Unifying the Causal Graph and Additive Heuristics

Malte Helmert
Albert-Ludwigs-Universitit Freiburg
Institut fiir Informatik
Georges-Kohler-Allee 52
79110 Freiburg, Germany
helmert @informatik.uni-freiburg.de

Abstract

Many current heuristics for domain-independent planning,
such as Bonet and Geffner’s additive heuristic and Hoffmann
and Nebel’s FF heuristic, are based on delete relaxations.
They estimate the goal distance of a search state by approx-
imating the solution cost in a relaxed task where negative
consequences of operator applications are ignored. Helmert’s
causal graph heuristic, on the other hand, approximates goal
distances by solving a hierarchy of “local” planning problems
that only involve a single state variable and the variables it de-
pends on directly.

Superficially, the causal graph heuristic appears quite unre-
lated to heuristics based on delete relaxation. In this contribu-
tion, we show that the opposite is true. Using a novel, declar-
ative formulation of the causal graph heuristic, we show that
the causal graph heuristic is the additive heuristic plus con-
text. Unlike the original heuristic, our formulation does not
require the causal graph to be acyclic, and thus leads to
a proper generalization of both the causal graph and addi-
tive heuristics. Empirical results show that the new heuristic
is significantly better informed than both Helmert’s original
causal graph heuristic and the additive heuristic and outper-
forms them across a wide range of standard benchmarks.

Introduction

The causal graph heuristic introduced by Helmert (2004;
2006) represents one of the few informative heuristics for
domain-independent planning that takes into account nega-
tive operator interactions. Unlike the additive heuristic used
early in the HSP planner (Bonet and Geffner 2001) and the
relaxed planning graph heuristic used in FF (Hoffmann and
Nebel 2001), the causal graph heuristic is not based on the
delete relaxation but on a deeper analysis of the problem
structure as captured by its underlying causal graph. The
causal graph is a directed graph where the nodes stand for
the variables in the problem and links express the dependen-
cies among them. The causal graph heuristic is defined for
problems with acyclic causal graphs as the sum of the costs
of plans for subproblems that include a variable and its par-
ents in the graph. The local costs are not optimal (else the
heuristic would be intractable) and are defined procedurally.

In this paper we introduce an alternative, declarative for-
mulation of the causal graph heuristic that we believe is

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Héctor Geffner
ICREA & Universitat Pompeu Fabra
Passeig de Circumvalaci6 8
08003 Barcelona, Spain
hector.geffner @upf.edu

simpler and more general. The new heuristic reduces to
Helmert’s heuristic when the causal graph is acyclic, but re-
quires neither acyclicity nor the causal graph itself. Like the
additive heuristic, the new heuristic is defined mathemati-
cally by means of a functional equation, which translates
into a shortest-path problem over a poly-size graph that can
be solved by standard algorithms. Indeed, the only differ-
ence between this account of the causal graph heuristic and
the normal additive heuristic is that the nodes in this graph,
which stand for the atoms in the problem, are labeled with
contextual information. The new formulation of the causal
graph heuristic suggests a number of extensions, all of which
have to do with the exploitation of implicit or explicit prece-
dences among an operator’s preconditions in order to cap-
ture side effects in the computation of the heuristic. Even
without such extensions, we experimentally show that the
new heuristic delivers considerably better heuristic guidance
than both the causal graph heuristic and additive heuristic
across a large suite of standard benchmarks.

Multi-valued Planning Tasks

The causal graph heuristic is defined over a planning lan-
guage with multi-valued variables based on the SAS™ lan-
guage (Béckstrom and Nebel 1995), where the basic atoms
are of the form v = d where v is a variable and d € D,, is a
value in v’s domain D,,.

Formally, a multi-valued planning task (MPT) is a tuple
IT = (V, so, s«, O) where V is a set of variables v with asso-
ciated finite discrete domains D,,, sq is a state over V' char-
acterizing the initial situation, s, is a partial state over V'
characterizing goal situations, and O is a set of operators
that map one state into a possibly different state.

A state is a function s that maps each variable v € V into
a value s(v) in D,,. A partial state s’ is a state restricted to a
subset V' C V of variables. We write dom(s’) for the subset
of variables on which s’ is defined. As it is common in the
Boolean setting, we often represent and treat such functions
as the set of atoms v = d that they make true. For an atom
x, we write var(z) for the variable associated with x. For
example, if z is the atom v = d, then var(z) = v.

Given a state s and an atom v = d, s[v = d] denotes the
state that is like s except for variable v, which it maps to
d. We will also use similar notations like s[s’] where s’ is a
partial state, to denote the state that is like s except for the

variables in dom(s’), where it is like s’.

An operator o has a precondition pre(o) that is a partial
state, and a set of effects or rules 2 — v = d, written also
as o : z — v = d, where the condition z is a partial state,
v € V is a variable, and d is a value in D,,.

An operator o is executable in a state s if pre(o) C s and
the result is a state s’ that is like s except that variables v are
mapped into values d when o : z — v = d is an effect of o
and z C s. A plan is a sequence of applicable operators that
maps the initial state s(into a final state s with s, C s¢.

These definitions follow the ones by Helmert (2006),
apart from the omission of axioms and derived variables.
(This is for simplicity of presentation; all results in this pa-
per readily generalize to the full formalism.) In addition, for
simplicity and without loss of generality, we make two as-
sumptions. Firstly, we assume that operator preconditions
pre(0) are empty. This is because the value of none of the
heuristics considered in this paper changes when precondi-
tions p € pre(o) are moved into the body z of all effects
z — v = d. Secondly, we assume that the variable v that
appears in the head of a rule z — v = d also appears in the
body z. Effects z — v = d for which this is not true are to
be replaced by a collection of effects v = d’',z — v = d,
one for each value d’ € D, different from d; a transfor-
mation that preserves the semantics and complies with the
above condition. Effects z — v = d can thus all be written
as

v=d,? -v=d

While this language is not standard in planning, an au-
tomatic translation algorithm from PDDL into MPTs exists
(Helmert 2008).

Causal Graph Heuristic

The causal graph heuristic 2“6 (s) provides an estimate of
the number of operators needed to reach the goal from a state
s in terms of the estimated costs of changing the value of
each variable v that appears in the goal from its value s(v)
in s to its value s, (v) in the goal:

hCG(s) & Z cost,y(s(v), 54 (v)) (1)

vedom(sy)

The costs cost,(d,d’) are defined with the help of two
structures: the domain transition graphs DTG(v), which re-
veal the structure of the domain D, associated with each
variable v, and the causal graph CG(II), which reveals the
relation among the variables v in the problem II.

The domain transition graph DTG(v) for a variable v €
V is a labelled directed graph with vertex set D,, and edges
(d,d") labelled with the conditions z for rules v = d,z —
v=d inIl

The causal graph CG(II) for IT = (V sq, s+, O) is the
directed graph with vertex set V' and arcs (v,v") for v # v’
such that v appears in the label of some arc in DTG(v’) or
some operator o affects both v and v’ (i. e., IT contains effects
0:z—v=dando: 2z’ — v’ = d for some operator 0).

The costs cost,(d, d’) that determine the heuristic h%(s)
in Eq. 1 are defined in terms of the causal graph CG(II) and
the domain transition graphs DTG(v).

The definition assumes that CG(II) is acyclic. When this
is not so, Helmert’s planner “relaxes” the causal graph by
deleting some edges, defining the costs and the resulting
heuristic over the resulting acyclic graph.!

The measures cost,(d, d’") stand for the cost of a plan
that solves the subproblem IT, 4 4+ with initial state s[v = d]
and goal v = d’ that involves only the variable v and its par-
ent variables in the causal graph. The measures cost, (d, d’)
however do not stand for the optimal costs of these sub-
problems, whose computation is intractable (Helmert 2004),
and are defined procedurally using a slight modification of
Dijkstra’s algorithm (Cormen, Leiserson, and Rivest 1990;
Bertsekas 2000). Costs are computed in topological causal
order, starting with the variables with no parents in the
causal graph. (In practice, not all cost values need to be
computed, but this optimization is not relevant here.)

We will not repeat the exact procedure for computing
these costs (found in Fig. 18, Helmert 2006). Instead, we
will explain the procedure in a way that makes the relation-
ship between causal graph heuristic and additive heuristic
more direct.

Let us recall first that in Dijkstra’s algorithm, a cost label
¢(1) is associated with each node ¢ in the graph, initialized
to c(i) = 0 if 7 is the source node and ¢(i) = oo otherwise.
In addition, an open list is initialized with all nodes. The
algorithm then picks and removes the node ¢ from open with
least cost ¢(1) iteratively, updating the values ¢(j) of all the
nodes j still in open to ¢(j) = min(e(4),c(i) + c(i, 7)),
where c(, j) is the cost of the edge connecting node ¢ to j
in the graph. This is called the expansion of node i.

The algorithm finishes when open is empty, after a num-
ber of iterations bounded by the number of nodes in the
graph. The cost label ¢(4) of a node is optimal when selected
for expansion and remains so until termination.

The cost ¢(4, j) of the directed edges (4, j) is assumed to
be non-negative and is used in the computation only right af-
ter node ¢ is expanded. Helmert’s procedure takes advantage
of this fact by setting the cost of such edges dynamically,
right after node i is selected for expansion.

When v is a root variable in CG(II), Helmert’s proce-
dure for solving the subproblem II,, 4 4, for a givend € D,,
and all d € D, resulting in the costs cost,(d,d’), is ex-
actly Dijkstra’s: the graph is DTG(v), the source node is
d, the cost of all edges is set to 1, and upon completion,
cost,(d,d") is set to ¢(d’) for all d € D,. For such vari-
ables, cost, (d, d') is indeed optimal for IT, 4 4.

For variables v with a non-empty set of parent variables
v; in the causal graph with costs cost,, (e;, €}) already com-
puted for all e;, e; € D,,, Helmert’s procedure for solving
the subproblem II, 4 4 for a given d and all d" € D, mod-
ifies Dijkstra’s algorithm slightly by setting the cost of the
edges (d1,d2) € DTG(v) labelled with condition z to

1+ Z cost,, (€, e;))

(vi=e;)€z

The original paper on the causal graph heuristic (Helmert
2004) also mentions, in passing, a generalization that does not re-
quire acyclicity. This generalization is very similar to the heuristic
we introduce in this paper.

right after node d; has been selected for expansion, where
e} is the value of variable v; in the state sq, associated with
node d;. The state associated with a node d is defined as
follows. The state s; associated with the source node d is
s, while if s4 is the state associated with the node d just
selected for expansion, and the expansion of d causes ¢(d’)
to decrease for some d’ € D, due to an edge (d, d’) labelled
with z, then s4 is set to sq[z].

This procedure for solving the subproblems II, 4 4 is nei-
ther optimal nor complete. Indeed, it is possible for the costs
cost,(d, d’) to be infinite while the costs of I1,, 4 4 are finite.
This is because the procedure achieves the intermediate val-
ues d"’ greedily, carrying the side effects sq- but ignoring
their impact in the “future” costs to be paid in going from
d’ tod'.

These limitations of the causal graph heuristic are known.
What we seek here is an understanding of the heuristic in
terms of the simpler and declarative additive heuristic.

Additive Heuristic

For the language of MPTs II = (V, sq, sx, O), the addi-
tive heuristic (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 2001) can be expressed as:

h9(s) £ T Y (als) 3)

TES,

where x stands for the atoms v = d forv € V and d € D,,
and h4d(z|s) is an estimate of the cost of achieving = from
s given as:

0 ifzxes
min (1+ Z R (zils)) ifx ¢ s “

0:2—T

W (z]s) =
T;EZ

This functional equation approximates the true cost func-
tion by assuming that the cost of joint conditions (in goals
and effects) is additive. Such sums go away, however, if the
goal is a single atom and no condition z features more than
one atom. In such a case, the additive heuristic h*4 coin-
cides with the max heuristic A™** (Bonet and Geffner 2001)
and both heuristics are optimal.

It follows from this that if = represents any atom v = d
for some root variable v in the causal graph of II, the value
h4d(z|s) that follows from Eq. 4 is optimal, and thus in
correspondence with the costs cost,(s(v),d) computed by
Helmert’s procedure. For other values d’ of v the costs
cost,(d',d) are equivalent to the estimates h*¢(x|s’) with
s =slv=d].

This correspondence between the costs cost,(d’,d) and
the estimates h*4(z|s’) for root variables v raises the ques-
tion of whether such costs can be characterized in the style
of the additive heuristic also when v is not a root variable.

Notice first that Eq. 2 used in Helmert’s procedure is addi-
tive. At the same time, the procedure keeps track of side ef-
fects in a way that is not captured by Eq. 4, which evaluates
the costs h*4(z;|s) of all conditions x; in the body of the
rules o : z — x with respect to the same state s. This how-
ever suggests considering variations of Eq. 4 where these

conditions x; are evaluated in different states s;, rendering
the general pattern

0 ifres
min (1+ Y h(xilsi) ifex¢s O

0:Z2—T
Ti€2
where the states s; over which some of the conditions x; in
a rule are evaluated may be different from the seed state s
where the value of the heuristic needs to be assessed. We
will refer to such states s; that may be different from the
seed state as contexts.

Context-enhanced Additive Heuristic

The use of Eq. 5 in place of Eq. 4 for defining a variation of
the additive heuristic raises two questions:

1. how to choose the contexts s; needed for evaluating the
conditions x; in a givenrule o : z — z, and

2. how to restrict the number of total contexts s; needed for
computing the heuristic value of s.

We answer these two questions in line with Helmert’s for-
mulation of the causal graph heuristic, thus obtaining a
heuristic that is closely related to both the causal graph
and additive heuristics. We call the resulting heuristic the
context-enhanced additive heuristic h*®*. We remark that
there are other reasonable answers to these two questions,
and we will discuss some generalizations later.

Let us recall first that, without loss of generality, we as-
sume that all the rules have the form o : z’,z — x where
x and z’ are atoms that refer to the same variable, i.e.,
var(z) = var(z’). Also recall that s[s’] for state s and par-
tial state s’ refers to the state that is like s except for the
variables mentioned in s’, where it is equal to s’.

The answer to the first question implied by Helmert’s for-
mulation is that for rules o : z’,2 — x the condition x'
that refers to the same variable as x is achieved first, and
the conditions in z are evaluated in the state s' that results
(Assumption 1).

The answer to the second question is that in the heuristic
computation for a seed state s, the costs h°®*(z;|s;) for a
context s; are mapped into costs h°?(z;|s[z}]) where z/ is
the value of var(z;) in s;, meaning that information in the
state s; about other variables is discarded (Assumption 2).
We will write h?(x|s[x;]) as h®(x|x;).

These assumptions lead to a heuristic that is very much
like the additive heuristic except that a) the heuristic val-
ues h°?(z|s) are computed not only for the seed state s but
for all states s’ = s[z’] where &’ is an atom that refers to
the same variable as z, and b) during the computation, the
preconditions other than =’ in the rules o : z”,2z — x are
evaluated in the state s(z”|z’) that results from achieving
the “pivot” condition ="/, producing then the context s(x|z’)
associated with x. Formally, we get the following equations:

0 ifzx=2a2

: ceay M|,/
hcea(l'll‘/) déf O:xr,I/l’erl_}w (]‘ +h (.’L‘ |£L‘)

+ Z R (xilay)) ifa #

Ti€E2

(6)

where z is the value of var(z;) in the state that results from
achieving z” from 2/, written as s(z”'|2’) and obtained from

s(zla’) @ {SW]

s(@” |2z, @[y1,y -y yn] ifa #a

ifz =2

(N

where "/ is the atom for which o : 2", 2 — x is the rule that
yields the minimum? in Eq. 6, and y1, .. ., ¥, are the heads
of all rules that must trigger simultaneously with this rule
(i.e,0:x" 2z; — y; forsome z; C zforalli =1,...,n,
for the same operator 0). In words, when o : 2”7,z —
is the best (cost-minimizing) achiever for atom x from x’
according to Eq. 6, and s(z”|2") is the state that is deemed
to result from achieving =’ from z’ (i. e., the “side effect” of
achieving x’’ from z’), then s(z” |2')[z, z,y1, . - ., yn] is the
state that is deemed to result from achieving x from z’.

The context-enhanced additive heuristic h°*(s) is then

defined as)
hcea(s) def Z hcea($|l‘s) ®)

TES,

where x is the atom that refers to var(x) in s, and h*?(x|z")
is defined by Eqgs. 6 and 7.

Example

As an illustration, consider a problem with a Boolean vari-
able Y and a multi-valued variable X € {0,...,n} repre-
sented by the atoms y, —y, and z;, standing for the assign-
ments Y = true, Y = false, and X = i for: = 0,...,n,
and operators a and b;, @ = 0, ...,n — 1 with rules

a:—-y—1y, bi:xivyﬁxiquv bi:xiay_)_'y

(note how the operators b; have two effects). We want to
determine the value of h*®*(s) when xo and y hold in s
and the goal is z,,. From Eq. 8, h***(s) = h®*(x,|xo).
The optimal plan for the problem is the operator sequence
bo,a,b1,...,a,b,_1 for a cost of 2n — 1. The plans must
increase the value of X one by one, and in between any two
steps the value of Y that is made false by each increase in X
must be restored to true.
From Eq. 6, it follows that

hcea(l‘oll‘o) =0
W (@igaro) = 14 W (@ilwo) + A< (yly) ~ (9)

fori = 0,...,n — 1, where ¢’ represents the value of Y in
the state s(x;|x) that results from achieving z; from zy. By
Eq. 7, this state is characterized as:

s(xolxo) = s
s(xip1|zo) = s(xs|zo)[Tit1,) (10)

From Eq. 10, we see that —y holds in all states s(x;|xq)
for i > 1, so that 4y = —y in Eq. 9 for ¢ > 1. However,

2If there are several rules minimizing the expression, some form
of tie-breaking is needed to make the equations well-defined, for
example by imposing an arbitrary strict order on rules. Different
tie-breaking can lead to different heuristic estimates. This is not
unusual; e. g., the causal graph heuristic and FF heuristic also de-
pend on how ties between achievers of a proposition are broken.

"=y inEq. 9 for i = 0, since s(zg|zo) = s, and y is true
in s. Clearly, we have h°?(y|y) = 0 and h***(y|—y) = 1, so
that Eq. 9 becomes:

he*(z1|mo) = 1 + h**(xo|z0) 4+ 0
e (xiq1|xo) = 14+ A (x|z) + 1 fori > 1

With h?(zg|z) = 0, we thus get h°?(z;|zo) = 2i — 1 for
all i > 1, and therefore h**?(s) = h®*(x,|z9) = 2n — 1,
so that h°?(s) is optimal. The plain additive heuristic, on
the other hand, is h%%(s) = n, which is optimal only for the
delete relaxation.

Relationship to Causal Graph Heuristic

The causal graph underlying the problem above involves a
cycle between the two variables X and Y. In the absence of
such cycles the following correspondence can be shown:?

Theorem 1 (h°? vs. hC0)

If the causal graph CG(1I1) is acyclic, then the causal graph
heuristic h°C and the context-enhanced additive heuristic
hee@ are equivalent, i. e., for every state s, h“C(s) = h°®(s).

The sketch of the proof proceeds as follows. When
CG(II) is acyclic, a correspondence can be established be-
tween the costs cost, (d, d’) defined by Helmert’s procedure
and the costs h*®*(2'|z) defined by Eq. 6 for x : v = d and
2’ 1 v = d', and between the states s, associated with the
node d’ and the states s(z’|z) defined by Eq. 7.

These correspondences must be proved inductively: first
on the root variables of the causal graph, and then on the
execution of the modified Dijkstra procedure.

The first part is straightforward and was mentioned ear-
lier: if v is a root variable, cost, (d, d") is the optimal cost of
the subproblem II, 4 o+ which involves no other variables,
and the costs h®?(2'|z) are optimal as well, as there is a
single condition in every rule and hence no sums or additiv-
ity assumptions, and all these conditions are mutex. At the
same time, the states sy and s(2’|x) remain equivalent too.

If v is not a root variable, the correspondence between
costy(d,d') and s/, on the one hand, and h°*(2’|x) and
s(2'|x) on the other, must hold as well for d’ = d before
any node is expanded in Helmert’s procedure. Assuming in-
ductively that the correspondence holds also for all values
ei, e, € D,, of all ancestors v; of v in the causal graph,
and for all values cost,(d,d’") and states sy after the first 4
nodes have been expanded, it can be shown that the corre-
spondence holds after 7 + 1 node expansions as well.

The above result suggests that the context-enhanced ad-
ditive heuristic might be more informative than the causal
graph heuristic: in problems with acyclic causal graphs, it
is equally informative, and in problems with cycles in the
causal graph, it does not need to ignore operator precondi-
tions in order to break these cycles. We will later investigate
this potential advantage empirically.

3The correspondence assumes that edges in domain transition
graphs and rules in the problem are ordered statically in the same
way, so that ties in Helmert’s procedure and in Eqs. 6 and 7 are
broken in the same way. Note that there is a direct correspondence
between edges (d, d’) labelled with conditions z in DTG(v) and
rulesv=d,z —v=4d.

Relationship to Additive Heuristic

As stated earlier, there is also a close relationship between
the context-enhanced additive heuristic and the plain addi-
tive heuristic. Indeed, it is easy to prove the following result:

Theorem 2 (h°? vs. h?4d)
In problems where all state variables have Boolean do-
mains, the additive heuristic h®® and the context-enhanced

additive heuristic h*** are equivalent, i. e., for every state s,
hadd(s) — hcea(s)'

To see that this is true, observe that Eq. 6 defining
hee(x|z") simplifies significantly for Boolean domains. For
the case where x # z/, we must have =’/ = 2/, since z”
must be different from z in a rule o : ", 2 — x and there
are only two values in the domain of var(z). This means that
the conditions in z are evaluated in the context of s(z’|z),
i.e., the same state in which h®?(z|z’) is evaluated. Using
this observation, it is easy to prove inductively that all costs
are evaluated in the context of the seed state s, so that Eq. 6
for h°°* defines the same cost values as Eq. 4 for h24,

Again, the result suggests that the context-enhanced ad-
ditive heuristic might be more informative than the additive
heuristic: in the case of all-Boolean state variables, the two
heuristics are the same, while in general, h°** may be able to
use the context information to improve its estimates.

Computing the Heuristic for Cyclic Graphs

The context-enhanced additive heuristic h°* reduces to the
causal graph heuristic AC in MPTs with acyclic causal
graphs, but does not require acyclicity, and indeed, does not
use the notion of causal graphs or domain transition graphs.
In this sense, the induction over the causal graph for defining
the costs cost,(d, d’), from variables to their descendants, is
replaced in h°? by an implicit induction over costs.

Despite the presence of a cyclic graph, the costs h®?(x|z”)
in Egs. 6 and 7 can be computed using a modification of Di-
jkstra’s algorithm, similar to Helmert’s algorithm for h¢C.
Indeed, Dijkstra’s algorithm can be used for computing the
normal additive heuristics as well, whether the causal graph
is cyclic or not, although in practice the Bellman-Ford algo-
rithm is preferred (Liu, Koenig, and Furcy 2002).

For h**?, the Dijkstra-like algorithm operates on a graph
containing one copy of DTG(var(z')) for each atom z’ of
the task. In the copy for atom z’, the distance from z’ to
corresponds to the heuristic value h*?(x|z") from Eq. 6. The
algorithm initially assigns cost 0 to nodes corresponding to
values h°?(z’|x") and cost co to other nodes. It then expands
nodes in order of increasing cost, propagating costs and con-
texts in a similar way to Helmert’s procedure for A<,

However, while this approach leads to polynomial evalua-
tion time, we have found it prohibitively expensive for use in
a heuristic planner supposed to provide competitive results
with h°C and h*d. A critical speed-up can be obtained by
separating the cost of a node in the Dijkstra algorithm (the
associated h®®(x|z’) value) from its priority (the time dur-
ing the execution of the Dijkstra algorithm where the value
is required). In particular, many nodes with low cost are
never needed for the computation of h°?(s) because they
refer to contexts that never arise in the computation of the

relevant cost estimates. By expanding nodes in order of in-
creasing priority, rather than cost, we can compute h°?(s)
much more efficiently. Due to space restrictions, we do not
discuss these algorithmic issues in detail.

Experiments

‘We have seen that the context-enhanced additive heuristic is
a natural generalization of both the additive heuristic and the
(acyclic) causal graph heuristic. In this section, we show that
the unified heuristic is not just a theoretical concept, but can
actually be put to good use in practice. For use in a heuris-
tic planning system, a heuristic estimator must be informa-
tive, i.e., provide heuristic estimates that guide the search
algorithm to a goal state without expanding too many search
nodes, and it must be efficiently computable, i.e., require
as little time as possible for each heuristic evaluation. Since
he® clearly requires more computational effort than either of
the heuristics it generalizes, the question is whether there are
cases where it provides significantly better guidance, enough
to overcome the higher per-node overhead.

We conducted two experiments to address this question.
In the first experiment we investigate overall performance,
while in the second we look more closely at the informative-
ness of the heuristics. As a search algorithm, we use greedy
best-first search with deferred evaluation and preferred op-
erators, as implemented in the Fast Downward planning sys-
tem (Helmert 2006). All experiments were conducted with
a 30 minute timeout and 2 GB memory limit on a computer
with a 2.66 GHz Intel Xeon CPU.

As all heuristics were implemented within the same plan-
ning system and we want to compare the heuristics, not over-
all system performance, all runtimes reported in the follow-
ing refer to search time (i. e., time spent by the search algo-
rithm and heuristic evaluators), excluding overhead for pars-
ing and grounding that is identical for all heuristics.

. Helmert, 2004
Domain ,CG | padd | pFF

0
11

New Results
hadd hFF

I~
Q
Q

b~
o
g

BLOCKSWORLD (35)
DEPOT (22
DRIVERLOG (20)
FREECELL (80)
GRID (5)
GRIPPER (20)
LOGISTICS (63)
MICONIC (150)
MOVIE 30)
MPRIME @35)
MYSTERY (19)
ROVERS (20
SATELLITE (20)
ZENOTRAVEL (20
Total (539

—_
N = W
—_
N OO
—_

—
SOWrHR LR OOOO~MNDWRO

BOODUNOARNODODOO

A ONDW—LONOODOO R~ O
NOODODNNODDODODODO—~VLODOO
YO OO~ OOAONNOO IO
NOOONNPLODO—RO R~ P~ WUNO
S OO0 =N WUVNO

(W]
wn
w
w
(]
[
[
=y

Table 1: Number of unsolved problem instances by domain,
for the benchmark suite considered by Helmert (2004).
Eleven unsolvable MYSTERY instances excluded. First col-
umn shows number of problem instances in parentheses.

T T
hcea
1000s F BCG e E
padd
hFF
g 100s | E
'_
<
]
10s | E
1s e T 1
440 460 480 500 520

Solved Tasks

Figure 1: Number of tasks solved by each heuristic within a
given time, for Helmert’s (2004) benchmark suite.

First Experiment

The first experiment, in which we investigate the overall per-
formance of the context-enhanced additive heuristic, is mod-
elled after the main experiment of the original paper on the
causal graph heuristic (Helmert 2004). We evaluate on the
same benchmarks (namely, the STRIPS benchmarks of IPC
1-3), we report the same data (number of problem instances
solved in each domain and overall runtime results), and we
compare the same heuristic estimators (additive heuristic,
acyclic causal graph heuristic, FF heuristic). In addition, we
provide results for the context-enhanced additive heuristic.

Table 1 reports the overall success rates of all heuristics,
showing the number of problem instances not solved with
each heuristic in each domain. For reference, we also in-
clude the results from Helmert’s original experiment.

We first observe that for each of the three reference heuris-
tics, we report better results than in the original experiment.
This is partly due to differences in the experimental setup
(e. g., Helmert only used a 5 minute timeout), but also due
to the search enhancements used. The improvement is much
more pronounced for the additive and FF heuristics than for
the causal graph heuristic because the latter benefits less
from the use of preferred operators. (For all three heuris-
tics, disabling preferred operators degrades results, but the
effect is least pronounced for the causal graph heuristic.)

Secondly, the table shows that the results for the context-
enhanced additive heuristics are markedly better than for
the other heuristics. While the closely related causal graph
and additive heuristics leave 22 (h) and 17 (h*4) out of
539 tasks unsolved, the context-enhanced additive heuris-
tic solves all but 10 tasks, roughly halving the number of
failures. The FF heuristic achieves the next best result by
leaving 15 out of 539 tasks unsolved, 50% more than h®.

Aggregate runtime results are shown in Fig. 1. The graph
for h? is consistently below h°C and h*4¢, showing that
the context-enhanced additive heuristic solves more prob-
lems than the two heuristics it generalizes for any timeout
between one second and 30 minutes. The results for h°* and

Domain Percent | Median | Average
ASSEMBLY 100% 2034 2670
DEPOT 100% | 15.487 16.042
FREECELL 94% | 10.615 11.643
MPRIME 100% | 10.308 | 21.076
TRUCKS 91% 8.377 5.758
GRID 100% 4.735 4.117
DRIVERLOG 94% 3.891 3.502
PIPESWORLD-NOTANKAGE 82% 3.057 4814
ZENOTRAVEL 92% 2.186 2.261
TPP 84% 1.848 2.134
MYSTERY 85% 1.846 2.210
BLOCKSWORLD 71% 1.843 2.692
PIPESWORLD-TANKAGE 80% 1.818 2.592
AIRPORT 78% 1.706 4.393
PATHWAYS 80% 1.700 8.215
LOGISTICS 96% 1.628 1.690
PSR-SMALL 86% 1.364 1.436
PSR-LARGE 76% 1.354 1.264
PSR-MIDDLE 64% 1.050 1.077
ROVERS 52% 1.038 1.334
OPENSTACKS 52% 1.030 2.403
SCHEDULE 35% 0.999 0.720
SATELLITE 38% 0.966 0.583
STORAGE 41% 0.939 0.569
OPTICALTELEGRAPHS 0% 0.923 0.923
MiIcoNIC-FULLADL 35% 0.917 0.846
PHILOSOPHERS 10% 0.612 0.617

Table 2: Comparison of node expansions of h°® and h¢C:
percentage of tasks where h°* expands fewer nodes than
hCC. median reduction in node expansions, (geometric) av-
erage reduction in node expansions. Domains are ordered by
decreasing rate of (median) improvement. Above the line,
he is more informed than ACC.

hYF are comparable. Their graphs intersect occasionally, so
either heuristic outperforms the other for some timeouts.

Second Experiment

In the second experiment, we focus on the informedness
of the context-enhanced additive heuristic, compared to the
causal graph and additive heuristics. In this experiment, we
consider all domains from the previous International Plan-
ning Competitions (IPC 1-5), apart from those where each
of the three heuristics can solve each benchmark instance
in less than one second (thus excluding trivial domains like
MOoVIE and GRIPPER).

We measure the informedness of a heuristic for a given
planning instance by the number of node expansions needed
to solve it. Table 2 shows comparative results for the causal
graph and context-enhanced additive heuristic. To be able to
provide a comparison, we only consider instances solved by
both heuristics. We show both qualitative and quantitative
results. Qualitatively, we show the percentage of tasks in
each domain where h** required fewer expansions. Larger
values than 50% indicate that h°* was more informed for
most tasks of the domain. Quantitatively, we computed the
ratio between the number of node expansions of ¢ and
he for each task (where values greater than 1 indicate that
he* required fewer expansions). For each domain, we report

Domain Percent | Median | Average
GRID 100% 2.714 2.244
DEPOT 93% 2.389 2.781
LOGISTICS 100% 2.236 3.117
PIPESWORLD-TANKAGE 64% 1.901 2.255
MPRIME 91% 1.691 4.720
ZENOTRAVEL 92% 1.437 1.723
AIRPORT 74% 1.353 1.924
MYSTERY 78% 1.320 2.319
PIPESWORLD-NOTANKAGE 65% 1.242 1.572
ASSEMBLY 78% 1.145 1.356
DRIVERLOG 69% 1.031 1.758
OPTICALTELEGRAPHS 100% 1.023 1.023
PHILOSOPHERS 76% 1.019 1.362
OPENSTACKS 59% 1.003 1.070
PSR-SMALL 55% 1.000 1.007
BLOCKSWORLD 49% 1.000 0.871
STORAGE 47% 1.000 0.922
ROVERS 45% 1.000 0.992
TPP 44% 1.000 0.978
PSR-MIDDLE 44% 1.000 0.955
PATHWAYS 30% 0.999 0.948
MicoNIc-FULLADL 31% 0.992 0.996
PSR-LARGE 42% 0.988 0.890
SATELLITE 17% 0.962 0.920
SCHEDULE 26% 0.931 0.650
FREECELL 25% 0.770 0.605
TRUCKS 20% 0.727 0.837
Table 3: Comparison of node expansions of A% and A4,

Columns are as in Table 2. Above the first line, h°? is more
informed than h24; below the second line, h°? is less in-
formed than k24, In between, the median number of node
expansions is identical.

the median of these values, indicating the typical advantage
of he® over h®C, and the geometric mean,* indicating the
average advantage of h**® over h¢C.

The table clearly shows that h* provides better heuristic
estimates than h“C. The context-enhanced additive heuristic
provides better estimates in 21 out of 27 domains; in 15 of
these cases, the median improvement is a factor of 1.7 or
better. In four cases, the median improvement is enormous,
by a factor of 10 or better. Conversely, h°C only provides
better estimates in 6 out of 27 domains, and its advantage in
the median case only exceeds a factor of 1.1 in a single case
(PHILOSOPHERS), where it is 1.634.

Table 3 shows a similar comparison between the additive
and context-enhanced additive heuristics. While the advan-
tage for h* is less pronounced in this case, it is still quite
apparent. The context-enhanced additive heuristic is more
informed in the median case for 14 domains, and less in-
formed for 7 domains. Only in two cases is the advantage
of h* Jarger than 1.1, and it is never larger than 1.376. On
the other hand, h°* shows an improvement by a factor of
more than 1.1 for ten domains, and in three cases it exceeds
a factor of 2.

“For ratios, the geometric mean, rather than the arithmetic
mean, is the aggregation method of choice. To see this, note that
the “average” of 5.0 and 0.2 should be 1.0, not 2.6.

Discussion

The context-enhanced heuristic h°* is more general than
the causal graph heuristic as it applies to problems with
cyclic causal graphs. It is also more general than the ad-
ditive heuristic, because it can take into account context in-
formation ignored by h*d4. We have seen that this increase
in generality translates to better heuristic guidance in many
standard planning domains.

The heuristic can be generalized further, however, while
remaining tractable, by relaxing the two assumptions that
led us to it from the more general form in Eq. 5, where each
condition z; is evaluated in a potentially different context s;
in h(x;|s;). The two assumptions were 1) that the contexts
s; for all the conditions z; inarule o : ', x1,..., 2, — x
are all the same and correspond to the state s’ resulting from
achieving the first condition z/, and 2) that h(z;|s’) is re-
duced to h(z;|s[z}]) where z/ is the value of var(z;) in ¢/,
thus effectively throwing away all the information in s’ that
does not pertain to the variable associated with x;. Both
of these assumptions can be relaxed, leading to potentially
more informed heuristics, still expressible in the style of
Eq. 5 and computable in polynomial time. We now discuss
some possibilities.

Generalizations

The formulation that follows from Assumptions 1 and 2
above presumes that in every rule z — x of the problem,
a) there is a condition in the body of the rule that must be
achieved first (we call it the pivotr condition), b) that this
pivot condition involves the same variable as the head, and
¢) that no precedence information involving the rest of the
conditions in z is available or usable.

Condition a) is not particularly restrictive as it is always
possible to add a dummy pivot condition. Condition b), on
the other hand, is restrictive, and often unnecessarily so.
Consider for example the following rule for “unlocking a
door at a location”:

have key(D),at = L — unlocked(D) (11)

and say that the key is at a location L’ different from L,
while L, is the current agent location. The cost of applying
such a rule should include the cost of going from L to L' to
pick up the key, as well as the cost of going from L’ to L to
unlock to the door. However, this does not follow from the
formulation above or from the causal graph heuristic. We
can actually cast this rule into the format assumed by the
formulation as

—unlocked(D), have_key(D),at = L — unlocked(D)

where for Boolean variables v, v abbreviates v = frue and
—wv abbreviates v = false. However, as indicated in the proof
sketch for Theorem 2, the context mechanism that the causal
graph heuristic adds to the normal additive heuristic has no
effect on rules z — v = d with Boolean variables v in the
head. For a rule such as Eq. 11, it makes sense to treat the
atom have_key(D) as the pivot condition, even though it in-
volves a variable that is different from the one mentioned
in the rule head. Actually the generalization of the heuris-
tic for accounting for arbitrary pivot conditions in rules, as

opposed to pivot conditions involving the head variable, is
easy to accommodate. In the example above, the side ef-
fect of achieving the pivot condition have_key(D) involves
at = L', so that the second condition in the rule at = L
should be evaluated in that context, accounting for the cost
of getting to the key location, and from there to the door.

A second generalization can be obtained by making use
of further precedence constraints among the rule conditions.
In the extreme case, if we have a fotal ordering among all
of the rule conditions, we should evaluate the second condi-
tion in the context that results from achieving the first, the
third condition in the context that results from achieving the
second, and so on. Indeed, such an ordering among condi-
tions or subtasks is one of the key elements that distinguishes
HTN planning (Erol, Hendler, and Nau 1994) from “classi-
cal” planning. A variation of the context-enhanced additive
heuristic can be used to provide an estimator capable of tak-
ing such precedence constraints into account.

The two generalizations above follow from relaxing As-
sumption 1 above. Assumption 2, which maps the estimates
h(z;|s") for contexts s’ into the estimates h(z;|s[x}]) where
x} is the value of var(z;) in s, throws away information
in the context s’ that does not pertain directly to the multi-
valued variable associated with z; but which may be relevant
to it. In the causal graph heuristic, this assumption trans-
lates in the exclusion of the non-parent variables v’ from
the subproblems II, 4 4. Instead, one may want to keep
a bounded number of such variables v’ in all subproblems.
Such an extension would cause polynomial growth in com-
plexity, and can be accommodated simply by changing the
assumption h(z;|s’) = h(z;|s[z}]) implicit in Eq. 6, where
a} is the value of var(x;) in s, by an explicit assumption
h(z;|s") = h(xi|s[x},y’]) where y stands for the values of
such “core variables” to be preserved in all contexts.

It must be said, however, that all these generalizations
inherit certain commitments from the additive and causal
graph heuristics, in particular, the additivity of the former,
and the greedy rule selection of the latter.

Summary

Defining heuristics mathematically rather than procedurally
seems to pay off as mathematical definitions are often
clearer and more concise, and force us to express the as-
sumptions explicitly, separating what is to be computed
from how it is computed. Also, the functional equation form
used in defining the additive heuristic, which is common
in dynamic programming, appears to be quite general and
flexible. It has been used to define the max heuristic A™#*,
the A™ heuristics (Haslum and Geffner 2000), and more re-
cently the set-additive heuristic (Keyder and Geffner 2008)
and cost-sharing heuristics (Mirkis and Domshlak 2007).
The resulting declarative formulation of the causal graph
heuristic, called the context-enhanced additive heuristic,
does not require acyclicity or causal graphs and leads to a
natural generalization of both the causal graph and additive
heuristics. We consider this observation an interesting con-
tribution in its own right, as it establishes a strong connec-
tion between two previously unrelated research strands in
heuristic search planning. In addition to its theoretical inter-

est, the context-enhanced additive heuristic also proves to be
very strong in practice.

Finally, the ideas presented in this paper admit some inter-
esting generalizations, all of which have to do with the use of
ordering information among operator preconditions to cap-
ture side effects in the computation of the heuristic. There
are some interesting connections with HTN planning, where
precedence constraints among preconditions or subtasks are
common, which are also worth exploring.

Acknowledgments

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS). For more in-
formation, see http://www.avacs.org/.

Héctor Geffner is partially supported by Grant TIN2006-
15387-C03-03 from MEC, Spain.

References

Bickstrom, C., and Nebel, B. 1995. Complexity results for
SAS™ planning. Computational Intelligence 11(4):625—
655.

Bertsekas, D. P. 2000. Linear Network Optimization: Al-
gorithms and Codes. The MIT Press.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5-33.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Proc.
AAAI-97,714-719.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. The MIT Press.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN
planning: Complexity and expressivity. In Proc. AAAI-94,
1123-1128.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proc. AIPS 2000, 140-149.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161-170.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191-246.

Helmert, M. 2008. Understanding Planning Tasks — Do-
main Complexity and Heuristic Decomposition, volume
4929 of LNAI. Springer-Verlag.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253-302.

Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008.

Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up
the calculation of heuristics for heuristic search-based plan-
ning. In Proc. AAAI 2002, 484-491.

Mirkis, V., and Domshlak, C. 2007. Cost-sharing approxi-
mations for h*. In Proc. ICAPS 2007, 240-247.

