On Variable Dependencies and Compressed Pattern Databases

Malte Helmert1 Nathan Sturtevant2 Ariel Felner3

1University of Basel, Switzerland
2University of Denver, USA
3Ben Gurion University, Israel

SoCS 2017
Introduction
previous work on compressed pattern databases:

Sturtevant, Felner and Helmert (SoCS 2014)

“This approach worked very well for the 4-peg Towers of Hanoi, for instance, but its success for the sliding tile puzzles was limited and no significant advantage was reported for the Top-Spin domain (Felner et al., 2007).”

this paper: try to understand why
Compressed PDBs

\[h^*(A) = 6 \\
\] \[h_{PDB}(A) = 4 \]
\[h_{compPDB}(A) = 3 \]

\[\Rightarrow \]

[Diagram of network with nodes labeled A to L]
Compressed PDBs

\[h^*(A) = 6 \]
Compressed PDBs

\[h^*(A) = 6 \]
Compressed PDBs

$h^*(A) = 6$

<table>
<thead>
<tr>
<th>Pair</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>4</td>
</tr>
<tr>
<td>CD</td>
<td>3</td>
</tr>
<tr>
<td>EF</td>
<td>2</td>
</tr>
<tr>
<td>GH</td>
<td>3</td>
</tr>
<tr>
<td>IJ</td>
<td>1</td>
</tr>
<tr>
<td>KL</td>
<td>0</td>
</tr>
</tbody>
</table>
Compressed PDBs

\[h^*(A) = 6 \]
\[h_{\text{PDB}}(A) = 4 \]
Compressed PDBs

\[h^*(A) = 6 \]
\[h_{PDB}(A) = 4 \]
\[h_{PDB}^{\text{comp}}(A) = 3 \]
Compressed PDBs

$h^*(A) = 6$
$h_{PDB}(A) = 4$
$h_{PDB}^{comp}(A) = 3$
Assume we have N units of memory.

Consider three heuristics:

- h_F: fine-grained PDB ($M \gg N$ entries)
- h_F^{comp}: compressed fine-grained PDB (N entries)
- h_C: coarse-grained PDB (N entries)

Which one should we use, h_F^{comp} or h_C?
Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

- **Hanoi:** 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A:** 4×4 puzzle; pattern $\langle\text{blank, 1, 2, 3, 4, 5, 6}\rangle$
- **Sliding Tiles B:** 4×4 puzzle; pattern $\langle6, 5, 4, 3, 2, 1, \text{blank}\rangle$
- **TopSpin:** 18 tokens and turnstile size 4; pattern with 7 tokens

All use lexicographic ranking
Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

h_F^{comp} better than h_C on average

- **Hanoi**: 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A**: 4×4 puzzle; pattern $\langle \text{blank}, 1, 2, 3, 4, 5, 6 \rangle$
- **Sliding Tiles B**: 4×4 puzzle; pattern $\langle 6, 5, 4, 3, 2, 1, \text{blank} \rangle$
- **TopSpin**: 18 tokens and turnstile size 4; pattern with 7 tokens

All use lexicographic ranking
Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

h_F^{comp} worse than h_C on average

- **Hanoi**: 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A**: 4×4 puzzle; pattern $\langle\text{blank, 1, 2, 3, 4, 5, 6}\rangle$
- **Sliding Tiles B**: 4×4 puzzle; pattern $\langle6, 5, 4, 3, 2, 1, \text{blank}\rangle$
- **TopSpin**: 18 tokens and turnstile size 4; pattern with 7 tokens

all use lexicographic ranking
Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

h_F^{comp} equal to h_C on average

- **Hanoi**: 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A**: 4×4 puzzle; pattern \langleblank, 1, 2, 3, 4, 5, 6\rangle
- **Sliding Tiles B**: 4×4 puzzle; pattern \langle6, 5, 4, 3, 2, 1, blank\rangle
- **TopSpin**: 18 tokens and turnstile size 4; pattern with 7 tokens

all use lexicographic ranking
Good News
Theorem (dominance of compressed PDBs)

Let h_F and h_C be heuristics such that h_F is a refinement of h_C. Consider compressed heuristics with a compression regime that is compatible with h_F and h_C.

Then

$$h_F^{\text{comp}}(s) \geq h_C(s)$$

for all states s.

informally: compression step applies further abstraction on top of the abstraction h_F
Dominance of Compressed PDBs: Proof Idea

\[h^*(A) = 6 \]
\[h_F(A) = 4 \]
\[h_F^{\text{comp}}(A) = 3 \]
Dominance of Compressed PDBs: Proof Idea

\[h^*(A) = 6 \]
\[h_F(A) = 4 \]
\[h^{comp}_F(A) = 3 \]

\[\begin{array}{c|c|c}
AB & 4 & 3 \\
CD & 3 & \\
EF & 2 & 2 \\
GH & 3 & 2 \\
IJ & 1 & 0 \\
KL & 0 & \\
\end{array} \]

\[\begin{array}{c|c|c}
AB & 2 & \\
CD & 1 & \\
EF & 1 & \\
GH & 0 & \\
IJ & 0 & \\
KL & 0 & \\
\end{array} \]
Dominance of Compressed PDBs: Proof Idea

$h^*(A) = 6$
$h_F(A) = 4$
$h_{F}^{comp}(A) = 3$
$h_C(A) = 2$
Dominance of Compressed PDBs: Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

- **Hanoi**: 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A**: 4×4 puzzle; pattern \langleblank, 1, 2, 3, 4, 5, 6\rangle
- **Sliding Tiles B**: 4×4 puzzle; pattern \langle6, 5, 4, 3, 2, 1, blank\rangle
- **TopSpin**: 18 tokens and turnstile size 4; pattern with 7 tokens

all use lexicographic ranking
Dominance of Compressed PDBs: Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

$h_{comp}^F(s) \geq h_C(s)$ for all states according to the theorem

- **Hanoi**: 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A**: 4×4 puzzle; pattern \langleblank, 1, 2, 3, 4, 5, 6\rangle
- **Sliding Tiles B**: 4×4 puzzle; pattern \langle6, 5, 4, 3, 2, 1, blank\rangle
- **TopSpin**: 18 tokens and turnstile size 4; pattern with 7 tokens

all use lexicographic ranking
Bad News
States are described in terms of **state variables**.

Examples:

- **Towers of Hanoi:** position of one disk
- **sliding tiles:** position of a tile (or blank)
- **TopSpin:** position of a token

PDBs **project** to a subset of variables (the “pattern”).
Variable u depends on variable v if changing u is conditioned in any way on v.
Variable u depends on variable v if changing u is conditioned in any way on v.

Towers of Hanoi
sliding tiles
TopSpin
Theorem (no improvements without dependencies)

Consider the patterns $F \supseteq C$ in an undirected state space. Let h_F^{comp} be a compressed PDB heuristic with a compression regime compatible with the refinement relation between F and C. If no variable in C depends on any variable in $F \setminus C$, then

$$h_F^{\text{comp}}(s) = h_C(s)$$

for all states s.
Improvements vs. Dependencies: Proof Idea

\[h^*(A) = 4 \]
\[h_F(A) = 3 \]
\[h_F^{comp}(A) = 2 \]
\[h_C(A) = 2 \]
Improvements vs. Dependencies: Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

- **Hanoi**: 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A**: 4×4 puzzle; pattern \langleblank, 1, 2, 3, 4, 5, 6\rangle
- **Sliding Tiles B**: 4×4 puzzle; pattern \langle6, 5, 4, 3, 2, 1, blank\rangle
- **TopSpin**: 18 tokens and turnstile size 4; pattern with 7 tokens

all use lexicographic ranking
Improvements vs. Dependencies: Experimental Results

<table>
<thead>
<tr>
<th>State Space</th>
<th>M/N</th>
<th>h_F</th>
<th>MOD</th>
<th>DIV</th>
<th>random</th>
<th>h_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>4</td>
<td>104.32</td>
<td>87.04</td>
<td>103.76</td>
<td>90.08</td>
<td>87.04</td>
</tr>
<tr>
<td>Sliding Tiles A</td>
<td>10</td>
<td>34.99</td>
<td>29.89</td>
<td>32.08</td>
<td>26.38</td>
<td>32.08</td>
</tr>
<tr>
<td>Sliding Tiles B</td>
<td>10</td>
<td>34.99</td>
<td>30.50</td>
<td>32.84</td>
<td>26.38</td>
<td>15.29</td>
</tr>
<tr>
<td>TopSpin</td>
<td>12</td>
<td>10.78</td>
<td>9.29</td>
<td>9.59</td>
<td>8.73</td>
<td>9.59</td>
</tr>
</tbody>
</table>

$h_F^{comp}(s) = h_C(s)$ for all states according to the theorem

- **Hanoi:** 4 pegs and 16 disks; pattern with 15 disks
- **Sliding Tiles A:** 4×4 puzzle; pattern $\langle\text{blank, 1, 2, 3, 4, 5, 6}\rangle$
- **Sliding Tiles B:** 4×4 puzzle; pattern $\langle6, 5, 4, 3, 2, 1, \text{blank}\rangle$
- **TopSpin:** 18 tokens and turnstile size 4; pattern with 7 tokens

all use lexicographic ranking
Related Work in Classical Planning

our result:

- \(h_F^{\text{comp}} = h_C \)
- for \textit{undirected} state spaces
- under certain dependency conditions
Related Work in Classical Planning

our result:

- \(h^{comp}_F = h_C \)
- for undirected state spaces
- under certain dependency conditions

literature (Haslum et al. 2007; Pommerening et al. 2013):

- \(h_F = h_C \)
- for arbitrary state spaces
- under certain (different) dependency conditions

neither result entails the other

\(\rightsquigarrow \) many more details in paper
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Good News</th>
<th>Bad News</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Conclusion
Conclusion

When is entry compression a good idea?
- never bad when compatible with refinement
- never good when refinement does not capture a dependency

What does this mean for the benchmarks?
- **Towers of Hanoi**: must compress smaller disks away
- **sliding tile**: compressing blank the only useful refinement
- **TopSpin**: no dependencies, hence no gain
 (ditto: **Pancakes, Rubik’s Cube**)

Thank you for your attention!