifying the unsolvable MYS-
TERY instances.8 Because the three planners only differ in

8This slightly favors the FF and HSP heuristics, which would
only identify two of these tasks as unsolvable and fail on the other
nine without this help. The CG heuristic assigns an infinite heuris-
tic estimate to the initial states of all these tasks.

their search component, we only measured pure search time
(rather than total running time) in the first experiment.

The results are depicted in Fig. 10, where the number of
tasks solved is drawn as a function of time. For example,
the graph for CGFF passes through the point (100s, 503) be-
cause 503 (of 550) benchmarks needed at most 100 seconds
of search time to solve using the FF heuristic.

Within the five minute deadline, CG failed to solve 25
tasks, CGFF failed to solve 34 tasks, and CGHSP failed to
solve 38 tasks. Fig. 11 shows how many tasks from which
planning domain each planner could not solve (the two right-
most columns of the figure are explained further below).

Domain CG CGFF CGHSP FF LPG
BLOCKSWORLD (35) 0 0 0 4 0
DEPOT (22) 14 10 11 3 0
DRIVERLOG (20) 3 2 3 5 0
FREECELL (80) 2 9 11 5 74
GRID (5) 1 1 2 0 1
LOGISTICS (63) 0 0 0 0 4
MPRIME (35) 1 6 6 3 7
MYSTERY (30) 1 1 0 12 15
ROVERS (20) 3 3 5 0 0
SATELLITE (20) 0 2 0 0 0
Total 25 34 38 32 101

Figure 11: Unsolved tasks by planner and domain. Numbers
in parentheses denote total number of tasks in a domain.

All heuristics were computed at comparable speeds, so
the differences in performance were mainly due to differ-
ences in quality. To measure this, we compared the number
of state expansions for all tasks solved by all three heuris-
tics. It turned out that for the overwhelming majority of
tasks, very few search nodes were necessary to find a so-
lution using any heuristic, making comparisons based on
node expansions difficult. For about two thirds of the solved
tasks, less than 100 nodes were expanded, and for about 90%
of them, less than 1000 nodes were expanded (independent
of the heuristic). Comparing the most successful planners
CG and CGFF on a domain-by-domain basis, CG expanded
many nodes less in the SATELLITE and ZENOTRAVEL do-
mains and many nodes more for GRIPPER tasks.

Differences in plan quality were very slight: Among the
tasks solved by all three heuristics, the average plan lengths
were 44.5 for CG, 43.6 for CGFF, and 45.8 for CGHSP.

In our second experiment, we compared the performance
of CG to other domain-independent planning systems from
the literature. The experiment showed that two planners, FF
and LPG, could solve considerably more tasks than the other
systems we tested, so only these two planners are shown
in the experimental results (Fig. 12, this time listing total
running time for CG, not search time).9

The figure shows that CG finds more plans within seconds
than LPG finds at all, and that it finds more plans in one

9LPG was run using the “fast” competition settings. Because of
the large random variation in LPG’s performance, we solved each
task five times and kept the result with median completion time.

400

420

440

460

480

500

520

540

0s 50s 100s 150s 200s 250s 300s

S
ol

ve
d

Ta
sk

s

Total Time

CG
FF
LPG

Figure 12: Comparison of the CG, FF and LPG planners.

minute than FF does in five minutes. However, the compar-
atively low numbers for LPG are mainly due to the FREE-
CELL domain and should not be overinterpreted. Fig. 11,
which shows the number of unsolved tasks by planner and
domain, provides a clearer picture of the different strengths
and weaknesses of the planners we tested.

The average plan length was 50.3 for CG, 42.1 for FF,
and 54.6 for LPG (only considering tasks solved by all three
planners). Thus, CG produced shorter plans than LPG but
longer plans than FF. In detail, CG produced much longer
plans than FF in the domains BLOCKSWORLD, DEPOT,
GRIPPER, LOGISTICS and MICONIC. Since CG and CGFF

computed plans of similar quality, we attribute this differ-
ence in plan quality to the search strategy, not the heuristic.

We close our presentation of results with Fig. 13, which
gives an impression of the scaling behavior of CG in the
individual domains. For each domain, the table lists the so-
lution time for “easy”, “median” and “difficult” tasks. These
values were obtained by sorting the solved tasks by solution
time and taking the values at 25% (easy), 50% (median) and
75% (difficult) of the spectrum. For example, if 40 tasks
were solved, the 10th, 20th and 30th position are reported.

We conclude that CG compares favorably with the state of
the art in STRIPS planning. We believe that the performance
of the planner can be enhanced further by adapting some of
the search enhancements popularized by FF, namely help-
ful action pruning and goal agenda management. More than
half of the tasks that CG cannot solve belong to the DEPOT
domain. The fact that CGFF is also weak in the DEPOT do-
main while FF is much better suggests that FF’s better search
control is very useful for these tasks.

Discussion
We have presented a novel approach to heuristic planning
that is based on decomposing the causal graph of a trans-
lated planning task into a sequence of easier SAS+-1 tasks.
We provided an in-depth analysis of SAS+-1 planning and
showed that a heuristic planning system based on SAS+-1
tasks is competitive with the state of the art.

Domain easy median difficult
BLOCKSWORLD 0.07s 0.17s 0.51s

DEPOT 0.13s 1.21s 1.61s
DRIVERLOG 0.10s 0.20s 0.53s
FREECELL 3.31s 6.84s 16.05s

GRID 1.72s 4.16s 14.14s
GRIPPER 0.11s 0.54s 2.01s

LOGISTICS-1998 0.49s 2.04s 7.24s
LOGISTICS-2000 0.06s 0.09s 0.13s

MICONIC 0.08s 0.26s 0.59s
MOVIE 0.04s 0.04s 0.05s

MPRIME 0.77s 2.32s 9.59s
MYSTERY 0.19s 0.91s 2.76s
ROVERS 0.06s 0.18s 0.53s

SATELLITE 0.16s 0.64s 2.25s
ZENOTRAVEL 0.12s 0.32s 2.67s

Figure 13: CG solution times.

Interestingly, Fig. 11 shows that CG has distinctly other
weaknesses than FF or LPG. To us, this signifies that al-
ternative ways of relaxing planning tasks have not yet been
explored in sufficient depth.

We see three major options for building on the results pre-
sented in this paper:

• The search control and speed of the planner could be im-
proved. For example, FF’s helpful actions can be adapted
into this context. Considering the difficulties with the DE-
POT domain, goal ordering techniques should be tried.
The speed of the planner could be improved by reusing
heuristic estimates for subproblems that are encountered
repeatedly during search.

• The planner could be integrated with an FF-like approach
to combine the strengths of the CG and FF heuristics in
an orthogonal way.

• The planner could be extended to more general planning
formalisms, such as ADL, planning with domain axioms,
or planning with (limited) numerical state variables.

We have made some encouraging first steps in the first two
directions. Experiments with helpful actions have led to an
improved planner which solves all but eleven of the bench-
mark tasks, all unsolved instances being from the DEPOT
and FREECELL domains.

In another experiment, we have implemented a planner
which computes both the CG and FF estimates of each state
and alternates between expanding the open state with lowest
CG value and the open state with lowest FF value. This
planner was able to solve many of the tasks on which CG
failed. Interestingly, it could also solve some tasks where
both CG and FF failed, indicating that the two heuristics can
sometimes be combined orthogonally.

References
Bacchus, F., and Yang, Q. 1994. Downward refinement and
the efficiency of hierarchical problem solving. Artificial
Intelligence 71(1):43–100.

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A ro-
bust and fast action selection mechanism for planning. In
Kuipers, B. J., and Webber, B., eds., Proceedings of the
Fourteenth National Conference on Artificial Intelligence
(AAAI-97), 714–719. AAAI Press.
Domshlak, C., and Brafman, R. I. 2002. Structure and
complexity in planning with unary operators. In Ghal-
lab, M.; Hertzberg, J.; and Traverso, P., eds., Proceed-
ings of the Sixth International Conference on Artificial In-
telligence Planning and Scheduling (AIPS 2002), 34–43.
AAAI Press.
Domshlak, C., and Dinitz, Y. 2001a. Multi-agent off-
line coordination: Structure and complexity. In Cesta, A.,
and Borrajo, D., eds., Pre-proceedings of the Sixth Euro-
pean Conference on Planning (ECP’01), 277–288. Toledo,
Spain: Morgan Kaufmann.
Domshlak, C., and Dinitz, Y. 2001b. Multi-agent off-line
coordination: Structure and complexity. Technical Report
CS-01-04, Ben-Gurion University of the Negev.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Fox, M., and Biundo, S., eds., Recent Ad-
vances in AI Planning. 5th European Conference on Plan-
ning (ECP’99), volume 1809 of Lecture Notes in Artificial
Intelligence, 135–147. New York: Springer-Verlag.
Edelkamp, S., and Helmert, M. 2000. On the imple-
mentation of MIPS. Paper presented at the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling, Workshop on Model-Theoretic Approaches to
Planning. Breckenridge, Colorado, 14 April.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Garey, M. R., and Johnson, D. S. 1979. Computers and In-
tractability — A Guide to the Theory of NP-Completeness.
Freeman.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Rich, C., and
Mostow, J., eds., Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), 905–912.
AAAI Press.
Helmert, M. 2001. On the complexity of planning in trans-
portation domains. In Cesta, A., and Borrajo, D., eds., Pre-
proceedings of the Sixth European Conference on Planning
(ECP’01), 349–360. Toledo, Spain: Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2002. Local search topology in plan-
ning benchmarks: A theoretical analysis. In Ghallab, M.;
Hertzberg, J.; and Traverso, P., eds., Proceedings of the

Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS 2002), 92–100. AAAI
Press.
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and com-
plexity. Artificial Intelligence 100(1–2):125–176.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2):243–302.
Refanidis, I., and Vlahavas, I. 1999. GRT: A domain in-
dependent heuristic for STRIPS worlds based on greedy
regression tables. In Fox, M., and Biundo, S., eds., Re-
cent Advances in AI Planning. 5th European Conference on
Planning (ECP’99), volume 1809 of Lecture Notes in Arti-
ficial Intelligence, 347–359. New York: Springer-Verlag.
Williams, B. C., and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In Pollack, M. E., ed., Pro-
ceedings of the 15th International Joint Conference on Ar-
tificial Intelligence (IJCAI’97), 1178–1195. Morgan Kauf-
mann.

