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Abstract
We tackle two long-standing problems related to
re-expansions in heuristic search algorithms. For
graph search, A* can require Ω(2n) expansions,
where n is the number of states within the final
f bound. Existing algorithms that address this
problem like B and B’ improve this bound to
Ω(n2). For tree search, IDA* can also require
Ω(n2) expansions. We describe a new algorithmic
framework that iteratively controls an expansion
budget and solution cost limit, giving rise to new
graph and tree search algorithms for which the
number of expansions is O(n logC∗), where C∗ is
the optimal solution cost. Our experiments show
that the new algorithms are robust in scenarios
where existing algorithms fail. In the case of tree
search, our new algorithms have no overhead over
IDA* in scenarios to which IDA* is well suited
and can therefore be recommended as a general
replacement for IDA*.

1 Introduction
There are two long-standing problems in heuristic search
where existing algorithms struggle to balance the number of
expansions and re-expansions performed in comparison to an
oracle. One is in graph search, the other in tree search.

The first problem deals with admissible but inconsistent
heuristics in graph search. With some caveats [Holte, 2010],
A* with an admissible and consistent heuristic expands the
minimum required number of states [Hart et al., 1968;
Dechter and Pearl, 1985]. However, with inconsistent
heuristics it may expand exponentially more states than more
cautious algorithms such as B [Martelli, 1977] and B’ [Mérõ,
1984], which have a quadratic worst case.

The second problem is in heuristic tree search algorithms
that use memory that grows only linearly with the search
depth. In contrast, A* memory usage grows linearly with
time and often exponentially with the depth of the search.
To satisfy such low memory requirements, linear-memory

*Alphabetical order. This paper is the result of merging two
independent submissions to IJCAI 2019 [Orseau et al., 2019;
Sturtevant and Helmert, 2019].

tree search algorithms perform successive depth-first searches
with an increasing limit on the cost. They also forgo global
duplicate elimination, meaning that they do not detect if
multiple paths from the initial state lead to the same state,
which can lead to exponentially worse runtime compared
to algorithms like A* when such duplicates are frequent.
Hybrid algorithms that uses bounded memory for duplicate
elimination are possible [Akagi et al., 2010, for example].

IDA* [Korf, 1985] is a cautious linear-memory algorithm
that increases the f-cost bound minimally (see also RBFS
[Korf, 1993]). At each iteration, IDA* searches all nodes
up to the f-cost bound. The minimum cost of the nodes
pruned in one iteration becomes the cost bound for the next
iteration. This approach ensures that the last cost bound
will be exactly the minimum solution cost. This is efficient
when the number of nodes matching the current cost bound
grows exponentially with the number of iterations, as the
total number of expansions will be dominated by the last
iteration. In the worst case however, IDA* may expand only
one new node in each iteration, leading to a quadratic number
of (re-)expansions. Several methods have been developed
to mitigate the re-expansion overhead of IDA* [Burns and
Ruml, 2013; Sharon et al., 2014; Hatem et al., 2018; Sarkar et
al., 1991; Wah and Shang, 1994] by increasing the cost bound
more aggressively at each iteration with the aim of achieving
an exponential growth rate. However, with this approach the
last cost bound can be larger than the minimum solution cost,
which may incur an arbitrarily large performance penalty.
For these algorithms, theoretical guarantees (when provided)
require strong assumptions such as uniformity of the costs or
branching factor [Hatem et al., 2015, for example].

We propose a novel framework called Iterative Budgeted
Exponential Search (IBEX) guaranteeing for both problems
described above that the number of expansions is near-
linear in the number of nodes whose cost is at most the
minimum solution cost. This is achieved by combining
two ideas: (1) a budget on the number of expansions and
(2) an exponential search for the maximum f-cost that can
be searched exhaustively within the given budget. This
framework proves that no solution can be found for the
current budget, and then doubles it until a solution is found.
This ensures that the last budget is always within twice the
minimum required budget, while amortizing the work on
early iterations due to the exponential growth of the budget.
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We develop two simple and fast algorithms that enjoy
near-linear expansion guarantees, propose a number of
enhancements, show how the tree search and graph search
problems can be reduced to our framework, and show that
these algorithms perform at least as well as state-of-the-
art algorithms on a number of traditional domains without
exhibiting any of the catastrophic failure cases.

2 Heuristic Search Problems
A black box heuristic search problem is defined by a finite
state space S , a set of goal states S∗ ⊆ S , a cost function
c : S × S → [0,∞] and an initial state sinit ∈ S . The
successors of a state s are those states s′ that can be reached
by a finite-cost edge: succ(s) = {s′ : c(s, s′) < ∞}. This
defines a directed graph G = (S, E) where states correspond
to vertices in the graph and the edges are the finite-cost
successors E = {(s, s′) : c(s, s′) < ∞}. A path is a
sequence of states π = (st)

m
t=1 with s1 = sinit and its cost

is g(π) =
∑m−1
t=1 c(st, st+1), which may be infinite if there

is no edge between adjacent states. The end state of path
π = (st)

m
t=1 is state(π) = sm and its successor paths are

succ(π) = {(st)m+1
t=1 : st+1 ∈ succ(sm)}. A state s is

expanded when the function succ(s) is called for s; a state s′
is generated when succ(s) is called creating s′ ∈ succ(s). A
node corresponds to a single path π from the root of a search
tree. Expanding a node corresponds to expanding state(π)
and generating all the corresponding successor paths (nodes).
Search algorithms may expand the same state multiple times
because multiple nodes might represent the same state. Let
π∗(s) = argminπ:state(π)=s g(π) be a least-cost path to state
s and g∗(s) = g(π∗(s)) be the cost of such a path. Let
Π∗ be the set of all paths from the initial state to all goal
states. Then, the cost of a least-cost path to a goal state is
C∗ = minπ∈Π∗ g(π). The objective is to find a least-cost
path from the initial state to a goal state.

Let h∗(s) be the minimal cost over all paths from s to
any goal state. A heuristic is a function h : S → [0,∞]
that provides an estimate of h∗. A heuristic is admissible
if h(s) ≤ h∗(s) for all states s ∈ S and consistent if
h(s) ≤ h(s′) + c(s, s′) for all pairs of states s, s′. The f -
cost of a path is f(π) = g(π) + h(state(π)). Note that if
s = state(π) is a goal state and the heuristic is admissible
we must have h(s) = 0.

We say that a search algorithm is a graph search if it
eliminates duplicates of states generated by the algorithm;
otherwise it is called a tree search.

2.1 Graph Search
With a consistent heuristic, f -costs along a path are non-
decreasing, thus a graph search algorithm must expand
all states in the graph with f(s) = g∗(s) + h(s) <
C∗. In this setting, A* has an optimal behaviour [Dechter
and Pearl, 1985]. When the heuristic is admissible but
inconsistent, for comparing algorithms one could consider
the ideal number of nodes that A* would expand if the
heuristic was made consistent. Unfortunately, not only does
there exist no optimal algorithm for this case [Mérõ, 1984],
but it can even be shown that all algorithms may need to

expand exponentially too many nodes in some cases (see
supplementary material). Hence we focus our attention on
the following relaxed notion of optimality. Let nG∗ = |{s :
minπ:state(π)=s maxs′∈π(s) f(s′) ≤ C∗}| be the number
of states that can be reached by a path along which all
states have f -cost at most C∗; this is the definition used
by Martelli [1977]. Then, there exist problems where A*
performs up to Ω(2nG∗) expansions [Martelli, 1977]. This
limitation has been partially addressed with the B [Martelli,
1977] and B’ [Mérõ, 1984] algorithms for which the number
of expansions is at most O(n2

G∗). We improve on this result
with a new algorithm for which the number of expansions is
at most O(nG∗ log(C∗)).

2.2 Tree Search
Tree search algorithms work on the tree expansion of the
state space, where every path from sinit corresponds to a tree
node. Consequently, states reached on multiple paths will be
expanded multiple times.

We say a path π is necessarily expanded if maxs′∈π f(s′) <
C∗ and possibly expanded if maxs′∈π f(s′) ≤ C∗. A
tree search algorithm must always expand all necessarily
expanded paths and will usually also expand some paths
that are possibly but not necessarily expanded. To avoid the
subtleties of tie-breaking, we discuss upper bounds in terms
of possibly expanded paths, leaving a more detailed analysis
for future work. We write nT∗ for the number of possibly
expanded paths in a tree search.

In the worst case, IDA* may perform Ω(n2
T∗) expansions.

To mitigate this issue, algorithms such as IDA*_CR [Sarkar
et al., 1991] and EDA* [Sharon et al., 2014] increase the f -
cost bound more aggressively. These methods are effective
when the growth of the tree is regular enough, but can fail
catastrophically when the tree grows rapidly near the optimal
f -cost, as will be observed in the experiments. We provide
an algorithm that performs at most a logarithmic factor more
expansions than nT∗ and uses memory that is linear in the
search depth.

Supplementary material. Detailed proofs of the various
claims made in this paper are provided in the extended
version [Helmert et al., 2019].

Notation. The natural numbers are N0 = {0, 1, 2, . . .} and
N1 = {1, 2, 3, . . .}. For real-valued x and a let dxe≥a =

max{a, dxe} and similarly for bxc≥a.

3 Abstract View
We now introduce a useful abstraction that allows us to treat
tree and graph search in a unified manner. Tree search is
used as a motivating example. The problem with algorithms
like EDA* that aggressively increase the f -cost limit is the
possibility of a significant number of wasted expansions
once the f -cost limit is above C∗. The core insight of our
framework is that this can be mitigated by stopping the search
if the number of expansions exceeds a budget and slowly
increasing the budget in a careful manner.

A depth-first search with an f -cost limit and expansion
budget reveals that either (a) the expansion budget was
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insufficient to search the whole tree with f -cost smaller or
equal to the limit, or (b) the expansion budget was sufficient.
In the latter case, if the goal is found, then the algorithm can
return a certifiably optimal solution. Furthermore, when the
budget is insufficient the largest f -cost of a node visited by
the search serves as an upper bound on the largest f -cost
for which the budget will be exceeded. When the budget
is sufficient, the smallest f -cost in the fringe is a lower
bound on the same. This information means that combining
exponential search [Bentley and Yao, 1976] with repeated
depth-first searches with a varying f -cost limit and fixed
expansion budget can be used to quickly find a solution if
the budget is sufficient to expand all nodes with f -cost less
than C∗ and otherwise produce a certificate that the budget is
insufficient, a process we explain in detail in Section 5.

Based on this idea, the basic version of our new algorithm
operates in iterations. Within each iteration the algorithm
makes multiple depth-first searches with a fixed expansion
budget and varying f -cost limits. An iteration ends once the
algorithm finds the optimal solution and expands all paths
with f -cost less than C∗, or once it can prove that the present
expansion budget is insufficient to find the optimal solution.
At the end of the iteration the expansion budget is doubled.

In what follows we abstract the search procedure into a
query function that accepts as input an f -cost limit and an
expansion budget and returns an interval that contains the
smallest f -cost limit for which the budget is insufficient or
throws an exception with an optimal solution if the f -cost
limit is at least C∗ and the expansion budget is larger or equal
to the number of nodes with f -cost less than the limit.

Formal model. We consider an increasing list A of real
numbers v ≥ 1, possibly with repetition. Define a function
n : [1,∞) → N0 by n(C) = |{v ∈ A : v ≤ C}|,
where multiple occurrences are counted separately. Next, let
C∗ ∈ A and n∗ = n(C∗). In our application to tree search,
A is the list of all node f values, including duplicates, and
n(C) is the number of paths in the search tree for which the f
values is at most C and C∗ is the cost of the optimal solution.
We can require that all f values are at least 1 with no loss of
generality: if h(sinit) < 1 we introduce an artificial new initial
state with heuristic value 1 and an edge of cost 1 − h(sinit)
from the new state to sinit. This shifts all path costs by at
most 1, so if C ′ is the original optimal solution cost, we have
C∗ ≤ C ′ + 1.

Query functions. Let Ccrit(b) = min{v ∈ A : n(v) > b}
be the smallest value in A for which expansion budget b is
insufficient. We define three functions, querylim, queryint
and queryext, all accepting as input an f -cost limit C and
expansion budget b. A call to any of the functions makes at
most min{b, n(C)} expansions and throws an exception with
an optimal solution if n∗ ≤ n(C) ≤ b. Otherwise all three
functions return an interval containing Ccrit(b) on which we
make different assumptions as described next. The abstract
objective is to make a query that finds an optimal solution
using as few expansions as possible.

Limited feedback. In the limited feedback model the query
function returns an interval that only provides information
about whether or not the expansion budget b was smaller or

larger than n(C):

querylim(C, b) =

{
[C,∞] if C < Ccrit(b) budget sufficient ,

[1, C] if C ≥ Ccrit(b) budget exceeded .

Integer feedback. In many practical problems, the list A
only contains integers. In this case we consider the feedback
model:

queryint(C, b) =

{
[bCc+ 1,∞] if C < Ccrit(b) ,

[1, C] if C ≥ Ccrit(b) .

The discrete nature of the returned interval means that if
Ccrit(b) ∈ [C,C + 1], then

queryint(C, b) ∩ queryint(C + 1, b) = {Ccrit(b)} ,
In other words, the exact value of Ccrit(b) can be identified
by making queries on either side of an interval of unit width
containing it. By contrast, querylim cannot be used to identify
Ccrit(b) exactly.
Extended feedback. For heuristic search problems the
interval returned by the query function can be refined more
precisely by using the smallest observed f -cost in the fringe
and largest f -cost of an expanded path. Define A>(C) =
min{v ∈ A : v > C} and A≤(C) = max{v ∈ A : v ≤ C}.
When C ∈ A we define δ(C) = A>(C)−A≤(C) and

δmin = min{δ(C) : C ≤ C∗, C ∈ A} .
These concepts are illustrated in Fig. 1. In the extended
feedback model, when the expansion budget is sufficient the
response of the query is the interval [A>(C),∞]. Otherwise
the query returns an interval [1, v] where v is any value in
A ∩ [Ccrit(b), C] (for example v = A≤(C)):

queryext(C, b) ={
[A>(C),∞] if C < Ccrit(b) ,

[1, v],with v ∈ [Ccrit(b), C] ∩A if C ≥ Ccrit(b) .

In tree search the value of v when C ≥ Ccrit(b) is the
largest f -cost over paths expanded by the search, which may
depend on the expansion order. As for integer feedback,
the information provided by extended feedback allows the
algorithm to prove that an expansion budget is insufficient
to find a solution.
Summary of results. In the following sections we describe
algorithms for all query models for which the number of
node expansions is at most a logarithmic factor more than
n∗. The limited feedback model is the most challenging and
is detailed last, while the extended feedback model provides
the cleanest illustration of our ideas. The logarithmic factor
depends on C∗ and δmin or δ(C∗). The theorems are
summarized in Table 1, with precise statements given in the
relevant sections.
Overview. In the next section we implement queryext for
tree search and for graph search (Section 4). We then
introduce a variant of exponential search that uses the
query function to find the ‘critical’ cost for a given budget
(Section 5). Our main algorithm (IBEX) uses the exponential
search with a growing budget an optimal solution is found
(Section 6). The DovIBEX algorithm is then provided to deal
with the more general limited feedback setting (Sections 7
and 8).
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C

n

b=3

1

δmin

Ccrit(b) A≤(C) C A>(C) C∗
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

δ(C)

Figure 1: The function n(·), generated by b = 3, C = 10.2,
C∗ = 15 and A = [1, 3, 5, 5, 8, 12, 13, 13, 15]. Ccrit(b) = 5 is
the smallest value in A for which there are more than b = 3 values
of at most 5. The largest value at most C in A is A≤(C) = 8, and
A>(C) = 12 is the next value in A. We also have δmin = 1 and
δ(C) = 4. Example queries include: querylim(C = 4, b = 3) =
[4,∞] and queryext(C = 4, b = 3) = [5,∞] and queryext(C =
9, b = 3) = [1, 8].

Limited feedback O(Z logZ), Z = n∗ log
(

C∗

δ(C∗)

)
Extended feedback O

(
n∗ log

(
C∗

δmin

))
Integer feedback O (n∗ log(C∗))

Table 1: Number of expansions in the worst case of our algorithms
for the different types of feedback.

4 Reductions
We now explain how to reduce tree search and graph search
to the abstract framework and implement queryext for these
domains. These query functions will be used in the next
sections as part of the main algorithms. Recall that the
number of expansions performed by query(C,∞) must be at
most n(C) and n(·) is non-decreasing and that n∗ = n(C∗).

The list A is composed of the f -costs of the nodes
encountered during the search. Recall from our problem
definition that each node corresponds to a path π, and that
expanding a node corresponds to expanding a state s =
state(π). For a search cost-bounded by C, let the fringe
be all generated nodes with f(π) > C. Also, let the set of
visited nodes be the generated nodes such that f(π) ≤ C.

Tree search. For tree search we implement queryext in
Algorithm 1, which is a variant of depth-first search with
an f -cost limit C and expansion budget b. The algorithm
terminates before exceeding the expansion budget and tracks
the smallest f -cost observed in the fringe and the largest f -
cost of any visited node, which are used to implement the
extended feedback model. Thus, for an f -cost bound C,
n(C) = |{π : maxs′∈π f(s′) ≤ C}|. When an optimal
solution is found, the algorithm throws an exception, which is
expected to be caught and handled by the user. The function
querylim could be implement like queryext without needing to
track min_fringe and max_expanded, but that would throw
away valuable information.

Graph search. In graph search, queryext is implemented
in a similar way as Algorithm 1, but DFS is replaced with
graph_search , which appears in the supplementary material.

Algorithm 1 Query with extended feedback for tree search

1 def queryext(C, budget):
2 data.min_fringe = ∞ # will be > C
3 data.max_visited = 0 # will be ≤ C
4 data.expanded = 0 # number of expansions
5 data.best_path = none # f(none) =∞
6 try:
7 DFS(C, budget, {sinit}, data)
8 catch "budget exceeded":
9 return [1, data.max_visited]

10 if data.best_path 6= none: # solution found
11 throw data # to be dealt with by the user
12 return [data.min_fringe,∞]
13 # data: return info, passed by reference
14 # π: path
15 def DFS(C, budget, π, data):
16 if f(π) > C:
17 data.min_fringe = min(data.min_fringe,

f(π))
18 return
19 data.max_visited = max(data.max_visited,

f(π))
20 if f(π) ≥ f(data.best_path):
21 return # branch and bound
22 if is_goal(state(π)):
23 data.best_path = π
24 # Here we could throw the solution if its
25 # cost is equal to a known lower bound
26 return
27 if data.expanded == budget:
28 throw "budget exceeded"
29 data.expanded++
30 for s′ ∈ succ(state(π)):
31 DFS(C, budget, π + {s′}, data)

The graph_search function is equivalent to BFIDA* [Zhou
and Hansen, 2004] with the breadth-first search replaced
with Uniform-Cost Search (UCS) [Russell and Norvig, 2009;
Felner, 2011], using an f -cost limit C on the generated
nodes and tracking the maximum f -cost among visited states
and the minimum f -cost in the fringe. As in UCS, states
are processed in increasing g-cost order. Since g is non-
decreasing, states are not expanded more than once in each
query. Therefore the number of expansions is at most n(C) =
|{s : minπ:state(π)=s maxs′∈π f(s′) ≤ C}| and the number
of expansions made by query(C∗,∞) is at most n(C∗) =
nG∗ as required.

5 Exponential Search
With the reductions out of the way, we now introduce a
budgeted variant of exponential search [Bentley and Yao,
1976], which is closely related to the bracketed bisection
method [Press et al., 1992, §9].

Algorithm 2 accepts as input a budget b, an initial
cost limit start ≤ Ccrit(b) and a function query ∈
{queryext, queryint, querylim}. The algorithm starts by
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Algorithm 2 Exponential search with budgeted queries

1 def exp_search(start, b, query):
2 low = start
3 high = ∞
4 loop:
5 if high == ∞:
6 C = 2×low # exponential phase
7 else:
8 C = (low + high) / 2 # binary phase
9 [low, high] = [low, high] ∩ query(C, b)

10 until low == high
11 return low

setting low = start and initiates an exponential phase
where low is repeatedly doubled until query(2× low, b) has
insufficient budget. The algorithm then sets high = 2 × low
and performs a binary search on the interval [low, high] until
low = high. See Fig. 2 for an illustration.

The discrete structure in the integer and extended feedback
models ensures that the algorithm halts after at most
logarithmically many queries and returns Ccrit(b). In the
limited feedback model the algorithm generally does not halt,
but will make a terminating query if b ≥ n∗. These properties
are summarized in the next two propositions, which use the
following definition:

nexp(ε, x,∆) = 1 +
⌈
log2

(x
ε

)⌉
≥1

+
⌊
log2

( x
∆

)⌋
≥0

.

This is an upper bound on the number of calls to query needed
when starting at start = ε, finding a upper bound high ≥ x
and then reducing the interval [low, high] to a size at most ∆
(leading to a query within that interval). Recall that making
a query with cost limit C and expansion budget b will find an
optimal solution if n∗ ≤ n(C) ≤ b.
Proposition 1. Suppose b ≥ n∗. Then for any feedback
model Algorithm 2 makes a query that terminates the
interaction after at most nexp(start, C∗, Ccrit(b) − C∗)
calls to query.
Proposition 2. Suppose b < n∗. Then, for the extended
feedback model, Algorithm 2 returns Ccrit(b) with at most
nexp(start, Ccrit(b), δmin) queries.

6 Iterative Budgeted Exponential Search
The Iterative Budgeted Exponential Search (IBEX) algorithm
uses the extended query model, which is available in our
applications to tree and graph search. Algorithm 3 initializes
a lower bound on the optimal cost with the lowest value in
the array C1 = minA; we now denote this quantity by
Cmin. It subsequently operates in iterations k ∈ N0. In
iteration k it sets the budget to bk = 2k and calls Ck+1 =
exp_search(Ck, bk, queryext) to obtain a better lower bound.
Theorem 3. The number of expansions made by Algorithm 3
is at most

4n∗nexp(Cmin, C
∗, δmin) = O

(
n∗ log

(
C∗

δmin

))
.

low = 1.3 high =∞C = 2.6

low = 2.9 high =∞C = 5.8

low = 2.9 high = 5.0C = 4.0

low = 4.5 high = 5.0C = 4.8

low high = 4.5

Ccrit(b)

1 2 3 4 5

Figure 2: The four queries made by exp_search with the
extended feedback model and start = 1.3 and budget b =
7. The ticks below the x-axis indicate the elements of A =
[1.4, 1.5, 1.8, 2.3, 2.9, 3.5, 3.6, 3.9, 4.5, 5, 6]. The small circles are
the values of C in each query. In the first call to queryext the budget
was sufficient and so low is set to A>(C) = 2.9, which is doubled
to produce the next query. In the second call to query, C = 5.8
leads to an insufficient budget and then high is set to 5.0. In the
third query Clow is increased to 4.5, which is Ccrit(b). In the fourth
query the budget is insufficient and the algorithm halts.

Proof. Define r1 = nexp(Cmin, C
∗, δmin). Let k∗ =

dlog2 n∗e be the first iteration k for which bk ≥ n∗.
Proposition 2 shows that for iterations k < k∗ the number
of queries performed in the call to exp_search is at most
nexp(Ck, Ccrit(bk), δmin) ≤ r1. Proposition 1 shows that
the game ends during iteration k∗ after a number of queries
bounded by nexp(Ck∗ , C

∗, Ccrit(bk∗)−C∗) ≤ r1. Since each
call to query with budget bk expands at most bk = 2k nodes,
the total number of expansions is bounded by

∑k∗
k=1 2kr1 ≤

2k∗+1r1 ≤ 22+log2 n∗r1 = 4n∗r1.

Remark 4. Algorithm 3 also works when queryext is
replaced by queryint, and now δmin = 1.

When used for graph search, we call the resulting IBEX
variant Budgeted Graph Search (BGS), and for tree search
Budgeted Tree Search (BTS).

Remark 5. Observe that if DFS or graph_search are called
with budget ≥ n(C) ≥ n∗, it throws an optimal solution.
Since the state space is finite, both BTS and BGS return an
optimal solution if one exists. If no solution exists, BGS will
exhaust the graph and return “no solution”, but BTS may run
forever unless additional duplicate detection is performed.

7 Uniform Budgeted Scheduler
While IBEX handles the integer and extended feedback
models, it cannot handle the limited feedback model. This
is handled by a new algorithm, presented in the next section,
using a finely balanced dovetailing idea that we call the
Uniform Budgeted Scheduler (UBS, see Algorithm 4) and

Algorithm 3 Iterative Budgeted Exponential Search

1 def IBEX(): # simple version
2 C1 = Cmin

3 for k = 1,2,...
4 bk = 2k

5 Ck+1 = exp_search(Ck, bk, queryext)
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Algorithm 4 Uniform Budgeted Scheduler

1 def UBS(T, run_prog):
2 q = make_priority_queue(T)
3 q.insert((1, 1)) # k=1, r=1
4 while not q.empty():
5 # Remove prog of minimum T cost
6 (k, r) = q.extract_min()
7 budget = T (k, r)− T (k, r − 1)
8 if run_prog(k, budget) != "halted":
9 q.insert((k, r + 1))

10 if r == 1:
11 q.insert((k + 1, 1))
12 return none

takes inspiration from Luby et al. (1993) speedup algorithm.
UBS runs a growing and unbounded number of programs in a
dovetailing fashion, for varying segments of steps. The notion
of step is to be defined by the user; in heuristic search we
take it to be a single node expansion. During one segment,
the selected program can make arbitrary computations but
must use no more steps than its current budget. Program k
halts when it reaches exactly τk steps, which may be infinite.
UBS maintains a priority queue of pairs (program index k,
segment number r), initialized with (1, 1) and ordered by a
function T : N1 × N0 → N0 with T (k, r) < T (k, r + 1)
and T (k, r) ≤ T (k + 1, r) for all (k, r) and T (k, 0) = 0 for
all k. In each iteration UBS removes the T -minimal element
(k, r) from the front of the queue and calls run_prog (k, b)
with b = T (k, r) − T (k, r − 1), which means that program
k is being run for its rth segment with a budget of b steps,
leading for program k to a total of at most T (k, r) steps over
the r segments. If this does not cause program k to halt, then
(k, r+1) is added to the priority queue. Finally, if r = 1, then
(k + 1, 1) is added too. The function run_prog is defined by
the user and may store and restore the state of program k as
well as allow access to a shared memory space.

The monotonicity assumptions on T mean that UBS is
essentially executing program/segment pairs (k, r) according
to a Uniform Cost Search where a pair (k, r) is a node in the
search tree with cost T (k, r) (Fig. 3). In this sense UBS tries
(asymptotically) to maintain a uniform amount of steps used
among all non-halting programs.

Let TUBS(k, r) be the number of steps used by UBS after
executing (k, r). Tj(k, r) = max{T (j,m) : T (j,m) ≤
T (k, r),m ∈ N0} is an upper bound on the number of steps
used by program j when UBS executes (k, r).

(k = 1, r = 1) (k = 1, r = 2) (k = 1, r = 3)

(k = 2, r = 1) (k = 2, r = 2) halts

(k = 3, r = 1) (k = 3, r = 2) (k = 3, r = 3)

Figure 3: An example tree used by UBS. Program k = 2 halts after
τ2 ≤ T (2, 2) steps.

Theorem 6. For any (k, r) with T (k, r − 1) < τk,

TUBS(k, r) ≤
∑
j∈N1

min{τj , Tj(k, r)}

≤ T (k, r) max{j : T (j, 1) ≤ T (k, r)} .

Example 7. A good choice is T (k, r) = r2k. Then
Theorem 6 implies that TUBS(k, r) ≤ r2k bk + log2(r)c.

8 DovIBEX: Limited Feedback
DovIBEX uses UBS to dovetail multiple instances of
exponential search (see Algorithm 5). The algorithm can use
any of the three queries, while still exploiting the additional
information provided in the extended and integer feedback
models. Following Example 7, we use T (k, r) = r2k so
that T (k, r) − T (k, r − 1) = 2k. Program k executes
one iteration of the loop of exponential search with budget
bk = 2k; if the budget is not entirely used during a
segment, the segment ends early. In the limited feedback
model, exponential search may continue halving the interval
[Clow, Chigh] indefinitely and never halt. The scheduler
solves this issue: by interleaving multiple instantiations of
exponential search with increasing budgets, the total time can
be bounded as a function of the time required by the first
program k that finds a solution.

Theorem 8. For query ∈ {queryext, queryint, querylim}, the
number of expansions made by Algorithm 5 is at most

Z blog2 Zc , Z = 2n∗nexp(Cmin, C
∗, δ(C∗))

and also at most O(Z ′ logZ ′) with

Z ′ = min
b≥n∗

b nexp(Cmin, C
∗, Ccrit(b)− C∗) . (1)

The dependency on δ(C∗) is gentler than the dependency
on δmin in Theorem 3. It means that the behaviour of
DovIBEX only depends on the structure of the search space
at the solution rather than on the worst case of all iterations.

Remark 9. Sometimes there exists a b > n∗ for which

bnexp(Cmin, C
∗, Ccrit(b)− C∗)� n∗nexp(Cmin, C

∗, δmin) .

In these cases the combination of UBS and exponential
search can improve on Algorithm 3. Furthermore when using
extended feedback, programs k < k∗ will now halt if they
can prove they cannot find a solution. This allows us to
provide the following complementary bound, which is only
an additive 2n∗r2 blog2 r2c term away from Theorem 3.

Theorem 10. When query = queryext, the number of
expansions made by Algorithm 5 is at most 2n∗(r1 +
r2(1 + blog2 r2c) with r1 = nexp(Cmin, C

∗, δmin), r2 =
nexp(Cmin, C

∗, δ(C∗)).

9 Enhancements
We now describe three enhancements for Algorithm 3 (see
Algorithm 6). The enhancements use a modified query
function called query+

ext that returns the same interval
as queryext and the number of expansions, which is
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Algorithm 5 Dovetailing IBEX

1 def run_prog(k, b):
2 [Clow, Chigh] = get_state(k, default = [Cmin,∞]

)
3 if Chigh =∞: # exponential phase
4 C = 2× Clow
5 else: # binary phase
6 C = (Clow + Chigh)/2
7 [Clow, Chigh] = [Clow, Chigh]∩ query(C, b)
8 if Clow >= Chigh: return "halted"
9 store_state(k, [Chigh, Clow])

10 def DovIBEX():
11 UBS((k, r) 7→ r2k, run_prog)

nused = min{b, n(C)}. For notational simplicity we write
[x, y], nused = query+

ext(C, b).
First, in each iteration of the enhanced IBEX a query is

performed with an infinite expansion budget and minimum
cost limitClow (Line 7). If the resulting number of expansions
is at least 2b, where b is the current budget, then IBEX updates
Clow, skips the exponential search and moves directly to the
next iteration. If furthermore the DFS algorithm is given
the lower bound Ck and throws a solution if its cost is Ck,
then this guarantees that IBEX performs exactly like IDA* in
domains in which the number of expansions grows by at least
a factor 2 in each iteration. If the queries with infinite budget
(Line 7) do not help skipping iterations, in the worst case they
cost an additive 2n∗ expansions.

The second enhancement is an early stopping condition
for proceeding to the next iteration. Algorithm 3 terminates
an iteration once it finds Ccrit(b), which can be slow when
δ(Ccrit(b)) is small. Algorithm 6 uses a budget window
defined by 2b and αb, where α ≥ 2, so that whenever a
query is made and the number of expansions is in the interval
[2b, αb], the algorithm moves on to the next iteration (line 19).
Hence iteration k ends when a query is made within budget
with a cost within [Ccrit(2b), Ccrit(αb)].

The third enhancement is the option of using an additive
variant of the exponential search algorithm, which increases
Clow by increments of 2j at iteration j during the exponential
phase (line 12). This variant is based on the assumption
that costs increase linearly when the budget doubles, which
often happens in heuristic search if the search space grows
exponentially with the depth.

These enhancements can also be applied to DovIBEX (see
the supplementary material).

10 Experiments
We test1 IBEX (BTS, enhanced), DovIBEX (DovBTS,
enhanced), IDA* [Korf, 1985], IDA*_CR [Sarkar et al.,
1991] and EDA* [Sharon et al., 2014]. EDA*(γ) is a variant
of IDA* designed for polynomial domains that repeatedly
calls DFS with unlimited budget and a cost threshold of

1All these algorithms are implemented in C++ in the publicly
available HOG2 repository, https://github.com/nathansttt/hog2/.

Algorithm 6 Enhanced IBEX

1 # α: factor on budget, which must be ≥ 2
2 # is_additive: True is using additive search
3 def IBEX_enhanced(α=8, is_additive):
4 Clow = Cmin

5 b = 1
6 for k = 1, 2, . . .:
7 [Clow, Chigh], nused = query+

ext(Clow, ∞)
8 if nused < 2b:
9 for j = 1, 2, . . .:

10 if Chigh == ∞: # exponential phase
11 if is_additive:
12 C = Clow + 2j

13 else:
14 C = Clow × 2
15 else: # binary phase
16 C = (Clow + Chigh)/2

17 [C ′low, C
′
high], nused = query+

ext(C,α× b)
18 [Clow, Chigh] = [Clow, Chigh] ∩ [C ′low, C

′
high]

19 if (C ′high == ∞ and nused ≥ 2b) or
20 Clow == Chigh:
21 break
22 b = max(2b, nused)

γk at iteration k. In our experiments we take γ ∈
{2, 1.01}. IDA*_CR behaves similarly, but adapts the next
cost threshold by collecting the costs of the nodes in the fringe
into buckets and selecting the first cost that is likely to expand
at least bk nodes in the next iteration. Our implementation
uses 50 buckets and sets b = 2. The number of nodes (states)
of cost strictly below C∗ is reported as n<T∗ (n<G∗).

These algorithms are tested for tree search on the 15-Puzzle
[Doran and Michie, 1966] with the Manhattan distance
heuristic with unit costs and with varied edge costs of 1 +
1/(t + 1) to move tile t, on (12, 4)-TopSpin [Lammertink,
1989] with random action costs between 40 and 60 and the
max of 3 4-tile pattern database heuristics, on long chains
(branching factor of 1 and unit edge costs, solution depth in
[1..10 000]), and on a novel domain, which we explain next.

In order to evaluate the robustness of the search algorithms,
we introduce the Coconut problem, which is a domain with
varied branching factor and small solution density. The
heuristic is 0 everywhere, except at the root where h = 1.
At each node there are 3 ‘actions’, {1, 2, 3}. The solution
path follows the same action (sampled uniformly in [1..3])
for D steps, then it follows a random path sampled uniformly
of length q, where D is sampled uniformly in [1..10 000] and
q is sampled from a geometric distribution of parameter 1/4.
The first action costs 1. At depth less thanD, taking the same
action as at the parent node costs 1, taking another action
costs 2D. At depth larger than D, each action costs 1/10.

10.1 Results
We use 100 instances for each problem domain, a time limit
of 4 hours for 15-Puzzle and TopSpin, 1 hour for the Coconut
problem and no limit for the Chain problem. The results are
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Algorithm 15-Puzzle (unit) 15-Puzzle (real) (12, 4)-Topspin Chain Coconut
α add? Solved Exp. Solved Exp. Solved Exp.×103 Solved Exp.×104 Solved Exp.×104

BTS 2 y 100 242.5 97 3 214.1 100 1 521.9 100 302.0 100 72.9
8 y 100 242.5 100 673.1 100 597.0 100 198.2 100 84.7
2 n 100 242.5 97 3 549.1 100 1 600.0 100 111.8 100 58.5
8 n 100 242.5 99 1 320.3 100 614.6 100 26.7 100 86.8

DovBTS 2 y 100 390.5 100 1 087.7 100 1 083.1 100 287.2 100 107.4
8 y 100 322.0 100 767.4 100 606.1 100 125.9 100 1 136.0
2 n 100 322.0 98 2 355.2 100 1 145.1 100 33.8 100 121.8
8 n 100 474.6 100 2 432.2 100 590.5 100 24.9 100 2 882.9

EDA* γ = 2 99 5 586.0 100 2 882.3 100 807.5 100 19.4 3 ≥ 554 249.0
EDA* γ = 1.01 100 1 023.8 100 742.0 100 730.2 100 990.2 10 ≥ 528 137.9
IDA*_CR 100 868.4 100 700.6 100 346.0 100 988.3 3 ≥ 516 937.7
IDA* 100 242.5 57 62 044.3 100 2 727.5 100 162 129.0 100 5 484.2
n<T∗ 100 100.8 100 258.1 100 35.8 100 4.9 100 2.7

Table 2: Results on tree search domains. Each tasks has 100 instances. Expansions (Exp.) are averaged on solved tasks only (except Coconut),
and times 106 for the 15-puzzle. BTS is the implementation for tree search of the IBEX framework. add? is the is_additive parameter.

Algorithm d=100 d=1 000 d=10 000
α add? Exp. Exp. Exp. Time (s)

BGS 2 y 2 592 35 478 752 392 0.4
8 y 1 276 22 275 312 497 0.2
2 n 2 429 26 030 513 573 0.4
8 n 513 8 821 84 434 0.1

DovBGS 2 y 2 195 31 862 564 720 0.1
8 y 1 495 15 757 189 883 0.1
2 n 1 547 12 987 185 500 0.1
8 n 449 4 017 36 093 0.1

A*/B/B’ 7 652 751 502 75 015 002 22.4
n<G∗ 200 2 000 20 000 0.0

Table 3: Results for inconsistent heuristics in graph search. BGS is
the implementation of the IBEX framework for graph search.

shown in Table 2. We report results also for α = 2 to show
the gain in efficiency when using a budget factor window of
[2, 8] instead of the narrower window [2, 2] (see Section 9).
IBEX (BTS) and DovIBEX (DovBTS) (α = 8) are the only
robust algorithms across all domains while being competitive
on all domains, whereas all other algorithms tested fail hard
on at least one domain. IBEX (BTS) has exactly the same
behaviour as IDA* when the number of expansions grows
at least by a factor 2 at each call to query with infinite
budget; see 15-Puzzle (unit). Taking is_additive=y helps
on exponential domains, whereas is_additive=n helps on
polynomial domains, as expected.

To explain the behaviour of IDA*_CR and EDA* on
the Coconut problem, consider a randomly chosen instance
where D = 2 690 and q = 6. The cost set by EDA*
(γ = 2) in the last iteration is 4 096, resulting in a search tree
with approximately 3(4 096−2 690)/0.1 ≈ 106 700 nodes. The
same issue arises for IDA*_CR. EDA*(1.01) performs only
marginally better. This is not a carefully selected example,
and such behaviour occurs on almost all Coconut instances.

Finally, we evaluate our algorithms in graph search
problems with inconsistent heuristics, parameterizing Mérõ’s
(1984) graph by d to have 2d + 2 states (see supplementary

material). All states have heuristic of 0 except each state
ti which has heuristic d + i − 1. A*, B [Martelli, 1977],
and B’ [Mérõ, 1984] are all expected to perform O(n2

G∗)
expansions on this graph. The results are in Table 3. While
A* shows quadratic growth on the number of expansions, our
algorithms exhibit near-linear performance as expected.

11 Conclusion
We have developed a new framework called IBEX that
combines exponential search with an increasing node
expansion budget to resolve two long-standing problems
in heuristic search. The resulting algorithms for tree and
graph search improve existing guarantees on the number of
expansions from Ω(n2

∗) to O(n∗ logC∗). Our algorithms
are fast and practical. They significantly outperform existing
baselines in known failure cases while being at least as good,
if not better, on traditional domains; hence, for tree search
we recommend using our algorithms instead of IDA*. On
graph search problems our algorithms outperform A*, B and
B’ when the heuristic is inconsistent, and pay only a small
logC∗ factor otherwise.

We also expect the IBEX framework to be able to tackle re-
expansions problems of other algorithms, such as Best-First
Levin Tree Search [Orseau et al., 2018] and Weighted A*
[Chen et al., 2019].

The IBEX framework and algorithms have potential
applications beyond search in domains that exhibit a
dependency between a parameter and the amount of work
(computation steps, energy, etc.) required to either succeed
or fail. Some of these applications may not be well suited
to the extended feedback model, which further justifies the
interest in the analysis of the limited feedback model.
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